WorldWideScience

Sample records for regression results suggest

  1. Repeated Results Analysis for Middleware Regression Benchmarking

    Czech Academy of Sciences Publication Activity Database

    Bulej, Lubomír; Kalibera, T.; Tůma, P.

    2005-01-01

    Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005

  2. Augmenting Data with Published Results in Bayesian Linear Regression

    Science.gov (United States)

    de Leeuw, Christiaan; Klugkist, Irene

    2012-01-01

    In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…

  3. Mapping the results of local statistics: Using geographically weighted regression

    Directory of Open Access Journals (Sweden)

    Stephen A. Matthews

    2012-03-01

    Full Text Available BACKGROUND The application of geographically weighted regression (GWR - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health, and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in the relationships between predictors and the outcome variable. OBJECTIVE A major challenge to users of GWR methods is how best to present and synthesize the large number of mappable results, specifically the local parameter parameter estimates and local t-values, generated from local GWR models. We offer an elegant solution. METHODS This paper introduces a mapping technique to simultaneously display local parameter estimates and local t-values on one map based on the use of data selection and transparency techniques. We integrate GWR software and GIS software package (ArcGIS and adapt earlier work in cartography on bivariate mapping. We compare traditional mapping strategies (i.e., side-by-side comparison and isoline overlay maps with our method using an illustration focusing on US county infant mortality data. CONCLUSIONS The resultant map design is more elegant than methods used to date. This type of map presentation can facilitate the exploration and interpretation of nonstationarity, focusing map reader attention on the areas of primary interest.

  4. Mobbing Experiences of Instructors: Causes, Results, and Solution Suggestions

    Science.gov (United States)

    Celep, Cevat; Konakli, Tugba

    2013-01-01

    In this study, it was aimed to investigate possible mobbing problems in universities, their causes and results, and to attract attention to precautions that can be taken. Phenomenology as one of the qualitative research methods was used in the study. Sample group of the study was selected through the criteria sampling method and eight instructors…

  5. Two SPSS programs for interpreting multiple regression results.

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Ferrando, Pere J; Chico, Eliseo

    2010-02-01

    When multiple regression is used in explanation-oriented designs, it is very important to determine both the usefulness of the predictor variables and their relative importance. Standardized regression coefficients are routinely provided by commercial programs. However, they generally function rather poorly as indicators of relative importance, especially in the presence of substantially correlated predictors. We provide two user-friendly SPSS programs that implement currently recommended techniques and recent developments for assessing the relevance of the predictors. The programs also allow the user to take into account the effects of measurement error. The first program, MIMR-Corr.sps, uses a correlation matrix as input, whereas the second program, MIMR-Raw.sps, uses the raw data and computes bootstrap confidence intervals of different statistics. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from http://brm.psychonomic-journals.org/content/supplemental.

  6. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    Science.gov (United States)

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  7. Sleep Disturbance as a Precursor of Severe Regression in Kleefstra Syndrome Suggests a Need for Firm and Rapid Pharmacological Treatment.

    Science.gov (United States)

    Vermeulen, Karlijn; Staal, Wouter G; Janzing, Joost G; van Bokhoven, Hans; Egger, Jos I M; Kleefstra, Tjitske

    Intellectual disability is frequently accompanied by psychiatric symptoms that require pharmacological interventions. Treatment guidelines often provide a general treatment approach for these symptoms in intellectual disability. However, this may not always be the best strategy, as illustrated here in Kleefstra syndrome. We present 3 patients showing severe regression after sleep disturbances. If these are treated with care as usual (eg, behavioral programs and sleep medication) deterioration is likely to follow. It is observed that rapid treatment with relatively high dosages of antipsychotics contributes to restore sleep, halt further regression, and improve daily life functioning.

  8. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    Science.gov (United States)

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  9. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Science.gov (United States)

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  10. Is working memory working against suggestion susceptibility? Results from extended version of DRM paradigm

    Directory of Open Access Journals (Sweden)

    Maciaszek Patrycja

    2016-04-01

    Full Text Available The paper investigates relationship between working memory efficiency, defined as the result of its’ processing & storage capacity (Oberauer et al., 2003 and the tendency to (1 create assosiative memory distortions (false memories, FM; (2 yield under the influence of external, suggesting factors. Both issues were examined using extended version of Deese-Roediger-McDermott procedure (1959, 1995, modified in order to meet the study demands. Suggestion was contained in an ostentatious feedback information the participants (N=88 received during the DRM procedure. Working memory (WM was measured by standardized tasks (n-back, Jaeggi et al., 2010; automatic-ospan, Unsworth et al., 2005. Study included 3 conditions, differing in the quality of suggestion (positive, negative or neutral. Participants were assigned into 3 groups, depending on results they achieved completing the WM tasks. Obtained results alongside the previously set hypothesis, revealed that (1 WM impacts individuals’ tendency to create false memories in DRM and (2 that the individuals showing higher rates in WM tasks are less willing to yield to suggestion compared to those with lesser ones. It also showed that the greater amount to shift (Gudjonsson, 2003, emerges under the negative suggestion condition (collating positive. Notwithstanding that the interaction effect did not achieve saliency, both analyzed factors (WM and suggesting content are considered as meaningful to explain memory suggestion susceptibility in presented study. Although, obtained results emphasize the crucial role of WM efficiency, that is believed to decide the magnitude of feedback that is influential in every subject. Therefore, issue demands further exploration.

  11. Nucleon resonance electroproduction at high momentum transers: Results from SLAC and suggestions for CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Keppel, C. [Virginia Union Univ., Richmond, VA (United States)

    1994-04-01

    Nucleon resonance electroproduction results from SLAC Experiment E14OX are presented. A CEBAF facility with doubled energy would enable similar high momentum transfer measurements to be made with greater accuracy. Of particular interest are the Delta P{sub 33}(1232) resonance form factor and R = {sigma}{sub L}/{sigma}{sub T}, the ratio of the longitudinal and transverse components of the cross section. A suggestion is made to study these quantities in conjunction with Bloom-Gilman duality.

  12. Variances in the projections, resulting from CLIMEX, Boosted Regression Trees and Random Forests techniques

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh

    2017-08-01

    The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations

  13. Posterior consistency for Bayesian inverse problems through stability and regression results

    International Nuclear Information System (INIS)

    Vollmer, Sebastian J

    2013-01-01

    In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior. (paper)

  14. Financial analysis and forecasting of the results of small businesses performance based on regression model

    Directory of Open Access Journals (Sweden)

    Svetlana O. Musienko

    2017-03-01

    Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small

  15. Differentiating regressed melanoma from regressed lichenoid keratosis.

    Science.gov (United States)

    Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A

    2017-04-01

    Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Facultative methanotrophy: false leads, true results, and suggestions for future research.

    Science.gov (United States)

    Semrau, Jeremy D; DiSpirito, Alan A; Vuilleumier, Stéphane

    2011-10-01

    Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Investigations of aircrews exposure to cosmic radiation - results, conclusions and suggestions

    CERN Document Server

    Bilski, P; Horwacik, T; Marczewska, B; Ochab, E; Olko, P

    2002-01-01

    In frame of a research project undertaken in collaboration with Polish airlines LOT, analysis of aircrews exposure to cosmic radiation has been performed. The applied methods included measurements of radiation doses with thermoluminescent detectors (MTS-N, MCP-N) and track detectors (CR-39) and also calculations of route doses with the CARI computer code. The obtained results indicate that aircrews of nearly all airplanes, with exception of these flying only on ATR aircraft, exceed regularly or may exceed in some conditions, effective doses of 1 mSv. In case of Boeing-767 aircrews such exceeding occurs always, independently of solar activity. Investigations revealed, that during these periods of the solar cycle, when intensity of cosmic radiation is high, exceeding of 6 mSv level is also possible. These results indicate, that according to Polish and European regulations it is necessary for airlines to provide regular estimations of radiation exposure of aircrews. Basing on the obtained results a system for pe...

  18. Testing for variation in taxonomic extinction probabilities: a suggested methodology and some results

    Science.gov (United States)

    Conroy, M.J.; Nichols, J.D.

    1984-01-01

    Several important questions in evolutionary biology and paleobiology involve sources of variation in extinction rates. In all cases of which we are aware, extinction rates have been estimated from data in which the probability that an observation (e.g., a fossil taxon) will occur is related both to extinction rates and to what we term encounter probabilities. Any statistical method for analyzing fossil data should at a minimum permit separate inferences on these two components. We develop a method for estimating taxonomic extinction rates from stratigraphic range data and for testing hypotheses about variability in these rates. We use this method to estimate extinction rates and to test the hypothesis of constant extinction rates for several sets of stratigraphic range data. The results of our tests support the hypothesis that extinction rates varied over the geologic time periods examined. We also present a test that can be used to identify periods of high or low extinction probabilities and provide an example using Phanerozoic invertebrate data. Extinction rates should be analyzed using stochastic models, in which it is recognized that stratigraphic samples are random varlates and that sampling is imperfect

  19. An illustration of harmonic regression based on the results of the fast Fourier transformation

    Directory of Open Access Journals (Sweden)

    Bertfai Imre

    2002-01-01

    Full Text Available The well-known methodology of the Fourier analysis is put against the background in the 2nd half of the century parallel to the development of the time-domain approach in the analysis of mainly economical time series. However, from the author's point of view, the former possesses some hidden analytical advantages which deserve to be re-introduced to the toolbox of analysts. This paper, through several case studies, reports research results for computer algorithm providing a harmonic model for time series. The starting point of the particular method is a harmonic analysis (Fourier-analysis or Lomb-periodogram. The results are optimized in a multifold manner resulting in a model which is easy to handle and able to forecast the underlying data. The results provided are particularly free from limitations characteristic for that methods. Furthermore, the calculated results are easy to interpret and use for further decisions. Nevertheless, the author intends to enhance the procedure in several ways. The method shown seems to be very effective and useful in modeling time series consisting of periodic terms. An additional advantage is the easy interpretation of the obtained parameters.

  20. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    Science.gov (United States)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  1. Contact allergy to rubber accelerators remains prevalent: retrospective results from a tertiary clinic suggesting an association with facial dermatitis.

    Science.gov (United States)

    Schwensen, J F; Menné, T; Johansen, J D; Thyssen, J P

    2016-10-01

    Chemicals used for the manufacturing of rubber are known causes of allergic contact dermatitis on the hands. Recent European studies have suggested a decrease in thiuram contact allergy. Moreover, while an association with hand dermatitis is well established, we have recently observed several clinical cases with allergic facial dermatitis to rubber. To evaluate temporal trends of contact allergy to rubber accelerators from the European baseline series in a tertiary patch test clinic in Denmark, and examine associations with anatomical locations of dermatitis. Patch test and clinical data collected in a Danish tertiary dermatology clinic in Gentofte, Herlev, Copenhagen between 1 January 2005 and 31 December 2014 were analysed. The following rubber accelerators or mixtures in petrolatum from the European baseline patch test series were included: thiuram mix 1.0%, mercaptobenzothiazole 2.0% and mercapto mix 1.0%. The overall prevalence of contact allergy to rubber accelerators was 3.1% with no significant change during the study period (P trend = 0.667). Contact allergy to thiuram mix was the most prevalent and was significantly associated with occupational contact dermatitis, hand dermatitis, age >40 years and facial dermatitis in adjusted binary logistic regression analysis. Current clinical relevance of contact allergy to thiuram mix was 59.3%. Patients with contact allergy to mercapto mix and mercaptobenzothiazole had a concomitant reaction to thiuram mix in 35.2% (19/54) and 35.4% (17/48) of the cases respectively. Contact allergy to rubber accelerators remains prevalent. Clinicians should be aware of the hitherto unexplored clinical association with facial dermatitis. © 2016 European Academy of Dermatology and Venereology.

  2. Does the high–tech industry consistently reduce CO{sub 2} emissions? Results from nonparametric additive regression model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin [School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013 (China); Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013 (China); Lin, Boqiang, E-mail: bqlin@xmu.edu.cn [Collaborative Innovation Center for Energy Economics and Energy Policy, China Institute for Studies in Energy Policy, Xiamen University, Xiamen, Fujian 361005 (China)

    2017-03-15

    China is currently the world's largest carbon dioxide (CO{sub 2}) emitter. Moreover, total energy consumption and CO{sub 2} emissions in China will continue to increase due to the rapid growth of industrialization and urbanization. Therefore, vigorously developing the high–tech industry becomes an inevitable choice to reduce CO{sub 2} emissions at the moment or in the future. However, ignoring the existing nonlinear links between economic variables, most scholars use traditional linear models to explore the impact of the high–tech industry on CO{sub 2} emissions from an aggregate perspective. Few studies have focused on nonlinear relationships and regional differences in China. Based on panel data of 1998–2014, this study uses the nonparametric additive regression model to explore the nonlinear effect of the high–tech industry from a regional perspective. The estimated results show that the residual sum of squares (SSR) of the nonparametric additive regression model in the eastern, central and western regions are 0.693, 0.054 and 0.085 respectively, which are much less those that of the traditional linear regression model (3.158, 4.227 and 7.196). This verifies that the nonparametric additive regression model has a better fitting effect. Specifically, the high–tech industry produces an inverted “U–shaped” nonlinear impact on CO{sub 2} emissions in the eastern region, but a positive “U–shaped” nonlinear effect in the central and western regions. Therefore, the nonlinear impact of the high–tech industry on CO{sub 2} emissions in the three regions should be given adequate attention in developing effective abatement policies. - Highlights: • The nonlinear effect of the high–tech industry on CO{sub 2} emissions was investigated. • The high–tech industry yields an inverted “U–shaped” effect in the eastern region. • The high–tech industry has a positive “U–shaped” nonlinear effect in other regions. • The linear impact

  3. Hyperprolactinaemia as a result of immaturity or regression: the concept of maternal subroutine. A new model of psychoendocrine interactions.

    Science.gov (United States)

    Sobrinho, L G; Almeida-Costa, J M

    1992-01-01

    Pathological hyperprolactinaemia (PH) is significantly associated with: (1) paternal deprivation during childhood, (2) depression, (3) non-specific symptoms including obesity and weight gain. The clinical onset of the symptoms often follows pregnancy or a loss. Prolactin is an insulin antagonist which does not promote weight gain. Hyperprolactinaemia and increased metabolic efficiency are parts of a system of interdependent behavioural and metabolic mechanisms necessary for the care of the young. We call this system, which is available as a whole package, maternal subroutine (MS). An important number of cases of PH are due to activation of the MS that is not induced by pregnancy. The same occurs in surrogate maternity and in some animal models. Most women with PH developed a malignant symbiotic relationship with their mothers in the setting of absence, alcoholism or devaluation of the father. These women may regress to early developmental stages to the point that they identify themselves both with their lactating mother and with the nursing infant as has been found in psychoanalysed patients and in the paradigmatic condition of pseudopregnancy. Such regression can be associated with activation of the MS. Prolactinomas represent the extreme of the spectrum of PH and may result from somatic mutations occurring in hyperstimulated lactotrophs.

  4. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  5. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  6. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification

    Directory of Open Access Journals (Sweden)

    Jeliazko R. Jeliazkov

    2018-03-01

    Full Text Available Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody’s antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.

  7. Types of suggestibility: Relationships among compliance, indirect, and direct suggestibility.

    Science.gov (United States)

    Polczyk, Romuald; Pasek, Tomasz

    2006-10-01

    It is commonly believed that direct suggestibility, referring to overt influence, and indirect suggestibility, in which the intention to influence is hidden, correlate poorly. This study demonstrates that they are substantially related, provided that they tap similar areas of influence. Test results from 103 students, 55 women and 48 men, were entered into regression analyses. Indirect suggestibility, as measured by the Sensory Suggestibility Scale for Groups, and compliance, measured by the Gudjonsson Compliance Scale, were predictors of direct suggestibility, assessed with the Barber Suggestibility Scale. Spectral analyses showed that indirect suggestibility is more related to difficult tasks on the BSS, but compliance is more related to easy tasks on this scale.

  8. Percentile-Based ETCCDI Temperature Extremes Indices for CMIP5 Model Output: New Results through Semiparametric Quantile Regression Approach

    Science.gov (United States)

    Li, L.; Yang, C.

    2017-12-01

    Climate extremes often manifest as rare events in terms of surface air temperature and precipitation with an annual reoccurrence period. In order to represent the manifold characteristics of climate extremes for monitoring and analysis, the Expert Team on Climate Change Detection and Indices (ETCCDI) had worked out a set of 27 core indices based on daily temperature and precipitation data, describing extreme weather and climate events on an annual basis. The CLIMDEX project (http://www.climdex.org) had produced public domain datasets of such indices for data from a variety of sources, including output from global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the 27 ETCCDI indices, there are six percentile-based temperature extremes indices that may fall into two groups: exceedance rates (ER) (TN10p, TN90p, TX10p and TX90p) and durations (CSDI and WSDI). Percentiles must be estimated prior to the calculation of the indices, and could more or less be biased by the adopted algorithm. Such biases will in turn be propagated to the final results of indices. The CLIMDEX used an empirical quantile estimator combined with a bootstrap resampling procedure to reduce the inhomogeneity in the annual series of the ER indices. However, there are still some problems remained in the CLIMDEX datasets, namely the overestimated climate variability due to unaccounted autocorrelation in the daily temperature data, seasonally varying biases and inconsistency between algorithms applied to the ER indices and to the duration indices. We now present new results of the six indices through a semiparametric quantile regression approach for the CMIP5 model output. By using the base-period data as a whole and taking seasonality and autocorrelation into account, this approach successfully addressed the aforementioned issues and came out with consistent results. The new datasets cover the historical and three projected (RCP2.6, RCP4.5 and RCP

  9. Diet influenced tooth erosion prevalence in children and adolescents: Results of a meta-analysis and meta-regression

    NARCIS (Netherlands)

    Salas, M.M.; Nascimento, G.G.; Vargas-Ferreira, F.; Tarquinio, S.B.; Huysmans, M.C.D.N.J.M.; Demarco, F.F.

    2015-01-01

    OBJECTIVE: The aim of the present study was to assess the influence of diet in tooth erosion presence in children and adolescents by meta-analysis and meta-regression. DATA: Two reviewers independently performed the selection process and the quality of studies was assessed. SOURCES: Studies

  10. Structural rearrangements of chromosome 15 satellites resulting in Prader-Willi syndrome suggest a complex mechanism for uniparental disomy

    Energy Technology Data Exchange (ETDEWEB)

    Toth-Fijel, S.; Gunter, K.; Olson, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    We report two cases of PWS in which there was abnormal meiosis I segregation of chromosome 15 following a rare translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and an apparent meiotic recombination in the unstable region of 15q11.2. PWS and normal appearing chromosomes in case one prompted a chromosome 15 origin analysis. PCR analysis indicated maternal isodisomy for the long arm of chromosome. However, only one chromosome 15 had short arm heteromorphisms consistent with either paternal or maternal inheritance. VNTR DNA analysis and heteromorphism data suggest that a maternal de novo translocation between chromosome 14 and 15 occurred prior to meiosis I. This was followed by recombination between D15Z1 and D15S11 and subsequent meiosis I nondisjunction. Proband and maternal karyotype display a distamycin A-DAPI positive region on the chromosome 14 homolog involved in the translocation. Fluorescent in situ hybridization (FISH) analyses of ONCOR probes D15S11, SNRPN, D15S11 and GABRB 3 were normal, consistent with the molecular data. Case two received a Robertsonian translocation t(14;15)(p13;p13) of maternal origin. Chromosome analysis revealed a meiosis I error producing UPD. FISH analysis of the proband and parents showed normal hybridization of ONCOR probes D15Z1, D15S11, SNRPN, D15S10 and GABRB3. In both cases the PWS probands received a structurally altered chromosome 15 that had rearranged with chromosome 14 prior to meiosis. If proper meiotic segregation is dependent on the resolution of chiasmata and/or the binding to chromosome-specific spindle fibers, then it may be possible that rearrangements of pericentric or unstable regions of the genome disrupt normal disjunction and lead to uniparental disomy.

  11. Retinal microaneurysm count predicts progression and regression of diabetic retinopathy. Post-hoc results from the DIRECT Programme.

    Science.gov (United States)

    Sjølie, A K; Klein, R; Porta, M; Orchard, T; Fuller, J; Parving, H H; Bilous, R; Aldington, S; Chaturvedi, N

    2011-03-01

    To study the association between baseline retinal microaneurysm score and progression and regression of diabetic retinopathy, and response to treatment with candesartan in people with diabetes. This was a multicenter randomized clinical trial. The progression analysis included 893 patients with Type 1 diabetes and 526 patients with Type 2 diabetes with retinal microaneurysms only at baseline. For regression, 438 with Type 1 and 216 with Type 2 diabetes qualified. Microaneurysms were scored from yearly retinal photographs according to the Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. Retinopathy progression and regression was defined as two or more step change on the ETDRS scale from baseline. Patients were normoalbuminuric, and normotensive with Type 1 and Type 2 diabetes or treated hypertensive with Type 2 diabetes. They were randomized to treatment with candesartan 32 mg daily or placebo and followed for 4.6 years. A higher microaneurysm score at baseline predicted an increased risk of retinopathy progression (HR per microaneurysm score 1.08, P diabetes; HR 1.07, P = 0.0174 in Type 2 diabetes) and reduced the likelihood of regression (HR 0.79, P diabetes; HR 0.85, P = 0.0009 in Type 2 diabetes), all adjusted for baseline variables and treatment. Candesartan reduced the risk of microaneurysm score progression. Microaneurysm counts are important prognostic indicators for worsening of retinopathy, thus microaneurysms are not benign. Treatment with renin-angiotensin system inhibitors is effective in the early stages and may improve mild diabetic retinopathy. Microaneurysm scores may be useful surrogate endpoints in clinical trials. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  12. Preparing for severe contrast media reactions in children - results of a national survey, a literature review and a suggested protocol

    International Nuclear Information System (INIS)

    Lindsay, R.; Paterson, A.; Edgar, D.

    2011-01-01

    Aim: To identify current practices within paediatric radiology in the UK with regard to the use of prophylactic medication, prior to administering intravenous (IV) radiocontrast medium (RCM). In addition, the pre-injection risk management strategies of the departments questioned was to be evaluated, and using consensus opinion, a protocol for managing patients identified as being at high risk for an adverse reaction to RCM was to be outlined. Materials and methods: An online survey of paediatric radiology consultants representing all geographic regions of the UK was carried out. The questions asked included an assessment of the risk factors for adverse reactions to RCM, and how such reactions are anticipated and managed. The questionnaire asked about the perceived indications for, and the use of prophylactic medication prior to RCM administration. Results: A response rate of 51% was achieved. The majority of respondents felt that a history of previous RCM reaction was an indication to administer prophylactic drugs prior to a further dose of RCM. No other risk factor was believed to require prophylactic medication. Conclusion: Using information obtained from the survey, a literature search was performed to assess the evidence available in support of each practice. A protocol was devised to identify children at risk of an adverse reaction to RCM, and guide the use of prophylactic medication in this group of patients. The survey highlighted considerable variability in the risk-assessment and management practices within paediatric radiology in the UK. The derived protocol may guide radiologists' management of children at risk for an RCM reaction.

  13. Regression Phalanxes

    OpenAIRE

    Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.

    2017-01-01

    Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...

  14. Predicting Teacher Value-Added Results in Non-Tested Subjects Based on Confounding Variables: A Multinomial Logistic Regression

    Science.gov (United States)

    Street, Nathan Lee

    2017-01-01

    Teacher value-added measures (VAM) are designed to provide information regarding teachers' causal impact on the academic growth of students while controlling for exogenous variables. While some researchers contend VAMs successfully and authentically measure teacher causality on learning, others suggest VAMs cannot adequately control for exogenous…

  15. Measuring the statistical validity of summary meta‐analysis and meta‐regression results for use in clinical practice

    Science.gov (United States)

    Riley, Richard D.

    2017-01-01

    An important question for clinicians appraising a meta‐analysis is: are the findings likely to be valid in their own practice—does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity—where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple (‘leave‐one‐out’) cross‐validation technique, we demonstrate how we may test meta‐analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta‐analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta‐analysis and a tailored meta‐regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within‐study variance, between‐study variance, study sample size, and the number of studies in the meta‐analysis. Finally, we apply Vn to two published meta‐analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta‐analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28620945

  16. Regression analysis by example

    CERN Document Server

    Chatterjee, Samprit

    2012-01-01

    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  17. Autistic Regression

    Science.gov (United States)

    Matson, Johnny L.; Kozlowski, Alison M.

    2010-01-01

    Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

  18. "Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results"

    Directory of Open Access Journals (Sweden)

    Jason W. Osborne

    2012-06-01

    Full Text Available Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These outcomes represent important social science lines of research: retention in, or dropout from school, using illicit drugs, underage alcohol consumption, antisocial behavior, purchasing decisions, voting patterns, risky behavior, and so on. The goal of this paper is to briefly lead the reader through the surprisingly simple mathematics that underpins logistic regression: probabilities, odds, odds ratios, and logits. Anyone with spreadsheet software or a scientific calculator can follow along, and in turn, this knowledge can be used to make much more interesting, clear, and accurate presentations of results (especially to non-technical audiences. In particular, I will share an example of an interaction in logistic regression, how it was originally graphed, and how the graph was made substantially more user-friendly by converting the original metric (logits to a more readily interpretable metric (probability through three simple steps.

  19. Better Autologistic Regression

    Directory of Open Access Journals (Sweden)

    Mark A. Wolters

    2017-11-01

    Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.

  20. Understanding logistic regression analysis

    OpenAIRE

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...

  1. 40 CFR Figure C-1 to Subpart C of... - Suggested Format for Reporting Test Results for Methods for SO 2, CO, O 3, NO 2

    Science.gov (United States)

    2010-07-01

    ... Results for Methods for SO 2, CO, O 3, NO 2 C Figure C-1 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Fig. C-1 Figure C-1 to Subpart C of Part 53—Suggested Format for Reporting Test... Difference Table C-1 spec. Pass or fail Low 1 ____ ppm 2 to ____ ppm 3 4 5 6 Medium 1 ____ ppm 2 to ____ ppm...

  2. Correlation of results obtained by in-vivo optical spectroscopy with measured blood oxygen saturation using a positive linear regression fit

    Science.gov (United States)

    McCormick, Patrick W.; Lewis, Gary D.; Dujovny, Manuel; Ausman, James I.; Stewart, Mick; Widman, Ronald A.

    1992-05-01

    Near infrared light generated by specialized instrumentation was passed through artificially oxygenated human blood during simultaneous sampling by a co-oximeter. Characteristic absorption spectra were analyzed to calculate the ratio of oxygenated to reduced hemoglobin. A positive linear regression fit between diffuse transmission oximetry and measured blood oxygenation over the range 23% to 99% (r2 equals .98, p signal was observed in the patient over time. The procedure was able to be performed clinically without difficulty; rSO2 values recorded continuously demonstrate the usefulness of the technique. Using the same instrumentation, arterial input and cerebral response functions, generated by IV tracer bolus, were deconvoluted to measure mean cerebral transit time. Date collected over time provided a sensitive index of changes in cerebral blood flow as a result of therapeutic maneuvers.

  3. Understanding logistic regression analysis.

    Science.gov (United States)

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

  4. Experimental data suggesting that inflammation mediated rat liver mitochondrial dysfunction results from secondary hypoxia rather than from direct effects of inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Adelheid eWeidinger

    2013-06-01

    Full Text Available Systemic inflammatory response (SIR comprises direct effects of inflammatory mediators (IM and indirect effects, such as secondary circulatory failure which results in tissue hypoxia (HOX. These two key components, SIR and HOX, cause multiple organ failure (MOF. Since HOX and IM occur and interact simultaneously in vivo, it is difficult to clarify their individual pathological impact. To eliminate this interaction, precision cut liver slices (PCLS were used in this study aiming to dissect the effects of HOX and IM on mitochondrial function, integrity of cellular membrane and the expression of genes associated with inflammation. HOX was induced by incubating PCLS or rat liver mitochondria at pO2<1% followed by reoxygenation (HOX/ROX model. Inflammatory injury was stimulated by incubating PCLS with IM (IM model. We found upregulation of inducible nitric oxide synthase (iNOS expression only in the IM model, while heme oxygenase 1 (HO-1 expression was upregulated only in the HOX/ROX model. Elevated expression of interleukin 6 (IL-6 was found in both models reflecting converging pathways regulating the expression of this gene. Both models caused damage to hepatocytes resulting in the release of alanine aminotransferase (ALT. The leakage of aspartate aminotransferase (AST was observed only during the hypoxic phase in the HOX/ROX model. The reoxygenation phase of HOX, but not IM, drastically impaired mitochondrial electron supply via complex I and II. Additional experiments performed with isolated mitochondria showed that free iron, released during HOX, is likely a key prerequisite of mitochondrial dysfunction induced during the reoxygenation phase. Our data suggests that mitochondrial dysfunction, previously observed in in vivo SIR-models is the result of secondary circulatory failure inducing HOX rather than the result of a direct interaction of IM with liver cells.

  5. Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results

    Science.gov (United States)

    Osborne, Jason W.

    2012-01-01

    Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These…

  6. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

  7. Predictors of adherence with self-care guidelines among persons with type 2 diabetes: results from a logistic regression tree analysis.

    Science.gov (United States)

    Yamashita, Takashi; Kart, Cary S; Noe, Douglas A

    2012-12-01

    Type 2 diabetes is known to contribute to health disparities in the U.S. and failure to adhere to recommended self-care behaviors is a contributing factor. Intervention programs face difficulties as a result of patient diversity and limited resources. With data from the 2005 Behavioral Risk Factor Surveillance System, this study employs a logistic regression tree algorithm to identify characteristics of sub-populations with type 2 diabetes according to their reported frequency of adherence to four recommended diabetes self-care behaviors including blood glucose monitoring, foot examination, eye examination and HbA1c testing. Using Andersen's health behavior model, need factors appear to dominate the definition of which sub-groups were at greatest risk for low as well as high adherence. Findings demonstrate the utility of easily interpreted tree diagrams to design specific culturally appropriate intervention programs targeting sub-populations of diabetes patients who need to improve their self-care behaviors. Limitations and contributions of the study are discussed.

  8. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  9. Surgery for the correction of hallux valgus: minimum five-year results with a validated patient-reported outcome tool and regression analysis.

    Science.gov (United States)

    Chong, A; Nazarian, N; Chandrananth, J; Tacey, M; Shepherd, D; Tran, P

    2015-02-01

    This study sought to determine the medium-term patient-reported and radiographic outcomes in patients undergoing surgery for hallux valgus. A total of 118 patients (162 feet) underwent surgery for hallux valgus between January 2008 and June 2009. The Manchester-Oxford Foot Questionnaire (MOXFQ), a validated tool for the assessment of outcome after surgery for hallux valgus, was used and patient satisfaction was sought. The medical records and radiographs were reviewed retrospectively. At a mean of 5.2 years (4.7 to 6.0) post-operatively, the median combined MOXFQ score was 7.8 (IQR:0 to 32.8). The median domain scores for pain, walking/standing, and social interaction were 10 (IQR: 0 to 45), 0 (IQR: 0 to 32.1) and 6.3 (IQR: 0 to 25) respectively. A total of 119 procedures (73.9%, in 90 patients) were reported as satisfactory but only 53 feet (32.7%, in 43 patients) were completely asymptomatic. The mean (SD) correction of hallux valgus, intermetatarsal, and distal metatarsal articular angles was 18.5° (8.8°), 5.7° (3.3°), and 16.6° (8.8°), respectively. Multivariable regression analysis identified that an American Association of Anesthesiologists grade of >1 (Incident Rate Ratio (IRR) = 1.67, p-value = 0.011) and recurrent deformity (IRR = 1.77, p-value = 0.003) were associated with significantly worse MOXFQ scores. No correlation was found between the severity of deformity, the type, or degree of surgical correction and the outcome. When using a validated outcome score for the assessment of outcome after surgery for hallux valgus, the long-term results are worse than expected when compared with the short- and mid-term outcomes, with 25.9% of patients dissatisfied at a mean follow-up of 5.2 years. ©2015 The British Editorial Society of Bone & Joint Surgery.

  10. Results of a multinational study suggest the need for rapid diagnosis and early antiviral treatment at the onset of herpetic meningoencephalitis

    DEFF Research Database (Denmark)

    Erdem, Hakan; Cag, Yasemin; Ozturk-Engin, Derya

    2015-01-01

    survived, with sequelae. Age (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.02 to 1.05), Glasgow Coma Scale score (OR, 0.84; 95% CI, 0.77 to 0.93), and symptomatic periods of 2 to 7 days (OR, 1.80; 95% CI, 1.16 to 2.79) and >7 days (OR, 3.75; 95% CI, 1.72 to 8.15) until the commencement...... of treatment predicted unfavorable outcomes. The outcome in HME patients is related to a combination of therapeutic and host factors. This study suggests that rapid diagnosis and early administration of antiviral treatment in HME patients are keys to a favorable outcome....

  11. Mechanisms of neuroblastoma regression

    Science.gov (United States)

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  12. and Multinomial Logistic Regression

    African Journals Online (AJOL)

    This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).

  13. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  14. Loss of Niemann-Pick C1 or C2 protein results in similar biochemical changes suggesting that these proteins function in a common lysosomal pathway.

    Directory of Open Access Journals (Sweden)

    Sayali S Dixit

    Full Text Available Niemann-Pick Type C (NPC disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely.

  15. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    International Nuclear Information System (INIS)

    Sun, Ying-Fang; Leu, Jyh-Der; Chen, Su-Mei; Lin, I-Feng; Lee, Yi-Jang

    2009-01-01

    It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G) in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients. Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP) assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively. Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95), and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00) after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067). Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women

  16. Impact of performance grading on annual numbers of acute myocardial infarction-associated emergency department visits in Taiwan: Results of segmented regression analysis.

    Science.gov (United States)

    Tzeng, I-Shiang; Liu, Su-Hsun; Chen, Kuan-Fu; Wu, Chin-Chieh; Chen, Jih-Chang

    2016-10-01

    To reduce patient boarding time at the emergency department (ED) and to improve the overall quality of the emergent care system in Taiwan, the Minister of Health and Welfare of Taiwan (MOHW) piloted the Grading Responsible Hospitals for Acute Care (GRHAC) audit program in 2007-2009.The aim of the study was to evaluate the impact of the GRHAC audit program on the identification and management of acute myocardial infarction (AMI)-associated ED visits by describing and comparing the incidence of AMI-associated ED visits before (2003-2007), during (2007-2009), and after (2009-2012) the initial audit program implementation.Using aggregated data from the MOHW of Taiwan, we estimated the annual incidence of AMI-associated ED visits by Poisson regression models. We used segmented regression techniques to evaluate differences in the annual rates and in the year-to-year changes in AMI-associated ED visits between 2003 and 2012. Medical comorbidities such as diabetes mellitus, hyperlipidemia, and hypertensive disease were considered as potential confounders.Overall, the number of AMI-associated patient visits increased from 8130 visits in 2003 to 12,695 visits in 2012 (P-value for trend capacity for timely and correctly diagnosing and managing patients presenting with AMI-associated symptoms or signs at the ED.

  17. Few crystal balls are crystal clear : eyeballing regression

    International Nuclear Information System (INIS)

    Wittebrood, R.T.

    1998-01-01

    The theory of regression and statistical analysis as it applies to reservoir analysis was discussed. It was argued that regression lines are not always the final truth. It was suggested that regression lines and eyeballed lines are often equally accurate. The many conditions that must be fulfilled to calculate a proper regression were discussed. Mentioned among these conditions were the distribution of the data, hidden variables, knowledge of how the data was obtained, the need for causal correlation of the variables, and knowledge of the manner in which the regression results are going to be used. 1 tab., 13 figs

  18. Bayesian ARTMAP for regression.

    Science.gov (United States)

    Sasu, L M; Andonie, R

    2013-10-01

    Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  20. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  1. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  2. Advantages and Limitations of Anticipating Laboratory Test Results from Regression- and Tree-Based Rules Derived from Electronic Health-Record Data

    OpenAIRE

    Mohammad, Fahim; Theisen-Toupal, Jesse C.; Arnaout, Ramy

    2014-01-01

    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to thei...

  3. Regression to Causality : Regression-style presentation influences causal attribution

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

  4. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Directory of Open Access Journals (Sweden)

    Fahim Mohammad

    Full Text Available Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal". We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV and area under the receiver-operator characteristic curve (ROC AUCs. Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  5. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Science.gov (United States)

    Mohammad, Fahim; Theisen-Toupal, Jesse C; Arnaout, Ramy

    2014-01-01

    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV) and area under the receiver-operator characteristic curve (ROC AUCs). Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  6. Predicting Engineering Student Attrition Risk Using a Probabilistic Neural Network and Comparing Results with a Backpropagation Neural Network and Logistic Regression

    Science.gov (United States)

    Mason, Cindi; Twomey, Janet; Wright, David; Whitman, Lawrence

    2018-01-01

    As the need for engineers continues to increase, a growing focus has been placed on recruiting students into the field of engineering and retaining the students who select engineering as their field of study. As a result of this concentration on student retention, numerous studies have been conducted to identify, understand, and confirm…

  7. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  8. Retro-regression--another important multivariate regression improvement.

    Science.gov (United States)

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  9. Suicidality and interrogative suggestibility.

    Science.gov (United States)

    Pritchard-Boone, Lea; Range, Lillian M

    2005-01-01

    All people are subject to memory suggestibility, but suicidal individuals may be especially so. The link between suicidality and suggestibility is unclear given mixed findings and methodological weaknesses of past research. To test the link between suicidality and interrogative suggestibility, 149 undergraduates answered questions about suicidal thoughts and reasons for living, and participated in a direct suggestibility procedure. As expected, suggestibility correlated with suicidality but accounted for little overall variance (4%). Mental health professionals might be able to take advantage of client suggestibility by directly telling suicidal persons to refrain from suicidal thoughts or actions.

  10. Quantile Regression Methods

    DEFF Research Database (Denmark)

    Fitzenberger, Bernd; Wilke, Ralf Andreas

    2015-01-01

    if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...

  11. Aid and growth regressions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Tarp, Finn

    2001-01-01

    This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...

  12. Tumor regression patterns in retinoblastoma

    International Nuclear Information System (INIS)

    Zafar, S.N.; Siddique, S.N.; Zaheer, N.

    2016-01-01

    To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)

  13. Standards for Standardized Logistic Regression Coefficients

    Science.gov (United States)

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  14. Introduction to regression graphics

    CERN Document Server

    Cook, R Dennis

    2009-01-01

    Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

  15. Alternative Methods of Regression

    CERN Document Server

    Birkes, David

    2011-01-01

    Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s

  16. Abstract Expression Grammar Symbolic Regression

    Science.gov (United States)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  17. Regression analysis with categorized regression calibrated exposure: some interesting findings

    Directory of Open Access Journals (Sweden)

    Hjartåker Anette

    2006-07-01

    Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

  18. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  19. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  20. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  1. Understanding poisson regression.

    Science.gov (United States)

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  2. Suggestive Objects at Work

    DEFF Research Database (Denmark)

    Ratner, Helene Gad

    2009-01-01

    In Western secular societies, spiritual life is no longer limited to classical religious institutions but can also be found at workplace organizations. While spirituality is conventionally understood as a subjective and internal process, this paper proposes the concept of ‘suggestive objects......’, constructed by combining insights from Gabriel Tarde's sociology with Bruno Latour's actor-network theory, to theorize the material dimension of organizational spirituality. The sacred in organizations arises not from the internalization of collective values but through the establishment of material...... scaffolding. This has deep implications for our understanding of the sacred, including a better appreciation of the way that suggestive objects make the sacred durable, the way they organize it....

  3. Targeting: Logistic Regression, Special Cases and Extensions

    Directory of Open Access Journals (Sweden)

    Helmut Schaeben

    2014-12-01

    Full Text Available Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variables are discrete and conditionally independent given the target variable. The hypothesis of conditional independence can be tested in terms of log-linear models. If the assumption of conditional independence is violated, the application of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also their rank transform. Logistic regression models, including the interaction terms, can account for the lack of conditional independence, appropriate interaction terms compensate exactly for violations of conditional independence. Multilayer artificial neural nets may be seen as nested regression-like models, with some sigmoidal activation function. Most often, the logistic function is used as the activation function. If the net topology, i.e., its control, is sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for violations of conditional independence and yield very similar results. Weights-of-evidence cannot reasonably include interaction terms; subsequent modifications of the weights, as often suggested, cannot emulate the effect of interaction terms.

  4. Vector regression introduced

    Directory of Open Access Journals (Sweden)

    Mok Tik

    2014-06-01

    Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

  5. Multicollinearity and Regression Analysis

    Science.gov (United States)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  6. Minimax Regression Quantiles

    DEFF Research Database (Denmark)

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  7. riskRegression

    DEFF Research Database (Denmark)

    Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

    2017-01-01

    In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....

  8. Learning semantic query suggestions

    NARCIS (Netherlands)

    Meij, E.; Bron, M.; Hollink, L.; Huurnink, B.; de Rijke, M.

    2009-01-01

    An important application of semantic web technology is recognizing human-defined concepts in text. Query transformation is a strategy often used in search engines to derive queries that are able to return more useful search results than the original query and most popular search engines provide

  9. Regression Analysis by Example. 5th Edition

    Science.gov (United States)

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  10. Logistic regression for dichotomized counts.

    Science.gov (United States)

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  11. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  12. Bayesian logistic regression analysis

    NARCIS (Netherlands)

    Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

    2012-01-01

    In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

  13. Linear Regression Analysis

    CERN Document Server

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  14. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  15. Deepening Sleep by Hypnotic Suggestion

    Science.gov (United States)

    Cordi, Maren J.; Schlarb, Angelika A.; Rasch, Björn

    2014-01-01

    Study Objectives: Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to “sleep deeper” extends the amount of SWS. Design: Within-subject, placebo-controlled crossover design. Setting: Sleep laboratory at the University of Zurich, Switzerland. Participants: Seventy healthy females 23.27 ± 3.17 y. Intervention: Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. Measurements and Results: After participants listened to the hypnotic suggestion to “sleep deeper” subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Conclusions: Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations. Citation: Cordi MJ, Schlarb AA, Rasch B. Deepening sleep by hypnotic suggestion. SLEEP 2014;37(6):1143-1152. PMID:24882909

  16. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  17. Subset selection in regression

    CERN Document Server

    Miller, Alan

    2002-01-01

    Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

  18. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Science.gov (United States)

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Regression in organizational leadership.

    Science.gov (United States)

    Kernberg, O F

    1979-02-01

    The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.

  20. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  1. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  2. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  3. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    Science.gov (United States)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  4. Genetics Home Reference: caudal regression syndrome

    Science.gov (United States)

    ... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...

  5. Steganalysis using logistic regression

    Science.gov (United States)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  6. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  7. riskRegression

    DEFF Research Database (Denmark)

    Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

    2017-01-01

    In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...

  8. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  9. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  10. results

    Directory of Open Access Journals (Sweden)

    Salabura Piotr

    2017-01-01

    Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.

  11. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion

    International Nuclear Information System (INIS)

    Paredes, Angel M.; Ferreira, Davis; Horton, Michelle; Saad, Ali; Tsuruta, Hiro; Johnston, Robert; Klimstra, William; Ryman, Kate; Hernandez, Raquel; Chiu Wah; Brown, Dennis T.

    2004-01-01

    Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a 'pore'-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell

  12. Simultaneous Estimation of Regression Functions for Marine Corps Technical Training Specialties.

    Science.gov (United States)

    Dunbar, Stephen B.; And Others

    This paper considers the application of Bayesian techniques for simultaneous estimation to the specification of regression weights for selection tests used in various technical training courses in the Marine Corps. Results of a method for m-group regression developed by Molenaar and Lewis (1979) suggest that common weights for training courses…

  13. Polylinear regression analysis in radiochemistry

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.

    1995-01-01

    A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis

  14. Canonical variate regression.

    Science.gov (United States)

    Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

    2016-07-01

    In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Measurement Error in Education and Growth Regressions

    NARCIS (Netherlands)

    Portela, Miguel; Alessie, Rob; Teulings, Coen

    2010-01-01

    The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these

  16. Classification of hadith into positive suggestion, negative suggestion, and information

    Science.gov (United States)

    Faraby, Said Al; Riviera Rachmawati Jasin, Eliza; Kusumaningrum, Andina; Adiwijaya

    2018-03-01

    As one of the Muslim life guidelines, based on the meaning of its sentence(s), a hadith can be viewed as a suggestion for doing something, or a suggestion for not doing something, or just information without any suggestion. In this paper, we tried to classify the Bahasa translation of hadith into the three categories using machine learning approach. We tried stemming and stopword removal in preprocessing, and TF-IDF of unigram, bigram, and trigram as the extracted features. As the classifier, we compared between SVM and Neural Network. Since the categories are new, so in order to compare the results of the previous pipelines, we created a baseline classifier using simple rule-based string matching technique. The rule-based algorithm conditions on the occurrence of words such as “janganlah, sholatlah, and so on” to determine the category. The baseline method achieved F1-Score of 0.69, while the best F1-Score from the machine learning approach was 0.88, and it was produced by SVM model with the linear kernel.

  17. Forecasting exchange rates: a robust regression approach

    OpenAIRE

    Preminger, Arie; Franck, Raphael

    2005-01-01

    The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...

  18. A Simulation Investigation of Principal Component Regression.

    Science.gov (United States)

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  19. Suppression Situations in Multiple Linear Regression

    Science.gov (United States)

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  20. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  1. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  2. Use of probabilistic weights to enhance linear regression myoelectric control

    Science.gov (United States)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  3. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  4. Regression in autistic spectrum disorders.

    Science.gov (United States)

    Stefanatos, Gerry A

    2008-12-01

    A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.

  5. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...

  6. Suggestibility and suggestive modulation of the Stroop effect.

    Science.gov (United States)

    Kirsch, Irving

    2011-06-01

    Although the induction of a hypnotic state does not seem necessary for suggestive modulation of the Stroop effect, this important phenomenon has seemed to be dependent on the subject's level of hypnotic suggestibility. Raz and Campbell's (2011) study indicates that suggestion can modulate the Stroop effect substantially in very low suggestible subjects, as well as in those who are highly suggestible. This finding casts doubt on the presumed mechanism by which suggestive modulation is brought about. Research aimed at uncovering the means by which low suggestible individuals are able to modulate the Stroop effect would be welcome, as would assessment of this effect in moderately suggestible people. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Linear regression in astronomy. I

    Science.gov (United States)

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  8. Regression of environmental noise in LIGO data

    International Nuclear Information System (INIS)

    Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G

    2015-01-01

    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)

  9. Advanced statistics: linear regression, part I: simple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  10. Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data

    Science.gov (United States)

    Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438

  11. Treatment satisfaction with tadalafil or tamsulosin vs placebo in men with lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH): results from a randomised, placebo-controlled study.

    Science.gov (United States)

    Oelke, Matthias; Giuliano, François; Baygani, Simin K; Melby, Thomas; Sontag, Angelina

    2014-10-01

    To assess treatment satisfaction with tadalafil or tamsulosin vs placebo in a 12-week, randomised, double-blind study of men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia (LUTS/BPH). After a 4-week placebo lead-in period, men aged ≥45 years with an International Prostate Symptom Score (IPSS) of ≥13 and a maximum urinary flow rate of ≥4 to ≤15 mL/s received placebo (172 men), tadalafil 5 mg (171), or tamsulosin 0.4 mg (168) once daily for 12 weeks. Treatment Satisfaction Scale-BPH (TSS-BPH) responses were assessed based on median treatment differences using the van Elteren test. Overall treatment satisfaction was greater for tadalafil vs placebo (P = 0.005), based on greater satisfaction with efficacy (P = 0.003); neither overall treatment satisfaction nor satisfaction with efficacy was greater for tamsulosin vs placebo (P ≥ 0.409). For individual questions, 66.5% of men rated tadalafil treatment as 'effective/very effective' (Question 1, Q1) vs placebo (P = 0.011), 72.6% would 'definitely/probably recommend their treatment' (Q3; P = 0.043), 71.8% were generally 'very satisfied/satisfied with their medication' (Q8; P BPH by baseline age (≤65/>65 years), history of erectile dysfunction (yes/no), LUTS/BPH severity (IPSS

  12. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  13. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  14. Variable and subset selection in PLS regression

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2001-01-01

    The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...

  15. Structural and functional correlates of hypnotic depth and suggestibility.

    Science.gov (United States)

    McGeown, William Jonathan; Mazzoni, Giuliana; Vannucci, Manila; Venneri, Annalena

    2015-02-28

    This study explores whether self-reported depth of hypnosis and hypnotic suggestibility are associated with individual differences in neuroanatomy and/or levels of functional connectivity. Twenty-nine people varying in suggestibility were recruited and underwent structural, and after a hypnotic induction, functional magnetic resonance imaging at rest. We used voxel-based morphometry to assess the correlation of grey matter (GM) and white matter (WM) against the independent variables: depth of hypnosis, level of relaxation and hypnotic suggestibility. Functional networks identified with independent components analysis were regressed with the independent variables. Hypnotic depth ratings were positively correlated with GM volume in the frontal cortex and the anterior cingulate cortex (ACC). Hypnotic suggestibility was positively correlated with GM volume in the left temporal-occipital cortex. Relaxation ratings did not correlate significantly with GM volume and none of the independent variables correlated with regional WM volume measures. Self-reported deeper levels of hypnosis were associated with less connectivity within the anterior default mode network. Taken together, the results suggest that the greater GM volume in the medial frontal cortex and ACC, and lower connectivity in the DMN during hypnosis facilitate experiences of greater hypnotic depth. The patterns of results suggest that hypnotic depth and hypnotic suggestibility should not be considered synonyms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Could the eventual results of the NSABP* 39/RTOG** 0413 trial for partial breast irradiation (PBI) be improved by combining spherical applicators and whole breast irradiation? Radiobiology suggests it may.

    Science.gov (United States)

    Smit, B J

    2010-01-01

    There may be unacceptable risks associated with the relatively large single doses of irradiation prescribed over five days instead of over six weeks for three of the four trial arms of the NSABP39/RTOG 0413 clinical trial seeking to enlist 4,300 patients. The first arm prescribes 60 Gray (Gy) in two Gy fractions over six weeks, which is the present standard. The dose implications of the other three arms with reference to this standard were examined using the ID2 formalism. Particularly poor (non-homogeneous) dose distributions characterise spherical applicators like "MammoSite" used as a sole device for accelerated partial breast irradiation (APBI). The alternative treatment, APBI done by 3-D conformal radiation, may also have a drawback, namely a sudden sharp cut-off in dose which may cause cosmetic problems due to circumscribed fibrosis and edema. Some recently published results from this trial reveal an alarming level of complications. The possible causes of these complications and poor cosmetic outcomes and how to avoid them are examined. An obstacle to the more widespread use of the "MammoSite type of device is that the device is not allowed closer than 5-7 mm from the skin or ribs; a possible remedy for this restriction is offered. It is also intended to make the relevant radiobiological principles usable for surgical oncologists.

  17. Two Paradoxes in Linear Regression Analysis

    Science.gov (United States)

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  18. Caudal regression syndrome : a case report

    International Nuclear Information System (INIS)

    Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun

    1998-01-01

    Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging

  19. Caudal regression syndrome : a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.

  20. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  1. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  2. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun

    2017-01-01

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  3. Logistic Regression: Concept and Application

    Science.gov (United States)

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  4. Fungible weights in logistic regression.

    Science.gov (United States)

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science

    International Nuclear Information System (INIS)

    Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei

    2007-01-01

    Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age

  6. Advanced statistics: linear regression, part II: multiple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  7. Logic regression and its extensions.

    Science.gov (United States)

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Representational constraints on children's suggestibility.

    Science.gov (United States)

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  9. The Effects of Suggestibility on Relaxation.

    Science.gov (United States)

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  10. Reinventing suggestion systems for continuous improvement

    NARCIS (Netherlands)

    Schuring, R.W.; Luijten, Harald

    2001-01-01

    This article reports an experiment to increase the effectiveness of a suggestion system by deliberately applying principles of the kaizen and performance management. Design rules for suggestion systems are derived from these theories. The suggestion system that resulted differs from traditional

  11. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying; Carroll, Raymond J.

    2009-01-01

    . The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a

  12. From Rasch scores to regression

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  13. Testing Heteroscedasticity in Robust Regression

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2011-01-01

    Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf

  14. Regression methods for medical research

    CERN Document Server

    Tai, Bee Choo

    2013-01-01

    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  15. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  16. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  17. Interrogative suggestibility in opiate users.

    Science.gov (United States)

    Murakami, A; Edelmann, R J; Davis, P E

    1996-09-01

    The present study investigated interrogative suggestibility in opiate users. A group of patients undergoing a methadone detoxification programme in an in-patient drug treatment unit (Detox group, n = 21), and a group of residents who had come off drugs and were no longer suffering from withdrawal syndrome (Rehab group, n = 19) were compared on interrogative suggestibility and various other psychological factors. Significant differences were found between the two groups, with the Detox group having more physical and psychological problems, and a higher total suggestibility score in comparison with the Rehab group. These findings are discussed in relation to the context of police interrogations and the reliability of confessions made by suspects and witnesses dependent on opiates.

  18. Impulsivity, self-control, and hypnotic suggestibility.

    Science.gov (United States)

    Ludwig, V U; Stelzel, C; Krutiak, H; Prunkl, C E; Steimke, R; Paschke, L M; Kathmann, N; Walter, H

    2013-06-01

    Hypnotic responding might be due to attenuated frontal lobe functioning after the hypnotic induction. Little is known about whether personality traits linked with frontal functioning are associated with responsiveness to hypnotic suggestions. We assessed whether hypnotic suggestibility is related to the traits of self-control and impulsivity in 154 participants who completed the Brief Self-Control Scale, the Self-Regulation Scale, the Barratt Impulsiveness Scale (BIS-11), and the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A). BIS-11 non-planning impulsivity correlated positively with HGSHS:A (Bonferroni-corrected). Furthermore, in the best model emerging from a stepwise multiple regression, both non-planning impulsivity and self-control positively predicted hypnotic suggestibility, and there was an interaction of BIS-11 motor impulsivity with gender. For men only, motor impulsivity tended to predict hypnotic suggestibility. Hypnotic suggestibility is associated with personality traits linked with frontal functioning, and hypnotic responding in men and women might differ. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Suggestibility and negative priming: two replication studies.

    Science.gov (United States)

    David, Daniel; Brown, Richard J

    2002-07-01

    Research suggests that inhibiting the effect of irrelevant stimuli on subsequent thought and action (cognitive inhibition) may be an important component of suggestibility. Two small correlation studies were conducted to address the relationship between different aspects of suggestibility and individual differences in cognitive inhibition, operationalized as the degree of negative priming generated by to-be-ignored stimuli in a semantic categorization task. The first study found significant positive correlations between negative priming, hypnotic suggestibility, and creative imagination; a significant negative correlation was obtained between negative priming and interrogative suggestibility, demonstrating the discriminant validity of the study results. The second study replicated the correlation between negative priming and hypnotic suggestibility, using a different suggestibility measurement procedure that assessed subjective experience and hypnotic involuntariness as well as objective responses to suggestions. These studies support the notion that the ability to engage in cognitive inhibition may be an important component of hypnotic responsivity and maybe of other forms of suggestibility.

  20. Hypnotism as a Function of Trance State Effects, Expectancy, and Suggestibility: An Italian Replication.

    Science.gov (United States)

    Pekala, Ronald J; Baglio, Francesca; Cabinio, Monia; Lipari, Susanna; Baglio, Gisella; Mendozzi, Laura; Cecconi, Pietro; Pugnetti, Luigi; Sciaky, Riccardo

    2017-01-01

    Previous research using stepwise regression analyses found self-reported hypnotic depth (srHD) to be a function of suggestibility, trance state effects, and expectancy. This study sought to replicate and expand that research using a general state measure of hypnotic responsivity, the Phenomenology of Consciousness Inventory: Hypnotic Assessment Procedure (PCI-HAP). Ninety-five participants completed an Italian translation of the PCI-HAP, with srHD scores predicted from the PCI-HAP assessment items. The regression analysis replicated the previous research results. Additionally, stepwise regression analyses were able to predict the srHD score equally well using only the PCI dimension scores. These results not only replicated prior research but suggest how this methodology to assess hypnotic responsivity, when combined with more traditional neurophysiological and cognitive-behavioral methodologies, may allow for a more comprehensive understanding of that enigma called hypnosis.

  1. Arcuate Fasciculus in Autism Spectrum Disorder Toddlers with Language Regression

    Directory of Open Access Journals (Sweden)

    Zhang Lin

    2018-03-01

    Full Text Available Language regression is observed in a subset of toddlers with autism spectrum disorder (ASD as initial symptom. However, such a phenomenon has not been fully explored, partly due to the lack of definite diagnostic evaluation methods and criteria. Materials and Methods: Fifteen toddlers with ASD exhibiting language regression and fourteen age-matched typically developing (TD controls underwent diffusion tensor imaging (DTI. DTI parameters including fractional anisotropy (FA, average fiber length (AFL, tract volume (TV and number of voxels (NV were analyzed by Neuro 3D in Siemens syngo workstation. Subsequently, the data were analyzed by using IBM SPSS Statistics 22. Results: Compared with TD children, a significant reduction of FA along with an increase in TV and NV was observed in ASD children with language regression. Note that there were no significant differences between ASD and TD children in AFL of the arcuate fasciculus (AF. Conclusions: These DTI changes in the AF suggest that microstructural anomalies of the AF white matter may be associated with language deficits in ASD children exhibiting language regression starting from an early age.

  2. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?

    Science.gov (United States)

    Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun

    2014-12-01

    Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.

  3. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  4. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    Science.gov (United States)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  5. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  6. A Matlab program for stepwise regression

    Directory of Open Access Journals (Sweden)

    Yanhong Qi

    2016-03-01

    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  7. Correlation and simple linear regression.

    Science.gov (United States)

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  8. Regression filter for signal resolution

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-01-01

    The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)

  9. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  10. Regression Benchmarking: An Approach to Quality Assurance in Performance

    OpenAIRE

    Bulej, Lubomír

    2005-01-01

    The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...

  11. Panel data specifications in nonparametric kernel regression

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...

  12. The influence of suggestibility on memory.

    Science.gov (United States)

    Nicolas, Serge; Collins, Thérèse; Gounden, Yannick; Roediger, Henry L

    2011-06-01

    We provide a translation of Binet and Henri's pioneering 1894 paper on the influence of suggestibility on memory. Alfred Binet (1857-1911) is famous as the author who created the IQ test that bears his name, but he is almost unknown as the psychological investigator who generated numerous original experiments and fascinating results in the study of memory. His experiments published in 1894 manipulated suggestibility in several ways to determine effects on remembering. Three particular modes of suggestion were employed to induce false recognitions: (1) indirect suggestion by a preconceived idea; (2) direct suggestion; and (3) collective suggestion. In the commentary we suggest that Binet and Henri's (1894) paper written over 115 years ago is still highly relevant even today. In particular, Binet's legacy lives on in modern research on misinformation effects in memory, in studies of conformity, and in experiments on the social contagion of memory. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. The relationships between suggestibility, influenceability, and relaxability.

    Science.gov (United States)

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  14. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Principal component regression for crop yield estimation

    CERN Document Server

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  16. Cactus: An Introduction to Regression

    Science.gov (United States)

    Hyde, Hartley

    2008-01-01

    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  17. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  18. Survival analysis II: Cox regression

    NARCIS (Netherlands)

    Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.

    2011-01-01

    In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the

  19. Kernel regression with functional response

    OpenAIRE

    Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe

    2011-01-01

    We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.

  20. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  1. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  2. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  3. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  4. Logistic regression applied to natural hazards: rare event logistic regression with replications

    OpenAIRE

    Guns, M.; Vanacker, Veerle

    2012-01-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logisti...

  5. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    Science.gov (United States)

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  6. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  7. Multivariate and semiparametric kernel regression

    OpenAIRE

    Härdle, Wolfgang; Müller, Marlene

    1997-01-01

    The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...

  8. Regression algorithm for emotion detection

    OpenAIRE

    Berthelon , Franck; Sander , Peter

    2013-01-01

    International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...

  9. Directional quantile regression in R

    Czech Academy of Sciences Publication Activity Database

    Boček, Pavel; Šiman, Miroslav

    2017-01-01

    Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf

  10. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  11. Correlation-regression model for physico-chemical quality of ...

    African Journals Online (AJOL)

    abusaad

    areas, suggesting that groundwater quality in urban areas is closely related with land use ... the ground water, with correlation and regression model is also presented. ...... WHO (World Health Organization) (1985). Health hazards from nitrates.

  12. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  13. Predicting company growth using logistic regression and neural networks

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2016-12-01

    Full Text Available The paper aims to establish an efficient model for predicting company growth by leveraging the strengths of logistic regression and neural networks. A real dataset of Croatian companies was used which described the relevant industry sector, financial ratios, income, and assets in the input space, with a dependent binomial variable indicating whether a company had high-growth if it had annualized growth in assets by more than 20% a year over a three-year period. Due to a large number of input variables, factor analysis was performed in the pre -processing stage in order to extract the most important input components. Building an efficient model with a high classification rate and explanatory ability required application of two data mining methods: logistic regression as a parametric and neural networks as a non -parametric method. The methods were tested on the models with and without variable reduction. The classification accuracy of the models was compared using statistical tests and ROC curves. The results showed that neural networks produce a significantly higher classification accuracy in the model when incorporating all available variables. The paper further discusses the advantages and disadvantages of both approaches, i.e. logistic regression and neural networks in modelling company growth. The suggested model is potentially of benefit to investors and economic policy makers as it provides support for recognizing companies with growth potential, especially during times of economic downturn.

  14. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    Science.gov (United States)

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  15. Multiple regression analysis of anthropometric measurements influencing the cephalic index of male Japanese university students.

    Science.gov (United States)

    Hossain, Md Golam; Saw, Aik; Alam, Rashidul; Ohtsuki, Fumio; Kamarul, Tunku

    2013-09-01

    Cephalic index (CI), the ratio of head breadth to head length, is widely used to categorise human populations. The aim of this study was to access the impact of anthropometric measurements on the CI of male Japanese university students. This study included 1,215 male university students from Tokyo and Kyoto, selected using convenient sampling. Multiple regression analysis was used to determine the effect of anthropometric measurements on CI. The variance inflation factor (VIF) showed no evidence of a multicollinearity problem among independent variables. The coefficients of the regression line demonstrated a significant positive relationship between CI and minimum frontal breadth (p regression analysis showed a greater likelihood for minimum frontal breadth (p regression analysis revealed bizygomatic breadth, head circumference, minimum frontal breadth, head height and morphological facial height to be the best predictor craniofacial measurements with respect to CI. The results suggest that most of the variables considered in this study appear to influence the CI of adult male Japanese students.

  16. Regression: The Apple Does Not Fall Far From the Tree.

    Science.gov (United States)

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  17. Spontaneous regression of pulmonary bullae

    International Nuclear Information System (INIS)

    Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.

    2002-01-01

    The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd

  18. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  19. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  20. Linear regression and the normality assumption.

    Science.gov (United States)

    Schmidt, Amand F; Finan, Chris

    2017-12-16

    Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Directory of Open Access Journals (Sweden)

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  2. Factor structure of suggestibility revisited: new evidence for direct and indirect suggestibility

    Directory of Open Access Journals (Sweden)

    Romuald Polczyk

    2016-05-01

    Full Text Available Background Yielding to suggestions can be viewed as a relatively stable individual trait, called suggestibility. It has been long proposed that there are two kinds of suggestible influence, and two kinds of suggestibility corresponding to them: direct and indirect. Direct suggestion involves overt unhidden influence, while indirect suggestion concerns influence that is hidden, and the participant does not know that the suggestibility is being measured. So far however, empirical evidence for the existence of the two factors has been scarce. In the present study, more sophisticated and reliable tools for measuring suggestibility were applied than in the previous research, in the hope that better measurement would reveal the factor structure of suggestibility. Two tests of direct suggestibility were used: the Harvard Group Scale of Hypnotic Susceptibility, Form A, measuring hypnotic susceptibility, and the Barber Suggestibility Scale, measuring non-hypnotic direct imaginative suggestibility. Three tests served to measure indirect suggestibility: the Sensory Suggestibility Scale, measuring indirect suggestibility relating to perception; the Gudjonsson Suggestibility Scale, measuring the tendency to yield to suggestive questions and changing answers after negative feedback; and the Emotional Dialogs Tests, measuring the tendency to perceive nonexistent aggression. Participants and procedure In sum, 115 participants were tested, 69 women, 49 men, mean age 22.20 years, SD = 2.20. Participants were tested in two sessions, lasting for a total of four hours. Results Confirmatory factor analyses confirmed the existence of two uncorrelated factors of suggestibility: direct and indirect. Conclusions Suggestibility may indeed involve two factors, direct and indirect, and failure to discover them in previous research may be due to methodological problems.

  3. Prediction, Regression and Critical Realism

    DEFF Research Database (Denmark)

    Næss, Petter

    2004-01-01

    This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...

  4. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...

  5. Policy Implications and Suggestions on Administrative Measures of Urban Flood

    Science.gov (United States)

    Lee, S. V.; Lee, M. J.; Lee, C.; Yoon, J. H.; Chae, S. H.

    2017-12-01

    The frequency and intensity of floods are increasing worldwide as recent climate change progresses gradually. Flood management should be policy-oriented in urban municipalities due to the characteristics of urban areas with a lot of damage. Therefore, the purpose of this study is to prepare a flood susceptibility map by using data mining model and make a policy suggestion on administrative measures of urban flood. Therefore, we constructed a spatial database by collecting relevant factors including the topography, geology, soil and land use data of the representative city, Seoul, the capital city of Korea. Flood susceptibility map was constructed by applying the data mining models of random forest and boosted tree model to input data and existing flooded area data in 2010. The susceptibility map has been validated using the 2011 flood area data which was not used for training. The predictor importance value of each factor to the results was calculated in this process. The distance from the water, DEM and geology showed a high predictor importance value which means to be a high priority for flood preparation policy. As a result of receiver operating characteristic (ROC), random forest model showed 78.78% and 79.18% accuracy of regression and classification and boosted tree model showed 77.55% and 77.26% accuracy of regression and classification, respectively. The results show that the flood susceptibility maps can be applied to flood prevention and management, and it also can help determine the priority areas for flood mitigation policy by providing useful information to policy makers.

  6. LSD enhances suggestibility in healthy volunteers.

    Science.gov (United States)

    Carhart-Harris, R L; Kaelen, M; Whalley, M G; Bolstridge, M; Feilding, A; Nutt, D J

    2015-02-01

    Lysergic acid diethylamide (LSD) has a history of use as a psychotherapeutic aid in the treatment of mood disorders and addiction, and it was also explored as an enhancer of mind control. The present study sought to test the effect of LSD on suggestibility in a modern research study. Ten healthy volunteers were administered with intravenous (i.v.) LSD (40-80 μg) in a within-subject placebo-controlled design. Suggestibility and cued mental imagery were assessed using the Creative Imagination Scale (CIS) and a mental imagery test (MIT). CIS and MIT items were split into two versions (A and B), balanced for 'efficacy' (i.e. A ≈ B) and counterbalanced across conditions (i.e. 50 % completed version 'A' under LSD). The MIT and CIS were issued 110 and 140 min, respectively, post-infusion, corresponding with the peak drug effects. Volunteers gave significantly higher ratings for the CIS (p = 0.018), but not the MIT (p = 0.11), after LSD than placebo. The magnitude of suggestibility enhancement under LSD was positively correlated with trait conscientiousness measured at baseline (p = 0.0005). These results imply that the influence of suggestion is enhanced by LSD. Enhanced suggestibility under LSD may have implications for its use as an adjunct to psychotherapy, where suggestibility plays a major role. That cued imagery was unaffected by LSD implies that suggestions must be of a sufficient duration and level of detail to be enhanced by the drug. The results also imply that individuals with high trait conscientiousness are especially sensitive to the suggestibility-enhancing effects of LSD.

  7. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju

    2015-01-01

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  8. Image superresolution using support vector regression.

    Science.gov (United States)

    Ni, Karl S; Nguyen, Truong Q

    2007-06-01

    A thorough investigation of the application of support vector regression (SVR) to the superresolution problem is conducted through various frameworks. Prior to the study, the SVR problem is enhanced by finding the optimal kernel. This is done by formulating the kernel learning problem in SVR form as a convex optimization problem, specifically a semi-definite programming (SDP) problem. An additional constraint is added to reduce the SDP to a quadratically constrained quadratic programming (QCQP) problem. After this optimization, investigation of the relevancy of SVR to superresolution proceeds with the possibility of using a single and general support vector regression for all image content, and the results are impressive for small training sets. This idea is improved upon by observing structural properties in the discrete cosine transform (DCT) domain to aid in learning the regression. Further improvement involves a combination of classification and SVR-based techniques, extending works in resolution synthesis. This method, termed kernel resolution synthesis, uses specific regressors for isolated image content to describe the domain through a partitioned look of the vector space, thereby yielding good results.

  9. Robust Regression and its Application in Financial Data Analysis

    OpenAIRE

    Mansoor Momeni; Mahmoud Dehghan Nayeri; Ali Faal Ghayoumi; Hoda Ghorbani

    2010-01-01

    This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from th...

  10. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  11. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  12. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    Science.gov (United States)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  13. The intermediate endpoint effect in logistic and probit regression

    Science.gov (United States)

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted

  14. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  15. Face Alignment via Regressing Local Binary Features.

    Science.gov (United States)

    Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian

    2016-03-01

    This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.

  16. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  17. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  18. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  19. Logistic regression applied to natural hazards: rare event logistic regression with replications

    Directory of Open Access Journals (Sweden)

    M. Guns

    2012-06-01

    Full Text Available Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  20. Logistic regression applied to natural hazards: rare event logistic regression with replications

    Science.gov (United States)

    Guns, M.; Vanacker, V.

    2012-06-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  1. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  2. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design.

    Science.gov (United States)

    Meaney, Christopher; Moineddin, Rahim

    2014-01-24

    In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the

  3. Measuring Children's Suggestibility in Forensic Interviews.

    Science.gov (United States)

    Volpini, Laura; Melis, Manuela; Petralia, Stefania; Rosenberg, Melina D

    2016-01-01

    According to the scientific literature, childrens' cognitive development is not complete until adolescence. Therefore, the problems inherent in children serving as witnesses are crucial. In preschool-aged children, false memories may be identified because of misinformation and insight bias. Additionally, they are susceptible of suggestions. The aim of this study was to verify the levels of suggestibility in children between three and 5 years of age. Ninety-two children were examined (44 male, 48 female; M = 4.5 years, SD = 9.62). We used the correlation coefficient (Pearson's r) and the averages variance by SPSS statistical program. The results concluded that: younger children are almost always more susceptible to suggestibility. The dimension of immediate recall was negatively correlates with that of total suggestibility (r = -0.357 p suggestibility, because older children shift their answers more often (r = 0.394 p < 0.001). Younger children change their answers more times (r = -0.395 p < 0.001). © 2016 American Academy of Forensic Sciences.

  4. Analysis of quantile regression as alternative to ordinary least squares

    OpenAIRE

    Ibrahim Abdullahi; Abubakar Yahaya

    2015-01-01

    In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...

  5. Hypnotic suggestibility, cognitive inhibition, and dissociation.

    Science.gov (United States)

    Dienes, Zoltán; Brown, Elizabeth; Hutton, Sam; Kirsch, Irving; Mazzoni, Giuliana; Wright, Daniel B

    2009-12-01

    We examined two potential correlates of hypnotic suggestibility: dissociation and cognitive inhibition. Dissociation is the foundation of two of the major theories of hypnosis and other theories commonly postulate that hypnotic responding is a result of attentional abilities (including inhibition). Participants were administered the Waterloo-Stanford Group Scale of Hypnotic Susceptibility, Form C. Under the guise of an unrelated study, 180 of these participants also completed: a version of the Dissociative Experiences Scale that is normally distributed in non-clinical populations; a latent inhibition task, a spatial negative priming task, and a memory task designed to measure negative priming. The data ruled out even moderate correlations between hypnotic suggestibility and all the measures of dissociation and cognitive inhibition overall, though they also indicated gender differences. The results are a challenge for existing theories of hypnosis.

  6. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    Science.gov (United States)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  7. Testing the equality of nonparametric regression curves based on ...

    African Journals Online (AJOL)

    Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients of the regression functions f1 and f2 respectively. As our main results we obtain the ...

  8. A Methodology for Generating Placement Rules that Utilizes Logistic Regression

    Science.gov (United States)

    Wurtz, Keith

    2008-01-01

    The purpose of this article is to provide the necessary tools for institutional researchers to conduct a logistic regression analysis and interpret the results. Aspects of the logistic regression procedure that are necessary to evaluate models are presented and discussed with an emphasis on cutoff values and choosing the appropriate number of…

  9. Bayesian regression of piecewise homogeneous Poisson processes

    Directory of Open Access Journals (Sweden)

    Diego Sevilla

    2015-12-01

    Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015

  10. SPE dose prediction using locally weighted regression

    International Nuclear Information System (INIS)

    Hines, J. W.; Townsend, L. W.; Nichols, T. F.

    2005-01-01

    When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used. (authors)

  11. SPE dose prediction using locally weighted regression

    International Nuclear Information System (INIS)

    Hines, J. W.; Townsend, L. W.; Nichols, T. F.

    2005-01-01

    When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. (authors)

  12. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  13. [Suggestions to improve dentist-endodontist collaboration].

    Science.gov (United States)

    Zabalegui, B; Zabalegui, I; Flores, L

    1989-01-01

    Referrals from the general dentist to the endodontist are in some occasions complicated with lack of proper communication among dentist-patient-specialist, resulting in the loss of confidence or even the patient. Suggestions to improve this communication are discussed, which will provide the patient a higher confidence in the indicated endodontic treatment and a better dental service. It will also enhance the prestige of the general dentists' and specialists' practice.

  14. A flexible fuzzy regression algorithm for forecasting oil consumption estimation

    International Nuclear Information System (INIS)

    Azadeh, A.; Khakestani, M.; Saberi, M.

    2009-01-01

    Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.

  15. Suggestibility and signal detection performance in hallucination-prone students.

    Science.gov (United States)

    Alganami, Fatimah; Varese, Filippo; Wagstaff, Graham F; Bentall, Richard P

    2017-03-01

    Auditory hallucinations are associated with signal detection biases. We examine the extent to which suggestions influence performance on a signal detection task (SDT) in highly hallucination-prone and low hallucination-prone students. We also explore the relationship between trait suggestibility, dissociation and hallucination proneness. In two experiments, students completed on-line measures of hallucination proneness (the revised Launay-Slade Hallucination Scale; LSHS-R), trait suggestibility (Inventory of Suggestibility) and dissociation (Dissociative Experiences Scale-II). Students in the upper and lower tertiles of the LSHS-R performed an auditory SDT. Prior to the task, suggestions were made pertaining to the number of expected targets (Experiment 1, N = 60: high vs. low suggestions; Experiment 2, N = 62, no suggestion vs. high suggestion vs. no voice suggestion). Correlational and regression analyses indicated that trait suggestibility and dissociation predicted hallucination proneness. Highly hallucination-prone students showed a higher SDT bias in both studies. In Experiment 1, both bias scores were significantly affected by suggestions to the same degree. In Experiment 2, highly hallucination-prone students were more reactive to the high suggestion condition than the controls. Suggestions may affect source-monitoring judgments, and this effect may be greater in those who have a predisposition towards hallucinatory experiences.

  16. Regression away from the mean: Theory and examples.

    Science.gov (United States)

    Schwarz, Wolf; Reike, Dennis

    2018-02-01

    Using a standard repeated measures model with arbitrary true score distribution and normal error variables, we present some fundamental closed-form results which explicitly indicate the conditions under which regression effects towards (RTM) and away from the mean are expected. Specifically, we show that for skewed and bimodal distributions many or even most cases will show a regression effect that is in expectation away from the mean, or that is not just towards but actually beyond the mean. We illustrate our results in quantitative detail with typical examples from experimental and biometric applications, which exhibit a clear regression away from the mean ('egression from the mean') signature. We aim not to repeal cautionary advice against potential RTM effects, but to present a balanced view of regression effects, based on a clear identification of the conditions governing the form that regression effects take in repeated measures designs. © 2017 The British Psychological Society.

  17. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...

  18. Semiparametric regression during 2003–2007

    KAUST Repository

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2009-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.

  19. Gaussian process regression analysis for functional data

    CERN Document Server

    Shi, Jian Qing

    2011-01-01

    Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

  20. Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: Systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Hulsteijn, Leonie T. van; Corssmit, Eleonora P.M.; Coremans, Ida E.M.; Smit, Johannes W.A.; Jansen, Jeroen C.; Dekkers, Olaf M.

    2013-01-01

    The primary treatment goal of radiotherapy for paragangliomas of the head and neck region (HNPGLs) is local control of the tumor, i.e. stabilization of tumor volume. Interestingly, regression of tumor volume has also been reported. Up to the present, no meta-analysis has been performed giving an overview of regression rates after radiotherapy in HNPGLs. The main objective was to perform a systematic review and meta-analysis to assess regression of tumor volume in HNPGL-patients after radiotherapy. A second outcome was local tumor control. Design of the study is systematic review and meta-analysis. PubMed, EMBASE, Web of Science, COCHRANE and Academic Search Premier and references of key articles were searched in March 2012 to identify potentially relevant studies. Considering the indolent course of HNPGLs, only studies with ⩾12 months follow-up were eligible. Main outcomes were the pooled proportions of regression and local control after radiotherapy as initial, combined (i.e. directly post-operatively or post-embolization) or salvage treatment (i.e. after initial treatment has failed) for HNPGLs. A meta-analysis was performed with an exact likelihood approach using a logistic regression with a random effect at the study level. Pooled proportions with 95% confidence intervals (CI) were reported. Fifteen studies were included, concerning a total of 283 jugulotympanic HNPGLs in 276 patients. Pooled regression proportions for initial, combined and salvage treatment were respectively 21%, 33% and 52% in radiosurgery studies and 4%, 0% and 64% in external beam radiotherapy studies. Pooled local control proportions for radiotherapy as initial, combined and salvage treatment ranged from 79% to 100%. Radiotherapy for jugulotympanic paragangliomas results in excellent local tumor control and therefore is a valuable treatment for these types of tumors. The effects of radiotherapy on regression of tumor volume remain ambiguous, although the data suggest that regression can

  1. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana

    2012-01-01

    The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735

  2. Significance testing in ridge regression for genetic data

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2011-09-01

    Full Text Available Abstract Background Technological developments have increased the feasibility of large scale genetic association studies. Densely typed genetic markers are obtained using SNP arrays, next-generation sequencing technologies and imputation. However, SNPs typed using these methods can be highly correlated due to linkage disequilibrium among them, and standard multiple regression techniques fail with these data sets due to their high dimensionality and correlation structure. There has been increasing interest in using penalised regression in the analysis of high dimensional data. Ridge regression is one such penalised regression technique which does not perform variable selection, instead estimating a regression coefficient for each predictor variable. It is therefore desirable to obtain an estimate of the significance of each ridge regression coefficient. Results We develop and evaluate a test of significance for ridge regression coefficients. Using simulation studies, we demonstrate that the performance of the test is comparable to that of a permutation test, with the advantage of a much-reduced computational cost. We introduce the p-value trace, a plot of the negative logarithm of the p-values of ridge regression coefficients with increasing shrinkage parameter, which enables the visualisation of the change in p-value of the regression coefficients with increasing penalisation. We apply the proposed method to a lung cancer case-control data set from EPIC, the European Prospective Investigation into Cancer and Nutrition. Conclusions The proposed test is a useful alternative to a permutation test for the estimation of the significance of ridge regression coefficients, at a much-reduced computational cost. The p-value trace is an informative graphical tool for evaluating the results of a test of significance of ridge regression coefficients as the shrinkage parameter increases, and the proposed test makes its production computationally feasible.

  3. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  4. Estimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging

    Directory of Open Access Journals (Sweden)

    Qiutong Jin

    2016-06-01

    Full Text Available Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK and geographically weighted regression Kriging (GWRK methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM, normalized difference vegetation index (NDVI, solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.

  5. Mapping urban environmental noise: a land use regression method.

    Science.gov (United States)

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  6. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

    Science.gov (United States)

    Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

    2011-11-01

    To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

  7. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  8. The role of verbal memory in regressions during reading is modulated by the target word's recency in memory.

    Science.gov (United States)

    Guérard, Katherine; Saint-Aubin, Jean; Maltais, Marilyne; Lavoie, Hugo

    2014-10-01

    During reading, a number of eye movements are made backward, on words that have already been read. Recent evidence suggests that such eye movements, called regressions, are guided by memory. Several studies point to the role of spatial memory, but evidence for the role of verbal memory is more limited. In the present study, we examined the factors that modulate the role of verbal memory in regressions. Participants were required to make regressions on target words located in sentences displayed on one or two lines. Verbal interference was shown to affect regressions, but only when participants executed a regression on a word located in the first part of the sentence, irrespective of the number of lines on which the sentence was displayed. Experiments 2 and 3 showed that the effect of verbal interference on words located in the first part of the sentence disappeared when participants initiated the regression from the middle of the sentence. Our results suggest that verbal memory is recruited to guide regressions, but only for words read a longer time ago.

  9. Testing increases suggestibility for narrative-based misinformation but reduces suggestibility for question-based misinformation.

    Science.gov (United States)

    LaPaglia, Jessica A; Chan, Jason C K

    2013-01-01

    A number of recent studies have found that recalling details of an event following its occurrence can increase people's suggestibility to later presented misinformation. However, several other studies have reported the opposite result, whereby earlier retrieval can reduce subsequent eyewitness suggestibility. In the present study, we investigated whether differences in the way misinformation is presented can modulate the effects of testing on suggestibility. Participants watched a video of a robbery and some were questioned about the event immediately afterwards. Later, participants were exposed to misinformation in a narrative (Experiment 1) or in questions (Experiment 2). Consistent with previous studies, we found that testing increased suggestibility when misinformation was presented via a narrative. Remarkably, when misinformation was presented in questions, testing decreased suggestibility. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Regression with Sparse Approximations of Data

    DEFF Research Database (Denmark)

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...

  11. Spontaneous regression of a congenital melanocytic nevus

    Directory of Open Access Journals (Sweden)

    Amiya Kumar Nath

    2011-01-01

    Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.

  12. Mapping geogenic radon potential by regression kriging

    Energy Technology Data Exchange (ETDEWEB)

    Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)

    2016-02-15

    Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method

  13. Mapping geogenic radon potential by regression kriging

    International Nuclear Information System (INIS)

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-01-01

    Radon ( 222 Rn) gas is produced in the radioactive decay chain of uranium ( 238 U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method, regression

  14. Regression calibration with more surrogates than mismeasured variables

    KAUST Repository

    Kipnis, Victor

    2012-06-29

    In a recent paper (Weller EA, Milton DK, Eisen EA, Spiegelman D. Regression calibration for logistic regression with multiple surrogates for one exposure. Journal of Statistical Planning and Inference 2007; 137: 449-461), the authors discussed fitting logistic regression models when a scalar main explanatory variable is measured with error by several surrogates, that is, a situation with more surrogates than variables measured with error. They compared two methods of adjusting for measurement error using a regression calibration approximate model as if it were exact. One is the standard regression calibration approach consisting of substituting an estimated conditional expectation of the true covariate given observed data in the logistic regression. The other is a novel two-stage approach when the logistic regression is fitted to multiple surrogates, and then a linear combination of estimated slopes is formed as the estimate of interest. Applying estimated asymptotic variances for both methods in a single data set with some sensitivity analysis, the authors asserted superiority of their two-stage approach. We investigate this claim in some detail. A troubling aspect of the proposed two-stage method is that, unlike standard regression calibration and a natural form of maximum likelihood, the resulting estimates are not invariant to reparameterization of nuisance parameters in the model. We show, however, that, under the regression calibration approximation, the two-stage method is asymptotically equivalent to a maximum likelihood formulation, and is therefore in theory superior to standard regression calibration. However, our extensive finite-sample simulations in the practically important parameter space where the regression calibration model provides a good approximation failed to uncover such superiority of the two-stage method. We also discuss extensions to different data structures.

  15. Regression calibration with more surrogates than mismeasured variables

    KAUST Repository

    Kipnis, Victor; Midthune, Douglas; Freedman, Laurence S.; Carroll, Raymond J.

    2012-01-01

    In a recent paper (Weller EA, Milton DK, Eisen EA, Spiegelman D. Regression calibration for logistic regression with multiple surrogates for one exposure. Journal of Statistical Planning and Inference 2007; 137: 449-461), the authors discussed fitting logistic regression models when a scalar main explanatory variable is measured with error by several surrogates, that is, a situation with more surrogates than variables measured with error. They compared two methods of adjusting for measurement error using a regression calibration approximate model as if it were exact. One is the standard regression calibration approach consisting of substituting an estimated conditional expectation of the true covariate given observed data in the logistic regression. The other is a novel two-stage approach when the logistic regression is fitted to multiple surrogates, and then a linear combination of estimated slopes is formed as the estimate of interest. Applying estimated asymptotic variances for both methods in a single data set with some sensitivity analysis, the authors asserted superiority of their two-stage approach. We investigate this claim in some detail. A troubling aspect of the proposed two-stage method is that, unlike standard regression calibration and a natural form of maximum likelihood, the resulting estimates are not invariant to reparameterization of nuisance parameters in the model. We show, however, that, under the regression calibration approximation, the two-stage method is asymptotically equivalent to a maximum likelihood formulation, and is therefore in theory superior to standard regression calibration. However, our extensive finite-sample simulations in the practically important parameter space where the regression calibration model provides a good approximation failed to uncover such superiority of the two-stage method. We also discuss extensions to different data structures.

  16. BANK FAILURE PREDICTION WITH LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Taha Zaghdoudi

    2013-04-01

    Full Text Available In recent years the economic and financial world is shaken by a wave of financial crisis and resulted in violent bank fairly huge losses. Several authors have focused on the study of the crises in order to develop an early warning model. It is in the same path that our work takes its inspiration. Indeed, we have tried to develop a predictive model of Tunisian bank failures with the contribution of the binary logistic regression method. The specificity of our prediction model is that it takes into account microeconomic indicators of bank failures. The results obtained using our provisional model show that a bank's ability to repay its debt, the coefficient of banking operations, bank profitability per employee and leverage financial ratio has a negative impact on the probability of failure.

  17. Regression testing in the TOTEM DCS

    International Nuclear Information System (INIS)

    Rodríguez, F Lucas; Atanassov, I; Burkimsher, P; Frost, O; Taskinen, J; Tulimaki, V

    2012-01-01

    The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarm metainformation, and some other heuristics based on the naming conventions. When those initial parameters and automation code are modified to include new features, the resulting PVSS system can also introduce side-effects. On a daily basis, a custom developed regression testing tool takes the most recent code from a Subversion (SVN) repository and builds a new control system from scratch. This system is exported in plain text format using the PVSS export tool, and compared with a system previously validated by a human. A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance as a new stable version. This regression approach is not dependent on any development framework or methodology. This process has been satisfactory during several months, proving to be a very valuable tool before deploying new versions in the production systems.

  18. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  19. Short-term load forecasting with increment regression tree

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingfei; Stenzel, Juergen [Darmstadt University of Techonology, Darmstadt 64283 (Germany)

    2006-06-15

    This paper presents a new regression tree method for short-term load forecasting. Both increment and non-increment tree are built according to the historical data to provide the data space partition and input variable selection. Support vector machine is employed to the samples of regression tree nodes for further fine regression. Results of different tree nodes are integrated through weighted average method to obtain the comprehensive forecasting result. The effectiveness of the proposed method is demonstrated through its application to an actual system. (author)

  20. Does the Magnitude of the Link between Unemployment and Crime Depend on the Crime Level? A Quantile Regression Approach

    Directory of Open Access Journals (Sweden)

    Horst Entorf

    2015-07-01

    Full Text Available Two alternative hypotheses – referred to as opportunity- and stigma-based behavior – suggest that the magnitude of the link between unemployment and crime also depends on preexisting local crime levels. In order to analyze conjectured nonlinearities between both variables, we use quantile regressions applied to German district panel data. While both conventional OLS and quantile regressions confirm the positive link between unemployment and crime for property crimes, results for assault differ with respect to the method of estimation. Whereas conventional mean regressions do not show any significant effect (which would confirm the usual result found for violent crimes in the literature, quantile regression reveals that size and importance of the relationship are conditional on the crime rate. The partial effect is significantly positive for moderately low and median quantiles of local assault rates.

  1. Validation of Suggestion-Induced Stress

    Science.gov (United States)

    1974-10-01

    Long-term Environment Foreign climate, geography, culture Diet / hunger Fatigue- -loss of sleep, exertion Isolation Crowding Perceived threat... neuropsychological theory of age regression and progression. In M.V. Kline (Ed..), Clinical correlations of experiment.al l~ypnosis. Springfield

  2. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  3. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  4. Relations between episodic memory, suggestibility, theory of mind, and cognitive inhibition in the preschool child.

    Science.gov (United States)

    Melinder, Annika; Endestad, Tor; Magnussen, Svein

    2006-12-01

    The development of episodic memory, its relation to theory of mind (ToM), executive functions (e.g., cognitive inhibition), and to suggestibility was studied. Children (n= 115) between 3 and 6 years of age saw two versions of a video film and were tested for their memory of critical elements of the videos. Results indicated similar developmental trends for all memory measures, ToM, and inhibition, but ToM and inhibition were not associated with any memory measures. Correlations involving source memory was found in relation to specific questions, whereas inhibition and ToM were significantly correlated to resistance to suggestions. A regression analysis showed that age was the main contributor to resistance to suggestions, to correct source monitoring, and to correct responses to specific questions. Inhibition was also a significant main predictor of resistance to suggestive questions, whereas the relative contribution of ToM was wiped out when an extended model was tested.

  5. Genetic correlations among body condition score, yield and fertility in multiparous cows using random regression models

    OpenAIRE

    Bastin, Catherine; Gillon, Alain; Massart, Xavier; Bertozzi, Carlo; Vanderick, Sylvie; Gengler, Nicolas

    2010-01-01

    Genetic correlations between body condition score (BCS) in lactation 1 to 3 and four economically important traits (days open, 305-days milk, fat, and protein yields recorded in the first 3 lactations) were estimated on about 12,500 Walloon Holstein cows using 4-trait random regression models. Results indicated moderate favorable genetic correlations between BCS and days open (from -0.46 to -0.62) and suggested the use of BCS for indirect selection on fertility. However, unfavorable genetic c...

  6. Adjuvant corneal crosslinking to prevent hyperopic LASIK regression

    Directory of Open Access Journals (Sweden)

    Aslanides IM

    2013-03-01

    Full Text Available Ioannis M Aslanides, Achyut N MukherjeeEmmetropia Mediterranean Eye Clinic, Heraklion, Crete, GreecePurpose: To report the long term outcomes, safety, stability, and efficacy in a pilot series of simultaneous hyperopic laser assisted in situ keratomileusis (LASIK and corneal crosslinking (CXL.Method: A small cohort series of five eyes, with clinically suboptimal topography and/or thickness, underwent LASIK surgery with immediate riboflavin application under the flap, followed by UV light irradiation. Postoperative assessment was performed at 1, 3, 6, and 12 months, with late follow up at 4 years, and results were compared with a matched cohort that received LASIK only.Results: The average age of the LASIK-CXL group was 39 years (26–46, and the average spherical equivalent hyperopic refractive error was +3.45 diopters (standard deviation 0.76; range 2.5 to 4.5. All eyes maintained refractive stability over the 4 years. There were no complications related to CXL, and topographic and clinical outcomes were as expected for standard LASIK.Conclusion: This limited series suggests that simultaneous LASIK and CXL for hyperopia is safe. Outcomes of the small cohort suggest that this technique may be promising for ameliorating hyperopic regression, presumed to be biomechanical in origin, and may also address ectasia risk.Keyword: CXL

  7. Conjoined legs: Sirenomelia or caudal regression syndrome?

    Directory of Open Access Journals (Sweden)

    Sakti Prasad Das

    2013-01-01

    Full Text Available Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.

  8. Conjoined legs: Sirenomelia or caudal regression syndrome?

    Science.gov (United States)

    Das, Sakti Prasad; Ojha, Niranjan; Ganesh, G Shankar; Mohanty, Ram Narayan

    2013-07-01

    Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.

  9. Logistic regression against a divergent Bayesian network

    Directory of Open Access Journals (Sweden)

    Noel Antonio Sánchez Trujillo

    2015-01-01

    Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.

  10. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  11. Gaussian process regression for geometry optimization

    Science.gov (United States)

    Denzel, Alexander; Kästner, Johannes

    2018-03-01

    We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.

  12. Statistical learning from a regression perspective

    CERN Document Server

    Berk, Richard A

    2016-01-01

    This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this can be seen as an extension of nonparametric regression. This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. A continued emphasis on the implications for practice runs through the text. Among the statistical learning procedures examined are bagging, random forests, boosting, support vector machines and neural networks. Response variables may be quantitative or categorical. As in the first edition, a unifying theme is supervised learning that can be trea...

  13. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David

    1998-01-01

    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  14. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  15. FEM effective suggestion of guitar construction

    Directory of Open Access Journals (Sweden)

    Vladimír Dániel

    2006-01-01

    Full Text Available Modal analysis of the whole guitar construction was performed. The results of eigenfrequencies were obtained. Stress in strings affects not only static loading of material, but also shift of eigenfrequencies. From obtained natural frequencies for solved spectrum such frequencies were used which coincides with assumed ribs new positions of ribs were suggested. Other ribs which do not carry out the mechanical function were removed. Also static reaction was evaluated and new position of ribs was adjusted. For final model new eigenfrequencies were computed and compared with previous ones. Significant changes were revealed in low frequencies (bellow 400 Hz where fewer amounts of natural shapes were obtained. Approximately 50% were lost by adding of ribs. For chosen frequencies of equal temperament the harmonic analysis was performed. The analysis proved ability of oscillation for frequencies far of natural frequencies. The final model satisfies the requirement of minimization of static stress in material due to strings and allows very effective oscillation of top the guitar resonance board. In comparison with literature good agreement in amplitude size of front board and amount of modes in appropriate frequencies were achieved. Suggested model even offers higher amount of natural shapes in comparison with literature, namely in high frequencies. From additional comparison of eigenfrequencies and natural shapes the influence of ribs position on natural shapes was approved.

  16. Dinosaur peptides suggest mechanisms of protein survival.

    Science.gov (United States)

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  17. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    Energy Technology Data Exchange (ETDEWEB)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O. (Harvard-Med); (IIT); (NCSU); (UPENN); (Manchester); (Orthovita)

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  18. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    Science.gov (United States)

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  19. Multivariate Regression Analysis and Slaughter Livestock,

    Science.gov (United States)

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  20. [From clinical judgment to linear regression model.

    Science.gov (United States)

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  1. Merkel Cell Carcinoma with Spontaneous Regression: A Case Report and Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Hitoshi Terui

    2016-02-01

    Full Text Available Merkel cell carcinoma (MCC is an aggressive neuroendocrine carcinoma that only rarely regresses spontaneously. Since little is known about the immunological mechanisms involved in the spontaneous regression of MCC, we describe a case of MCC with spontaneous regression and employed immunohistochemical staining for cytotoxic and immunosuppressive molecules to investigate possible mechanisms involved in the spontaneous regression of MCC. Interestingly, compared to conventional MCC, tumor-infiltrating lymphocytes in MCC with spontaneous regression contained higher numbers of CD8+ cells and granulysin-bearing cells and lower numbers of CD206+ cells. Our present study suggests one of the possible reasons for the spontaneous regression of MCC.

  2. Optimal choice of basis functions in the linear regression analysis

    International Nuclear Information System (INIS)

    Khotinskij, A.M.

    1988-01-01

    Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs

  3. Elastic wave scattering methods: assessments and suggestions

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  4. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  5. Examination of influential observations in penalized spline regression

    Science.gov (United States)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  6. Suggestibility and Expectancy in a Counseling Analogue

    Science.gov (United States)

    Kaul, Theodore J.; Parker, Clyde A.

    1971-01-01

    The data indicated that (a) subjectively experienced suggestibility was more closely related to attitude change than was objective suggestibility, and (b) the generalized expectancy treatments were ineffective in influencing different criterion scores. (Author)

  7. Collaborative regression-based anatomical landmark detection

    International Nuclear Information System (INIS)

    Gao, Yaozong; Shen, Dinggang

    2015-01-01

    Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head and neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods. (paper)

  8. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  9. Use of probabilistic weights to enhance linear regression myoelectric control.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2015-12-01

    Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts' law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p linear regression control. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  10. Evidentiality and Suggestibility: A New Research Venue

    Science.gov (United States)

    Aydin, Cagla; Ceci, Stephen J.

    2009-01-01

    Recent research suggests that acquisition of mental-state language may influence conceptual development. We examine this possibility by investigating the conceptual links between evidentiality in language and suggestibility. Young children are disproportionately suggestible and tend to change their reports or memories when questioned. The authors…

  11. Simulation Experiments in Practice: Statistical Design and Regression Analysis

    OpenAIRE

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

  12. Regression and Sparse Regression Methods for Viscosity Estimation of Acid Milk From it’s Sls Features

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann

    2012-01-01

    Statistical solutions find wide spread use in food and medicine quality control. We investigate the effect of different regression and sparse regression methods for a viscosity estimation problem using the spectro-temporal features from new Sub-Surface Laser Scattering (SLS) vision system. From...... with sparse LAR, lasso and Elastic Net (EN) sparse regression methods. Due to the inconsistent measurement condition, Locally Weighted Scatter plot Smoothing (Loess) has been employed to alleviate the undesired variation in the estimated viscosity. The experimental results of applying different methods show...

  13. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    Science.gov (United States)

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  14. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  15. Categorical regression dose-response modeling

    Science.gov (United States)

    The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...

  16. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  17. Stepwise versus Hierarchical Regression: Pros and Cons

    Science.gov (United States)

    Lewis, Mitzi

    2007-01-01

    Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…

  18. Gibrat’s law and quantile regressions

    DEFF Research Database (Denmark)

    Distante, Roberta; Petrella, Ivan; Santoro, Emiliano

    2017-01-01

    The nexus between firm growth, size and age in U.S. manufacturing is examined through the lens of quantile regression models. This methodology allows us to overcome serious shortcomings entailed by linear regression models employed by much of the existing literature, unveiling a number of important...

  19. Regression Analysis and the Sociological Imagination

    Science.gov (United States)

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  20. Principles of Quantile Regression and an Application

    Science.gov (United States)

    Chen, Fang; Chalhoub-Deville, Micheline

    2014-01-01

    Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…

  1. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

    NARCIS (Netherlands)

    RUSCHENDORF, L; DEVALK, [No Value

    We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

  2. The Effect of Memory Trace Strength on Suggestibility.

    Science.gov (United States)

    Pezdek, Kathy; Roe, Chantal

    1995-01-01

    Examined the conditions under which children's memory is resistant to suggestibility versus vulnerable to suggestibility. Results suggest that children have more accurate memory for an event that occurred to them frequently, and that they are less vulnerable to suggestive influences such as biased interviewing procedures than they would be for an…

  3. Pathological assessment of liver fibrosis regression

    Directory of Open Access Journals (Sweden)

    WANG Bingqiong

    2017-03-01

    Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.

  4. Should metacognition be measured by logistic regression?

    Science.gov (United States)

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Adjuvant corneal crosslinking to prevent hyperopic LASIK regression.

    Science.gov (United States)

    Aslanides, Ioannis M; Mukherjee, Achyut N

    2013-01-01

    To report the long term outcomes, safety, stability, and efficacy in a pilot series of simultaneous hyperopic laser assisted in situ keratomileusis (LASIK) and corneal crosslinking (CXL). A small cohort series of five eyes, with clinically suboptimal topography and/or thickness, underwent LASIK surgery with immediate riboflavin application under the flap, followed by UV light irradiation. Postoperative assessment was performed at 1, 3, 6, and 12 months, with late follow up at 4 years, and results were compared with a matched cohort that received LASIK only. The average age of the LASIK-CXL group was 39 years (26-46), and the average spherical equivalent hyperopic refractive error was +3.45 diopters (standard deviation 0.76; range 2.5 to 4.5). All eyes maintained refractive stability over the 4 years. There were no complications related to CXL, and topographic and clinical outcomes were as expected for standard LASIK. This limited series suggests that simultaneous LASIK and CXL for hyperopia is safe. Outcomes of the small cohort suggest that this technique may be promising for ameliorating hyperopic regression, presumed to be biomechanical in origin, and may also address ectasia risk.

  6. Geographically weighted regression and multicollinearity: dispelling the myth

    Science.gov (United States)

    Fotheringham, A. Stewart; Oshan, Taylor M.

    2016-10-01

    Geographically weighted regression (GWR) extends the familiar regression framework by estimating a set of parameters for any number of locations within a study area, rather than producing a single parameter estimate for each relationship specified in the model. Recent literature has suggested that GWR is highly susceptible to the effects of multicollinearity between explanatory variables and has proposed a series of local measures of multicollinearity as an indicator of potential problems. In this paper, we employ a controlled simulation to demonstrate that GWR is in fact very robust to the effects of multicollinearity. Consequently, the contention that GWR is highly susceptible to multicollinearity issues needs rethinking.

  7. Suggestions for an updated fusion power program

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1976-02-01

    This document contains suggestions for a revised CTR Program strategy which should allow us to achieve equivalent goals while operating within the above constraints. The revised program is designed around three major facilities. The first is an upgrading of the present TFTR facility which will provide a demonstration of the generation of tens of megawatts electric equivalent originally envisioned for the 1985 EPR. The second device is the TTAP which will allow the integration and optimization of the plasma physics results obtained from the next generation of plasma physics experiments. The improvement in tokamak reactor operation resulting from this optimization of fusion plasma performance will enable an EPR to be designed which will produce several hundred megawatts of electric power by 1990. This will move the fusion program much closer to its goal of commercial fusion power by the turn of the century. In addition to this function the TTAP will serve as a prototype of the 1990 EPR system, thus making more certain the successful operation of this device. The third element of this revised program is an intense radiation damage facility which will provide the radiation damage information necessary for the EPR and subsequent fusion reactor facilities. The sum total of experience gained from reacting plasma experiments on TFTR, reactor grade plasma optimization and technological prototyping on TTAP, and end of life radiation damage results from the intense neutron facility will solve all of the presently foreseen problems associated with a tokamak fusion power reactor except those associated with the external nuclear systems. These external system problems such as tritium breeding and optimal power recovery can be developed in parallel on the 1990 EPR

  8. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    Science.gov (United States)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  9. Are You Suggesting That's My Hand? The Relation Between Hypnotic Suggestibility and the Rubber Hand Illusion.

    Science.gov (United States)

    Walsh, E; Guilmette, D N; Longo, M R; Moore, J W; Oakley, D A; Halligan, P W; Mehta, M A; Deeley, Q

    2015-01-01

    Hypnotic suggestibility (HS) is the ability to respond automatically to suggestions and to experience alterations in perception and behavior. Hypnotically suggestible participants are also better able to focus and sustain their attention on an experimental stimulus. The present study explores the relation between HS and susceptibility to the rubber hand illusion (RHI). Based on previous research with visual illusions, it was predicted that higher HS would lead to a stronger RHI. Two behavioral output measures of the RHI, an implicit (proprioceptive drift) and an explicit (RHI questionnaire) measure, were correlated against HS scores. Hypnotic suggestibility correlated positively with the implicit RHI measure contributing to 30% of the variation. However, there was no relation between HS and the explicit RHI questionnaire measure, or with compliance control items. High hypnotic suggestibility may facilitate, via attentional mechanisms, the multisensory integration of visuoproprioceptive inputs that leads to greater perceptual mislocalization of a participant's hand. These results may provide insight into the multisensory brain mechanisms involved in our sense of embodiment.

  10. Research and analyze of physical health using multiple regression analysis

    Directory of Open Access Journals (Sweden)

    T. S. Kyi

    2014-01-01

    Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

  11. Radiation regression patterns after cobalt plaque insertion for retinoblastoma

    International Nuclear Information System (INIS)

    Buys, R.J.; Abramson, D.H.; Ellsworth, R.M.; Haik, B.

    1983-01-01

    An analysis of 31 eyes of 30 patients who had been treated with cobalt plaques for retinoblastoma disclosed that a type I radiation regression pattern developed in 15 patients; type II, in one patient, and type III, in five patients. Nine patients had a regression pattern characterized by complete destruction of the tumor, the surrounding choroid, and all of the vessels in the area into which the plaque was inserted. This resulting white scar, corresponding to the sclerae only, was classified as a type IV radiation regression pattern. There was no evidence of tumor recurrence in patients with type IV regression patterns, with an average follow-up of 6.5 years, after receiving cobalt plaque therapy. Twenty-nine of these 30 patients had been unsuccessfully treated with at least one other modality (ie, light coagulation, cryotherapy, external beam radiation, or chemotherapy)

  12. Radiation regression patterns after cobalt plaque insertion for retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Buys, R.J.; Abramson, D.H.; Ellsworth, R.M.; Haik, B.

    1983-08-01

    An analysis of 31 eyes of 30 patients who had been treated with cobalt plaques for retinoblastoma disclosed that a type I radiation regression pattern developed in 15 patients; type II, in one patient, and type III, in five patients. Nine patients had a regression pattern characterized by complete destruction of the tumor, the surrounding choroid, and all of the vessels in the area into which the plaque was inserted. This resulting white scar, corresponding to the sclerae only, was classified as a type IV radiation regression pattern. There was no evidence of tumor recurrence in patients with type IV regression patterns, with an average follow-up of 6.5 years, after receiving cobalt plaque therapy. Twenty-nine of these 30 patients had been unsuccessfully treated with at least one other modality (ie, light coagulation, cryotherapy, external beam radiation, or chemotherapy).

  13. Effects of stereotypes and suggestion on memory.

    Science.gov (United States)

    Shechory, Mally; Nachson, Israel; Glicksohn, Joseph

    2010-02-01

    In this study, the interactive effect of stereotype and suggestion on accuracy of memory was examined by presenting 645 participants (native Israelis and immigrants from the former Soviet Union and Ethiopia) with three versions of a story about a worker who is waiting in a manager's office for a meeting. All versions were identical except for the worker's name, which implied a Russian or an Ethiopian immigrant or a person of no ethnic origin. Each participant was presented with one version of the story. After an hour delay, the participants' memories were tested via two questionnaires that differed in terms of level of suggestion. Data analyses show that (a) when a suggestion matched the participant's stereotypical perception, the suggestion was incorporated into memory but (b) when the suggestion contradicted the stereotype, it did not influence memory. The conclusion was that recall is influenced by stereotypes but can be enhanced by compatible suggestions.

  14. Behavioural Decision Making and Suggestional Processes

    OpenAIRE

    Molz, Günter

    2001-01-01

    Common features between the domains of behavioural decision making and suggestional processes are discussed. These features are allocated in two aspects. First, behavioural decision making and suggestional processes are traditionally considered to provoke inadequate human behaviour. In this article arguments are put forward against this interpretation: Actions induced by non-rational decisions and / or by suggestional processes often have adaptive functions. Second, two common themat...

  15. Interrogative suggestibility in patients with conversion disorders.

    Science.gov (United States)

    Foong, J; Lucas, P A; Ron, M A

    1997-09-01

    We tested the hypothesis that increased interrogative suggestibility may contribute to the shaping and maintaining of conversions symptoms. Interrogative suggestibility was measured in 12 patients with conversion disorder and 10 control patients with confirmed neurological disease matched for age, premorbid intelligence, and as closely as possible in terms of their neurological symptoms to the patients with conversion disorder. Our observations do not support the contention that individual differences in interrogative suggestibility are of importance in the etiology of conversion disorders.

  16. Personality Styles and Suggestibility: A Differential Approach

    OpenAIRE

    Pires, Rute; Silva, Danilo R.; Ferreira, Ana Sousa

    2013-01-01

    This study addresses the relationship between personality styles measured with the Portuguese adaptation of the Millon Index of Personality Styles Revised – MIPS-R and interrogative suggestibility assessed by the Portuguese adaptation of the Gudjonsson Suggestibility Scale – GSS1. Hypotheses predicted individual differences in suggestibility and that these differences correspond to differences in individuals’ personality styles. The study was conducted with a sample of 258 individuals (M age ...

  17. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  18. Structural and functional cerebral correlates of hypnotic suggestibility.

    Directory of Open Access Journals (Sweden)

    Alexa Huber

    Full Text Available Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  19. Structural and functional cerebral correlates of hypnotic suggestibility.

    Science.gov (United States)

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  20. Maxillectomy defects: a suggested classification scheme.

    Science.gov (United States)

    Akinmoladun, V I; Dosumu, O O; Olusanya, A A; Ikusika, O F

    2013-06-01

    The term "maxillectomy" has been used to describe a variety of surgical procedures for a spectrum of diseases involving a diverse anatomical site. Hence, classifications of maxillectomy defects have often made communication difficult. This article highlights this problem, emphasises the need for a uniform system of classification and suggests a classification system which is simple and comprehensive. Articles related to this subject, especially those with specified classifications of maxillary surgical defects were sourced from the internet through Google, Scopus and PubMed using the search terms maxillectomy defects classification. A manual search through available literature was also done. The review of the materials revealed many classifications and modifications of classifications from the descriptive, reconstructive and prosthodontic perspectives. No globally acceptable classification exists among practitioners involved in the management of diseases in the mid-facial region. There were over 14 classifications of maxillary defects found in the English literature. Attempts made to address the inadequacies of previous classifications have tended to result in cumbersome and relatively complex classifications. A single classification that is based on both surgical and prosthetic considerations is most desirable and is hereby proposed.

  1. FBH1 Catalyzes Regression of Stalled Replication Forks

    Directory of Open Access Journals (Sweden)

    Kasper Fugger

    2015-03-01

    Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

  2. Prenatal diagnosis of Caudal Regression Syndrome : a case report

    Directory of Open Access Journals (Sweden)

    Celikaslan Nurgul

    2001-12-01

    Full Text Available Abstract Background Caudal regression is a rare syndrome which has a spectrum of congenital malformations ranging from simple anal atresia to absence of sacral, lumbar and possibly lower thoracic vertebrae, to the most severe form which is known as sirenomelia. Maternal diabetes, genetic predisposition and vascular hypoperfusion have been suggested as possible causative factors. Case presentation We report a case of caudal regression syndrome diagnosed in utero at 22 weeks' of gestation. Prenatal ultrasound examination revealed a sudden interruption of the spine and "frog-like" position of lower limbs. Termination of pregnancy and autopsy findings confirmed the diagnosis. Conclusion Prenatal ultrasonographic diagnosis of caudal regression syndrome is possible at 22 weeks' of gestation by ultrasound examination.

  3. Quantitative histological models suggest endothermy in plesiosaurs

    Directory of Open Access Journals (Sweden)

    Corinna V. Fleischle

    2018-06-01

    Full Text Available Background Plesiosaurs are marine reptiles that arose in the Late Triassic and survived to the Late Cretaceous. They have a unique and uniform bauplan and are known for their very long neck and hydrofoil-like flippers. Plesiosaurs are among the most successful vertebrate clades in Earth’s history. Based on bone mass decrease and cosmopolitan distribution, both of which affect lifestyle, indications of parental care, and oxygen isotope analyses, evidence for endothermy in plesiosaurs has accumulated. Recent bone histological investigations also provide evidence of fast growth and elevated metabolic rates. However, quantitative estimations of metabolic rates and bone growth rates in plesiosaurs have not been attempted before. Methods Phylogenetic eigenvector maps is a method for estimating trait values from a predictor variable while taking into account phylogenetic relationships. As predictor variable, this study employs vascular density, measured in bone histological sections of fossil eosauropterygians and extant comparative taxa. We quantified vascular density as primary osteon density, thus, the proportion of vascular area (including lamellar infillings of primary osteons to total bone area. Our response variables are bone growth rate (expressed as local bone apposition rate and resting metabolic rate (RMR. Results Our models reveal bone growth rates and RMRs for plesiosaurs that are in the range of birds, suggesting that plesiosaurs were endotherm. Even for basal eosauropterygians we estimate values in the range of mammals or higher. Discussion Our models are influenced by the availability of comparative data, which are lacking for large marine amniotes, potentially skewing our results. However, our statistically robust inference of fast growth and fast metabolism is in accordance with other evidence for plesiosaurian endothermy. Endothermy may explain the success of plesiosaurs consisting in their survival of the end-Triassic extinction

  4. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  5. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2016-04-01

    The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

  6. Interrogative suggestibility and perceptual motor performance.

    Science.gov (United States)

    Gudjonsson, G H

    1984-04-01

    This study investigates the relationship between interrogative suggestibility, as measured by the Gudjonsson Suggestibility Scale, and Arrow-Dot scores. The tendency of subjects (25 men and 25 women, mean age 30.2 yr.) to alter their answers once interpersonal pressure had been applied correlated significantly with poor Arrow-Dot Ego functioning.

  7. Maltreated Children's Memory: Accuracy, Suggestibility, and Psychopathology

    Science.gov (United States)

    Eisen, Mitchell L.; Goodman, Gail S.; Qin, Jianjian; Davis, Suzanne; Crayton, John

    2007-01-01

    Memory, suggestibility, stress arousal, and trauma-related psychopathology were examined in 328 3- to 16-year-olds involved in forensic investigations of abuse and neglect. Children's memory and suggestibility were assessed for a medical examination and venipuncture. Being older and scoring higher in cognitive functioning were related to fewer…

  8. Analyzing hospitalization data: potential limitations of Poisson regression.

    Science.gov (United States)

    Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R

    2015-08-01

    Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  9. Simple and multiple linear regression: sample size considerations.

    Science.gov (United States)

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Vectors, a tool in statistical regression theory

    NARCIS (Netherlands)

    Corsten, L.C.A.

    1958-01-01

    Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding

  11. Dynamic travel time estimation using regression trees.

    Science.gov (United States)

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  12. Association between biomarkers and clinical characteristics in chronic subdural hematoma patients assessed with lasso regression.

    Directory of Open Access Journals (Sweden)

    Are Hugo Pripp

    Full Text Available Chronic subdural hematoma (CSDH is characterized by an "old" encapsulated collection of blood and blood breakdown products between the brain and its outermost covering (the dura. Recognized risk factors for development of CSDH are head injury, old age and using anticoagulation medication, but its underlying pathophysiological processes are still unclear. It is assumed that a complex local process of interrelated mechanisms including inflammation, neomembrane formation, angiogenesis and fibrinolysis could be related to its development and propagation. However, the association between the biomarkers of inflammation and angiogenesis, and the clinical and radiological characteristics of CSDH patients, need further investigation. The high number of biomarkers compared to the number of observations, the correlation between biomarkers, missing data and skewed distributions may limit the usefulness of classical statistical methods. We therefore explored lasso regression to assess the association between 30 biomarkers of inflammation and angiogenesis at the site of lesions, and selected clinical and radiological characteristics in a cohort of 93 patients. Lasso regression performs both variable selection and regularization to improve the predictive accuracy and interpretability of the statistical model. The results from the lasso regression showed analysis exhibited lack of robust statistical association between the biomarkers in hematoma fluid with age, gender, brain infarct, neurological deficiencies and volume of hematoma. However, there were associations between several of the biomarkers with postoperative recurrence requiring reoperation. The statistical analysis with lasso regression supported previous findings that the immunological characteristics of CSDH are local. The relationship between biomarkers, the radiological appearance of lesions and recurrence requiring reoperation have been inclusive using classical statistical methods on these data

  13. Fuzzy multiple linear regression: A computational approach

    Science.gov (United States)

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  14. Computing multiple-output regression quantile regions

    Czech Academy of Sciences Publication Activity Database

    Paindaveine, D.; Šiman, Miroslav

    2012-01-01

    Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf

  15. There is No Quantum Regression Theorem

    International Nuclear Information System (INIS)

    Ford, G.W.; OConnell, R.F.

    1996-01-01

    The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society

  16. Spontaneous regression of metastatic Merkel cell carcinoma.

    LENUS (Irish Health Repository)

    Hassan, S J

    2010-01-01

    Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.

  17. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.

    2010-08-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  18. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.; Carroll, R.J.; Wand, M.P.

    2010-01-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  19. bayesQR: A Bayesian Approach to Quantile Regression

    Directory of Open Access Journals (Sweden)

    Dries F. Benoit

    2017-01-01

    Full Text Available After its introduction by Koenker and Basset (1978, quantile regression has become an important and popular tool to investigate the conditional response distribution in regression. The R package bayesQR contains a number of routines to estimate quantile regression parameters using a Bayesian approach based on the asymmetric Laplace distribution. The package contains functions for the typical quantile regression with continuous dependent variable, but also supports quantile regression for binary dependent variables. For both types of dependent variables, an approach to variable selection using the adaptive lasso approach is provided. For the binary quantile regression model, the package also contains a routine that calculates the fitted probabilities for each vector of predictors. In addition, functions for summarizing the results, creating traceplots, posterior histograms and drawing quantile plots are included. This paper starts with a brief overview of the theoretical background of the models used in the bayesQR package. The main part of this paper discusses the computational problems that arise in the implementation of the procedure and illustrates the usefulness of the package through selected examples.

  20. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  1. Learning a Nonnegative Sparse Graph for Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung

    2015-09-01

    Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure construction but are not competent in handling new samples. To this end, a novel nonnegative sparse graph (NNSG) learning method was first proposed. Then, both the label prediction and projection learning were integrated into linear regression. Finally, the linear regression and graph structure learning were unified within the same framework to overcome these two drawbacks. Therefore, a novel method, named learning a NNSG for linear regression was presented, in which the linear regression and graph learning were simultaneously performed to guarantee an overall optimum. In the learning process, the label information can be accurately propagated via the graph structure so that the linear regression can learn a discriminative projection to better fit sample labels and accurately classify new samples. An effective algorithm was designed to solve the corresponding optimization problem with fast convergence. Furthermore, NNSG provides a unified perceptiveness for a number of graph-based learning methods and linear regression methods. The experimental results showed that NNSG can obtain very high classification accuracy and greatly outperforms conventional G-SSL methods, especially some conventional graph construction methods.

  2. Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression.

    Science.gov (United States)

    Zhen, Xiantong; Yu, Mengyang; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-09-01

    Multioutput regression has recently shown great ability to solve challenging problems in both computer vision and medical image analysis. However, due to the huge image variability and ambiguity, it is fundamentally challenging to handle the highly complex input-target relationship of multioutput regression, especially with indiscriminate high-dimensional representations. In this paper, we propose a novel supervised descriptor learning (SDL) algorithm for multioutput regression, which can establish discriminative and compact feature representations to improve the multivariate estimation performance. The SDL is formulated as generalized low-rank approximations of matrices with a supervised manifold regularization. The SDL is able to simultaneously extract discriminative features closely related to multivariate targets and remove irrelevant and redundant information by transforming raw features into a new low-dimensional space aligned to targets. The achieved discriminative while compact descriptor largely reduces the variability and ambiguity for multioutput regression, which enables more accurate and efficient multivariate estimation. We conduct extensive evaluation of the proposed SDL on both synthetic data and real-world multioutput regression tasks for both computer vision and medical image analysis. Experimental results have shown that the proposed SDL can achieve high multivariate estimation accuracy on all tasks and largely outperforms the algorithms in the state of the arts. Our method establishes a novel SDL framework for multioutput regression, which can be widely used to boost the performance in different applications.

  3. Determinants of LSIL Regression in Women from a Colombian Cohort

    International Nuclear Information System (INIS)

    Molano, Monica; Gonzalez, Mauricio; Gamboa, Oscar; Ortiz, Natasha; Luna, Joaquin; Hernandez, Gustavo; Posso, Hector; Murillo, Raul; Munoz, Nubia

    2010-01-01

    Objective: To analyze the role of Human Papillomavirus (HPV) and other risk factors in the regression of cervical lesions in women from the Bogota Cohort. Methods: 200 HPV positive women with abnormal cytology were included for regression analysis. The time of lesion regression was modeled using methods for interval censored survival time data. Median duration of total follow-up was 9 years. Results: 80 (40%) women were diagnosed with Atypical Squamous Cells of Undetermined Significance (ASCUS) or Atypical Glandular Cells of Undetermined Significance (AGUS) while 120 (60%) were diagnosed with Low Grade Squamous Intra-epithelial Lesions (LSIL). Globally, 40% of the lesions were still present at first year of follow up, while 1.5% was still present at 5 year check-up. The multivariate model showed similar regression rates for lesions in women with ASCUS/AGUS and women with LSIL (HR= 0.82, 95% CI 0.59-1.12). Women infected with HR HPV types and those with mixed infections had lower regression rates for lesions than did women infected with LR types (HR=0.526, 95% CI 0.33-0.84, for HR types and HR=0.378, 95% CI 0.20-0.69, for mixed infections). Furthermore, women over 30 years had a higher lesion regression rate than did women under 30 years (HR1.53, 95% CI 1.03-2.27). The study showed that the median time for lesion regression was 9 months while the median time for HPV clearance was 12 months. Conclusions: In the studied population, the type of infection and the age of the women are critical factors for the regression of cervical lesions.

  4. A rotor optimization using regression analysis

    Science.gov (United States)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  5. Post-processing through linear regression

    Science.gov (United States)

    van Schaeybroeck, B.; Vannitsem, S.

    2011-03-01

    Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  6. Post-processing through linear regression

    Directory of Open Access Journals (Sweden)

    B. Van Schaeybroeck

    2011-03-01

    Full Text Available Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS method, a new time-dependent Tikhonov regularization (TDTR method, the total least-square method, a new geometric-mean regression (GM, a recently introduced error-in-variables (EVMOS method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified.

    These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise. At long lead times the regression schemes (EVMOS, TDTR which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  7. Spatial vulnerability assessments by regression kriging

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor

    2016-04-01

    information representing IEW or GRP forming environmental factors were taken into account to support the spatial inference of the locally experienced IEW frequency and measured GRP values respectively. An efficient spatial prediction methodology was applied to construct reliable maps, namely regression kriging (RK) using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Application of RK also provides the possibility of inherent accuracy assessment. The resulting maps are characterized by global and local measures of its accuracy. Additionally the method enables interval estimation for spatial extension of the areas of predefined risk categories. All of these outputs provide useful contribution to spatial planning, action planning and decision making. Acknowledgement: Our work was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  8. Estimating Engineering and Manufacturing Development Cost Risk Using Logistic and Multiple Regression

    National Research Council Canada - National Science Library

    Bielecki, John

    2003-01-01

    .... Previous research has demonstrated the use of a two-step logistic and multiple regression methodology to predicting cost growth produces desirable results versus traditional single-step regression...

  9. Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR).

    Science.gov (United States)

    Morales, Esteban; de Leon, John Mark S; Abdollahi, Niloufar; Yu, Fei; Nouri-Mahdavi, Kouros; Caprioli, Joseph

    2016-03-01

    The study was conducted to evaluate threshold smoothing algorithms to enhance prediction of the rates of visual field (VF) worsening in glaucoma. We studied 798 patients with primary open-angle glaucoma and 6 or more years of follow-up who underwent 8 or more VF examinations. Thresholds at each VF location for the first 4 years or first half of the follow-up time (whichever was greater) were smoothed with clusters defined by the nearest neighbor (NN), Garway-Heath, Glaucoma Hemifield Test (GHT), and weighting by the correlation of rates at all other VF locations. Thresholds were regressed with a pointwise exponential regression (PER) model and a pointwise linear regression (PLR) model. Smaller root mean square error (RMSE) values of the differences between the observed and the predicted thresholds at last two follow-ups indicated better model predictions. The mean (SD) follow-up times for the smoothing and prediction phase were 5.3 (1.5) and 10.5 (3.9) years. The mean RMSE values for the PER and PLR models were unsmoothed data, 6.09 and 6.55; NN, 3.40 and 3.42; Garway-Heath, 3.47 and 3.48; GHT, 3.57 and 3.74; and correlation of rates, 3.59 and 3.64. Smoothed VF data predicted better than unsmoothed data. Nearest neighbor provided the best predictions; PER also predicted consistently more accurately than PLR. Smoothing algorithms should be used when forecasting VF results with PER or PLR. The application of smoothing algorithms on VF data can improve forecasting in VF points to assist in treatment decisions.

  10. Interpreting Multiple Linear Regression: A Guidebook of Variable Importance

    Science.gov (United States)

    Nathans, Laura L.; Oswald, Frederick L.; Nimon, Kim

    2012-01-01

    Multiple regression (MR) analyses are commonly employed in social science fields. It is also common for interpretation of results to typically reflect overreliance on beta weights, often resulting in very limited interpretations of variable importance. It appears that few researchers employ other methods to obtain a fuller understanding of what…

  11. Five cases of caudal regression with an aberrant abdominal umbilical artery: Further support for a caudal regression-sirenomelia spectrum.

    Science.gov (United States)

    Duesterhoeft, Sara M; Ernst, Linda M; Siebert, Joseph R; Kapur, Raj P

    2007-12-15

    Sirenomelia and caudal regression have sparked centuries of interest and recent debate regarding their classification and pathogenetic relationship. Specific anomalies are common to both conditions, but aside from fusion of the lower extremities, an aberrant abdominal umbilical artery ("persistent vitelline artery") has been invoked as the chief anatomic finding that distinguishes sirenomelia from caudal regression. This observation is important from a pathogenetic viewpoint, in that diversion of blood away from the caudal portion of the embryo through the abdominal umbilical artery ("vascular steal") has been proposed as the primary mechanism leading to sirenomelia. In contrast, caudal regression is hypothesized to arise from primary deficiency of caudal mesoderm. We present five cases of caudal regression that exhibit an aberrant abdominal umbilical artery similar to that typically associated with sirenomelia. Review of the literature identified four similar cases. Collectively, the series lends support for a caudal regression-sirenomelia spectrum with a common pathogenetic basis and suggests that abnormal umbilical arterial anatomy may be the consequence, rather than the cause, of deficient caudal mesoderm. (c) 2007 Wiley-Liss, Inc.

  12. Factor structure of suggestibility revisited: new evidence for direct and indirect suggestibility

    OpenAIRE

    Romuald Polczyk

    2016-01-01

    Background Yielding to suggestions can be viewed as a relatively stable individual trait, called suggestibility. It has been long proposed that there are two kinds of suggestible influence, and two kinds of suggestibility corresponding to them: direct and indirect. Direct suggestion involves overt unhidden influence, while indirect suggestion concerns influence that is hidden, and the participant does not know that the suggestibility is being measured. So far however, empirical evidence ...

  13. Assessment of deforestation using regression; Hodnotenie odlesnenia s vyuzitim regresie

    Energy Technology Data Exchange (ETDEWEB)

    Juristova, J. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra kartografie, geoinformatiky a DPZ, 84215 Bratislava (Slovakia)

    2013-04-16

    This work is devoted to the evaluation of deforestation using regression methods through software Idrisi Taiga. Deforestation is evaluated by the method of logistic regression. The dependent variable has discrete values '0' and '1', indicating that the deforestation occurred or not. Independent variables have continuous values, expressing the distance from the edge of the deforested areas of forests from urban areas, the river and the road network. The results were also used in predicting the probability of deforestation in subsequent periods. The result is a map showing the output probability of deforestation for the periods 1990/2000 and 200/2006 in accordance with predetermined coefficients (values of independent variables). (authors)

  14. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  15. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.

    Science.gov (United States)

    Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H

    2016-04-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.

  16. Regression analysis using dependent Polya trees.

    Science.gov (United States)

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Is past life regression therapy ethical?

    Science.gov (United States)

    Andrade, Gabriel

    2017-01-01

    Past life regression therapy is used by some physicians in cases with some mental diseases. Anxiety disorders, mood disorders, and gender dysphoria have all been treated using life regression therapy by some doctors on the assumption that they reflect problems in past lives. Although it is not supported by psychiatric associations, few medical associations have actually condemned it as unethical. In this article, I argue that past life regression therapy is unethical for two basic reasons. First, it is not evidence-based. Past life regression is based on the reincarnation hypothesis, but this hypothesis is not supported by evidence, and in fact, it faces some insurmountable conceptual problems. If patients are not fully informed about these problems, they cannot provide an informed consent, and hence, the principle of autonomy is violated. Second, past life regression therapy has the great risk of implanting false memories in patients, and thus, causing significant harm. This is a violation of the principle of non-malfeasance, which is surely the most important principle in medical ethics.

  18. Overview of the SBS 2016 Suggestion Track

    DEFF Research Database (Denmark)

    Koolen, Marijn; Bogers, Toine; Jaap, Kamps

    2016-01-01

    The goal of the SBS 2016 Suggestion Track is to evaluate approaches for supporting users in searching collections of books who express their information needs both in a query and through example books. The track investigates the complex nature of relevance in book search and the role of traditional...... and user-generated book metadata in retrieval. We consolidated last year’s investigation into the nature of book suggestions from the LibraryThing forums and how they compare to book relevance judgements. Participants were encouraged to incorporate rich user profiles of both topic creators and other...

  19. Quantile regression analysis of body mass and wages.

    Science.gov (United States)

    Johar, Meliyanni; Katayama, Hajime

    2012-05-01

    Using the National Longitudinal Survey of Youth 1979, we explore the relationship between body mass and wages. We use quantile regression to provide a broad description of the relationship across the wage distribution. We also allow the relationship to vary by the degree of social skills involved in different jobs. Our results find that for female workers body mass and wages are negatively correlated at all points in their wage distribution. The strength of the relationship is larger at higher-wage levels. For male workers, the relationship is relatively constant across wage distribution but heterogeneous across ethnic groups. When controlling for the endogeneity of body mass, we find that additional body mass has a negative causal impact on the wages of white females earning more than the median wages and of white males around the median wages. Among these workers, the wage penalties are larger for those employed in jobs that require extensive social skills. These findings may suggest that labor markets reward white workers for good physical shape differently, depending on the level of wages and the type of job a worker has. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Science.gov (United States)

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  1. Bayesian Travel Time Inversion adopting Gaussian Process Regression

    Science.gov (United States)

    Mauerberger, S.; Holschneider, M.

    2017-12-01

    A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.

  2. Leadership Theories--Managing Practices, Challenges, Suggestions

    Science.gov (United States)

    Hawkins, Cheryl

    2009-01-01

    A shortage of community college executives due to the number of retirements occurring among current leaders is predicted. An examination of three leadership theories--servant-leadership, business leadership and transformational leadership--suggests techniques for potential community college leaders. Servant-leaders focus on the needs of their…

  3. Seven Salutary Suggestions for Counselor Stamina

    Science.gov (United States)

    Osborn, Cynthia J.

    2004-01-01

    Counselor stamina is deemed essential in the midst of a consistently challenging, complex, and changing mental health care environment. Rather than perpetuating conversations about "burnout" and "burnout prevention," this article provides a salutary or health-promoting perspective. Seven suggestions for counselor stamina are presented and…

  4. Interrogative Suggestibility in an Adolescent Forensic Occupation.

    Science.gov (United States)

    Richardson, G.; And Others

    1995-01-01

    Sixty-five juvenile offenders in residential care completed the Gudjonsson Suggestibility Scale, and their scores were matched for IQ and memory with those of 60 adult offenders. The juveniles gave in significantly more to interrogative pressure through negative feedback but were no more yielding to leading questions than adults. (JPS)

  5. Evidence Suggesting Absence of Mitochondrial DNA Methylation

    DEFF Research Database (Denmark)

    Mechta, Mie; Ingerslev, Lars R; Fabre, Odile

    2017-01-01

    , 16S, ND5 and CYTB, suggesting that mtDNA supercoiled structure blocks the access to bisulfite conversion. Here, we identified an artifact of mtDNA bisulfite sequencing that can lead to an overestimation of mtDNA methylation levels. Our study supports that cytosine methylation is virtually absent...

  6. Didactic Experiments Suggest Enhanced Learning Outcomes

    DEFF Research Database (Denmark)

    Pals Svendsen, Lisbet

    2011-01-01

    and presenting material in the language studied, just as they were encouraged to systematically use evaluation processes to enhance learning outcomes. Eventually, increased grade point averages suggested that the experiment was successful. The article also mentions subsequent revisions to the original format...

  7. Do astrophysical measurements suggest massive neutrinos?

    International Nuclear Information System (INIS)

    Ali, M.; Fazal-e-Aleem; Rashid, H.

    1996-01-01

    We discuss the solar neutrino puzzle and suggest modification in the standard solar model. It has been observed that the discrepancy between experimental measurements and theoretically produced values can be removed by considering neutrinos to process non-zero mass. (author)

  8. The role of tag suggestions in folksonomies

    NARCIS (Netherlands)

    Bollen, D.G.F.M.; Halpin, H.

    2009-01-01

    Most tagging systems support the user in the tag selection process by providing tag suggestions, or recommendations, based on a popularity measurement of tags other users provided when tagging the same resource. The majority of theories and mathematical models of tagging found in the literature

  9. Cable Television Report and Suggested Ordinance.

    Science.gov (United States)

    League of California Cities, Sacramento.

    Guidelines and suggested ordinances for cable television regulation by local governments are comprehensively discussed in this report. The emphasis is placed on franchising the cable operator. Seventeen legal aspects of franchising are reviewed, and an exemplary ordinance is presented. In addition, current statistics about cable franchising in…

  10. Suggestions for Structuring a Research Article

    Science.gov (United States)

    Klein, James D.; Reiser, Robert A.

    2014-01-01

    Researchers often experience difficulty as they attempt to prepare journal articles that describe their work. The purpose of this article is to provide researchers in the field of education with a series of suggestions as to how to clearly structure each section of a research manuscript that they intend to submit for publication in a scholarly…

  11. Family Living: Suggestions for Effective Parenting.

    Science.gov (United States)

    Katz, Lilian G.; And Others

    Suggestions for effective parenting of preschool children are provided in 33 brief articles on children's feelings concerning self-esteem; fear; adopted children; the birth of a sibling; death; depression; and coping with stress, trauma, and divorce. Children's behavior is discussed in articles on toddlers' eating habits, punishment and…

  12. Overview of the SBS 2016 Suggestion Track

    DEFF Research Database (Denmark)

    Koolen, Marijn; Bogers, Toine; Jaap, Kamps

    2016-01-01

    and user-generated book metadata in retrieval. We consolidated last year’s investigation into the nature of book suggestions from the LibraryThing forums and how they compare to book relevance judgements. Participants were encouraged to incorporate rich user profiles of both topic creators and other...

  13. Accounting: Suggested Content for Postsecondary Tax Course

    Science.gov (United States)

    King, Patricia H.; Morgan, Samuel D.

    1978-01-01

    Surveys of community college graduates and of certified public accountants were made to determine employment relevance of the accounting curriculum. The article suggests topics from the study data which should be included in taxation courses, e.g., income tax accounting, corporate taxation accounting, and tax law. (MF)

  14. On Solving Lq-Penalized Regressions

    Directory of Open Access Journals (Sweden)

    Tracy Zhou Wu

    2007-01-01

    Full Text Available Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the absolute value. We propose a new solution method for the general Lq-penalized regression problem based on space transformation and thus efficient optimization algorithms. The new method has immediate applications in statistics, notably in penalized spline smoothing problems. In particular, the LASSO problem is shown to be polynomial time solvable. Numerical studies show promise of our approach.

  15. Refractive regression after laser in situ keratomileusis.

    Science.gov (United States)

    Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy

    2018-04-26

    Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.

  16. Regression Models for Market-Shares

    DEFF Research Database (Denmark)

    Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue

    2005-01-01

    On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....

  17. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis.

    Science.gov (United States)

    Chen, Wei-Hsin; Hsu, Hung-Jen; Kumar, Gopalakrishnan; Budzianowski, Wojciech M; Ong, Hwai Chyuan

    2017-12-01

    This study focuses on the biochar formation and torrefaction performance of sugarcane bagasse, and they are predicted using the bilinear interpolation (BLI), inverse distance weighting (IDW) interpolation, and regression analysis. It is found that the biomass torrefied at 275°C for 60min or at 300°C for 30min or longer is appropriate to produce biochar as alternative fuel to coal with low carbon footprint, but the energy yield from the torrefaction at 300°C is too low. From the biochar yield, enhancement factor of HHV, and energy yield, the results suggest that the three methods are all feasible for predicting the performance, especially for the enhancement factor. The power parameter of unity in the IDW method provides the best predictions and the error is below 5%. The second order in regression analysis gives a more reasonable approach than the first order, and is recommended for the predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Novel Imbalanced Data Classification Approach Based on Logistic Regression and Fisher Discriminant

    Directory of Open Access Journals (Sweden)

    Baofeng Shi

    2015-01-01

    Full Text Available We introduce an imbalanced data classification approach based on logistic regression significant discriminant and Fisher discriminant. First of all, a key indicators extraction model based on logistic regression significant discriminant and correlation analysis is derived to extract features for customer classification. Secondly, on the basis of the linear weighted utilizing Fisher discriminant, a customer scoring model is established. And then, a customer rating model where the customer number of all ratings follows normal distribution is constructed. The performance of the proposed model and the classical SVM classification method are evaluated in terms of their ability to correctly classify consumers as default customer or nondefault customer. Empirical results using the data of 2157 customers in financial engineering suggest that the proposed approach better performance than the SVM model in dealing with imbalanced data classification. Moreover, our approach contributes to locating the qualified customers for the banks and the bond investors.

  19. Alternative regression models to assess increase in childhood BMI

    Directory of Open Access Journals (Sweden)

    Mansmann Ulrich

    2008-09-01

    Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  20. Gaussian process regression for tool wear prediction

    Science.gov (United States)

    Kong, Dongdong; Chen, Yongjie; Li, Ning

    2018-05-01

    To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.

  1. On directional multiple-output quantile regression

    Czech Academy of Sciences Publication Activity Database

    Paindaveine, D.; Šiman, Miroslav

    2011-01-01

    Roč. 102, č. 2 (2011), s. 193-212 ISSN 0047-259X R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:Commision EC(BE) Fonds National de la Recherche Scientifique Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate quantile * quantile regression * multiple-output regression * halfspace depth * portfolio optimization * value-at risk Subject RIV: BA - General Mathematics Impact factor: 0.879, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/siman-0364128.pdf

  2. Removing Malmquist bias from linear regressions

    Science.gov (United States)

    Verter, Frances

    1993-01-01

    Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.

  3. Robust median estimator in logisitc regression

    Czech Academy of Sciences Publication Activity Database

    Hobza, T.; Pardo, L.; Vajda, Igor

    2008-01-01

    Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf

  4. Effects of Counselor Facilitative Level on Client Suggestibility

    Science.gov (United States)

    Murphy, Harry B.; Rowe, Wayne

    1977-01-01

    University students (N=48) were individually tested for suggestibility in one of three conditions. Results indicated subjects of higher rated experimenters would demonstrate more suggestibility than subjects of lower rated experimenters. Results did not indicate that subject interaction with lower rated experimenters would elicit less…

  5. A comparison of regression algorithms for wind speed forecasting at Alexander Bay

    CSIR Research Space (South Africa)

    Botha, Nicolene

    2016-12-01

    Full Text Available to forecast 1 to 24 hours ahead, in hourly intervals. Predictions are performed on a wind speed time series with three machine learning regression algorithms, namely support vector regression, ordinary least squares and Bayesian ridge regression. The resulting...

  6. Demonstration of a Fiber Optic Regression Probe

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  7. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    Science.gov (United States)

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Suggestion of a conventional Islamic calendar

    Directory of Open Access Journals (Sweden)

    M.G. Rashed

    2017-12-01

    Full Text Available There is a complexity of the problem concerning the first sighting of the new lunar crescent, which is attributed to various astronomical, astrophysical and geographical factors. Therefore, Astronomers adopted various criteria for the new crescent visibility. Muslims around the world differ in the beginning of the Hijric months. In fact the differences are not due to different methodology of astronomical calculations, which in turn the variations of the calendar at different countries gives. Farewell Hajj of Prophet Mohamed was on Friday, the ninth of Thul'hejja of the tenth year of immigration (Biography of the Prophet Mohamed. Therefor; the beginning of the month of Thul'hejja 10 A.H is on Thursday. Our suggested calendar takes Farewell Hajj of the Prophet Mohammad to be the base of this calendar. The advantage of our suggested calendar far away from any criteria; where the adoption of criteria for the new crescent visibility is often misleading.

  9. Suggestion of a conventional Islamic calendar

    Science.gov (United States)

    Rashed, M. G.; Moklof, M. G.

    2017-12-01

    There is a complexity of the problem concerning the first sighting of the new lunar crescent, which is attributed to various astronomical, astrophysical and geographical factors. Therefore, Astronomers adopted various criteria for the new crescent visibility. Muslims around the world differ in the beginning of the Hijric months. In fact the differences are not due to different methodology of astronomical calculations, which in turn the variations of the calendar at different countries gives. Farewell Hajj of Prophet Mohamed was on Friday, the ninth of Thul'hejja of the tenth year of immigration (Biography of the Prophet Mohamed). Therefor; the beginning of the month of Thul'hejja 10 A.H is on Thursday. Our suggested calendar takes Farewell Hajj of the Prophet Mohammad to be the base of this calendar. The advantage of our suggested calendar far away from any criteria; where the adoption of criteria for the new crescent visibility is often misleading.

  10. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  11. Application for Suggesting Restaurants Using Clustering Algorithms

    Directory of Open Access Journals (Sweden)

    Iulia Alexandra IANCU

    2014-10-01

    Full Text Available The aim of this article is to present an application whose purpose is to make suggestions of restaurants to users. The application uses as input the descriptions of restaurants, reviews, user reviews available on the specialized Internet sites and blogs. In the application there are used processing techniques of natural language implemented using parsers, clustering algorithms and techniques for data collection from the Internet through web crawlers.

  12. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  13. Comparison of Classical Linear Regression and Orthogonal Regression According to the Sum of Squares Perpendicular Distances

    OpenAIRE

    KELEŞ, Taliha; ALTUN, Murat

    2016-01-01

    Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...

  14. Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR

    Directory of Open Access Journals (Sweden)

    Maria Cristina Floreno

    1996-05-01

    Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.

  15. Determinants of Non-Performing Assets in India - Panel Regression

    Directory of Open Access Journals (Sweden)

    Saikat Ghosh Roy

    2014-12-01

    Full Text Available It is well known that level of banks‟ credit plays an important role in economic developments. Indian banking sector has played a seminal role in supporting economic growth in India. Recently, Indian banks are experiencing consistent increase in non-performing assets (NPA. In this perspective, this paper investigates the trends in NPA in Indian banks and its determinants. The panel regressions, fixed effect allows evaluating the impact of selected macroeconomic variables on the NPA. The Panel regression result indicates that the GDP growth, change in exchange rate and global volatility have major effects on the NPA level of Indian banking sector.

  16. Testing overall and moderator effects meta-regression

    NARCIS (Netherlands)

    Huizenga, H.M.; Visser, I.; Dolan, C.V.

    2011-01-01

    Random effects meta-regression is a technique to synthesize results of multiple studies. It allows for a test of an overall effect, as well as for tests of effects of study characteristics, that is, (discrete or continuous) moderator effects. We describe various procedures to test moderator effects:

  17. Outlier detection algorithms for least squares time series regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Sat...

  18. A Demonstration of Regression False Positive Selection in Data Mining

    Science.gov (United States)

    Pinder, Jonathan P.

    2014-01-01

    Business analytics courses, such as marketing research, data mining, forecasting, and advanced financial modeling, have substantial predictive modeling components. The predictive modeling in these courses requires students to estimate and test many linear regressions. As a result, false positive variable selection ("type I errors") is…

  19. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  20. Determination of gaussian peaks in gamma spectra by iterative regression

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1987-05-01

    The parameters of the peaks in gamma-ray spectra are determined by a simple iterative regression method. For each peak, the parameters are associated with a gaussian curve (3 parameters) located above a linear continuum (2 parameters). This method may produces the complete result of the calculation of statistical uncertainties and an accuracy higher than others methods. (author) [pt

  1. The APT model as reduced-rank regression

    NARCIS (Netherlands)

    Bekker, P.A.; Dobbelstein, P.; Wansbeek, T.J.

    Integrating the two steps of an arbitrage pricing theory (APT) model leads to a reduced-rank regression (RRR) model. So the results on RRR can be used to estimate APT models, making estimation very simple. We give a succinct derivation of estimation of RRR, derive the asymptotic variance of RRR

  2. Simulation Experiments in Practice : Statistical Design and Regression Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic

  3. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  4. DIABETES MELLITUS AND ITS ROLE IN CAUDAL REGRESSION SYNDROME

    Directory of Open Access Journals (Sweden)

    Sandeep

    2016-03-01

    Full Text Available BACKGROUND Caudal regression syndrome also called as sacral agenesis or hypoplasia of the sacrum is a congenital disorder in which there is abnormal development of the lower part of the vertebral column 1 due to which there is a plethora of abnormalities such as gross motor deficiencies and other genitor-urinary malformations which in deed depends on the extent of malformations that is seen. Caudal regression syndrome is rare, with an estimated incidence of 1:7500-100,000. The aim of the study is to find the frequency of manifestations and the manifestations itself. METHODS Fifty patients who were pregnant and were diagnosed with diabetes mellitus were identified and were referred to the Department of Medicine. RESULTS In the present study the frequency of manifestations of caudal regression syndrome is 8 in 100 diagnosed patients. CONCLUSION The malformations in the babies born to diabetic mothers are high in the population of costal Karnataka and Kerala.

  5. Regression periods in infancy: a case study from Catalonia.

    Science.gov (United States)

    Sadurní, Marta; Rostan, Carlos

    2002-05-01

    Based on Rijt-Plooij and Plooij's (1992) research on emergence of regression periods in the first two years of life, the presence of such periods in a group of 18 babies (10 boys and 8 girls, aged between 3 weeks and 14 months) from a Catalonian population was analyzed. The measurements were a questionnaire filled in by the infants' mothers, a semi-structured weekly tape-recorded interview, and observations in their homes. The procedure and the instruments used in the project follow those proposed by Rijt-Plooij and Plooij. Our results confirm the existence of the regression periods in the first year of children's life. Inter-coder agreement for trained coders was 78.2% and within-coder agreement was 90.1%. In the discussion, the possible meaning and relevance of regression periods in order to understand development from a psychobiological and social framework is commented upon.

  6. Method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  7. The M Word: Multicollinearity in Multiple Regression.

    Science.gov (United States)

    Morrow-Howell, Nancy

    1994-01-01

    Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…

  8. Regression Discontinuity Designs Based on Population Thresholds

    DEFF Research Database (Denmark)

    Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica

    In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...

  9. Deriving the Regression Line with Algebra

    Science.gov (United States)

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  10. Functional data analysis of generalized regression quantiles

    KAUST Repository

    Guo, Mengmeng

    2013-11-05

    Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

  11. Regression testing Ajax applications : Coping with dynamism

    NARCIS (Netherlands)

    Roest, D.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.

  12. Group-wise partial least square regression

    NARCIS (Netherlands)

    Camacho, José; Saccenti, Edoardo

    2018-01-01

    This paper introduces the group-wise partial least squares (GPLS) regression. GPLS is a new sparse PLS technique where the sparsity structure is defined in terms of groups of correlated variables, similarly to what is done in the related group-wise principal component analysis. These groups are

  13. Functional data analysis of generalized regression quantiles

    KAUST Repository

    Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl

    2013-01-01

    Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

  14. Finite Algorithms for Robust Linear Regression

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun

    1990-01-01

    The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...

  15. Function approximation with polynomial regression slines

    International Nuclear Information System (INIS)

    Urbanski, P.

    1996-01-01

    Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)

  16. Assessing risk factors for periodontitis using regression

    Science.gov (United States)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  17. Predicting Social Trust with Binary Logistic Regression

    Science.gov (United States)

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  18. Yet another look at MIDAS regression

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    2016-01-01

    textabstractA MIDAS regression involves a dependent variable observed at a low frequency and independent variables observed at a higher frequency. This paper relates a true high frequency data generating process, where also the dependent variable is observed (hypothetically) at the high frequency,

  19. Revisiting Regression in Autism: Heller's "Dementia Infantilis"

    Science.gov (United States)

    Westphal, Alexander; Schelinski, Stefanie; Volkmar, Fred; Pelphrey, Kevin

    2013-01-01

    Theodor Heller first described a severe regression of adaptive function in normally developing children, something he termed dementia infantilis, over one 100 years ago. Dementia infantilis is most closely related to the modern diagnosis, childhood disintegrative disorder. We translate Heller's paper, Uber Dementia Infantilis, and discuss…

  20. Fast multi-output relevance vector regression

    OpenAIRE

    Ha, Youngmin

    2017-01-01

    This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V

  1. Regression Equations for Birth Weight Estimation using ...

    African Journals Online (AJOL)

    In this study, Birth Weight has been estimated from anthropometric measurements of hand and foot. Linear regression equations were formed from each of the measured variables. These simple equations can be used to estimate Birth Weight of new born babies, in order to identify those with low birth weight and referred to ...

  2. Superquantile Regression: Theory, Algorithms, and Applications

    Science.gov (United States)

    2014-12-01

    Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1...Navy submariners, reliability engineering, uncertainty quantification, and financial risk management . Superquantile, superquantile regression...Royset Carlos F. Borges Associate Professor of Operations Research Dissertation Supervisor Professor of Applied Mathematics Lyn R. Whitaker Javier

  3. Measurement Error in Education and Growth Regressions

    NARCIS (Netherlands)

    Portela, M.; Teulings, C.N.; Alessie, R.

    The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations

  4. Measurement error in education and growth regressions

    NARCIS (Netherlands)

    Portela, Miguel; Teulings, Coen; Alessie, R.

    2004-01-01

    The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations

  5. transformation of independent variables in polynomial regression ...

    African Journals Online (AJOL)

    Ada

    preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...

  6. Multiple Linear Regression: A Realistic Reflector.

    Science.gov (United States)

    Nutt, A. T.; Batsell, R. R.

    Examples of the use of Multiple Linear Regression (MLR) techniques are presented. This is done to show how MLR aids data processing and decision-making by providing the decision-maker with freedom in phrasing questions and by accurately reflecting the data on hand. A brief overview of the rationale underlying MLR is given, some basic definitions…

  7. New dynamic system suggested for earth expansion

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, J [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1972-01-01

    It is here suggested that there may have been much more radioactive materials in the deep interior of the earth than bitherto supposed. Trapped heat being generated in the interior would provide a mechanism for earth expansion. An assumption of heat generation in the deep interior of the earth of the order of 0,5 X 10-13 calories per second, per cubic centimeter, would provide sufficient thermal expansion to account for approximately 0.1 mm. change in the radius of the earth per year.

  8. Do experiments suggest a hierarchy problem?

    International Nuclear Information System (INIS)

    Vissani, F.

    1997-09-01

    The hierarchy problem of the scalar sector of the standard model is reformulated, emphasizing the role of experimental facts that may suggest the existence of a new physics large mass scale, for instance indications of the instability of the matter, or indications in favor of massive neutrinos. In the see-saw model for the neutrino masses a hierarchy problem arises if the mass of the right-handed neutrinos is larger than approximatively 10 7 GeV: this problem, and its possible solutions, are discussed. (author)

  9. Responding to hypnotic and nonhypnotic suggestions: performance standards, imaginative suggestibility, and response expectancies.

    Science.gov (United States)

    Meyer, Eric C; Lynn, Steven Jay

    2011-07-01

    This study examined the relative impact of hypnotic inductions and several other variables on hypnotic and nonhypnotic responsiveness to imaginative suggestions. The authors examined how imaginative suggestibility, response expectancies, motivation to respond to suggestions, and hypnotist-induced performance standards affected participants' responses to both hypnotic and nonhypnotic suggestions and their suggestion-related experiences. Suggestions were administered to 5 groups of participants using a test-retest design: (a) stringent performance standards; (b) lenient performance standards; (c) hypnosis test-retest; (d) no-hypnosis test-retest; and (e) no-hypnosis/hypnosis control. The authors found no support for the influence of a hypnotic induction or performance standards on responding to suggestions but found considerable support for the role of imaginative suggestibility and response expectancies in predicting responses to both hypnotic and nonhypnotic suggestions.

  10. The effect of posthypnotic suggestion, hypnotic suggestibility, and goal intentions on adherence to medical instructions.

    Science.gov (United States)

    Carvalho, Claudia; Mazzoni, Giuliana; Kirsch, Irving; Meo, Maria; Santandrea, Maura

    2008-04-01

    The effects of implementation intentions and posthypnotic suggestion were investigated in 2 studies. In Experiment 1, participants with high levels of hypnotic suggestibility were instructed to take placebo pills as part of an investigation of how to best enhance compliance with medical instruction. In Experiment 2, participants with high, medium, and low levels of hypnotic suggestibility were asked to run in place, take their pulse rate before, and send an e-mail report to the experimenter each day. Experiment 1 revealed enhanced adherence as a function of both implementation intentions and posthypnotic suggestion. Experiment 2 failed to find any significant main effects but found a significant interaction between suggestibility and the effects of posthypnotic suggestion. Posthypnotic suggestion enhanced adherence among high suggestible participants but lowered it among low suggestibles.

  11. A review of a priori regression models for warfarin maintenance dose prediction.

    Directory of Open Access Journals (Sweden)

    Ben Francis

    Full Text Available A number of a priori warfarin dosing algorithms, derived using linear regression methods, have been proposed. Although these dosing algorithms may have been validated using patients derived from the same centre, rarely have they been validated using a patient cohort recruited from another centre. In order to undertake external validation, two cohorts were utilised. One cohort formed by patients from a prospective trial and the second formed by patients in the control arm of the EU-PACT trial. Of these, 641 patients were identified as having attained stable dosing and formed the dataset used for validation. Predicted maintenance doses from six criterion fulfilling regression models were then compared to individual patient stable warfarin dose. Predictive ability was assessed with reference to several statistics including the R-square and mean absolute error. The six regression models explained different amounts of variability in the stable maintenance warfarin dose requirements of the patients in the two validation cohorts; adjusted R-squared values ranged from 24.2% to 68.6%. An overview of the summary statistics demonstrated that no one dosing algorithm could be considered optimal. The larger validation cohort from the prospective trial produced more consistent statistics across the six dosing algorithms. The study found that all the regression models performed worse in the validation cohort when compared to the derivation cohort. Further, there was little difference between regression models that contained pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic coefficients. The inconsistency of results between the validation cohorts suggests that unaccounted population specific factors cause variability in dosing algorithm performance. Better methods for dosing that take into account inter- and intra-individual variability, at the initiation and maintenance phases of warfarin treatment, are needed.

  12. A review of a priori regression models for warfarin maintenance dose prediction.

    Science.gov (United States)

    Francis, Ben; Lane, Steven; Pirmohamed, Munir; Jorgensen, Andrea

    2014-01-01

    A number of a priori warfarin dosing algorithms, derived using linear regression methods, have been proposed. Although these dosing algorithms may have been validated using patients derived from the same centre, rarely have they been validated using a patient cohort recruited from another centre. In order to undertake external validation, two cohorts were utilised. One cohort formed by patients from a prospective trial and the second formed by patients in the control arm of the EU-PACT trial. Of these, 641 patients were identified as having attained stable dosing and formed the dataset used for validation. Predicted maintenance doses from six criterion fulfilling regression models were then compared to individual patient stable warfarin dose. Predictive ability was assessed with reference to several statistics including the R-square and mean absolute error. The six regression models explained different amounts of variability in the stable maintenance warfarin dose requirements of the patients in the two validation cohorts; adjusted R-squared values ranged from 24.2% to 68.6%. An overview of the summary statistics demonstrated that no one dosing algorithm could be considered optimal. The larger validation cohort from the prospective trial produced more consistent statistics across the six dosing algorithms. The study found that all the regression models performed worse in the validation cohort when compared to the derivation cohort. Further, there was little difference between regression models that contained pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic coefficients. The inconsistency of results between the validation cohorts suggests that unaccounted population specific factors cause variability in dosing algorithm performance. Better methods for dosing that take into account inter- and intra-individual variability, at the initiation and maintenance phases of warfarin treatment, are needed.

  13. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  14. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    Science.gov (United States)

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The influences of working memory representations on long-range regression in text reading: An eye-tracking study

    Directory of Open Access Journals (Sweden)

    Teppei eTanaka

    2014-09-01

    Full Text Available The present study investigated the relationship between verbal and visuospatial working memory capacity and long-range regression (i.e., word relocation processes in reading. We analyzed eye movements during a whodunit task, in which readers were asked to answer a content question while original text was being presented. The eye movements were more efficient in relocating a target word when the target was at recency positions within the text than when it was at primacy positions. Furthermore, both verbal and visuospatial working memory capacity partly predicted the efficiency of the initial long-range regression. The results indicate that working memory representations have a strong influence at the first stage of long-range regression by driving the first saccade movement toward the correct target position, suggesting that there is a dynamic interaction between internal working memory representations and external actions during text reading.

  16. Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression

    DEFF Research Database (Denmark)

    Larsen, Klaus; Merlo, Juan

    2005-01-01

    The logistic regression model is frequently used in epidemiologic studies, yielding odds ratio or relative risk interpretations. Inspired by the theory of linear normal models, the logistic regression model has been extended to allow for correlated responses by introducing random effects. However......, the model does not inherit the interpretational features of the normal model. In this paper, the authors argue that the existing measures are unsatisfactory (and some of them are even improper) when quantifying results from multilevel logistic regression analyses. The authors suggest a measure...... of heterogeneity, the median odds ratio, that quantifies cluster heterogeneity and facilitates a direct comparison between covariate effects and the magnitude of heterogeneity in terms of well-known odds ratios. Quantifying cluster-level covariates in a meaningful way is a challenge in multilevel logistic...

  17. Prediction of radiation levels in residences: A methodological comparison of CART [Classification and Regression Tree Analysis] and conventional regression

    International Nuclear Information System (INIS)

    Janssen, I.; Stebbings, J.H.

    1990-01-01

    In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs

  18. Do clinical and translational science graduate students understand linear regression? Development and early validation of the REGRESS quiz.

    Science.gov (United States)

    Enders, Felicity

    2013-12-01

    Although regression is widely used for reading and publishing in the medical literature, no instruments were previously available to assess students' understanding. The goal of this study was to design and assess such an instrument for graduate students in Clinical and Translational Science and Public Health. A 27-item REsearch on Global Regression Expectations in StatisticS (REGRESS) quiz was developed through an iterative process. Consenting students taking a course on linear regression in a Clinical and Translational Science program completed the quiz pre- and postcourse. Student results were compared to practicing statisticians with a master's or doctoral degree in statistics or a closely related field. Fifty-two students responded precourse, 59 postcourse , and 22 practicing statisticians completed the quiz. The mean (SD) score was 9.3 (4.3) for students precourse and 19.0 (3.5) postcourse (P REGRESS quiz was internally reliable (Cronbach's alpha 0.89). The initial validation is quite promising with statistically significant and meaningful differences across time and study populations. Further work is needed to validate the quiz across multiple institutions. © 2013 Wiley Periodicals, Inc.

  19. Beyond the mean estimate: a quantile regression analysis of inequalities in educational outcomes using INVALSI survey data

    Directory of Open Access Journals (Sweden)

    Antonella Costanzo

    2017-09-01

    Full Text Available Abstract The number of studies addressing issues of inequality in educational outcomes using cognitive achievement tests and variables from large-scale assessment data has increased. Here the value of using a quantile regression approach is compared with a classical regression analysis approach to study the relationships between educational outcomes and likely predictor variables. Italian primary school data from INVALSI large-scale assessments were analyzed using both quantile and standard regression approaches. Mathematics and reading scores were regressed on students' characteristics and geographical variables selected for their theoretical and policy relevance. The results demonstrated that, in Italy, the role of gender and immigrant status varied across the entire conditional distribution of students’ performance. Analogous results emerged pertaining to the difference in students’ performance across Italian geographic areas. These findings suggest that quantile regression analysis is a useful tool to explore the determinants and mechanisms of inequality in educational outcomes. A proper interpretation of quantile estimates may enable teachers to identify effective learning activities and help policymakers to develop tailored programs that increase equity in education.

  20. Regression of uveal malignant melanomas following cobalt-60 plaque. Correlates between acoustic spectrum analysis and tumor regression

    International Nuclear Information System (INIS)

    Coleman, D.J.; Lizzi, F.L.; Silverman, R.H.; Ellsworth, R.M.; Haik, B.G.; Abramson, D.H.; Smith, M.E.; Rondeau, M.J.

    1985-01-01

    Parameters derived from computer analysis of digital radio-frequency (rf) ultrasound scan data of untreated uveal malignant melanomas were examined for correlations with tumor regression following cobalt-60 plaque. Parameters included tumor height, normalized power spectrum and acoustic tissue type (ATT). Acoustic tissue type was based upon discriminant analysis of tumor power spectra, with spectra of tumors of known pathology serving as a model. Results showed ATT to be correlated with tumor regression during the first 18 months following treatment. Tumors with ATT associated with spindle cell malignant melanoma showed over twice the percentage reduction in height as those with ATT associated with mixed/epithelioid melanomas. Pre-treatment height was only weakly correlated with regression. Additionally, significant spectral changes were observed following treatment. Ultrasonic spectrum analysis thus provides a noninvasive tool for classification, prediction and monitoring of tumor response to cobalt-60 plaque

  1. Verification of helical tomotherapy delivery using autoassociative kernel regression

    International Nuclear Information System (INIS)

    Seibert, Rebecca M.; Ramsey, Chester R.; Garvey, Dustin R.; Wesley Hines, J.; Robison, Ben H.; Outten, Samuel S.

    2007-01-01

    Quality assurance (QA) is a topic of major concern in the field of intensity modulated radiation therapy (IMRT). The standard of practice for IMRT is to perform QA testing for individual patients to verify that the dose distribution will be delivered to the patient. The purpose of this study was to develop a new technique that could eventually be used to automatically evaluate helical tomotherapy treatments during delivery using exit detector data. This technique uses an autoassociative kernel regression (AAKR) model to detect errors in tomotherapy delivery. AAKR is a novel nonparametric model that is known to predict a group of correct sensor values when supplied a group of sensor values that is usually corrupted or contains faults such as machine failure. This modeling scheme is especially suited for the problem of monitoring the fluence values found in the exit detector data because it is able to learn the complex detector data relationships. This scheme still applies when detector data are summed over many frames with a low temporal resolution and a variable beam attenuation resulting from patient movement. Delivery sequences from three archived patients (prostate, lung, and head and neck) were used in this study. Each delivery sequence was modified by reducing the opening time for random individual multileaf collimator (MLC) leaves by random amounts. The error and error-free treatments were delivered with different phantoms in the path of the beam. Multiple autoassociative kernel regression (AAKR) models were developed and tested by the investigators using combinations of the stored exit detector data sets from each delivery. The models proved robust and were able to predict the correct or error-free values for a projection, which had a single MLC leaf decrease its opening time by less than 10 msec. The model also was able to determine machine output errors. The average uncertainty value for the unfaulted projections ranged from 0.4% to 1.8% of the detector

  2. Bayesian median regression for temporal gene expression data

    Science.gov (United States)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  3. Chest magnetic resonance imaging: a protocol suggestion

    Directory of Open Access Journals (Sweden)

    Bruno Hochhegger

    2015-12-01

    Full Text Available Abstract In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation.

  4. Ultrasonographic findings of early abortion: suggested predictors

    International Nuclear Information System (INIS)

    Jun, Soon Ae; Ahn, Myoung Ock; Cha, Kwang Yul; Lee, Young Doo

    1992-01-01

    To investigate predictable ultrasonographic findings of early abortion. To investigate objective rules for the screening of abortion. Ultrasonographic examination of 111 early pregnancies between the sixth and ninth week in women who had regular 28 day menstrual cycles was performed. Ultrasonographic measurements of the gestational sac, crown rump length and fetal heart rate were performed using a linear array real time transducer with doppler ultrasonogram. All measurements of 17 early abortions were compared to those of 94 normal pregnancies. Most of early aborted pregnancies were classified correctly by discriminant analysis with G-SAC and CRL (G-SAC=0.5 CRL + 15, sensitivity 76.5%, specificity 96.8%). With the addition of FHR, 94.1% of early abortions could be predicted. In conclusion, ultrasonographic findings of early intrauterine growth retardation, small gestational sac and bradycardia can be predictable signs suggestive of poor prognosis of early pregnancies

  5. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  6. Quasi-experimental evidence on tobacco tax regressivity.

    Science.gov (United States)

    Koch, Steven F

    2018-01-01

    Tobacco taxes are known to reduce tobacco consumption and to be regressive, such that tobacco control policy may have the perverse effect of further harming the poor. However, if tobacco consumption falls faster amongst the poor than the rich, tobacco control policy can actually be progressive. We take advantage of persistent and committed tobacco control activities in South Africa to examine the household tobacco expenditure burden. For the analysis, we make use of two South African Income and Expenditure Surveys (2005/06 and 2010/11) that span a series of such tax increases and have been matched across the years, yielding 7806 matched pairs of tobacco consuming households and 4909 matched pairs of cigarette consuming households. By matching households across the surveys, we are able to examine both the regressivity of the household tobacco burden, and any change in that regressivity, and since tobacco taxes have been a consistent component of tobacco prices, our results also relate to the regressivity of tobacco taxes. Like previous research into cigarette and tobacco expenditures, we find that the tobacco burden is regressive; thus, so are tobacco taxes. However, we find that over the five-year period considered, the tobacco burden has decreased, and, most importantly, falls less heavily on the poor. Thus, the tobacco burden and the tobacco tax is less regressive in 2010/11 than in 2005/06. Thus, increased tobacco taxes can, in at least some circumstances, reduce the financial burden that tobacco places on households. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sparse Regression by Projection and Sparse Discriminant Analysis

    KAUST Repository

    Qi, Xin

    2015-04-03

    © 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

  8. Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kritski Afrânio

    2006-02-01

    Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.

  9. Accounting for spatial effects in land use regression for urban air pollution modeling.

    Science.gov (United States)

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Controlling attribute effect in linear regression

    KAUST Repository

    Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang

    2013-01-01

    In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

  11. Stochastic development regression using method of moments

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using...... the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using...... the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds....

  12. Beta-binomial regression and bimodal utilization.

    Science.gov (United States)

    Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L

    2013-10-01

    To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.

  13. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  14. Are increases in cigarette taxation regressive?

    Science.gov (United States)

    Borren, P; Sutton, M

    1992-12-01

    Using the latest published data from Tobacco Advisory Council surveys, this paper re-evaluates the question of whether or not increases in cigarette taxation are regressive in the United Kingdom. The extended data set shows no evidence of increasing price-elasticity by social class as found in a major previous study. To the contrary, there appears to be no clear pattern in the price responsiveness of smoking behaviour across different social classes. Increases in cigarette taxation, while reducing smoking levels in all groups, fall most heavily on men and women in the lowest social class. Men and women in social class five can expect to pay eight and eleven times more of a tax increase respectively, than their social class one counterparts. Taken as a proportion of relative incomes, the regressive nature of increases in cigarette taxation is even more pronounced.

  15. Controlling attribute effect in linear regression

    KAUST Repository

    Calders, Toon

    2013-12-01

    In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

  16. Regression Models For Multivariate Count Data.

    Science.gov (United States)

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  17. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  18. Confidence bands for inverse regression models

    International Nuclear Information System (INIS)

    Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo

    2010-01-01

    We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract

  19. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    Science.gov (United States)

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  1. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    Science.gov (United States)

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  2. Placebo-suggestion modulates conflict resolution in the Stroop Task.

    Directory of Open Access Journals (Sweden)

    Pedro A Magalhães De Saldanha da Gama

    Full Text Available Here, we ask whether placebo-suggestion (without any form of hypnotic induction can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a "brain wave" machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion. We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion's contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion.

  3. Regressing Atherosclerosis by Resolving Plaque Inflammation

    Science.gov (United States)

    2017-07-01

    regression requires the alteration of macrophages in the plaques to a tissue repair “alternatively” activated state. This switch in activation state... tissue repair “alternatively” activated state. This switch in activation state requires the action of TH2 cytokines interleukin (IL)-4 or IL-13. To...regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med. 2011;208(9):1901–1916. 35. Xu H, Exner BG, Chilton PM

  4. Determination of regression laws: Linear and nonlinear

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1994-01-01

    A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab

  5. Directional quantile regression in Octave (and MATLAB)

    Czech Academy of Sciences Publication Activity Database

    Boček, Pavel; Šiman, Miroslav

    2016-01-01

    Roč. 52, č. 1 (2016), s. 28-51 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : quantile regression * multivariate quantile * depth contour * Matlab Subject RIV: IN - Informatics, Computer Science Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/bocek-0458380.pdf

  6. Logistic regression a self-learning text

    CERN Document Server

    Kleinbaum, David G

    1994-01-01

    This textbook provides students and professionals in the health sciences with a presentation of the use of logistic regression in research. The text is self-contained, and designed to be used both in class or as a tool for self-study. It arises from the author's many years of experience teaching this material and the notes on which it is based have been extensively used throughout the world.

  7. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies

    OpenAIRE

    Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.

    2016-01-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epide...

  8. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  9. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  10. Satellite rainfall retrieval by logistic regression

    Science.gov (United States)

    Chiu, Long S.

    1986-01-01

    The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.

  11. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  12. On logistic regression analysis of dichotomized responses.

    Science.gov (United States)

    Lu, Kaifeng

    2017-01-01

    We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Foraminal syringomyelia: suggestion for a grading system.

    Science.gov (United States)

    Versari, P P; D'Aliberti, G; Talamonti, G; Collice, M

    1993-01-01

    The standard treatment of foraminal syringomyelia includes foramen magnum decompression and duraplasty. Improvement or stabilization of the disease are achieved in most of cases. However, at least one third of patients are reported to receive little or no benefit. In this paper we retrospectively reviewed a series of 40 consecutive foramen magnum decompressions in order to identify the possible pre-operative outcome predictors. Based on clinical evolution, neurological impairment and radiological features, a scale of severity was fixed and retrospectively tested. A pre-operative score was obtained for each patient and was correlated with the surgical results. Then a four level grading system was derived. All grade I and grade II patients achieved good results (improvement or stabilization), whereas grade III patients showed intermediate behaviour and grade IV invariably worsened. On this basis, surgical results of foramen magnum decompression might be further improved provided that a careful pre-operative selection is made.

  14. Suggestion for a natural gas development policy

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1987-01-01

    First, this work presents some aspects concerning the reserves and the future of natural gas consumption in Brazil. Then, from the results of a case-study about the implementation of a natural gas distribution company in Fortaleza (Ceara), we analyse under which conditions the business of natural gas distribution is economically interesting (subject of the M.Sc. thesis developed by the author). In possession of this results, the author proposes directions for a Natural Gas Policy in Brazil, approaching also aspects of Tariffs Policy. (author)

  15. Faecal analysis suggests generalist diets in three species of ...

    African Journals Online (AJOL)

    The overlap in other arthropod taxa ingested was low across species and seasons, suggesting an opportunistic component to their foraging behaviour. We distinguished plant matter in faecal samples of all species in all seasons, reflecting either voluntary or accidental ingestion. The results of this study suggest that the ...

  16. Suggestion on Information Sharing for AP implementation

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hye Won; Kim, Min Su; Koh, Byung Marn [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2013-10-15

    Under the Additional Protocol, States should provide the IAEA with expanded declarations of activities related to the nuclear fuel cycle and other nuclear activities, and with expanded access to the relevant information and sites to allow the IAEA to verify the completeness of these declarations. The AP to the Safeguards Agreement (the Additional Protocol) was signed on June 21{sup st}, 1999 and entered into force on February 19{sup th}, 2004. ROK submitted initial declarations in August 2004. Since then, ROK has been submitting annual updated reports of initial declaration on every May 15{sup th}. To achieve successful implementation, it is necessary to collect the information for each individual article in Article 2 of the AP and verify the declared information provided by facility operators. Therefore, the cooperation among the ministries and offices concerned is a prerequisite for successful implementation of AP. Unfortunately, the formal procedure for inter-organizational information sharing and cooperation is not established. This paper will briefly outline the AP declarations and suggest the information sharing among the ministries, offices and organizations for effective and efficient implementation of AP. The State authority has responsibility for AP implementation and it should verify correctness and completeness of the information declared by facility operators before submitting the declarations. The close cooperation and information sharing among the ministries, offices and organizations are indispensable to effective and efficient implementation of AP.

  17. [Evidence that suggest the reality of reincarnation].

    Science.gov (United States)

    Bonilla, Ernesto

    2015-06-01

    Worldwide, children can be found who reported that they have memories of a previous life. More than 2,500 cases have been studied and their specifications have been published and preserved in the archives of the Division of Perceptual Studies at the University of Virginia (United States). Many of those children come from countries where the majority of the inhabitants believe in reincarnation, but others come from countries with different cultures and religions that reject it. In many cases, the revelations of the children have been verified and have corresponded to a particular individual, already dead. A good number of these children have marks and birth defects corresponding to wounds on the body of his previous personality. Many have behaviors related to their claims to their former life: phobias, philias, and attachments. Others seem to recognize people and places of his supposed previous life, and some of their assertions have been made under controlled conditions. The hypothesis of reincarnation is controversial. We can never say that it does not occur, or will obtain conclusive evidence that it happens. The cases that have been described so far, isolated or combined, do not provide irrefutable proof of reincarnation, but they supply evidence that suggest its reality.

  18. Quantile regression and the gender wage gap: Is there a glass ceiling in the Turkish labor market?

    OpenAIRE

    Kaya, Ezgi

    2017-01-01

    Recent studies from different countries suggest that the gender gap is not constant across the wage distribution and the average wage gap provides limited information on women’s relative position in the labour market. Using micro level data from official statistics, this study explores the gender wage‐gap in Turkey across the wage distribution. The quantile regression and counterfactual decomposition analysis results reveal three striking features of the Turkish labour market. The first is th...

  19. Employee suggestion programs: the rewards of involvement.

    Science.gov (United States)

    Mishra, J M; McKendall, M

    1993-09-01

    Successful ESPs are the products of a great deal of effort by managers, administrators, teams, individuals, and reviewers, who are all striving to achieve the goals of increased profitability and enhanced employee involvement. A review of the literature indicates that there are several prescriptions that will increase the likelihood of a successful ESP (see the box). Today's American business prophets sound ceaseless calls to arms in the name of "world class performance," "global competitiveness," "total quality management," and a variety of other buzz terms. A burgeoning industry has evolved that promises, through speeches, teleconferences, seminars, and consulting contracts, to teach American organizations how to achieve excellence. In the face of a sputtering economy and unrelenting competitive pressure, today's managers must translate these laudatory ideals into hands-on reality without sacrificing the firm's profit margin to experimentation. If any idea can help an organization achieve improvement through a workable program, then that idea and that program deserve real consideration. An ESP represents an opportunity to tap the intelligence and resourcefulness of an organization's employees, and by doing so, reap significant cost savings. Those companies and managers that have an ESP program uniformly list economic advantages first when describing the benefits of their employee suggestion programs. But there is another deeper and longer term benefit inherent in an ESP. These programs allow employees to become involved in their organization; they drive deaccession to lower levels, they give employees more responsibility, they foster creative approaches to work, and they encourage creativity in pursuit of company goals.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set.

    Science.gov (United States)

    Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun

    2006-01-01

    In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.

  1. Suggesting a new European language policy.

    Science.gov (United States)

    Nelde, Peter H

    2004-01-01

    Conflict is the most intriguing aspect of contact linguistics. Throughout history ever since the Tower of Babel was left unfinished, contacts between speakers of different languages have unavoidably resulted in conflicts between speakers of those languages. Without any doubt, the European Union (EU)--above all after the decision to enlarge the community--has accepted the multidisciplinary symbolic function of language and culture as a basis for European political unification. Accordingly, European Union policy makers have had to analyze conflicts caused by monolingualism and multilingualism, all aspects of contact linguistics. Can these conflicts be solved, minimized or neutralized by strategies of language planning, language policies and language politics? Initial results of European language policy strategies permit at least a cautious measure of optimism and open broad perspectives for the future of a New Multilingualism which will be discussed in our contribution.

  2. Suggesting a New European Language Policy

    OpenAIRE

    H. Nelde, Peter

    2004-01-01

    Conflict is the most intriguing aspect of contact linguistics. Throughout history ever since the Tower of Bable was left unfinished, contacts between speakers of different languages have unavoidably resulted in conflicts between speakers of those languages. Without any doubt, the European Union (EU) – above all after the decision to enlarge the community – has accepted the multidisciplinary symbolic function of language and culture as a basis for European political unification....

  3. Suggestion of Islamic Insurance Company Model

    OpenAIRE

    Abdullah Ibrahim Nazal

    2015-01-01

    This study is one of very few studies which have investigated Islamic Insurance Companies as solution. It explained its operations also comparing with Traditional Insurance Companies and theoretical Islamic insurance models. As result to this study Islamic Insurance companies are profit organization. It helps Islamic banks but it costs customer to face expect risk. Islamic Insurance companies have many ways to get profits and consider all customers installments grants. Its operation gap comes...

  4. Dissociative tendencies and individual differences in high hypnotic suggestibility.

    Science.gov (United States)

    Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus

    2011-03-01

    Inconsistencies in the relationship between dissociation and hypnosis may result from heterogeneity among highly suggestible individuals, in particular the existence of distinct highly suggestible subtypes that are of relevance to models of psychopathology and the consequences of trauma. This study contrasted highly suggestible subtypes high or low in dissociation on measures of hypnotic responding, cognitive functioning, and psychopathology. Twenty-one low suggestible (LS), 19 low dissociative highly suggestible (LDHS), and 11 high dissociative highly suggestible (HDHS) participants were administered hypnotic suggestibility scales and completed measures of free recall, working memory capacity, imagery, fantasy-proneness, psychopathology, and exposure to stressful life events. HDHS participants were more responsive to positive and negative hallucination suggestions and experienced greater involuntariness during hypnotic responding. They also exhibited impaired working memory capacity, elevated pathological fantasy and dissociative symptomatology, and a greater incidence of exposure to stressful life events. In contrast, LDHS participants displayed superior object visual imagery. These results provide further evidence for two highly suggestible subtypes: a dissociative subtype characterised by deficits in executive functioning and a predisposition to psychopathology, and a subtype that exhibits superior imagery and no observable deficits in functioning.

  5. Fasting Glucose and the Risk of Depressive Symptoms: Instrumental-Variable Regression in the Cardiovascular Risk in Young Finns Study.

    Science.gov (United States)

    Wesołowska, Karolina; Elovainio, Marko; Hintsa, Taina; Jokela, Markus; Pulkki-Råback, Laura; Pitkänen, Niina; Lipsanen, Jari; Tukiainen, Janne; Lyytikäinen, Leo-Pekka; Lehtimäki, Terho; Juonala, Markus; Raitakari, Olli; Keltikangas-Järvinen, Liisa

    2017-12-01

    Type 2 diabetes (T2D) has been associated with depressive symptoms, but the causal direction of this association and the underlying mechanisms, such as increased glucose levels, remain unclear. We used instrumental-variable regression with a genetic instrument (Mendelian randomization) to examine a causal role of increased glucose concentrations in the development of depressive symptoms. Data were from the population-based Cardiovascular Risk in Young Finns Study (n = 1217). Depressive symptoms were assessed in 2012 using a modified Beck Depression Inventory (BDI-I). Fasting glucose was measured concurrently with depressive symptoms. A genetic risk score for fasting glucose (with 35 single nucleotide polymorphisms) was used as an instrumental variable for glucose. Glucose was not associated with depressive symptoms in the standard linear regression (B = -0.04, 95% CI [-0.12, 0.04], p = .34), but the instrumental-variable regression showed an inverse association between glucose and depressive symptoms (B = -0.43, 95% CI [-0.79, -0.07], p = .020). The difference between the estimates of standard linear regression and instrumental-variable regression was significant (p = .026) CONCLUSION: Our results suggest that the association between T2D and depressive symptoms is unlikely to be caused by increased glucose concentrations. It seems possible that T2D might be linked to depressive symptoms due to low glucose levels.

  6. Metacognition of agency is reduced in high hypnotic suggestibility.

    Science.gov (United States)

    Terhune, Devin B; Hedman, Love R A

    2017-11-01

    A disruption in the sense of agency is the primary phenomenological feature of response to hypnotic suggestions but its cognitive basis remains elusive. Here we tested the proposal that distorted volition during response to suggestions arises from poor metacognition pertaining to the sources of one's control. Highly suggestible and control participants completed a motor task in which performance was reduced through surreptitious manipulations of cursor lag and stimuli speed. Highly suggestible participants did not differ from controls in performance or metacognition of performance, but their sense of agency was less sensitive to cursor lag manipulations, suggesting reduced awareness that their control was being manipulated. These results indicate that highly suggestible individuals have aberrant metacognition of agency and may be a valuable population for studying distortions in the sense of agency. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The role of suggestibility in determinations of Miranda abilities: a study of the Gudjonsson Suggestibility Scales.

    Science.gov (United States)

    Rogers, Richard; Harrison, Kimberly S; Rogstad, Jill E; LaFortune, Kathryn A; Hazelwood, Lisa L

    2010-02-01

    Traditionally, high levels of suggestibility have been widely assumed to be linked with diminished Miranda abilities, especially in relationship to the voluntariness of waivers. The current investigation examined suggestibility on the Gudjonsson Suggestibility Scales in a multisite study of pretrial defendants. One important finding was the inapplicability of British norms to American jurisdictions. Moreover, suggestibility appeared unrelated to Miranda comprehension, reasoning, and detainees' perceptions of police coercion. In testing rival hypotheses, defendants with high compliance had significantly lower Miranda comprehension and ability to reason about exercising Miranda rights than their counterparts with low compliance. Implications of these findings to forensic practice are examined.

  8. Regression analysis as a design optimization tool

    Science.gov (United States)

    Perley, R.

    1984-01-01

    The optimization concepts are described in relation to an overall design process as opposed to a detailed, part-design process where the requirements are firmly stated, the optimization criteria are well established, and a design is known to be feasible. The overall design process starts with the stated requirements. Some of the design criteria are derived directly from the requirements, but others are affected by the design concept. It is these design criteria that define the performance index, or objective function, that is to be minimized within some constraints. In general, there will be multiple objectives, some mutually exclusive, with no clear statement of their relative importance. The optimization loop that is given adjusts the design variables and analyzes the resulting design, in an iterative fashion, until the objective function is minimized within the constraints. This provides a solution, but it is only the beginning. In effect, the problem definition evolves as information is derived from the results. It becomes a learning process as we determine what the physics of the system can deliver in relation to the desirable system characteristics. As with any learning process, an interactive capability is a real attriubute for investigating the many alternatives that will be suggested as learning progresses.

  9. SPLINE LINEAR REGRESSION USED FOR EVALUATING FINANCIAL ASSETS 1

    Directory of Open Access Journals (Sweden)

    Liviu GEAMBAŞU

    2010-12-01

    Full Text Available One of the most important preoccupations of financial markets participants was and still is the problem of determining more precise the trend of financial assets prices. For solving this problem there were written many scientific papers and were developed many mathematical and statistical models in order to better determine the financial assets price trend. If until recently the simple linear models were largely used due to their facile utilization, the financial crises that affected the world economy starting with 2008 highlight the necessity of adapting the mathematical models to variation of economy. A simple to use model but adapted to economic life realities is the spline linear regression. This type of regression keeps the continuity of regression function, but split the studied data in intervals with homogenous characteristics. The characteristics of each interval are highlighted and also the evolution of market over all the intervals, resulting reduced standard errors. The first objective of the article is the theoretical presentation of the spline linear regression, also referring to scientific national and international papers related to this subject. The second objective is applying the theoretical model to data from the Bucharest Stock Exchange

  10. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    Science.gov (United States)

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  11. A Powerful Test for Comparing Multiple Regression Functions.

    Science.gov (United States)

    Maity, Arnab

    2012-09-01

    In this article, we address the important problem of comparison of two or more population regression functions. Recently, Pardo-Fernández, Van Keilegom and González-Manteiga (2007) developed test statistics for simple nonparametric regression models: Y(ij) = θ(j)(Z(ij)) + σ(j)(Z(ij))∊(ij), based on empirical distributions of the errors in each population j = 1, … , J. In this paper, we propose a test for equality of the θ(j)(·) based on the concept of generalized likelihood ratio type statistics. We also generalize our test for other nonparametric regression setups, e.g, nonparametric logistic regression, where the loglikelihood for population j is any general smooth function [Formula: see text]. We describe a resampling procedure to obtain the critical values of the test. In addition, we present a simulation study to evaluate the performance of the proposed test and compare our results to those in Pardo-Fernández et al. (2007).

  12. DYNA3D/ParaDyn Regression Test Suite Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  13. Testing for marginal linear effects in quantile regression

    KAUST Repository

    Wang, Huixia Judy

    2017-10-23

    The paper develops a new marginal testing procedure to detect significant predictors that are associated with the conditional quantiles of a scalar response. The idea is to fit the marginal quantile regression on each predictor one at a time, and then to base the test on the t-statistics that are associated with the most predictive predictors. A resampling method is devised to calibrate this test statistic, which has non-regular limiting behaviour due to the selection of the most predictive variables. Asymptotic validity of the procedure is established in a general quantile regression setting in which the marginal quantile regression models can be misspecified. Even though a fixed dimension is assumed to derive the asymptotic results, the test proposed is applicable and computationally feasible for large dimensional predictors. The method is more flexible than existing marginal screening test methods based on mean regression and has the added advantage of being robust against outliers in the response. The approach is illustrated by using an application to a human immunodeficiency virus drug resistance data set.

  14. Testing for marginal linear effects in quantile regression

    KAUST Repository

    Wang, Huixia Judy; McKeague, Ian W.; Qian, Min

    2017-01-01

    The paper develops a new marginal testing procedure to detect significant predictors that are associated with the conditional quantiles of a scalar response. The idea is to fit the marginal quantile regression on each predictor one at a time, and then to base the test on the t-statistics that are associated with the most predictive predictors. A resampling method is devised to calibrate this test statistic, which has non-regular limiting behaviour due to the selection of the most predictive variables. Asymptotic validity of the procedure is established in a general quantile regression setting in which the marginal quantile regression models can be misspecified. Even though a fixed dimension is assumed to derive the asymptotic results, the test proposed is applicable and computationally feasible for large dimensional predictors. The method is more flexible than existing marginal screening test methods based on mean regression and has the added advantage of being robust against outliers in the response. The approach is illustrated by using an application to a human immunodeficiency virus drug resistance data set.

  15. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  16. The impact of hypnotic suggestibility in clinical care settings.

    Science.gov (United States)

    Montgomery, Guy H; Schnur, Julie B; David, Daniel

    2011-07-01

    Hypnotic suggestibility has been described as a powerful predictor of outcomes associated with hypnotic interventions. However, there have been no systematic approaches to quantifying this effect across the literature. This meta-analysis evaluates the magnitude of the effect of hypnotic suggestibility on hypnotic outcomes in clinical settings. PsycINFO and PubMed were searched from their inception through July 2009. Thirty-four effects from 10 studies and 283 participants are reported. Results revealed a statistically significant overall effect size in the small to medium range (r = .24; 95% Confidence Interval = -0.28 to 0.75), indicating that greater hypnotic suggestibility led to greater effects of hypnosis interventions. Hypnotic suggestibility accounted for 6% of the variance in outcomes. Smaller sample size studies, use of the SHCS, and pediatric samples tended to result in larger effect sizes. The authors question the usefulness of assessing hypnotic suggestibility in clinical contexts.

  17. An effective suggestion method for keyword search of databases

    KAUST Repository

    Huang, Hai

    2016-09-09

    This paper solves the problem of providing high-quality suggestions for user keyword queries over databases. With the assumption that the returned suggestions are independent, existing query suggestion methods over databases score candidate suggestions individually and return the top-k best of them. However, the top-k suggestions have high redundancy with respect to the topics. To provide informative suggestions, the returned k suggestions are expected to be diverse, i.e., maximizing the relevance to the user query and the diversity with respect to topics that the user might be interested in simultaneously. In this paper, an objective function considering both factors is defined for evaluating a suggestion set. We show that maximizing the objective function is a submodular function maximization problem subject to n matroid constraints, which is an NP-hard problem. An greedy approximate algorithm with an approximation ratio O((Formula presented.)) is also proposed. Experimental results show that our suggestion outperforms other methods on providing relevant and diverse suggestions. © 2016 Springer Science+Business Media New York

  18. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    Science.gov (United States)

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P 80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  19. Ethanolic extract of Artemisia aucheri induces regression of aorta wall fatty streaks in hypercholesterolemic rabbits.

    Science.gov (United States)

    Asgary, S; Dinani, N Jafari; Madani, H; Mahzouni, P

    2008-05-01

    Artemisia aucheri is a native-growing plant which is widely used in Iranian traditional medicine. This study was designed to evaluate the effects of A. aucheri on regression of atherosclerosis in hypercholesterolemic rabbits. Twenty five rabbits were randomly divided into five groups of five each and treated 3-months as follows: 1: normal diet, 2: hypercholesterolemic diet (HCD), 3 and 4: HCD for 60 days and then normal diet and normal diet + A. aucheri (100 mg x kg(-1) x day(-1)) respectively for an additional 30 days (regression period). In the regression period dietary use of A. aucheri in group 4 significantly decreased total cholesterol, triglyceride and LDL-cholesterol, while HDL-cholesterol was significantly increased. The atherosclerotic area was significantly decreased in this group. Animals, which received only normal diet in the regression period showed no regression but rather progression of atherosclerosis. These findings suggest that A. aucheri may cause regression of atherosclerotic lesions.

  20. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.