Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K
2017-01-01
The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.
Regression Analysis for Multivariate Dependent Count Data Using Convolved Gaussian Processes
Sofro, A'yunin; Shi, Jian Qing; Cao, Chunzheng
2017-01-01
Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covarianc...
Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.
2017-12-01
The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.
Laurens, L M L; Wolfrum, E J
2013-12-18
One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.
Multivariate and semiparametric kernel regression
Härdle, Wolfgang; Müller, Marlene
1997-01-01
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...
Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto
2017-02-01
Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Kraut, W.; Schwarz, W.; Wilhelm, A.
1994-01-01
A multivariate regression analysis is applied to decay measurements of α-resp. β-filter activcity. Activity concentrations for Po-218, Pb-214 and Bi-214, resp. for the Rn-222 equilibrium equivalent concentration are obtained explicitly. The regression analysis takes into account properly the variances of the measured count rates and their influence on the resulting activity concentrations. (orig.) [de
Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun
2018-03-01
Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.
DEFF Research Database (Denmark)
Sørensen, Jens Benn; Badsberg, Jens Henrik; Olsen, Jens
1989-01-01
The prognostic factors for survival in advanced adenocarcinoma of the lung were investigated in a consecutive series of 259 patients treated with chemotherapy. Twenty-eight pretreatment variables were investigated by use of Cox's multivariate regression model, including histological subtypes and ...
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
Ulbrich, Norbert Manfred
2013-01-01
A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Terjung, B; Bogsch, F; Klein, R; Söhne, J; Reichel, C; Wasmuth, J-C; Beuers, U; Sauerbruch, T; Spengler, U
2004-09-29
Antineutrophil cytoplasmic antibodies (atypical p-ANCA) are detected at high prevalence in sera from patients with autoimmune hepatitis (AIH), but their diagnostic relevance for AIH has not been systematically evaluated so far. Here, we studied sera from 357 patients with autoimmune (autoimmune hepatitis n=175, primary sclerosing cholangitis (PSC) n=35, primary biliary cirrhosis n=45), non-autoimmune chronic liver disease (alcoholic liver cirrhosis n=62; chronic hepatitis C virus infection (HCV) n=21) or healthy controls (n=19) for the presence of various non-organ specific autoantibodies. Atypical p-ANCA, antinuclear antibodies (ANA), antibodies against smooth muscles (SMA), antibodies against liver/kidney microsomes (anti-Lkm1) and antimitochondrial antibodies (AMA) were detected by indirect immunofluorescence microscopy, antibodies against the M2 antigen (anti-M2), antibodies against soluble liver antigen (anti-SLA/LP) and anti-Lkm1 by using enzyme linked immunosorbent assays. To define the diagnostic precision of the autoantibodies, results of autoantibody testing were analyzed by receiver operating characteristics (ROC) and forward conditional logistic regression analysis. Atypical p-ANCA were detected at high prevalence in sera from patients with AIH (81%) and PSC (94%). ROC- and logistic regression analysis revealed atypical p-ANCA and SMA, but not ANA as significant diagnostic seromarkers for AIH (atypical p-ANCA: AUC 0.754+/-0.026, odds ratio [OR] 3.4; SMA: 0.652+/-0.028, OR 4.1). Atypical p-ANCA also emerged as the only diagnostically relevant seromarker for PSC (AUC 0.690+/-0.04, OR 3.4). None of the tested antibodies yielded a significant diagnostic accuracy for patients with alcoholic liver cirrhosis, HCV or healthy controls. Atypical p-ANCA along with SMA represent a seromarker with high diagnostic accuracy for AIH and should be explicitly considered in a revised version of the diagnostic score for AIH.
Lees, Mackenzie C.; Merani, Shaheed; Tauh, Keerit; Khadaroo, Rachel G.
2015-01-01
Background Older adults (≥ 65 yr) are the fastest growing population and are presenting in increasing numbers for acute surgical care. Emergency surgery is frequently life threatening for older patients. Our objective was to identify predictors of mortality and poor outcome among elderly patients undergoing emergency general surgery. Methods We conducted a retrospective cohort study of patients aged 65–80 years undergoing emergency general surgery between 2009 and 2010 at a tertiary care centre. Demographics, comorbidities, in-hospital complications, mortality and disposition characteristics of patients were collected. Logistic regression analysis was used to identify covariate-adjusted predictors of in-hospital mortality and discharge of patients home. Results Our analysis included 257 patients with a mean age of 72 years; 52% were men. In-hospital mortality was 12%. Mortality was associated with patients who had higher American Society of Anesthesiologists (ASA) class (odds ratio [OR] 3.85, 95% confidence interval [CI] 1.43–10.33, p = 0.008) and in-hospital complications (OR 1.93, 95% CI 1.32–2.83, p = 0.001). Nearly two-thirds of patients discharged home were younger (OR 0.92, 95% CI 0.85–0.99, p = 0.036), had lower ASA class (OR 0.45, 95% CI 0.27–0.74, p = 0.002) and fewer in-hospital complications (OR 0.69, 95% CI 0.53–0.90, p = 0.007). Conclusion American Society of Anesthesiologists class and in-hospital complications are perioperative predictors of mortality and disposition in the older surgical population. Understanding the predictors of poor outcome and the importance of preventing in-hospital complications in older patients will have important clinical utility in terms of preoperative counselling, improving health care and discharging patients home. PMID:26204143
Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A
2014-08-01
Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
Multivariate analysis with LISREL
Jöreskog, Karl G; Y Wallentin, Fan
2016-01-01
This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.
Directory of Open Access Journals (Sweden)
Marder Luciano
2006-01-01
Full Text Available In the present work multivariate regression models were developed for the quantitative analysis of ternary systems using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS to determine the concentration in weight of calcium carbonate, magnesium carbonate and magnesium oxide. Nineteen spectra of standard samples previously defined in ternary diagram by mixture design were prepared and mid-infrared diffuse reflectance spectra were recorded. The partial least squares (PLS regression method was applied to the model. The spectra set was preprocessed by either mean-centered and variance-scaled (model 2 or mean-centered only (model 1. The results based on the prediction performance of the external validation set expressed by RMSEP (root mean square error of prediction demonstrated that it is possible to develop good models to simultaneously determine calcium carbonate, magnesium carbonate and magnesium oxide content in powdered samples that can be used in the study of the thermal decomposition of dolomite rocks.
Guo, L W; Liu, S Z; Zhang, M; Chen, Q; Zhang, S K; Sun, X B
2017-12-10
Objective: To investigate the effect of fried food intake on the pathogenesis of esophageal cancer and precancerous lesions. Methods: From 2005 to 2013, all the residents aged 40-69 years from 11 counties (cities) where cancer screening of upper gastrointestinal cancer had been conducted in rural areas of Henan province, were recruited as the subjects of study. Information on demography and lifestyle was collected. The residents under study were screened with iodine staining endoscopic examination and biopsy samples were diagnosed pathologically, under standardized criteria. Subjects with high risk were divided into the groups based on their different pathological degrees. Multivariate ordinal logistic regression analysis was used to analyze the relationship between the frequency of fried food intake and esophageal cancer and precancerous lesions. Results: A total number of 8 792 cases with normal esophagus, 3 680 with mild hyperplasia, 972 with moderate hyperplasia, 413 with severe hyperplasia carcinoma in situ, and 336 cases of esophageal cancer were recruited. Results from multivariate logistic regression analysis showed that, when compared with those who did not eat fried food, the intake of fried food (food appeared a risk factor for both esophageal cancer and precancerous lesions.
J Olive, David
2017-01-01
This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given. The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory. The robust techniques are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis. A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...
Hasyim, M.; Prastyo, D. D.
2018-03-01
Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.
Directory of Open Access Journals (Sweden)
Tao Gao
2014-01-01
Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.
Directory of Open Access Journals (Sweden)
Peng Nai
2016-03-01
Full Text Available A great number of immigration populations resident permanently in Yunnan Border Area of China. To some extent, these people belong to refugees or immigrants in accordance with International Rules, which significantly features the social diversity of this area. However, this kind of social diversity always impairs the social order. Therefore, there will be a positive influence to the local society governance by a research on local immigration integration. This essay hereby attempts to acquire the data of the living situation of these border area immigration and refugees. The analysis of the social integration of refugees and immigration in Yunnan border area in China will be deployed through the modeling of multivariable linear regression based on these data in order to propose some more achievable resolutions.
Yoon, Richard S; Gage, Mark J; Galos, David K; Donegan, Derek J; Liporace, Frank A
2017-06-01
Intramedullary nailing (IMN) has become the standard of care for the treatment of most femoral shaft fractures. Different IMN options include trochanteric and piriformis entry as well as retrograde nails, which may result in varying degrees of femoral rotation. The objective of this study was to analyze postoperative femoral version between three types of nails and to delineate any significant differences in femoral version (DFV) and revision rates. Over a 10-year period, 417 patients underwent IMN of a diaphyseal femur fracture (AO/OTA 32A-C). Of these patients, 316 met inclusion criteria and obtained postoperative computed tomography (CT) scanograms to calculate femoral version and were thus included in the study. In this study, our main outcome measure was the difference in femoral version (DFV) between the uninjured limb and the injured limb. The effect of the following variables on DFV and revision rates were determined via univariate, multivariate, and ordinal regression analyses: gender, age, BMI, ethnicity, mechanism of injury, operative side, open fracture, and table type/position. Statistical significance was set at pregression analysis revealed that a lower BMI was significantly associated with a lower DFV (p=0.006). Controlling for possible covariables, multivariate analysis yielded a significantly lower DFV for trochanteric entry nails than piriformis or retrograde nails (7.9±6.10 vs. 9.5±7.4 vs. 9.4±7.8°, pregression analysis. However, this is not to state that the other nail types exhibited abnormal DFV. Translation to the clinical impact of a few degrees of DFV is also unknown. Future studies to more in-depth study the intricacies of femoral version may lead to improved technology in addition to potentially improved clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multivariate Regression of Liver on Intestine of Mice: A ...
African Journals Online (AJOL)
Multivariate Regression of Liver on Intestine of Mice: A Chemotherapeutic Evaluation of Plant ... Using an analysis of covariance model, the effects ... The findings revealed, with the aid of likelihood-ratio statistic, a marked improvement in
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Chiu, Yu-Jen; Liao, Wen-Chieh; Wang, Tien-Hsiang; Shih, Yu-Chung; Ma, Hsu; Lin, Chih-Hsun; Wu, Szu-Hsien; Perng, Cherng-Kang
2017-08-01
Despite significant advances in medical care and surgical techniques, pressure sore reconstruction is still prone to elevated rates of complication and recurrence. We conducted a retrospective study to investigate not only complication and recurrence rates following pressure sore reconstruction but also preoperative risk stratification. This study included 181 ulcers underwent flap operations between January 2002 and December 2013 were included in the study. We performed a multivariable logistic regression model, which offers a regression-based method accounting for the within-patient correlation of the success or failure of each flap. The overall complication and recurrence rates for all flaps were 46.4% and 16.0%, respectively, with a mean follow-up period of 55.4 ± 38.0 months. No statistically significant differences of complication and recurrence rates were observed among three different reconstruction methods. In subsequent analysis, albumin ≤3.0 g/dl and paraplegia were significantly associated with higher postoperative complication. The anatomic factor, ischial wound location, significantly trended toward the development of ulcer recurrence. In the fasciocutaneous group, paraplegia had significant correlation to higher complication and recurrence rates. In the musculocutaneous flap group, variables had no significant correlation to complication and recurrence rates. In the free-style perforator group, ischial wound location and malnourished status correlated with significantly higher complication rates; ischial wound location also correlated with significantly higher recurrence rate. Ultimately, our review of a noteworthy cohort with lengthy follow-up helped identify and confirm certain risk factors that can facilitate a more informed and thoughtful pre- and postoperative decision-making process for patients with pressure ulcers. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All
Seggers, Jorien; Haadsma, Maaike L; La Bastide-Van Gemert, Sacha; Heineman, Maas Jan; Middelburg, Karin J; Roseboom, Tessa J; Schendelaar, Pamela; Van den Heuvel, Edwin R; Hadders-Algra, Mijna
2014-03-01
COH-IVF group than in the Sub-NC group (B: 0.28; 95% CI: 0.03-0.53). Larger study groups are necessary to draw firm conclusions. An effect of gender or ICSI could not be properly investigated as stratifying would further reduce the sample size. We corrected for the known differences between MNC-IVF and COH-IVF but it is possible that the groups differ in additional, more subtle parental characteristics. In addition, we measured BP on 1 day only, had no control group of children born to fertile couples (precluding investigating effects of the underlying subfertility) and included singletons only. As COH-IVF is associated with multiple births we may have underestimated cardiometabolic problems after COH-IVF. Finally, multivariable regression analysis does not provide clear insight in the causal mechanisms and we have performed further explorative analyses. Our findings are in line with other studies describing adverse effects of IVF on cardiometabolic outcome but this is the first study suggesting that ovarian hyperstimulation, as used in IVF treatments, could be a causative mechanism. Perhaps ovarian hyperstimulation negatively influences cardiometabolic outcome via changes in the early environment of the oocyte and/or embryo that result in epigenetic modifications of key metabolic systems that are involved in BP regulation. Future research needs to assess further the role of ovarian hyperstimulation in poorer cardiometabolic outcome and investigate the underlying mechanisms. The findings emphasize the importance of cardiometabolic monitoring of the growing number of children born following IVF. The authors have no conflicts of interest to declare. The study was supported by the University Medical Center Groningen, the Cornelia Foundation and the school for Behavioral- and Cognitive Neurosciences. The sponsors of the study had no role in study design, data collection, data analysis, data interpretation or writing of the report.
AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION
Krzyśko, Mirosław; Smaga, Łukasz
2017-01-01
In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...
Directory of Open Access Journals (Sweden)
Tania Dehesh
2015-01-01
Full Text Available Background. Univariate meta-analysis (UM procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS method as a multivariate meta-analysis approach. Methods. We evaluated the efficiency of four new approaches including zero correlation (ZC, common correlation (CC, estimated correlation (EC, and multivariate multilevel correlation (MMC on the estimation bias, mean square error (MSE, and 95% probability coverage of the confidence interval (CI in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.
Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi
2015-01-01
Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.
Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran
2018-03-01
This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).
Pradhan, Biswajeet
2010-05-01
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi
2014-01-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both
Freund, Rudolf J; Sa, Ping
2006-01-01
The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design
Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.
2017-05-01
The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for
Methods of Multivariate Analysis
Rencher, Alvin C
2012-01-01
Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit
Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O
2016-05-15
The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation
Sunspot Cycle Prediction Using Multivariate Regression and Binary ...
Indian Academy of Sciences (India)
49
Multivariate regression model has been derived based on the available cycles 1 .... The flare index correlates well with various parameters of the solar activity. ...... 32) Sabarinath A and Anilkumar A K 2011 A stochastic prediction model for the.
A Scalable Local Algorithm for Distributed Multivariate Regression
National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm can be used for distributed...
An Efficient Local Algorithm for Distributed Multivariate Regression
National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm is designed for distributed...
Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A
2006-01-23
A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.
Elfaki, Tayseer Elamin Mohamed; Arndts, Kathrin; Wiszniewsky, Anna; Ritter, Manuel; Goreish, Ibtisam A; Atti El Mekki, Misk El Yemen A; Arriens, Sandra; Pfarr, Kenneth; Fimmers, Rolf; Doenhoff, Mike; Hoerauf, Achim; Layland, Laura E
2016-05-01
In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to
Rossi, M.; Apuani, T.; Felletti, F.
2009-04-01
The aim of this paper is to compare the results of two statistical methods for landslide susceptibility analysis: 1) univariate probabilistic method based on landslide susceptibility index, 2) multivariate method (logistic regression). The study area is the Febbraro valley, located in the central Italian Alps, where different types of metamorphic rocks croup out. On the eastern part of the studied basin a quaternary cover represented by colluvial and secondarily, by glacial deposits, is dominant. In this study 110 earth flows, mainly located toward NE portion of the catchment, were analyzed. They involve only the colluvial deposits and their extension mainly ranges from 36 to 3173 m2. Both statistical methods require to establish a spatial database, in which each landslide is described by several parameters that can be assigned using a main scarp central point of landslide. The spatial database is constructed using a Geographical Information System (GIS). Each landslide is described by several parameters corresponding to the value of main scarp central point of the landslide. Based on bibliographic review a total of 15 predisposing factors were utilized. The width of the intervals, in which the maps of the predisposing factors have to be reclassified, has been defined assuming constant intervals to: elevation (100 m), slope (5 °), solar radiation (0.1 MJ/cm2/year), profile curvature (1.2 1/m), tangential curvature (2.2 1/m), drainage density (0.5), lineament density (0.00126). For the other parameters have been used the results of the probability-probability plots analysis and the statistical indexes of landslides site. In particular slope length (0 ÷ 2, 2 ÷ 5, 5 ÷ 10, 10 ÷ 20, 20 ÷ 35, 35 ÷ 260), accumulation flow (0 ÷ 1, 1 ÷ 2, 2 ÷ 5, 5 ÷ 12, 12 ÷ 60, 60 ÷27265), Topographic Wetness Index 0 ÷ 0.74, 0.74 ÷ 1.94, 1.94 ÷ 2.62, 2.62 ÷ 3.48, 3.48 ÷ 6,00, 6.00 ÷ 9.44), Stream Power Index (0 ÷ 0.64, 0.64 ÷ 1.28, 1.28 ÷ 1.81, 1.81 ÷ 4.20, 4.20 ÷ 9
Applied multivariate statistical analysis
Härdle, Wolfgang Karl
2015-01-01
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added. All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior. All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...
Collision prediction models using multivariate Poisson-lognormal regression.
El-Basyouny, Karim; Sayed, Tarek
2009-07-01
This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.
Directory of Open Access Journals (Sweden)
Tayseer Elamin Mohamed Elfaki
2016-05-01
Full Text Available In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity.This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+, n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+ and n = 61 people who were infection-free (Sm uninf. Immunoepidemiological findings were further investigated using two binary multivariable regression analysis.Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis.Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers
Directory of Open Access Journals (Sweden)
Goyal Neeraj
2010-01-01
Full Text Available To compare the accuracy of artificial neural network (ANN analysis and multi-variate regression analysis (MVRA for renal stone fragmentation by extracorporeal shock wave lithotripsy (ESWL. A total of 276 patients with renal calculus were treated by ESWL during December 2001 to December 2006. Of them, the data of 196 patients were used for training the ANN. The predictability of trained ANN was tested on 80 subsequent patients. The input data include age of patient, stone size, stone burden, number of sittings and urinary pH. The output values (predicted values were number of shocks and shock power. Of these 80 patients, the input was analyzed and output was also calculated by MVRA. The output values (predicted values from both the methods were compared and the results were drawn. The predicted and observed values of shock power and number of shocks were compared using 1:1 slope line. The results were calculated as coefficient of correlation (COC (r2 . For prediction of power, the MVRA COC was 0.0195 and ANN COC was 0.8343. For prediction of number of shocks, the MVRA COC was 0.5726 and ANN COC was 0.9329. In conclusion, ANN gives better COC than MVRA, hence could be a better tool to analyze the optimum renal stone fragmentation by ESWL.
International Nuclear Information System (INIS)
Neeraj K Goyal, Abhay Kumar; Sameer Trivedi
2010-01-01
To compare the accuracy of artificial neural network (ANN) analysis and multivariate regression analysis (MVRA) for renal stone fragmentation by extracorporeal shock wave lithotripsy (ESWL). A total of 276 patients with renal calculus were treated by ESWL during December 2001 to December 2006. Of them, the data of 196 patients were used for training the ANN. The predictability of trained ANN was tested on 80 subsequent patients. The input data include age of patient, stone size, stone burden, number of sittings and urinary pH. The output values (predicted values) were number of shocks and shock power. Of these 80 patients, the input was analyzed and output was also calculated by MVRA. The output values (predicted values) from both the methods were compared and the results were drawn. The predicted and observed values of shock power and number of shocks were compared using 1:1 slope line. The results were calculated as coefficient of correlation (COC) (r2 ). For prediction of power, the MVRA COC was 0.0195 and ANN COC was 0.8343. For prediction of number of shocks, the MVRA COC was 0.5726 and ANN COC was 0.9329. In conclusion, ANN gives better COC than MVRA, hence could be a better tool to analyze the optimum renal stone fragmentation by ESWL (Author).
Kjekshus, Lars Erik; Bernstrøm, Vilde Hoff; Dahl, Espen; Lorentzen, Thomas
2014-02-03
Hospitals are merging to become more cost-effective. Mergers are often complex and difficult processes with variable outcomes. The aim of this study was to analyze the effect of mergers on long-term sickness absence among hospital employees. Long-term sickness absence was analyzed among hospital employees (N = 107 209) in 57 hospitals involved in 23 mergers in Norway between 2000 and 2009. Variation in long-term sickness absence was explained through a fixed effects multivariate regression analysis using panel data with years-since-merger as the independent variable. We found a significant but modest effect of mergers on long-term sickness absence in the year of the merger, and in years 2, 3 and 4; analyzed by gender there was a significant effect for women, also for these years, but only in year 4 for men. However, men are less represented among the hospital workforce; this could explain the lack of significance. Mergers has a significant effect on employee health that should be taken into consideration when deciding to merge hospitals. This study illustrates the importance of analyzing the effects of mergers over several years and the need for more detailed analyses of merger processes and of the changes that may occur as a result of such mergers.
Asymptotics of Multivariate Regression with Consecutively Added Dependent Varibles
Raats, V.M.; van der Genugten, B.B.; Moors, J.J.A.
2004-01-01
We consider multivariate regression where new dependent variables are consecutively added during the experiment (or in time).So, viewed at the end of the experiment, the number of observations decreases with each added variable. The explanatory variables are observed throughout.In a previous paper
Multivariate Local Polynomial Regression with Application to Shenzhen Component Index
Directory of Open Access Journals (Sweden)
Liyun Su
2011-01-01
Full Text Available This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Takens' Theorem, are considered. To fit the stock index series, the single series changes into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series based on multivariate local polynomial model is compared with univariate predictor with the same Shenzhen stock index data. The numerical results obtained by Shenzhen component index show that the prediction mean squared error of the multivariate predictor is much smaller than the univariate one and is much better than the existed three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squared error is smaller than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time series is a useful tool for stock market price prediction.
Regularized multivariate regression models with skew-t error distributions
Chen, Lianfu
2014-06-01
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.
A generalized multivariate regression model for modelling ocean wave heights
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
Practical multivariate analysis
Afifi, Abdelmonem; Clark, Virginia A
2011-01-01
""First of all, it is very easy to read. … The authors manage to introduce and (at least partially) explain even quite complex concepts, e.g. eigenvalues, in an easy and pedagogical way that I suppose is attractive to readers without deeper statistical knowledge. The text is also sprinkled with references for those who want to probe deeper into a certain topic. Secondly, I personally find the book's emphasis on practical data handling very appealing. … Thirdly, the book gives very nice coverage of regression analysis. … this is a nicely written book that gives a good overview of a large number
Preference learning with evolutionary Multivariate Adaptive Regression Spline model
DEFF Research Database (Denmark)
Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll
2015-01-01
This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...
REGSTEP - stepwise multivariate polynomial regression with singular extensions
International Nuclear Information System (INIS)
Davierwalla, D.M.
1977-09-01
The program REGSTEP determines a polynomial approximation, in the least squares sense, to tabulated data. The polynomial may be univariate or multivariate. The computational method is that of stepwise regression. A variable is inserted into the regression basis if it is significant with respect to an appropriate F-test at a preselected risk level. In addition, should a variable already in the basis, become nonsignificant (again with respect to an appropriate F-test) after the entry of a new variable, it is expelled from the model. Thus only significant variables are retained in the model. Although written expressly to be incorporated into CORCOD, a code for predicting nuclear cross sections for given values of power, temperature, void fractions, Boron content etc. there is nothing to limit the use of REGSTEP to nuclear applications, as the examples demonstrate. A separate version has been incorporated into RSYST for the general user. (Auth.)
Li, Yanming; Nan, Bin; Zhu, Ji
2015-06-01
We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study. © 2015, The International Biometric Society.
DEFF Research Database (Denmark)
Hansen, Michael Adsetts Edberg
Interest in statistical methodology is increasing so rapidly in the astronomical community that accessible introductory material in this area is long overdue. This book fills the gap by providing a presentation of the most useful techniques in multivariate statistics. A wide-ranging annotated set...
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Multivariate analysis: models and method
International Nuclear Information System (INIS)
Sanz Perucha, J.
1990-01-01
Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis
Multivariate analysis methods in physics
International Nuclear Information System (INIS)
Wolter, M.
2007-01-01
A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru
Multivariate Frequency-Severity Regression Models in Insurance
Directory of Open Access Journals (Sweden)
Edward W. Frees
2016-02-01
Full Text Available In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the literature on multivariate frequency-severity regression modeling with a focus on insurance industry applications. Regression models for understanding the distribution of each outcome continue to be developed yet there now exists a solid body of literature for the marginal outcomes. This paper contributes to this body of literature by focusing on the use of a copula for modeling the dependence among these outcomes; a major advantage of this tool is that it preserves the body of work established for marginal models. We illustrate this approach using data from the Wisconsin Local Government Property Insurance Fund. This fund offers insurance protection for (i property; (ii motor vehicle; and (iii contractors’ equipment claims. In addition to several claim types and frequency-severity components, outcomes can be further categorized by time and space, requiring complex dependency modeling. We find significant dependencies for these data; specifically, we find that dependencies among lines are stronger than the dependencies between the frequency and average severity within each line.
Huijbregts, Henricus J T A M; Khan, Riaz J K; Fick, Daniel P; Jarrett, Olivia M; Haebich, Samantha
2016-06-01
Approximately 18% of the patients are dissatisfied with the result of total knee replacement. However, the relation between dissatisfaction and prosthetic alignment has not been investigated before. We retrospectively analysed prospectively gathered data of all patients who had a primary TKR, preoperative and one-year postoperative Oxford Knee Scores (OKS) and postoperative computed tomography (CT). The CT protocol measures hip-knee-ankle (HKA) angle, and coronal, sagittal and axial component alignment. Satisfaction was defined using a five-item Likert scale. We dichotomised dissatisfaction by combining '(very) dissatisfied' and 'neutral/not sure'. Associations with dissatisfaction and change in OKS were calculated using multivariable logistic and linear regression models. 230 TKRs were implanted in 105 men and 106 women. At one year, 12% were (very) dissatisfied and 10% neutral. Coronal alignment of the femoral component was 0.5 degrees more accurate in patients who were satisfied at one year. The other alignment measurements were not different between satisfied and dissatisfied patients. All radiographic measurements had a P-value>0.10 on univariate analyses. At one year, dissatisfaction was associated with the three-months OKS. Change in OKS was associated with three-months OKS, preoperative physical SF-12, preoperative pain and cruciate retaining design. Neither mechanical axis, nor component alignment, is associated with dissatisfaction at one year following TKR. Patients get the best outcome when pain reduction and function improvement are optimal during the first three months and when the indication to embark on surgery is based on physical limitations rather than on a high pain score. 2. Copyright © 2016 Elsevier B.V. All rights reserved.
A MULTIVARIATE ANALYSIS OF CROATIAN COUNTIES ENTREPRENEURSHIP
Directory of Open Access Journals (Sweden)
Elza Jurun
2012-12-01
Full Text Available In the focus of this paper is a multivariate analysis of Croatian Counties entrepreneurship. Complete data base available by official statistic institutions at national and regional level is used. Modern econometric methodology starting from a comparative analysis via multiple regression to multivariate cluster analysis is carried out as well as the analysis of successful or inefficacious entrepreneurship measured by indicators of efficiency, profitability and productivity. Time horizons of the comparative analysis are in 2004 and 2010. Accelerators of socio-economic development - number of entrepreneur investors, investment in fixed assets and current assets ratio in multiple regression model are analytically filtered between twenty-six independent variables as variables of the dominant influence on GDP per capita in 2010 as dependent variable. Results of multivariate cluster analysis of twentyone Croatian Counties are interpreted also in the sense of three Croatian NUTS 2 regions according to European nomenclature of regional territorial division of Croatia.
Directory of Open Access Journals (Sweden)
Lassi Rieppo
Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.
Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O
2017-03-05
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized
Multivariate analysis techniques
Energy Technology Data Exchange (ETDEWEB)
Bendavid, Josh [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Fisher, Wade C. [Michigan State Univ., East Lansing, MI (United States); Junk, Thomas R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2016-01-01
The end products of experimental data analysis are designed to be simple and easy to understand: hypothesis tests and measurements of parameters. But, the experimental data themselves are voluminous and complex. Furthermore, in modern collider experiments, many petabytes of data must be processed in search of rare new processes which occur together with much more copious background processes that are of less interest to the task at hand. The systematic uncertainties on the background may be larger than the expected signal in many cases. The statistical power of an analysis and its sensitivity to systematic uncertainty can therefore usually both be improved by separating signal events from background events with higher efficiency and purity.
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.; Antony, M.K.; Somayajulu, Y.K.; Sarma, Y.V.B.; Almeida, A.M.; Mahadevan, R.
, Head Applied Statistics Unit, Indian Statistical Institute, Calcutta for going through the section on Canonical Correlation Analysis and offering his comments on the same. This report has been prepared using ?Latex? on a ?Linux? platform, viz...., the personal computer Kapila. I wish to thank Mr. Dattaram Shivji for installing ?Latex? and ?GMT? packages on the personal computer. The style file used for preparing this report, has been hacked by me from a Goa University, Ph. D style file prepared by Dr. D...
Multivariate Multiscale Analysis
1990-11-08
The conditions on k in the second half of the statement of the proposition can be somewhat relaxed. In the cases n = 2 and n = 3 the details are given...of Mathematical Func- lions, Dover, New York, N.Y., 1965. [2] Bray and D. C. Solmon, The horocycle transform and harmonic analysis on the Poincare disk...H. Izen, Inversion of the k- plane transform by orthogonal function series expansions, Inverse Problems, 5 (1989), 181-202. [20] J. V. Leahy, K. T
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Multicollinearity and Regression Analysis
Daoud, Jamal I.
2017-12-01
In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.
Masuda, Takanori; Nakaura, Takeshi; Funama, Yoshinori; Higaki, Toru; Kiguchi, Masao; Imada, Naoyuki; Sato, Tomoyasu; Awai, Kazuo
We evaluated the effect of the age, sex, total body weight (TBW), height (HT) and cardiac output (CO) of patients on aortic and hepatic contrast enhancement during hepatic-arterial phase (HAP) and portal venous phase (PVP) computed tomography (CT) scanning. This prospective study received institutional review board approval; prior informed consent to participate was obtained from all 168 patients. All were examined using our routine protocol; the contrast material was 600 mg/kg iodine. Cardiac output was measured with a portable electrical velocimeter within 5 minutes of starting the CT scan. We calculated contrast enhancement (per gram of iodine: [INCREMENT]HU/gI) of the abdominal aorta during the HAP and of the liver parenchyma during the PVP. We performed univariate and multivariate linear regression analysis between all patient characteristics and the [INCREMENT]HU/gI of aortic- and liver parenchymal enhancement. Univariate linear regression analysis demonstrated statistically significant correlations between the [INCREMENT]HU/gI and the age, sex, TBW, HT, and CO (all P linear regression analysis showed that only the TBW and CO were of independent predictive value (P linear regression analysis only the TBW and CO were significantly correlated with aortic and liver parenchymal enhancement; the age, sex, and HT were not. The CO was the only independent factor affecting aortic and liver parenchymal enhancement at hepatic CT when the protocol was adjusted for the TBW.
Multivariate Regression of Liver on Intestine of Mice: A ...
African Journals Online (AJOL)
FIRST LADY
pairs recovered. Linear, semi-logarithmic and logarithmic-logarithmic (log- log) regressions were performed. He chose the log-log curves because its variance was more uniform. The statistical comparison of .... E(U1| U2 = u2) is the regression function of U1 on U2, and Var (U1|U2 = u2) is the conditional covariance matrix.
Ultracentrifuge separative power modeling with multivariate regression using covariance matrix
International Nuclear Information System (INIS)
Migliavacca, Elder
2004-01-01
In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)
Real estate value prediction using multivariate regression models
Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav
2017-11-01
The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.
Understanding logistic regression analysis
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Nonparametric Regression Estimation for Multivariate Null Recurrent Processes
Directory of Open Access Journals (Sweden)
Biqing Cai
2015-04-01
Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Essentials of multivariate data analysis
Spencer, Neil H
2013-01-01
""… this text provides an overview at an introductory level of several methods in multivariate data analysis. It contains in-depth examples from one data set woven throughout the text, and a free [Excel] Add-In to perform the analyses in Excel, with step-by-step instructions provided for each technique. … could be used as a text (possibly supplemental) for courses in other fields where researchers wish to apply these methods without delving too deeply into the underlying statistics.""-The American Statistician, February 2015
Multiple linear regression analysis
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
DEFF Research Database (Denmark)
Tybjærg-Hansen, Anne
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements...... of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study......-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies...
Directory of Open Access Journals (Sweden)
Soyoung Park
2017-07-01
Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.
Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression
Yoo, W.W.; Ghosal, S
2016-01-01
In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a
Multivariate Generalized Multiscale Entropy Analysis
Directory of Open Access Journals (Sweden)
Anne Humeau-Heurtier
2016-11-01
Full Text Available Multiscale entropy (MSE was introduced in the 2000s to quantify systems’ complexity. MSE relies on (i a coarse-graining procedure to derive a set of time series representing the system dynamics on different time scales; (ii the computation of the sample entropy for each coarse-grained time series. A refined composite MSE (rcMSE—based on the same steps as MSE—also exists. Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy for short time series. The multivariate versions of MSE (MMSE and rcMSE (MrcMSE have also been introduced. In the coarse-graining step used in MSE, rcMSE, MMSE, and MrcMSE, the mean value is used to derive representations of the original data at different resolutions. A generalization of MSE was recently published, using the computation of different moments in the coarse-graining procedure. However, so far, this generalization only exists for univariate signals. We therefore herein propose an extension of this generalized MSE to multivariate data. The multivariate generalized algorithms of MMSE and MrcMSE presented herein (MGMSE and MGrcMSE, respectively are first analyzed through the processing of synthetic signals. We reveal that MGrcMSE shows better performance than MGMSE for short multivariate data. We then study the performance of MGrcMSE on two sets of short multivariate electroencephalograms (EEG available in the public domain. We report that MGrcMSE may show better performance than MrcMSE in distinguishing different types of multivariate EEG data. MGrcMSE could therefore supplement MMSE or MrcMSE in the processing of multivariate datasets.
Exploratory multivariate analysis by example using R
Husson, Francois; Pages, Jerome
2010-01-01
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the prin
Endpoint in plasma etch process using new modified w-multivariate charts and windowed regression
Zakour, Sihem Ben; Taleb, Hassen
2017-09-01
Endpoint detection is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done in the right way, especially if the etched area is very small (0.1%). It truly is a crucial part of supplying repeatable effects in every single wafer. When the film being etched has been completely cleared, the endpoint is reached. To ensure the desired device performance on the produced integrated circuit, the high optical emission spectroscopy (OES) sensor is employed. The huge number of gathered wavelengths (profiles) is then analyzed and pre-processed using a new proposed simple algorithm named Spectra peak selection (SPS) to select the important wavelengths, then we employ wavelet analysis (WA) to enhance the performance of detection by suppressing noise and redundant information. The selected and treated OES wavelengths are then used in modified multivariate control charts (MEWMA and Hotelling) for three statistics (mean, SD and CV) and windowed polynomial regression for mean. The employ of three aforementioned statistics is motivated by controlling mean shift, variance shift and their ratio (CV) if both mean and SD are not stable. The control charts show their performance in detecting endpoint especially W-mean Hotelling chart and the worst result is given by CV statistic. As the best detection of endpoint is given by the W-Hotelling mean statistic, this statistic will be used to construct a windowed wavelet Hotelling polynomial regression. This latter can only identify the window containing endpoint phenomenon.
Depth-weighted robust multivariate regression with application to sparse data
Dutta, Subhajit; Genton, Marc G.
2017-01-01
A robust method for multivariate regression is developed based on robust estimators of the joint location and scatter matrix of the explanatory and response variables using the notion of data depth. The multivariate regression estimator possesses desirable affine equivariance properties, achieves the best breakdown point of any affine equivariant estimator, and has an influence function which is bounded in both the response as well as the predictor variable. To increase the efficiency of this estimator, a re-weighted estimator based on robust Mahalanobis distances of the residual vectors is proposed. In practice, the method is more stable than existing methods that are constructed using subsamples of the data. The resulting multivariate regression technique is computationally feasible, and turns out to perform better than several popular robust multivariate regression methods when applied to various simulated data as well as a real benchmark data set. When the data dimension is quite high compared to the sample size it is still possible to use meaningful notions of data depth along with the corresponding depth values to construct a robust estimator in a sparse setting.
Kromhout, D.
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the
Martens, Edwin P; de Boer, Anthonius; Pestman, Wiebe R; Belitser, Svetlana V; Stricker, Bruno H Ch; Klungel, Olaf H
PURPOSE: To compare adjusted effects of drug treatment for hypertension on the risk of stroke from propensity score (PS) methods with a multivariable Cox proportional hazards (Cox PH) regression in an observational study with censored data. METHODS: From two prospective population-based cohort
Depth-weighted robust multivariate regression with application to sparse data
Dutta, Subhajit
2017-04-05
A robust method for multivariate regression is developed based on robust estimators of the joint location and scatter matrix of the explanatory and response variables using the notion of data depth. The multivariate regression estimator possesses desirable affine equivariance properties, achieves the best breakdown point of any affine equivariant estimator, and has an influence function which is bounded in both the response as well as the predictor variable. To increase the efficiency of this estimator, a re-weighted estimator based on robust Mahalanobis distances of the residual vectors is proposed. In practice, the method is more stable than existing methods that are constructed using subsamples of the data. The resulting multivariate regression technique is computationally feasible, and turns out to perform better than several popular robust multivariate regression methods when applied to various simulated data as well as a real benchmark data set. When the data dimension is quite high compared to the sample size it is still possible to use meaningful notions of data depth along with the corresponding depth values to construct a robust estimator in a sparse setting.
Multivariate refined composite multiscale entropy analysis
International Nuclear Information System (INIS)
Humeau-Heurtier, Anne
2016-01-01
Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.
Factor analysis of multivariate data
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.; Mahadevan, R.
A brief introduction to factor analysis is presented. A FORTRAN program, which can perform the Q-mode and R-mode factor analysis and the singular value decomposition of a given data matrix is presented in Appendix B. This computer program, uses...
MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.
2005-01-01
Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.
Multivariate nonparametric regression and visualization with R and applications to finance
Klemelä, Jussi
2014-01-01
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generatingmechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functio
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Directory of Open Access Journals (Sweden)
2016-12-01
Full Text Available This paper is on data analysis strategy in a complex, multidimensional, and dynamic domain. The focus is on the use of data mining techniques to explore the importance of multivariate structures; using climate variables which influences climate change. Techniques involved in data mining exercise vary according to the data structures. The multivariate analysis strategy considered here involved choosing an appropriate tool to analyze a process. Factor analysis is introduced into data mining technique in order to reveal the influencing impacts of factors involved as well as solving for multicolinearity effect among the variables. The temporal nature and multidimensionality of the target variables is revealed in the model using multidimensional regression estimates. The strategy of integrating the method of several statistical techniques, using climate variables in Nigeria was employed. R2 of 0.518 was obtained from the ordinary least square regression analysis carried out and the test was not significant at 5% level of significance. However, factor analysis regression strategy gave a good fit with R2 of 0.811 and the test was significant at 5% level of significance. Based on this study, model building should go beyond the usual confirmatory data analysis (CDA, rather it should be complemented with exploratory data analysis (EDA in order to achieve a desired result.
Multivariate survival analysis and competing risks
Crowder, Martin J
2012-01-01
Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.
Polylinear regression analysis in radiochemistry
International Nuclear Information System (INIS)
Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.
1995-01-01
A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis
Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru
2010-08-01
The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. Copyright © 2010 John Wiley & Sons, Ltd.
Multivariate Analysis of Ladle Vibration
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle
2016-08-01
The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent
Selecting minimum dataset soil variables using PLSR as a regressive multivariate method
Stellacci, Anna Maria; Armenise, Elena; Castellini, Mirko; Rossi, Roberta; Vitti, Carolina; Leogrande, Rita; De Benedetto, Daniela; Ferrara, Rossana M.; Vivaldi, Gaetano A.
2017-04-01
Long-term field experiments and science-based tools that characterize soil status (namely the soil quality indices, SQIs) assume a strategic role in assessing the effect of agronomic techniques and thus in improving soil management especially in marginal environments. Selecting key soil variables able to best represent soil status is a critical step for the calculation of SQIs. Current studies show the effectiveness of statistical methods for variable selection to extract relevant information deriving from multivariate datasets. Principal component analysis (PCA) has been mainly used, however supervised multivariate methods and regressive techniques are progressively being evaluated (Armenise et al., 2013; de Paul Obade et al., 2016; Pulido Moncada et al., 2014). The present study explores the effectiveness of partial least square regression (PLSR) in selecting critical soil variables, using a dataset comparing conventional tillage and sod-seeding on durum wheat. The results were compared to those obtained using PCA and stepwise discriminant analysis (SDA). The soil data derived from a long-term field experiment in Southern Italy. On samples collected in April 2015, the following set of variables was quantified: (i) chemical: total organic carbon and nitrogen (TOC and TN), alkali-extractable C (TEC and humic substances - HA-FA), water extractable N and organic C (WEN and WEOC), Olsen extractable P, exchangeable cations, pH and EC; (ii) physical: texture, dry bulk density (BD), macroporosity (Pmac), air capacity (AC), and relative field capacity (RFC); (iii) biological: carbon of the microbial biomass quantified with the fumigation-extraction method. PCA and SDA were previously applied to the multivariate dataset (Stellacci et al., 2016). PLSR was carried out on mean centered and variance scaled data of predictors (soil variables) and response (wheat yield) variables using the PLS procedure of SAS/STAT. In addition, variable importance for projection (VIP
Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.
2018-05-01
Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.
application of multilinear regression analysis in modeling of soil
African Journals Online (AJOL)
Windows User
Accordingly [1, 3] in their work, they applied linear regression ... (MLRA) is a statistical technique that uses several explanatory ... order to check this, they adopted bivariate correlation analysis .... groups, namely A-1 through A-7, based on their relative expected ..... Multivariate Regression in Gorgan Province North of Iran” ...
On logistic regression analysis of dichotomized responses.
Lu, Kaifeng
2017-01-01
We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Multivariate Analysis of Schools and Educational Policy.
Kiesling, Herbert J.
This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…
Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza
2014-10-01
The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of
Reporting quality of multivariable logistic regression in selected Indian medical journals.
Kumar, R; Indrayan, A; Chhabra, P
2012-01-01
Use of multivariable logistic regression (MLR) modeling has steeply increased in the medical literature over the past few years. Testing of model assumptions and adequate reporting of MLR allow the reader to interpret results more accurately. To review the fulfillment of assumptions and reporting quality of MLR in selected Indian medical journals using established criteria. Analysis of published literature. Medknow.com publishes 68 Indian medical journals with open access. Eight of these journals had at least five articles using MLR between the years 1994 to 2008. Articles from each of these journals were evaluated according to the previously established 10-point quality criteria for reporting and to test the MLR model assumptions. SPSS 17 software and non-parametric test (Kruskal-Wallis H, Mann Whitney U, Spearman Correlation). One hundred and nine articles were finally found using MLR for analyzing the data in the selected eight journals. The number of such articles gradually increased after year 2003, but quality score remained almost similar over time. P value, odds ratio, and 95% confidence interval for coefficients in MLR was reported in 75.2% and sufficient cases (>10) per covariate of limiting sample size were reported in the 58.7% of the articles. No article reported the test for conformity of linear gradient for continuous covariates. Total score was not significantly different across the journals. However, involvement of statistician or epidemiologist as a co-author improved the average quality score significantly (P=0.014). Reporting of MLR in many Indian journals is incomplete. Only one article managed to score 8 out of 10 among 109 articles under review. All others scored less. Appropriate guidelines in instructions to authors, and pre-publication review of articles using MLR by a qualified statistician may improve quality of reporting.
Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.
2017-06-01
The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.
Multivariate Analysis of Industrial Scale Fermentation Data
DEFF Research Database (Denmark)
Mears, Lisa; Nørregård, Rasmus; Stocks, Stuart M.
2015-01-01
Multivariate analysis allows process understanding to be gained from the vast and complex datasets recorded from fermentation processes, however the application of such techniques to this field can be limited by the data pre-processing requirements and data handling. In this work many iterations...
Robust methods for multivariate data analysis A1
DEFF Research Database (Denmark)
Frosch, Stina; Von Frese, J.; Bro, Rasmus
2005-01-01
Outliers may hamper proper classical multivariate analysis, and lead to incorrect conclusions. To remedy the problem of outliers, robust methods are developed in statistics and chemometrics. Robust methods reduce or remove the effect of outlying data points and allow the ?good? data to primarily...... determine the result. This article reviews the most commonly used robust multivariate regression and exploratory methods that have appeared since 1996 in the field of chemometrics. Special emphasis is put on the robust versions of chemometric standard tools like PCA and PLS and the corresponding robust...
Regression analysis with categorized regression calibrated exposure: some interesting findings
Directory of Open Access Journals (Sweden)
Hjartåker Anette
2006-07-01
Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a
Multivariate linear regression of high-dimensional fMRI data with multiple target variables.
Valente, Giancarlo; Castellanos, Agustin Lage; Vanacore, Gianluca; Formisano, Elia
2014-05-01
Multivariate regression is increasingly used to study the relation between fMRI spatial activation patterns and experimental stimuli or behavioral ratings. With linear models, informative brain locations are identified by mapping the model coefficients. This is a central aspect in neuroimaging, as it provides the sought-after link between the activity of neuronal populations and subject's perception, cognition or behavior. Here, we show that mapping of informative brain locations using multivariate linear regression (MLR) may lead to incorrect conclusions and interpretations. MLR algorithms for high dimensional data are designed to deal with targets (stimuli or behavioral ratings, in fMRI) separately, and the predictive map of a model integrates information deriving from both neural activity patterns and experimental design. Not accounting explicitly for the presence of other targets whose associated activity spatially overlaps with the one of interest may lead to predictive maps of troublesome interpretation. We propose a new model that can correctly identify the spatial patterns associated with a target while achieving good generalization. For each target, the training is based on an augmented dataset, which includes all remaining targets. The estimation on such datasets produces both maps and interaction coefficients, which are then used to generalize. The proposed formulation is independent of the regression algorithm employed. We validate this model on simulated fMRI data and on a publicly available dataset. Results indicate that our method achieves high spatial sensitivity and good generalization and that it helps disentangle specific neural effects from interaction with predictive maps associated with other targets. Copyright © 2013 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Yoonsu Shin
2016-01-01
Full Text Available In the 5G era, the operational cost of mobile wireless networks will significantly increase. Further, massive network capacity and zero latency will be needed because everything will be connected to mobile networks. Thus, self-organizing networks (SON are needed, which expedite automatic operation of mobile wireless networks, but have challenges to satisfy the 5G requirements. Therefore, researchers have proposed a framework to empower SON using big data. The recent framework of a big data-empowered SON analyzes the relationship between key performance indicators (KPIs and related network parameters (NPs using machine-learning tools, and it develops regression models using a Gaussian process with those parameters. The problem, however, is that the methods of finding the NPs related to the KPIs differ individually. Moreover, the Gaussian process regression model cannot determine the relationship between a KPI and its various related NPs. In this paper, to solve these problems, we proposed multivariate multiple regression models to determine the relationship between various KPIs and NPs. If we assume one KPI and multiple NPs as one set, the proposed models help us process multiple sets at one time. Also, we can find out whether some KPIs are conflicting or not. We implement the proposed models using MapReduce.
Non-proportional odds multivariate logistic regression of ordinal family data.
Zaloumis, Sophie G; Scurrah, Katrina J; Harrap, Stephen B; Ellis, Justine A; Gurrin, Lyle C
2015-03-01
Methods to examine whether genetic and/or environmental sources can account for the residual variation in ordinal family data usually assume proportional odds. However, standard software to fit the non-proportional odds model to ordinal family data is limited because the correlation structure of family data is more complex than for other types of clustered data. To perform these analyses we propose the non-proportional odds multivariate logistic regression model and take a simulation-based approach to model fitting using Markov chain Monte Carlo methods, such as partially collapsed Gibbs sampling and the Metropolis algorithm. We applied the proposed methodology to male pattern baldness data from the Victorian Family Heart Study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the degrees of freedom of reduced-rank estimators in multivariate regression.
Mukherjee, A; Chen, K; Wang, N; Zhu, J
We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.
Delwiche, Stephen R; Reeves, James B
2010-01-01
In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various
Multivariate calibration applied to the quantitative analysis of infrared spectra
Energy Technology Data Exchange (ETDEWEB)
Haaland, D.M.
1991-01-01
Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.
Power Estimation in Multivariate Analysis of Variance
Directory of Open Access Journals (Sweden)
Jean François Allaire
2007-09-01
Full Text Available Power is often overlooked in designing multivariate studies for the simple reason that it is believed to be too complicated. In this paper, it is shown that power estimation in multivariate analysis of variance (MANOVA can be approximated using a F distribution for the three popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk`s likelihood ratio. Consequently, the same procedure, as in any statistical test, can be used: computation of the critical F value, computation of the noncentral parameter (as a function of the effect size and finally estimation of power using a noncentral F distribution. Various numerical examples are provided which help to understand and to apply the method. Problems related to post hoc power estimation are discussed.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo
2015-09-01
Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.
Regression Analysis by Example. 5th Edition
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Some developments in multivariate image analysis
DEFF Research Database (Denmark)
Kucheryavskiy, Sergey
be up to several million. The main MIA tool for exploratory analysis is score density plot – all pixels are projected into principal component space and on the corresponding scores plots are colorized according to their density (how many pixels are crowded in the unit area of the plot). Looking...... for and analyzing patterns on these plots and the original image allow to do interactive analysis, to get some hidden information, build a supervised classification model, and much more. In the present work several alternative methods to original principal component analysis (PCA) for building the projection......Multivariate image analysis (MIA), one of the successful chemometric applications, now is used widely in different areas of science and industry. Introduced in late 80s it has became very popular with hyperspectral imaging, where MIA is one of the most efficient tools for exploratory analysis...
Survival analysis II: Cox regression
Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.
2011-01-01
In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Multivariate Analysis for the Processing of Signals
Directory of Open Access Journals (Sweden)
Beattie J.R.
2014-01-01
Full Text Available Real-world experiments are becoming increasingly more complex, needing techniques capable of tracking this complexity. Signal based measurements are often used to capture this complexity, where a signal is a record of a sample’s response to a parameter (e.g. time, displacement, voltage, wavelength that is varied over a range of values. In signals the responses at each value of the varied parameter are related to each other, depending on the composition or state sample being measured. Since signals contain multiple information points, they have rich information content but are generally complex to comprehend. Multivariate Analysis (MA has profoundly transformed their analysis by allowing gross simplification of the tangled web of variation. In addition MA has also provided the advantage of being much more robust to the influence of noise than univariate methods of analysis. In recent years, there has been a growing awareness that the nature of the multivariate methods allows exploitation of its benefits for purposes other than data analysis, such as pre-processing of signals with the aim of eliminating irrelevant variations prior to analysis of the signal of interest. It has been shown that exploiting multivariate data reduction in an appropriate way can allow high fidelity denoising (removal of irreproducible non-signals, consistent and reproducible noise-insensitive correction of baseline distortions (removal of reproducible non-signals, accurate elimination of interfering signals (removal of reproducible but unwanted signals and the standardisation of signal amplitude fluctuations. At present, the field is relatively small but the possibilities for much wider application are considerable. Where signal properties are suitable for MA (such as the signal being stationary along the x-axis, these signal based corrections have the potential to be highly reproducible, and highly adaptable and are applicable in situations where the data is noisy or
Cannon, Alex
2017-04-01
univariate technique, and cannot incorporate information from additional covariates, for example ENSO state or physiographic controls on extreme rainfall within a region. Here, the univariate MQR model is extended to allow the use of multiple covariates. Multivariate monotone quantile regression (MMQR) is based on a single hidden-layer feedforward network with the quantile regression error function and partial monotonicity constraints. The MMQR model is demonstrated via Monte Carlo simulations and the estimation and visualization of regional trends in moderate rainfall extremes based on homogenized sub-daily precipitation data at stations in Canada.
Particulate characterization by PIXE multivariate spectral analysis
International Nuclear Information System (INIS)
Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.
2007-01-01
Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media
Handbook of univariate and multivariate data analysis with IBM SPSS
Ho, Robert
2013-01-01
Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows.New to the Second EditionThree new chapters on multiple discriminant analysis, logistic regression, and canonical correlationNew section on how to deal with missing dataCoverage of te
Classification of adulterated honeys by multivariate analysis.
Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad
2017-06-01
In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Multivariate analysis of data in sensory science
Naes, T; Risvik, E
1996-01-01
The state-of-the-art of multivariate analysis in sensory science is described in this volume. Both methods for aggregated and individual sensory profiles are discussed. Processes and results are presented in such a way that they can be understood not only by statisticians but also by experienced sensory panel leaders and users of sensory analysis. The techniques presented are focused on examples and interpretation rather than on the technical aspects, with an emphasis on new and important methods which are possibly not so well known to scientists in the field. Important features of the book are discussions on the relationship among the methods with a strong accent on the connection between problems and methods. All procedures presented are described in relation to sensory data and not as completely general statistical techniques. Sensory scientists, applied statisticians, chemometricians, those working in consumer science, food scientists and agronomers will find this book of value.
Advanced event reweighting using multivariate analysis
International Nuclear Information System (INIS)
Martschei, D; Feindt, M; Honc, S; Wagner-Kuhr, J
2012-01-01
Multivariate analysis (MVA) methods, especially discrimination techniques such as neural networks, are key ingredients in modern data analysis and play an important role in high energy physics. They are usually trained on simulated Monte Carlo (MC) samples to discriminate so called 'signal' from 'background' events and are then applied to data to select real events of signal type. We here address procedures that improve this work flow. This will be the enhancement of data / MC agreement by reweighting MC samples on a per event basis. Then training MVAs on real data using the sPlot technique will be discussed. Finally we will address the construction of MVAs whose discriminator is independent of a certain control variable, i.e. cuts on this variable will not change the discriminator shape.
ALONSO ABAD, Ariel; Rodriguez, O.; TIBALDI, Fabian; CORTINAS ABRAHANTES, Jose
2002-01-01
In medical studies the categorical endpoints are quite often. Even though nowadays some models for handling this multicategorical variables have been developed their use is not common. This work shows an application of the Multivariate Generalized Linear Models to the analysis of Clinical Trials data. After a theoretical introduction models for ordinal and nominal responses are applied and the main results are discussed. multivariate analysis; multivariate logistic regression; multicategor...
Al-Khatib, Issam A; Abu Fkhidah, Ismail; Khatib, Jumana I; Kontogianni, Stamatia
2016-03-01
Forecasting of hospital solid waste generation is a critical challenge for future planning. The composition and generation rate of hospital solid waste in hospital units was the field where the proposed methodology of the present article was applied in order to validate the results and secure the outcomes of the management plan in national hospitals. A set of three multiple-variable regression models has been derived for estimating the daily total hospital waste, general hospital waste, and total hazardous waste as a function of number of inpatients, number of total patients, and number of beds. The application of several key indicators and validation procedures indicates the high significance and reliability of the developed models in predicting the hospital solid waste of any hospital. Methodology data were drawn from existent scientific literature. Also, useful raw data were retrieved from international organisations and the investigated hospitals' personnel. The primal generation outcomes are compared with other local hospitals and also with hospitals from other countries. The main outcome, which is the developed model results, are presented and analysed thoroughly. The goal is this model to act as leverage in the discussions among governmental authorities on the implementation of a national plan for safe hospital waste management in Palestine. © The Author(s) 2016.
Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.
2015-12-01
Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
International Nuclear Information System (INIS)
Lima, Reginaldo Agapito de; Ribeiro Junior, Leopoldo Uberto
2010-01-01
For implantation of a SHP, the barrage is the main structure where its sizing represents from 30% - 50% of general cost of civil works. Considering this it is very important to have a fast, didactic and accurate tool for elaborating a budget, also allowing a quantitative analysis of inherent cost for civil building of barrages concrete made for small hydropower plants. In face of this, the multi changing regression tool is very important as it allows a fast and correct establishing of preliminary costs, even approximate, for estimates of barrages in concrete cost, enabling to ease the budget, guiding feasibility decisions for selecting or neglecting new alternatives of fall. (author)
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
Applied regression analysis a research tool
Pantula, Sastry; Dickey, David
1998-01-01
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...
Multivariate statistical analysis of wildfires in Portugal
Costa, Ricardo; Caramelo, Liliana; Pereira, Mário
2013-04-01
Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Regression Analysis and the Sociological Imagination
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Multivariate statistical analysis of a multi-step industrial processes
DEFF Research Database (Denmark)
Reinikainen, S.P.; Høskuldsson, Agnar
2007-01-01
Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized...... efficiently, even if this information may reveal significant knowledge about process dynamics or ongoing phenomena. When studying the process data, it may be important to analyse the data in the light of the physical or time-wise development of each process step. In this paper, a unified approach to analyse...... multivariate multi-step processes, where results from each step are used to evaluate future results, is presented. The methods presented are based on Priority PLS Regression. The basic idea is to compute the weights in the regression analysis for given steps, but adjust all data by the resulting score vectors...
Directory of Open Access Journals (Sweden)
Kehinde Anthony Mogaji
2016-07-01
Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.
An Introduction to Applied Multivariate Analysis
Raykov, Tenko
2008-01-01
Focuses on the core multivariate statistics topics which are of fundamental relevance for its understanding. This book emphasis on the topics that are critical to those in the behavioral, social, and educational sciences.
Multivariate Analysis and Prediction of Dioxin-Furan ...
Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE
Method for statistical data analysis of multivariate observations
Gnanadesikan, R
1997-01-01
A practical guide for multivariate statistical techniques-- now updated and revised In recent years, innovations in computer technology and statistical methodologies have dramatically altered the landscape of multivariate data analysis. This new edition of Methods for Statistical Data Analysis of Multivariate Observations explores current multivariate concepts and techniques while retaining the same practical focus of its predecessor. It integrates methods and data-based interpretations relevant to multivariate analysis in a way that addresses real-world problems arising in many areas of inte
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S
2017-12-01
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.
Multivariate analysis of quantitative traits can effectively classify rapeseed germplasm
Directory of Open Access Journals (Sweden)
Jankulovska Mirjana
2014-01-01
Full Text Available In this study, the use of different multivariate approaches to classify rapeseed genotypes based on quantitative traits has been presented. Tree regression analysis, PCA analysis and two-way cluster analysis were applied in order todescribe and understand the extent of genetic variability in spring rapeseed genotype by trait data. The traits which highly influenced seed and oil yield in rapeseed were successfully identified by the tree regression analysis. Principal predictor for both response variables was number of pods per plant (NP. NP and 1000 seed weight could help in the selection of high yielding genotypes. High values for both traits and oil content could lead to high oil yielding genotypes. These traits may serve as indirect selection criteria and can lead to improvement of seed and oil yield in rapeseed. Quantitative traits that explained most of the variability in the studied germplasm were classified using principal component analysis. In this data set, five PCs were identified, out of which the first three PCs explained 63% of the total variance. It helped in facilitating the choice of variables based on which the genotypes’ clustering could be performed. The two-way cluster analysissimultaneously clustered genotypes and quantitative traits. The final number of clusters was determined using bootstrapping technique. This approach provided clear overview on the variability of the analyzed genotypes. The genotypes that have similar performance regarding the traits included in this study can be easily detected on the heatmap. Genotypes grouped in the clusters 1 and 8 had high values for seed and oil yield, and relatively short vegetative growth duration period and those in cluster 9, combined moderate to low values for vegetative growth duration and moderate to high seed and oil yield. These genotypes should be further exploited and implemented in the rapeseed breeding program. The combined application of these multivariate methods
International Nuclear Information System (INIS)
Migliavacca, Elder; Andrade, Delvonei Alves de
2004-01-01
In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting in order to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 173 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process control variables, which significantly influence the δU values, are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow F and cut θ . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heterocedasticity with any regression model variable. The response curves are made relating the separative power with the control variables F and θ, to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)
Prediction of diffuse solar irradiance using machine learning and multivariable regression
International Nuclear Information System (INIS)
Lou, Siwei; Li, Danny H.W.; Lam, Joseph C.; Chan, Wilco W.H.
2016-01-01
Highlights: • 54.9% of the annual global irradiance is composed by its diffuse part in HK. • Hourly diffuse irradiance was predicted by accessible variables. • The importance of variable in prediction was assessed by machine learning. • Simple prediction equations were developed with the knowledge of variable importance. - Abstract: The paper studies the horizontal global, direct-beam and sky-diffuse solar irradiance data measured in Hong Kong from 2008 to 2013. A machine learning algorithm was employed to predict the horizontal sky-diffuse irradiance and conduct sensitivity analysis for the meteorological variables. Apart from the clearness index (horizontal global/extra atmospheric solar irradiance), we found that predictors including solar altitude, air temperature, cloud cover and visibility are also important in predicting the diffuse component. The mean absolute error (MAE) of the logistic regression using the aforementioned predictors was less than 21.5 W/m"2 and 30 W/m"2 for Hong Kong and Denver, USA, respectively. With the systematic recording of the five variables for more than 35 years, the proposed model would be appropriate to estimate of long-term diffuse solar radiation, study climate change and develope typical meteorological year in Hong Kong and places with similar climates.
Multivariable nonlinear analysis of foreign exchange rates
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2003-05-01
We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
TMVA(Toolkit for Multivariate Analysis) new architectures design and implementation.
Zapata Mesa, Omar Andres
2016-01-01
Toolkit for Multivariate Analysis(TMVA) is a package in ROOT for machine learning algorithms for classification and regression of the events in the detectors. In TMVA, we are developing new high level algorithms to perform multivariate analysis as cross validation, hyper parameter optimization, variable importance etc... Almost all the algorithms are expensive and designed to process a huge amount of data. It is very important to implement the new technologies on parallel computing to reduce the processing times.
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Dental age assessment of young Iranian adults using third molars: A multivariate regression study.
Bagherpour, Ali; Anbiaee, Najmeh; Partovi, Parnia; Golestani, Shayan; Afzalinasab, Shakiba
2012-10-01
In recent years, a noticeable increase in forensic age estimations of living individuals has been observed. Radiologic assessment of the mineralisation stage of third molars is of particular importance, with regard to the relevant age group. To attain a referral database and regression equations for dental age estimation of unaccompanied minors in an Iranian population was the goal of this study. Moreover, determination was made concerning the probability of an individual being over the age of 18 in case of full third molar(s) development. Using the scoring system of Gleiser and Hunt, modified by Köhler, an investigation of a cross-sectional sample of 1274 orthopantomograms of 885 females and 389 males aged between 15 and 22 years was carried out. Using kappa statistics, intra-observer reliability was tested. With Spearman correlation coefficient, correlation between the scores of all four wisdom teeth, was evaluated. We also carried out the Wilcoxon signed-rank test on asymmetry and calculated the regression formulae. A strong intra-observer agreement was displayed by the kappa value. No significant difference (p-value for upper and lower jaws were 0.07 and 0.59, respectively) was discovered by Wilcoxon signed-rank test for left and right asymmetry. The developmental stage of upper right and upper left third molars yielded the greatest correlation coefficient. The probability of an individual being over the age of 18 is 95.6% for males and 100.0% for females in case four fully developed third molars are present. Taking into consideration gender, location and number of wisdom teeth, regression formulae were arrived at. Use of population-specific standards is recommended as a means of improving the accuracy of forensic age estimates based on third molars mineralisation. To obtain more exact regression formulae, wider age range studies are recommended. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Directory of Open Access Journals (Sweden)
Dilan Rasim Aşkın
2016-01-01
Full Text Available An intelligent regression technique is applied for sheet metal bending processes to improve bending performance. This study is a part of another extensive study, automated sheet bending assistance for press brakes. Data related to material properties of sheet metal is collected in an online manner and fed to an intelligent system for determining the most accurate punch displacement without any offline iteration or calibration. The overall system aims to reduce the production time while increasing the performance of press brakes.
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Linear regression and sensitivity analysis in nuclear reactor design
International Nuclear Information System (INIS)
Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.
2015-01-01
Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data
Multivariate analysis of 2-DE protein patterns - Practical approaches
DEFF Research Database (Denmark)
Jacobsen, Charlotte; Jacobsen, Susanne; Grove, H.
2007-01-01
Practical approaches to the use of multivariate data analysis of 2-DE protein patterns are demonstrated by three independent strategies for the image analysis and the multivariate analysis on the same set of 2-DE data. Four wheat varieties were selected on the basis of their baking quality. Two...... of the varieties were of strong baking quality and hard wheat kernel and two were of weak baking quality and soft kernel. Gliadins at different stages of grain development were analyzed by the application of multivariate data analysis on images of 2-DEs. Patterns related to the wheat varieties, harvest times...
Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y
2008-02-18
The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.
The analysis of multivariate group differences using common principal components
Bechger, T.M.; Blanca, M.J.; Maris, G.
2014-01-01
Although it is simple to determine whether multivariate group differences are statistically significant or not, such differences are often difficult to interpret. This article is about common principal components analysis as a tool for the exploratory investigation of multivariate group differences
HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS
International Nuclear Information System (INIS)
Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi
2009-01-01
The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.
Robust Mediation Analysis Based on Median Regression
Yuan, Ying; MacKinnon, David P.
2014-01-01
Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925
International Nuclear Information System (INIS)
Li, Yanting; He, Yong; Su, Yan; Shu, Lianjie
2016-01-01
Highlights: • Suggests a nonparametric model based on MARS for output power prediction. • Compare the MARS model with a wide variety of prediction models. • Show that the MARS model is able to provide an overall good performance in both the training and testing stages. - Abstract: Both linear and nonlinear models have been proposed for forecasting the power output of photovoltaic systems. Linear models are simple to implement but less flexible. Due to the stochastic nature of the power output of PV systems, nonlinear models tend to provide better forecast than linear models. Motivated by this, this paper suggests a fairly simple nonlinear regression model known as multivariate adaptive regression splines (MARS), as an alternative to forecasting of solar power output. The MARS model is a data-driven modeling approach without any assumption about the relationship between the power output and predictors. It maintains simplicity of the classical multiple linear regression (MLR) model while possessing the capability of handling nonlinearity. It is simpler in format than other nonlinear models such as ANN, k-nearest neighbors (KNN), classification and regression tree (CART), and support vector machine (SVM). The MARS model was applied on the daily output of a grid-connected 2.1 kW PV system to provide the 1-day-ahead mean daily forecast of the power output. The comparisons with a wide variety of forecast models show that the MARS model is able to provide reliable forecast performance.
Functional data analysis of generalized regression quantiles
Guo, Mengmeng
2013-11-05
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Functional data analysis of generalized regression quantiles
Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl
2013-01-01
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Multivariate Analysis and Machine Learning in Cerebral Palsy Research
Directory of Open Access Journals (Sweden)
Jing Zhang
2017-12-01
Full Text Available Cerebral palsy (CP, a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.
Multivariate Analysis and Machine Learning in Cerebral Palsy Research.
Zhang, Jing
2017-01-01
Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.
Matrix-based introduction to multivariate data analysis
Adachi, Kohei
2016-01-01
This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on ...
Search for the top quark using multivariate analysis techniques
International Nuclear Information System (INIS)
Bhat, P.C.
1994-08-01
The D0 collaboration is developing top search strategies using multivariate analysis techniques. We report here on applications of the H-matrix method to the eμ channel and neural networks to the e+jets channel
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-06-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
International Nuclear Information System (INIS)
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-01-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
Energy Technology Data Exchange (ETDEWEB)
Glascock, M. D.; Neff, H. [University of Missouri, Research Reactor Center (United States); Vaughn, K. J. [Pacific Lutheran University, Department of Anthropology (United States)
2004-06-15
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
Regression analysis of radiological parameters in nuclear power plants
International Nuclear Information System (INIS)
Bhargava, Pradeep; Verma, R.K.; Joshi, M.L.
2003-01-01
Indian Pressurized Heavy Water Reactors (PHWRs) have now attained maturity in their operations. Indian PHWR operation started in the year 1972. At present there are 12 operating PHWRs collectively producing nearly 2400 MWe. Sufficient radiological data are available for analysis to draw inferences which may be utilised for better understanding of radiological parameters influencing the collective internal dose. Tritium is the main contributor to the occupational internal dose originating in PHWRs. An attempt has been made to establish the relationship between radiological parameters, which may be useful to draw inferences about the internal dose. Regression analysis have been done to find out the relationship, if it exist, among the following variables: A. Specific tritium activity of heavy water (Moderator and PHT) and tritium concentration in air at various work locations. B. Internal collective occupational dose and tritium release to environment through air route. C. Specific tritium activity of heavy water (Moderator and PHT) and collective internal occupational dose. For this purpose multivariate regression analysis has been carried out. D. Tritium concentration in air at various work location and tritium release to environment through air route. For this purpose multivariate regression analysis has been carried out. This analysis reveals that collective internal dose has got very good correlation with the tritium activity release to the environment through air route. Whereas no correlation has been found between specific tritium activity in the heavy water systems and collective internal occupational dose. The good correlation has been found in case D and F test reveals that it is not by chance. (author)
EURO AREA FISCAL STRUCTURES. A MULTIVARIATE ANALYSIS
Directory of Open Access Journals (Sweden)
HURDUZEU Gheorghe
2014-07-01
taxes on income of corporations and taxes on income of individuals and households and other current taxes. Actual social contributions were also split into employer’s actual contributions, employee’s social contributions and social contributions of self- and non-employed persons. As the primary data analysis revealed many differences between Euro Area member states, but also similarities concerning various fiscal aggregates, we completed the analysis through multidimensional analysis, with the aims of classifying Euro Area member states into subgroups with similar fiscal structures. Taking into consideration the above mentioned variables, we used cluster analysis in order to determine which member states have similar fiscal structures and which are the main similarities that characterize Euro Area in this respect.
Multivariate analysis for selecting apple mutants
International Nuclear Information System (INIS)
Faedi, W.; Bagnara, G.L.; Rosati, P.; Cecchini, M.
1992-01-01
The mutlivariate analysis of four year records on several vegetative and productive traits of twenty-one apple mutants (3 of 'Jonathan', 3 of 'Ozark Gold', 14 of 'Mollie's Delicious', 1 of 'Neipling's Early Stayman)' induced by gamma radiations showed that observation of some traits of one-year-old shoots is the most efficient way to reveal compact growing apple mutants. In particular, basal cross-section area, total length and leaf area resulted the most appropriate parameters, while internode length together with conopy height and width are less appropriate. The most interesting mutants we found are: one of 'Mollie's Delicious for the best balance among tree and fruit traits and for high skin color; one of 'Neipling's Early Stayman' with an earlier and more extensively red colored apple than the original clone. (author)
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
A method for nonlinear exponential regression analysis
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Regression analysis for the social sciences
Gordon, Rachel A
2010-01-01
The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.
DEFF Research Database (Denmark)
Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming
2006-01-01
Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...
Energy Technology Data Exchange (ETDEWEB)
Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)
2016-12-15
The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.
Directory of Open Access Journals (Sweden)
Abdelfattah M. Selim
2018-03-01
Full Text Available Aim: The present cross-sectional study was conducted to determine the seroprevalence and potential risk factors associated with Bovine viral diarrhea virus (BVDV disease in cattle and buffaloes in Egypt, to model the potential risk factors associated with the disease using logistic regression (LR models, and to fit the best predictive model for the current data. Materials and Methods: A total of 740 blood samples were collected within November 2012-March 2013 from animals aged between 6 months and 3 years. The potential risk factors studied were species, age, sex, and herd location. All serum samples were examined with indirect ELIZA test for antibody detection. Data were analyzed with different statistical approaches such as Chi-square test, odds ratios (OR, univariable, and multivariable LR models. Results: Results revealed a non-significant association between being seropositive with BVDV and all risk factors, except for species of animal. Seroprevalence percentages were 40% and 23% for cattle and buffaloes, respectively. OR for all categories were close to one with the highest OR for cattle relative to buffaloes, which was 2.237. Likelihood ratio tests showed a significant drop of the -2LL from univariable LR to multivariable LR models. Conclusion: There was an evidence of high seroprevalence of BVDV among cattle as compared with buffaloes with the possibility of infection in different age groups of animals. In addition, multivariable LR model was proved to provide more information for association and prediction purposes relative to univariable LR models and Chi-square tests if we have more than one predictor.
Credit Scoring Problem Based on Regression Analysis
Khassawneh, Bashar Suhil Jad Allah
2014-01-01
ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....
The Inappropriate Symmetries of Multivariate Statistical Analysis in Geometric Morphometrics.
Bookstein, Fred L
In today's geometric morphometrics the commonest multivariate statistical procedures, such as principal component analysis or regressions of Procrustes shape coordinates on Centroid Size, embody a tacit roster of symmetries -axioms concerning the homogeneity of the multiple spatial domains or descriptor vectors involved-that do not correspond to actual biological fact. These techniques are hence inappropriate for any application regarding which we have a-priori biological knowledge to the contrary (e.g., genetic/morphogenetic processes common to multiple landmarks, the range of normal in anatomy atlases, the consequences of growth or function for form). But nearly every morphometric investigation is motivated by prior insights of this sort. We therefore need new tools that explicitly incorporate these elements of knowledge, should they be quantitative, to break the symmetries of the classic morphometric approaches. Some of these are already available in our literature but deserve to be known more widely: deflated (spatially adaptive) reference distributions of Procrustes coordinates, Sewall Wright's century-old variant of factor analysis, the geometric algebra of importing explicit biomechanical formulas into Procrustes space. Other methods, not yet fully formulated, might involve parameterized models for strain in idealized forms under load, principled approaches to the separation of functional from Brownian aspects of shape variation over time, and, in general, a better understanding of how the formalism of landmarks interacts with the many other approaches to quantification of anatomy. To more powerfully organize inferences from the high-dimensional measurements that characterize so much of today's organismal biology, tomorrow's toolkit must rely neither on principal component analysis nor on the Procrustes distance formula, but instead on sound prior biological knowledge as expressed in formulas whose coefficients are not all the same. I describe the problems
Multivariate Volatility Impulse Response Analysis of GFC News Events
D.E. Allen (David); M.J. McAleer (Michael); R.J. Powell (Robert); A.K. Singh (Abhay)
2015-01-01
textabstractThis paper applies the Hafner and Herwartz (2006) (hereafter HH) approach to the analysis of multivariate GARCH models using volatility impulse response analysis. The data set features ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index from the
Multivariate Volatility Impulse Response Analysis of GFC News Events
D.E. Allen (David); M.J. McAleer (Michael); R.J. Powell (Robert)
2015-01-01
markdownabstract__Abstract__ This paper applies the Hafner and Herwartz (2006) (hereafter HH) approach to the analysis of multivariate GARCH models using volatility impulse response analysis. The data set features ten years of daily returns series for the New York Stock Exchange Index and the
Regression analysis for the social sciences
Gordon, Rachel A
2015-01-01
Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.
Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion
International Nuclear Information System (INIS)
Garcia-Cabrejo, Oscar; Valocchi, Albert
2014-01-01
Many mathematical and computational models used in engineering produce multivariate output that shows some degree of correlation. However, conventional approaches to Global Sensitivity Analysis (GSA) assume that the output variable is scalar. These approaches are applied on each output variable leading to a large number of sensitivity indices that shows a high degree of redundancy making the interpretation of the results difficult. Two approaches have been proposed for GSA in the case of multivariate output: output decomposition approach [9] and covariance decomposition approach [14] but they are computationally intensive for most practical problems. In this paper, Polynomial Chaos Expansion (PCE) is used for an efficient GSA with multivariate output. The results indicate that PCE allows efficient estimation of the covariance matrix and GSA on the coefficients in the approach defined by Campbell et al. [9], and the development of analytical expressions for the multivariate sensitivity indices defined by Gamboa et al. [14]. - Highlights: • PCE increases computational efficiency in 2 approaches of GSA of multivariate output. • Efficient estimation of covariance matrix of output from coefficients of PCE. • Efficient GSA on coefficients of orthogonal decomposition of the output using PCE. • Analytical expressions of multivariate sensitivity indices from coefficients of PCE
Conoscenti, Christian; Ciaccio, Marilena; Caraballo-Arias, Nathalie Almaru; Gómez-Gutiérrez, Álvaro; Rotigliano, Edoardo; Agnesi, Valerio
2015-08-01
In this paper, terrain susceptibility to earth-flow occurrence was evaluated by using geographic information systems (GIS) and two statistical methods: Logistic regression (LR) and multivariate adaptive regression splines (MARS). LR has been already demonstrated to provide reliable predictions of earth-flow occurrence, whereas MARS, as far as we know, has never been used to generate earth-flow susceptibility models. The experiment was carried out in a basin of western Sicily (Italy), which extends for 51 km2 and is severely affected by earth-flows. In total, we mapped 1376 earth-flows, covering an area of 4.59 km2. To explore the effect of pre-failure topography on earth-flow spatial distribution, we performed a reconstruction of topography before the landslide occurrence. This was achieved by preparing a digital terrain model (DTM) where altitude of areas hosting landslides was interpolated from the adjacent undisturbed land surface by using the algorithm topo-to-raster. This DTM was exploited to extract 15 morphological and hydrological variables that, in addition to outcropping lithology, were employed as explanatory variables of earth-flow spatial distribution. The predictive skill of the earth-flow susceptibility models and the robustness of the procedure were tested by preparing five datasets, each including a different subset of landslides and stable areas. The accuracy of the predictive models was evaluated by drawing receiver operating characteristic (ROC) curves and by calculating the area under the ROC curve (AUC). The results demonstrate that the overall accuracy of LR and MARS earth-flow susceptibility models is from excellent to outstanding. However, AUC values of the validation datasets attest to a higher predictive power of MARS-models (AUC between 0.881 and 0.912) with respect to LR-models (AUC between 0.823 and 0.870). The adopted procedure proved to be resistant to overfitting and stable when changes of the learning and validation samples are
A rotor optimization using regression analysis
Giansante, N.
1984-01-01
The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.
A Visual Analytics Approach for Correlation, Classification, and Regression Analysis
Energy Technology Data Exchange (ETDEWEB)
Steed, Chad A [ORNL; SwanII, J. Edward [Mississippi State University (MSU); Fitzpatrick, Patrick J. [Mississippi State University (MSU); Jankun-Kelly, T.J. [Mississippi State University (MSU)
2012-02-01
New approaches that combine the strengths of humans and machines are necessary to equip analysts with the proper tools for exploring today's increasing complex, multivariate data sets. In this paper, a novel visual data mining framework, called the Multidimensional Data eXplorer (MDX), is described that addresses the challenges of today's data by combining automated statistical analytics with a highly interactive parallel coordinates based canvas. In addition to several intuitive interaction capabilities, this framework offers a rich set of graphical statistical indicators, interactive regression analysis, visual correlation mining, automated axis arrangements and filtering, and data classification techniques. The current work provides a detailed description of the system as well as a discussion of key design aspects and critical feedback from domain experts.
Directory of Open Access Journals (Sweden)
Regis Wendpouire Oubida
2015-03-01
Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.
Multivariate Meta-Analysis Using Individual Participant Data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2015-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…
Multivariate statistical analysis of major and trace element data for ...
African Journals Online (AJOL)
Multivariate statistical analysis of major and trace element data for niobium exploration in the peralkaline granites of the anorogenic ring-complex province of Nigeria. PO Ogunleye, EC Ike, I Garba. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 107-117. Full Text: EMAIL FULL TEXT EMAIL ...
Metal concentration at surface water using multivariate analysis and ...
African Journals Online (AJOL)
Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...
Repeated Results Analysis for Middleware Regression Benchmarking
Czech Academy of Sciences Publication Activity Database
Bulej, Lubomír; Kalibera, T.; Tůma, P.
2005-01-01
Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005
Smith, R.; Kasprzyk, J. R.; Balaji, R.
2017-12-01
In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.
Directory of Open Access Journals (Sweden)
Abdolreza Yazdani-Chamzini
2017-12-01
Full Text Available Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1 artificial intelligence, (2 statistical methods, and (3 analytical methods. In this paper, the multivariate regression (MVR method, which is one of the most popular linear models, and the artificial neural network (ANN method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy.
Directory of Open Access Journals (Sweden)
Jairo Vanegas
2017-05-01
Full Text Available Multivariate Adaptative Regression Splines (MARS es un método de modelación no paramétrico que extiende el modelo lineal incorporando no linealidades e interacciones de variables. Es una herramienta flexible que automatiza la construcción de modelos de predicción, seleccionando variables relevantes, transformando las variables predictoras, tratando valores perdidos y previniendo sobreajustes mediante un autotest. También permite predecir tomando en cuenta factores estructurales que pudieran tener influencia sobre la variable respuesta, generando modelos hipotéticos. El resultado final serviría para identificar puntos de corte relevantes en series de datos. En el área de la salud es poco utilizado, por lo que se propone como una herramienta más para la evaluación de indicadores relevantes en salud pública. Para efectos demostrativos se utilizaron series de datos de mortalidad de menores de 5 años de Costa Rica en el periodo 1978-2008.
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
TMVA - Toolkit for Multivariate Data Analysis with ROOT Users guide
Höcker, A; Tegenfeldt, F; Voss, H; Voss, K; Christov, A; Henrot-Versillé, S; Jachowski, M; Krasznahorkay, A; Mahalalel, Y; Prudent, X; Speckmayer, P
2007-01-01
Multivariate machine learning techniques for the classification of data from high-energy physics (HEP) experiments have become standard tools in most HEP analyses. The multivariate classifiers themselves have significantly evolved in recent years, also driven by developments in other areas inside and outside science. TMVA is a toolkit integrated in ROOT which hosts a large variety of multivariate classification algorithms. They range from rectangular cut optimisation (using a genetic algorithm) and likelihood estimators, over linear and non-linear discriminants (neural networks), to sophisticated recent developments like boosted decision trees and rule ensemble fitting. TMVA organises the simultaneous training, testing, and performance evaluation of all these classifiers with a user-friendly interface, and expedites the application of the trained classifiers to the analysis of data sets with unknown sample composition.
Ole E. Barndorff-Nielsen; Neil Shephard
2002-01-01
This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...
Common pitfalls in statistical analysis: Linear regression analysis
Directory of Open Access Journals (Sweden)
Rakesh Aggarwal
2017-01-01
Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.
Multivariate statistical analysis of precipitation chemistry in Northwestern Spain
International Nuclear Information System (INIS)
Prada-Sanchez, J.M.; Garcia-Jurado, I.; Gonzalez-Manteiga, W.; Fiestras-Janeiro, M.G.; Espada-Rios, M.I.; Lucas-Dominguez, T.
1993-01-01
149 samples of rainwater were collected in the proximity of a power station in northwestern Spain at three rainwater monitoring stations. The resulting data are analyzed using multivariate statistical techniques. Firstly, the Principal Component Analysis shows that there are three main sources of pollution in the area (a marine source, a rural source and an acid source). The impact from pollution from these sources on the immediate environment of the stations is studied using Factorial Discriminant Analysis. 8 refs., 7 figs., 11 tabs
Multivariate statistical analysis of precipitation chemistry in Northwestern Spain
Energy Technology Data Exchange (ETDEWEB)
Prada-Sanchez, J.M.; Garcia-Jurado, I.; Gonzalez-Manteiga, W.; Fiestras-Janeiro, M.G.; Espada-Rios, M.I.; Lucas-Dominguez, T. (University of Santiago, Santiago (Spain). Faculty of Mathematics, Dept. of Statistics and Operations Research)
1993-07-01
149 samples of rainwater were collected in the proximity of a power station in northwestern Spain at three rainwater monitoring stations. The resulting data are analyzed using multivariate statistical techniques. Firstly, the Principal Component Analysis shows that there are three main sources of pollution in the area (a marine source, a rural source and an acid source). The impact from pollution from these sources on the immediate environment of the stations is studied using Factorial Discriminant Analysis. 8 refs., 7 figs., 11 tabs.
Directory of Open Access Journals (Sweden)
Sepedeh Gholizadeh
2016-07-01
Full Text Available Background:Obesity and hypertension are the most important non-communicable diseases thatin many studies, the prevalence and their risk factors have been performedin each geographic region univariately.Study of factors affecting both obesity and hypertension may have an important role which to be adrressed in this study. Materials &Methods:This cross-sectional study was conducted on 1000 men aged 20-70 living in Bushehr province. Blood pressure was measured three times and the average of them was considered as one of the response variables. Hypertension was defined as systolic blood pressure ≥140 (and-or diastolic blood pressure ≥90 and obesity was defined as body mass index ≥25. Data was analyzed by using multilevel, multivariate logistic regression model by MlwiNsoftware. Results:Intra class correlations in cluster level obtained 33% for high blood pressure and 37% for obesity, so two level model was fitted to data. The prevalence of obesity and hypertension obtained 43.6% (0.95%CI; 40.6-46.5, 29.4% (0.95%CI; 26.6-32.1 respectively. Age, gender, smoking, hyperlipidemia, diabetes, fruit and vegetable consumption and physical activity were the factors affecting blood pressure (p≤0.05. Age, gender, hyperlipidemia, diabetes, fruit and vegetable consumption, physical activity and place of residence are effective on obesity (p≤0.05. Conclusion: The multilevel models with considering levels distribution provide more precise estimates. As regards obesity and hypertension are the major risk factors for cardiovascular disease, by knowing the high-risk groups we can d careful planning to prevention of non-communicable diseases and promotion of society health.
PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis
International Nuclear Information System (INIS)
Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.
2006-01-01
Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other
Multivariate spectral-analysis of movement-related EEG data
International Nuclear Information System (INIS)
Andrew, C. M.
1997-01-01
The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)
A robust multivariate long run analysis of European electricity prices
Bruno Bosco; Lucia Parisio; Matteo Pelagatti; Fabio Baldi
2007-01-01
This paper analyses the interdependencies existing in wholesale electricity prices in six major European countries. The results of our robust multivariate long run dynamic analysis reveal the presence of four highly integrated central European markets (France, Germany, the Netherlands and Austria). The trend shared by these four electricity markets appears to be common also to gas prices, but not to oil prices. The existence of long term dynamics among electricity prices and between electrici...
Multivariate analysis between air pollutants and meteorological variables in Seoul
International Nuclear Information System (INIS)
Kim, J.; Lim, J.
2005-01-01
Multivariate analysis was conducted to analyze the relationship between air pollutants and meteorological variables measured in Seoul from January 1 to December 31, 1999. The first principal component showed the contrast effect between O 3 and the other pollutants. The second principal component showed the contrast effect between CO, SO 2 , NO 2 , and O 3 , PM 10 , TSP. Based on the cluster analysis, three clusters represented different air pollution levels, seasonal characteristics of air pollutants, and meteorological conditions. Discriminant analysis with air environment index (AEI) was carried out to develop an air pollution index function. (orig.)
Determinants of orphan drugs prices in France: a regression analysis.
Korchagina, Daria; Millier, Aurelie; Vataire, Anne-Lise; Aballea, Samuel; Falissard, Bruno; Toumi, Mondher
2017-04-21
The introduction of the orphan drug legislation led to the increase in the number of available orphan drugs, but the access to them is often limited due to the high price. Social preferences regarding funding orphan drugs as well as the criteria taken into consideration while setting the price remain unclear. The study aimed at identifying the determinant of orphan drug prices in France using a regression analysis. All drugs with a valid orphan designation at the moment of launch for which the price was available in France were included in the analysis. The selection of covariates was based on a literature review and included drug characteristics (Anatomical Therapeutic Chemical (ATC) class, treatment line, age of target population), diseases characteristics (severity, prevalence, availability of alternative therapeutic options), health technology assessment (HTA) details (actual benefit (AB) and improvement in actual benefit (IAB) scores, delay between the HTA and commercialisation), and study characteristics (type of study, comparator, type of endpoint). The main data sources were European public assessment reports, HTA reports, summaries of opinion on orphan designation of the European Medicines Agency, and the French insurance database of drugs and tariffs. A generalized regression model was developed to test the association between the annual treatment cost and selected covariates. A total of 68 drugs were included. The mean annual treatment cost was €96,518. In the univariate analysis, the ATC class (p = 0.01), availability of alternative treatment options (p = 0.02) and the prevalence (p = 0.02) showed a significant correlation with the annual cost. The multivariate analysis demonstrated significant association between the annual cost and availability of alternative treatment options, ATC class, IAB score, type of comparator in the pivotal clinical trial, as well as commercialisation date and delay between the HTA and commercialisation. The
Data classification and MTBF prediction with a multivariate analysis approach
International Nuclear Information System (INIS)
Braglia, Marcello; Carmignani, Gionata; Frosolini, Marco; Zammori, Francesco
2012-01-01
The paper presents a multivariate statistical approach that supports the classification of mechanical components, subjected to specific operating conditions, in terms of the Mean Time Between Failure (MTBF). Assessing the influence of working conditions and/or environmental factors on the MTBF is a prerequisite for the development of an effective preventive maintenance plan. However, this task may be demanding and it is generally performed with ad-hoc experimental methods, lacking of statistical rigor. To solve this common problem, a step by step multivariate data classification technique is proposed. Specifically, a set of structured failure data are classified in a meaningful way by means of: (i) cluster analysis, (ii) multivariate analysis of variance, (iii) feature extraction and (iv) predictive discriminant analysis. This makes it possible not only to define the MTBF of the analyzed components, but also to identify the working parameters that explain most of the variability of the observed data. The approach is finally demonstrated on 126 centrifugal pumps installed in an oil refinery plant; obtained results demonstrate the quality of the final discrimination, in terms of data classification and failure prediction.
Multivariant design and multiple criteria analysis of building refurbishments
Energy Technology Data Exchange (ETDEWEB)
Kaklauskas, A.; Zavadskas, E. K.; Raslanas, S. [Faculty of Civil Engineering, Vilnius Gediminas Technical University, Vilnius (Lithuania)
2005-07-01
In order to design and realize an efficient building refurbishment, it is necessary to carry out an exhaustive investigation of all solutions that form it. The efficiency level of the considered building's refurbishment depends on a great many of factors, including: cost of refurbishment, annual fuel economy after refurbishment, tentative pay-back time, harmfulness to health of the materials used, aesthetics, maintenance properties, functionality, comfort, sound insulation and longevity, etc. Solutions of an alternative character allow for a more rational and realistic assessment of economic, ecological, legislative, climatic, social and political conditions, traditions and for better the satisfaction of customer requirements. They also enable one to cut down on refurbishment costs. In carrying out the multivariant design and multiple criteria analysis of a building refurbishment much data was processed and evaluated. Feasible alternatives could be as many as 100,000. How to perform a multivariant design and multiple criteria analysis of alternate alternatives based on the enormous amount of information became the problem. Method of multivariant design and multiple criteria of a building refurbishment's analysis were developed by the authors to solve the above problems. In order to demonstrate the developed method, a practical example is presented in this paper. (author)
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Multivariate statistical analysis of atom probe tomography data
International Nuclear Information System (INIS)
Parish, Chad M.; Miller, Michael K.
2010-01-01
The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.
Smith, Kelly M.; Gay, Robert S.; Stachowiak, Susan J.
2013-01-01
In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles.
Smith, Kelly; Gay, Robert; Stachowiak, Susan
2013-01-01
In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the Exploration Flight Test-1 (EFT-1) mission. For EFT-1, the Orion capsule will be flying with a new GPS receiver and new navigation software. Given the experimental nature of the flight, the flight software must be robust to the loss of GPS measurements. Once the high-speed entry is complete, the drogue parachutes must be deployed within the proper conditions to stabilize the vehicle prior to deploying the main parachutes. When GPS is available in nominal operations, the vehicle will deploy the drogue parachutes based on an altitude trigger. However, when GPS is unavailable, the navigated altitude errors become excessively large, driving the need for a backup barometric altimeter to improve altitude knowledge. In order to increase overall robustness, the vehicle also has an alternate method of triggering the parachute deployment sequence based on planet-relative velocity if both the GPS and the barometric altimeter fail. However, this backup trigger results in large altitude errors relative to the targeted altitude. Motivated by this challenge, this paper demonstrates how logistic regression may be employed to semi-automatically generate robust triggers based on statistical analysis. Logistic regression is used as a ground processor pre-flight to develop a statistical classifier. The classifier would then be implemented in flight software and executed in real-time. This technique offers improved performance even in the face of highly inaccurate measurements. Although the logistic regression-based trigger approach will not be implemented within EFT-1 flight software, the methodology can be carried forward for future missions and vehicles
Using Dominance Analysis to Determine Predictor Importance in Logistic Regression
Azen, Razia; Traxel, Nicole
2009-01-01
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Multivariate statistical analysis a high-dimensional approach
Serdobolskii, V
2000-01-01
In the last few decades the accumulation of large amounts of in formation in numerous applications. has stimtllated an increased in terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen ...
Identification of multivariate models for noise analysis of nuclear plant
International Nuclear Information System (INIS)
Zwingelstein, G.C.; Upadhyaya, B.R.
1979-01-01
During the normal operation of a pressurized water reactor, neutron noise analysis with multivariate autoregressive procedures in a valuable diagnostic tool to extract dynamic characteristics for incipient failure detection. The first part of the paper will describe in details the equations for estimating the multivariate autoregressive model matrices and the structure of various matrices. The matrices are estimated by solving a set of matrix operations, called Yule-Walker equations. The selection of optimal model order will also be discussed. Once the optimal parameter set is obtained, simple and fast calculations are used to determine the auto power spectral density, cross spectra, coherence function, phase. In addition the spectra may be decomposed into components being contributed from different noise sources. An application using neutron flux data collected on a nuclear plant will illustrate the efficiency of the method
Multivariate analysis of eigenvalues and eigenvectors in tensor based morphometry
Rajagopalan, Vidya; Schwartzman, Armin; Hua, Xue; Leow, Alex; Thompson, Paul; Lepore, Natasha
2015-01-01
We develop a new algorithm to compute voxel-wise shape differences in tensor-based morphometry (TBM). As in standard TBM, we non-linearly register brain T1-weighed MRI data from a patient and control group to a template, and compute the Jacobian of the deformation fields. In standard TBM, the determinants of the Jacobian matrix at each voxel are statistically compared between the two groups. More recently, a multivariate extension of the statistical analysis involving the deformation tensors derived from the Jacobian matrices has been shown to improve statistical detection power.7 However, multivariate methods comprising large numbers of variables are computationally intensive and may be subject to noise. In addition, the anatomical interpretation of results is sometimes difficult. Here instead, we analyze the eigenvalues and the eigenvectors of the Jacobian matrices. Our method is validated on brain MRI data from Alzheimer's patients and healthy elderly controls from the Alzheimer's Disease Neuro Imaging Database.
Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits
DEFF Research Database (Denmark)
Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo
2014-01-01
A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...
Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits
DEFF Research Database (Denmark)
Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo
2013-01-01
A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...
Ytsma, Cai R.; Dyar, M. Darby
2018-01-01
Hydrogen (H) is a critical element to measure on the surface of Mars because its presence in mineral structures is indicative of past hydrous conditions. The Curiosity rover uses the laser-induced breakdown spectrometer (LIBS) on the ChemCam instrument to analyze rocks for their H emission signal at 656.6 nm, from which H can be quantified. Previous LIBS calibrations for H used small data sets measured on standards and/or manufactured mixtures of hydrous minerals and rocks and applied univariate regression to spectra normalized in a variety of ways. However, matrix effects common to LIBS make these calibrations of limited usefulness when applied to the broad range of compositions on the Martian surface. In this study, 198 naturally-occurring hydrous geological samples covering a broad range of bulk compositions with directly-measured H content are used to create more robust prediction models for measuring H in LIBS data acquired under Mars conditions. Both univariate and multivariate prediction models, including partial least square (PLS) and the least absolute shrinkage and selection operator (Lasso), are compared using several different methods for normalization of H peak intensities. Data from the ChemLIBS Mars-analog spectrometer at Mount Holyoke College are compared against spectra from the same samples acquired using a ChemCam-like instrument at Los Alamos National Laboratory and the ChemCam instrument on Mars. Results show that all current normalization and data preprocessing variations for quantifying H result in models with statistically indistinguishable prediction errors (accuracies) ca. ± 1.5 weight percent (wt%) H2O, limiting the applications of LIBS in these implementations for geological studies. This error is too large to allow distinctions among the most common hydrous phases (basalts, amphiboles, micas) to be made, though some clays (e.g., chlorites with ≈ 12 wt% H2O, smectites with 15-20 wt% H2O) and hydrated phases (e.g., gypsum with ≈ 20
International Nuclear Information System (INIS)
Jafri, Y.Z.; Kamal, L.
2007-01-01
Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)
Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo
2009-01-01
We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...
Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan
2014-01-01
Purpose The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Methods and Materials Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3+ xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R2, chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Results Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R2 was satisfactory and corresponded well with the expected values. Conclusions
Multivariate data analysis of enzyme production for hydrolysis purposes
DEFF Research Database (Denmark)
Schmidt, A.S.; Suhr, K.I.
1999-01-01
of the structure in the data - possibly combined with analysis of variance (ANOVA). Partial least squares regression (PLSR) showed a clear connection between the two differentdata matrices (the fermentation variables and the hydrolysis variables). Hence, PLSR was suitable for prediction purposes. The hydrolysis...
Advanced multivariate analysis to assess remediation of hydrocarbons in soils.
Lin, Deborah S; Taylor, Peter; Tibbett, Mark
2014-10-01
Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.
Multivariate time series analysis with R and financial applications
Tsay, Ruey S
2013-01-01
Since the publication of his first book, Analysis of Financial Time Series, Ruey Tsay has become one of the most influential and prominent experts on the topic of time series. Different from the traditional and oftentimes complex approach to multivariate (MV) time series, this sequel book emphasizes structural specification, which results in simplified parsimonious VARMA modeling and, hence, eases comprehension. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-worl
Regression analysis of sparse asynchronous longitudinal data.
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P
2015-09-01
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
Ma, Yan; Mazumdar, Madhu
2011-10-30
Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.
Micro-Raman Imaging for Biology with Multivariate Spectral Analysis
Malvaso, Federica
2015-05-05
Raman spectroscopy is a noninvasive technique that can provide complex information on the vibrational state of the molecules. It defines the unique fingerprint that allow the identification of the various chemical components within a given sample. The aim of the following thesis work is to analyze Raman maps related to three pairs of different cells, highlighting differences and similarities through multivariate algorithms. The first pair of analyzed cells are human embryonic stem cells (hESCs), while the other two pairs are induced pluripotent stem cells (iPSCs) derived from T lymphocytes and keratinocytes, respectively. Although two different multivariate techniques were employed, ie Principal Component Analysis and Cluster Analysis, the same results were achieved: the iPSCs derived from T-lymphocytes show a higher content of genetic material both compared with the iPSCs derived from keratinocytes and the hESCs . On the other side, equally evident, was that iPS cells derived from keratinocytes assume a molecular distribution very similar to hESCs.
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.
Environmental Performance in Countries Worldwide: Determinant Factors and Multivariate Analysis
Directory of Open Access Journals (Sweden)
Isabel Gallego-Alvarez
2014-11-01
Full Text Available The aim of this study is to analyze the environmental performance of countries and the variables that can influence it. At the same time, we performed a multivariate analysis using the HJ-biplot, an exploratory method that looks for hidden patterns in the data, obtained from the usual singular value decomposition (SVD of the data matrix, to contextualize the countries grouped by geographical areas and the variables relating to environmental indicators included in the environmental performance index. The sample used comprises 149 countries of different geographic areas. The findings obtained from the empirical analysis emphasize that socioeconomic factors, such as economic wealth and education, as well as institutional factors represented by the style of public administration, in particular control of corruption, are determinant factors of environmental performance in the countries analyzed. In contrast, no effect on environmental performance was found for factors relating to the internal characteristics of a country or political factors.
Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro
2012-11-01
Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright
Preface to Berk's "Regression Analysis: A Constructive Critique"
de Leeuw, Jan
2003-01-01
It is pleasure to write a preface for the book ”Regression Analysis” of my fellow series editor Dick Berk. And it is a pleasure in particular because the book is about regression analysis, the most popular and the most fundamental technique in applied statistics. And because it is critical of the way regression analysis is used in the sciences, in particular in the social and behavioral sciences. Although the book can be read as an introduction to regression analysis, it can also be read as a...
Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling
International Nuclear Information System (INIS)
Flickinger, John C.; Kondziolka, Douglas; Pollock, Bruce E.; Maitz, Ann H.; Lunsford, L. Dade
1997-01-01
Purpose/Objective: To assess the relationships of radiosurgery treatment parameters to the development of complications from radiosurgery for arteriovenous malformations (AVM). Methods and Materials: We evaluated follow-up imaging and clinical data in 307 AVM patients who received gamma knife radiosurgery at the University of Pittsburgh between 1987 and 1993. All patients had regular clinical or imaging follow up for a minimum of 2 years (range: 24-96 months, median = 44 months). Results: Post-radiosurgical imaging (PRI) changes developed in 30.5% of patients with regular follow-up magnetic resonance imaging, and were symptomatic in 10.7% of all patients at 7 years. PRI changes resolved within 3 years developed significantly less often (p = 0.0274) in patients with symptoms (52.8%) compared to asymptomatic patients (94.8%). The 7-year actuarial rate for developing persistent symptomatic PRI changes was 5.05%. Multivariate logistic regression modeling found that the 12 Gy volume was the only independent variable that correlated significantly with PRI changes (p < 0.0001) while symptomatic PRI changes were correlated with both 12 Gy volume (p = 0.0013) and AVM location (p 0.0066). Conclusion: Complications from AVM radiosurgery can be predicted with a statistical model relating the risks of developing symptomatic post-radiosurgical imaging changes to 12 Gy treatment volume and location
MULTIVARIATE ANALYSIS OF RISK FACTORS FOR PREMATURITY IN SOUTHERN BRAZIL
Directory of Open Access Journals (Sweden)
Willian Augusto de Melo
2014-05-01
Full Text Available This study assessed the risk factors associated with preterm birth through a cross-sectional study in 4,440 newborns. Examined the factors associated between maternal sociodemographic variables (age, marital status, education and occupation, obstetric (pregnancy and delivery type and number of prenatal visits and neonatal (sex, race/color, birth weight and Apgar. Data were analyzed by multivariate logistic regression technique. Among the 480 (10.8% preterm risk factors were prevalent type of pregnancy (OR=6.48, number of prenatal visits (OR=2.09, Apgar score at first (OR=2.00 and fifth minute (OR=2.14 and birth weight (OR=31.8 indicating that these variables are directly associated with the occurrence of prematurity. The identification of risk factors should be the object of attention of health professionals and services to support effective measures to promote health to the general population; especially for women in fertile included some criteria of gestational risk.
Multivariate analysis of microarray data: differential expression and differential connection.
Kiiveri, Harri T
2011-02-01
Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.
Multivariate analysis of microarray data: differential expression and differential connection
Directory of Open Access Journals (Sweden)
Kiiveri Harri T
2011-02-01
Full Text Available Abstract Background Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. Results We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. Conclusion The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.
A multivariate analysis of Antarctic sea ice since 1979
Energy Technology Data Exchange (ETDEWEB)
Magalhaes Neto, Newton de; Evangelista, Heitor [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Tanizaki-Fonseca, Kenny [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Universidade Federal Fluminense (UFF), Dept. Analise Geoambiental, Inst. de Geociencias, Niteroi, RJ (Brazil); Penello Meirelles, Margareth Simoes [Universidade do Estado do Rio de Janeiro (UERJ)/Geomatica, Maracana, Rio de Janeiro, RJ (Brazil); Garcia, Carlos Eiras [Universidade Federal do Rio Grande (FURG), Laboratorio de Oceanografia Fisica, Rio Grande, RS (Brazil)
2012-03-15
Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO{sub 2} concentration, (4) The South Annular Mode, (5) The Nino 3, (6) The Nino (3 + 4, 7) The Nino 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O{sub 3} depletion area, and (12) The minimum O{sub 3} concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters. (orig.)
Multivariate analysis of risk factors for long-term urethroplasty outcome.
Breyer, Benjamin N; McAninch, Jack W; Whitson, Jared M; Eisenberg, Michael L; Mehdizadeh, Jennifer F; Myers, Jeremy B; Voelzke, Bryan B
2010-02-01
We studied the patient risk factors that promote urethroplasty failure. Records of patients who underwent urethroplasty at the University of California, San Francisco Medical Center between 1995 and 2004 were reviewed. Cox proportional hazards regression analysis was used to identify multivariate predictors of urethroplasty outcome. Between 1995 and 2004, 443 patients of 495 who underwent urethroplasty had complete comorbidity data and were included in analysis. Median patient age was 41 years (range 18 to 90). Median followup was 5.8 years (range 1 month to 10 years). Stricture recurred in 93 patients (21%). Primary estimated stricture-free survival at 1, 3 and 5 years was 88%, 82% and 79%. After multivariate analysis smoking (HR 1.8, 95% CI 1.0-3.1, p = 0.05), prior direct vision internal urethrotomy (HR 1.7, 95% CI 1.0-3.0, p = 0.04) and prior urethroplasty (HR 1.8, 95% CI 1.1-3.1, p = 0.03) were predictive of treatment failure. On multivariate analysis diabetes mellitus showed a trend toward prediction of urethroplasty failure (HR 2.0, 95% CI 0.8-4.9, p = 0.14). Length of urethral stricture (greater than 4 cm), prior urethroplasty and failed endoscopic therapy are predictive of failure after urethroplasty. Smoking and diabetes mellitus also may predict failure potentially secondary to microvascular damage. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2004-01-01
This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....
Hecht, Jeffrey B.
The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. Only bivariate (one dependent and one independent)…
Simulation Experiments in Practice: Statistical Design and Regression Analysis
Kleijnen, J.P.C.
2007-01-01
In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...
Monitoring Quality of Biotherapeutic Products Using Multivariate Data Analysis.
Rathore, Anurag S; Pathak, Mili; Jain, Renu; Jadaun, Gaurav Pratap Singh
2016-07-01
Monitoring the quality of pharmaceutical products is a global challenge, heightened by the implications of letting subquality drugs come to the market on public safety. Regulatory agencies do their due diligence at the time of approval as per their prescribed regulations. However, product quality needs to be monitored post-approval as well to ensure patient safety throughout the product life cycle. This is particularly complicated for biotechnology-based therapeutics where seemingly minor changes in process and/or raw material attributes have been shown to have a significant effect on clinical safety and efficacy of the product. This article provides a perspective on the topic of monitoring the quality of biotech therapeutics. In the backdrop of challenges faced by the regulatory agencies, the potential use of multivariate data analysis as a tool for effective monitoring has been proposed. Case studies using data from several insulin biosimilars have been used to illustrate the key concepts.
Motivation and Self-Regulated Learning: A Multivariate Multilevel Analysis
Directory of Open Access Journals (Sweden)
Wondimu Ahmed
2017-09-01
Full Text Available This study investigated the relationship between motivation and self-regulated learning (SRL in a nationally representative sample of 5245, 15-year-old students in the USA. A multivariate multilevel analysis was conducted to examine the role of three motivational variables (self-efficacy, intrinsic value & instrumental value in predicting three SRL strategies (memorization, elaboration & control. The results showed that compared to self-efficacy, intrinsic value and instrumental value of math were stronger predictors of memorization, elaboration and control strategies. None of the motivational variables had a stronger effect on one strategy than the other. The findings suggest that the development of self-regulatory skills in math can be greatly enhanced by helping students develop positive value of and realistic expectancy for success in math.
Multivariate statistical pattern recognition system for reactor noise analysis
International Nuclear Information System (INIS)
Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.
1976-01-01
A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system
Multivariate statistical pattern recognition system for reactor noise analysis
International Nuclear Information System (INIS)
Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.
1975-01-01
A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references
Multivariate survivorship analysis using two cross-sectional samples.
Hill, M E
1999-11-01
As an alternative to survival analysis with longitudinal data, I introduce a method that can be applied when one observes the same cohort in two cross-sectional samples collected at different points in time. The method allows for the estimation of log-probability survivorship models that estimate the influence of multiple time-invariant factors on survival over a time interval separating two samples. This approach can be used whenever the survival process can be adequately conceptualized as an irreversible single-decrement process (e.g., mortality, the transition to first marriage among a cohort of never-married individuals). Using data from the Integrated Public Use Microdata Series (Ruggles and Sobek 1997), I illustrate the multivariate method through an investigation of the effects of race, parity, and educational attainment on the survival of older women in the United States.
Use of multivariate analysis to research career advancement of academic librarians
Directory of Open Access Journals (Sweden)
Filiberto Felipe Martínez Arellano
2004-01-01
Full Text Available Diverse variables dealing with credential factors, bureaucratiuc factors, organizational and disciplinary achievements, academic culture factors, social ascribed factors, and institutional factors were stated as explanatory elements of promotion, tenure status, and earnings. A survey was the research instrument for collecting data to test diverse variables dealing with academic librarians rewards and earnings. Since the study attempted to analyze variables in a multivariate context, variable interactions were tested using multiple regression analysis. Findings of this study contribute to a better understanding of those factors influencing career advancement of academic librarians. Likewise, research methodology of this study could be used in Library and Information Science(LIS research.
Multivariate Analysis Techniques for Optimal Vision System Design
DEFF Research Database (Denmark)
Sharifzadeh, Sara
The present thesis considers optimization of the spectral vision systems used for quality inspection of food items. The relationship between food quality, vision based techniques and spectral signature are described. The vision instruments for food analysis as well as datasets of the food items...... used in this thesis are described. The methodological strategies are outlined including sparse regression and pre-processing based on feature selection and extraction methods, supervised versus unsupervised analysis and linear versus non-linear approaches. One supervised feature selection algorithm...... (SSPCA) and DCT based characterization of the spectral diffused reflectance images for wavelength selection and discrimination. These methods together with some other state-of-the-art statistical and mathematical analysis techniques are applied on datasets of different food items; meat, diaries, fruits...
Multivariate analysis for customer segmentation based on RFM
Directory of Open Access Journals (Sweden)
Álvaro Julio Cuadros López
2018-02-01
Full Text Available Context: To build a successful relationship management (CRM, companies must start with the identification of the true value of customers, as this provides basic information to implement more targeted and customized marketing strategies. The RFM methodology, a classic analysis tool that uses three evaluation parameters, allows companies to understand customer behavior, and to establish customer segments. The addition of a new parameter in the traditional technique is an opportunity to refine the possible outcomes of a customer segmentation since it not only provides a new element of evaluation to identify the most valuable customers, but it also makes it possible to differentiate and get to know customers even better. Method: The article presents a methodology that allows to establish customer segments using an extended RFM method with new variables, selected through multivariate analysis.. Results: The proposed implementation was applied in a company in which variables such as profit, profit percentage, and billing due date were tested. Therefore, it was possible to establish a more detailed customer segmentation than with the classic RFM. Conclusions: the RFM analysis is a method widely used in the industry for its easy understanding and applicability. However, it can be improved with the use of statistical procedures and new variables, which will allow companies to have deeper information about the behavior of the clients, and will facilitate the design of specific marketing strategies.
General Nature of Multicollinearity in Multiple Regression Analysis.
Liu, Richard
1981-01-01
Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)
Integrated environmental monitoring and multivariate data analysis-A case study.
Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle
2017-03-01
The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate
Classification of Malaysia aromatic rice using multivariate statistical analysis
International Nuclear Information System (INIS)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.
2015-01-01
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties
Classification of Malaysia aromatic rice using multivariate statistical analysis
Energy Technology Data Exchange (ETDEWEB)
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia); Omar, O. [Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor (Malaysia)
2015-05-15
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.
Classification of Malaysia aromatic rice using multivariate statistical analysis
Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.
2015-05-01
Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.
Singular spectrum analysis, Harmonic regression and El-Nino effect ...
Indian Academy of Sciences (India)
42
Keywords: Total ozone; Singular Spectrum Analysis; Spatial interpolation; Multivariate ENSO .... needed for a whole gamut of activities that contribute to the ultimate synthesis ..... −0.0009 3 + 0.0581 2 − 1.0123 + 7.3246, 2 = 0.53…
Directory of Open Access Journals (Sweden)
Shikha Awasthi
2017-06-01
Full Text Available Analysis of emission from laser-induced plasma has a unique capability for quantifying the major and minor elements present in any type of samples under optimal analysis conditions. Chemometric techniques are very effective and reliable tools for quantification of multiple components in complex matrices. The feasibility of laser-induced breakdown spectroscopy (LIBS in combination with multivariate analysis was investigated for the analysis of environmental reference materials (RMs. In the present work, different (Certified/Standard Reference Materials of soil and plant origin were analyzed using LIBS and the presence of Al, Ca, Mg, Fe, K, Mn and Si were identified in the LIBS spectra of these materials. Multivariate statistical methods (Partial Least Square Regression and Partial Least Square Discriminant Analysis were employed for quantitative analysis of the constituent elements using the LIBS spectral data. Calibration models were used to predict the concentrations of the different elements of test samples and subsequently, the concentrations were compared with certified concentrations to check the authenticity of models. The non-destructive analytical method namely Instrumental Neutron Activation Analysis (INAA using high flux reactor neutrons and high resolution gamma-ray spectrometry was also used for intercomparison of results of two RMs by LIBS.
Elemental content of Vietnamese rice. Part 2. Multivariate data analysis.
Kokot, S; Phuong, T D
1999-04-01
Rice samples were obtained from the Red River region and some other parts of Vietnam as well as from Yanco, Australia. These samples were analysed for 14 elements (P, K, Mg, Ca, Mn, Zn, Fe, Cu, Al, Na, Ni, As, Mo and Cd) by ICP-AES, ICP-MS and FAAS as described in Part 1. This data matrix was then submitted to multivariate data analysis by principal component analysis to investigate the influences of environmental and crop cultivation variables on the elemental content of rice. Results revealed that geographical location, grain variety, seasons and soil conditions are the most likely significant factors causing changes in the elemental content between the rice samples. To assess rice quality according to its elemental content and physio-biological properties, a multicriteria decision making method (PROMETHEE) was applied. With the Vietnamese rice, the sticky rice appeared to contain somewhat higher levels of nutritionally significant elements such as P, K and Mg than the non-sticky rice. Also, rice samples grown during the wet season have better levels of nutritionally significant mineral elements than those of the dry season, but in general, the wet season seemed to provide better overall elemental and physio-biological rice quality.
Multivariate Sensitivity Analysis of Time-of-Flight Sensor Fusion
Schwarz, Sebastian; Sjöström, Mårten; Olsson, Roger
2014-09-01
Obtaining three-dimensional scenery data is an essential task in computer vision, with diverse applications in various areas such as manufacturing and quality control, security and surveillance, or user interaction and entertainment. Dedicated Time-of-Flight sensors can provide detailed scenery depth in real-time and overcome short-comings of traditional stereo analysis. Nonetheless, they do not provide texture information and have limited spatial resolution. Therefore such sensors are typically combined with high resolution video sensors. Time-of-Flight Sensor Fusion is a highly active field of research. Over the recent years, there have been multiple proposals addressing important topics such as texture-guided depth upsampling and depth data denoising. In this article we take a step back and look at the underlying principles of ToF sensor fusion. We derive the ToF sensor fusion error model and evaluate its sensitivity to inaccuracies in camera calibration and depth measurements. In accordance with our findings, we propose certain courses of action to ensure high quality fusion results. With this multivariate sensitivity analysis of the ToF sensor fusion model, we provide an important guideline for designing, calibrating and running a sophisticated Time-of-Flight sensor fusion capture systems.
Moderation analysis using a two-level regression model.
Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott
2014-10-01
Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.
A comparative study of multiple regression analysis and back ...
Indian Academy of Sciences (India)
Abhijit Sarkar
artificial neural network (ANN) models to predict weld bead geometry and HAZ width in submerged arc welding ... Keywords. Submerged arc welding (SAW); multi-regression analysis (MRA); artificial neural network ..... Degree of freedom.
The evolution of GDP in USA using cyclic regression analysis
Catalin Angelo IOAN; Gina IOAN
2013-01-01
Based on the four major types of economic cycles (Kondratieff, Juglar, Kitchin, Kuznet), the paper aims to determine their actual length (for the U.S. economy) using cyclic regressions based on Fourier analysis.
International Nuclear Information System (INIS)
Wang, W; Qi, H; Ayhan, B; Kwan, C; Vance, S
2014-01-01
Compositional analysis is important to interrogate spectral samples for direct analysis of materials in agriculture, environment and archaeology, etc. In this paper, multi-variate analysis (MVA) techniques are coupled with laser induced breakdown spectroscopy (LIBS) to estimate quantitative elemental compositions and determine the type of the sample. In particular, we present a new multivariate analysis method for composition analysis, referred to as s pectral unmixing . The LIBS spectrum of a testing sample is considered as a linear mixture with more than one constituent signatures that correspond to various chemical elements. The signature library is derived from regression analysis using training samples or is manually set up with the information from an elemental LIBS spectral database. A calibration step is used to make all the signatures in library to be homogeneous with the testing sample so as to avoid inhomogeneous signatures that might be caused by different sampling conditions. To demonstrate the feasibility of the proposed method, we compare it with the traditional partial least squares (PLS) method and the univariate method using a standard soil data set with elemental concentration measured a priori. The experimental results show that the proposed method holds great potential for reliable and effective elemental concentration estimation
On two flexible methods of 2-dimensional regression analysis
Czech Academy of Sciences Publication Activity Database
Volf, Petr
2012-01-01
Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf
Oil price and financial markets: Multivariate dynamic frequency analysis
International Nuclear Information System (INIS)
Creti, Anna; Ftiti, Zied; Guesmi, Khaled
2014-01-01
The aim of this paper is to study the degree of interdependence between oil price and stock market index into two groups of countries: oil-importers and oil-exporters. To this end, we propose a new empirical methodology allowing a time-varying dynamic correlation measure between the stock market index and the oil price series. We use the frequency approach proposed by Priestley and Tong (1973), that is the evolutionary co-spectral analysis. This method allows us to distinguish between short-run and medium-run dependence. In order to complete our study by analysing long-run dependence, we use the cointegration procedure developed by Engle and Granger (1987). We find that interdependence between the oil price and the stock market is stronger in exporters' markets than in the importers' ones. - Highlights: • A new time-varying measure for the stock markets and oil price relationship in different horizons. • We propose a new empirical methodology: multivariate frequency approach. • We propose a comparison between oil importing and exporting countries. • We show that oil is not always countercyclical with respect to stock markets. • When high oil prices originate from supply shocks, oil is countercyclical with stock markets
Multivariate analysis in provenance studies: Cerrillos obsidians case, Peru
International Nuclear Information System (INIS)
Bustamante, A.; Delgado, M.; Latini, R. M.; Bellido, A. V. B.
2007-01-01
We present the preliminary results of a provenance study of obsidians samples from Cerrillos (ca. 800-100 b.c.) using Moessbauer Spectroscopy. The Cerrillos archaeological site, located in the Upper Ica Valley, Peru, is the only Paracas ceremonial center excavated so far. The archaeological data collected suggest the existence of a complex social and economic organization on the south coast of Peru. Provenance research of obsidian provides valuable information about the selection of lithic resources by our ancestors and eventually about the existence of communication routes and exchange networks. We characterized 18 obsidian artifacts samples by Moessbauer spectroscopy from Cerrillos. The spectra, recorded at room temperature using different velocities, are mainly composed of broad asymmetric doublets due to the superposition of at least two quadrupole doublets corresponding to Fe 2+ in two different sites (species A and B), one weak Fe 3+ doublet (specie C) and magnetic components associated to the presence of small particles of magnetite. Multivariate statistical analysis of the Moessbauer data (hyperfine parameters) allows to defined two main groups of obsidians, reflecting different geographical origins.
Multivariate analysis of factors influencing the effect of radiosynovectomy
International Nuclear Information System (INIS)
Farahati, J.; Schulz, G.; Koerber, C.; Geling, M.; Schmeider, P.; Reiners, Chr.; Wendler, J.; Kenn, W.; Reidemeister, C.
2002-01-01
Objective: In this prospective study, the time to remission after radiosynovectomy (RSV) was analyzed and the influence of age, sex, underlying disease, type of joint, and duration of illness on the success rate of RSV was determined. Methods: A total number of 57 patients with rheumatoid arthritis (n = 33) and arthrosis (n = 21) with a total number of 130 treated joints (36 knee, 66 small and 28 medium-size joints) were monitored using visual analogue scales (VAS) from one week before RSV up to four to six months after RSV. The patients had to answer 3 times daily for pain intensity of the treated joint. The time until remission was determined according to the Kaplan-Meier survivorship function. The influence of the prognosis parameters on outcome of RSV was determined by multivariate discriminant analysis. Results: After six months, the probability of pain relief of more than 20% amounted to 78% and was significantly dependent on the age of the patient (p = 0.02) and the duration of illness (p = 0.05), however not on sex (p = 0.17), underlying disease (p = 0.23), and type of joint (p = 0.69). Conclusion: Irrespective of sex, type of joint and underlying disease, a measurable pain relief can be achieved with RSV in 78% of the patients with synovitis, whereby effectiveness is decreasing with increasing age and progress of illness. (orig.) [de
Multivariate analysis of marketing data - applications for bricolage market
Directory of Open Access Journals (Sweden)
FANARU Mihai
2017-01-01
Full Text Available By using concepts and analytical tools for computing, marketing is directly related to the quantitative methods of economic research and other areas where the efficiency of systems performances are studied. Any activity of the company must be programmed and carried out taking into account the consumer. Providing a complete success in business requires the entrepreneur to see the company and its products through the consumers eyes, to act as representative of its clients in order to acquire and satisfy their desires. Through its complex specific activities, marketing aims to provide goods and services the consumers require or right merchandise in the right quantity at the right price at the right time and place. An important consideration in capturing the link between marketing and multivariate statistical analysis is that it provides more powerful instruments that allow researchers to discover relationships between multiple configurations of the relationship between variables, configurations that would otherwise remain hidden or barely visible. In addition, most methods can do this with good accuracy, with the possibility of testing the statistical significance by calculating the level of confidence associated with the link validation to the entire population and not just the investigated sample.
Multivariate analysis in provenance studies: Cerrillos obsidians case, Peru
Bustamante, A.; Delgado, M.; Latini, R. M.; Bellido, A. V. B.
2007-02-01
We present the preliminary results of a provenance study of obsidians samples from Cerrillos (ca. 800 100 b.c.) using Mössbauer Spectroscopy. The Cerrillos archaeological site, located in the Upper Ica Valley, Peru, is the only Paracas ceremonial center excavated so far. The archaeological data collected suggest the existence of a complex social and economic organization on the south coast of Peru. Provenance research of obsidian provides valuable information about the selection of lithic resources by our ancestors and eventually about the existence of communication routes and exchange networks. We characterized 18 obsidian artifacts samples by Mössbauer spectroscopy from Cerrillos. The spectra, recorded at room temperature using different velocities, are mainly composed of broad asymmetric doublets due to the superposition of at least two quadrupole doublets corresponding to Fe2+ in two different sites (species A and B), one weak Fe3+ doublet (specie C) and magnetic components associated to the presence of small particles of magnetite. Multivariate statistical analysis of the Mössbauer data (hyperfine parameters) allows to defined two main groups of obsidians, reflecting different geographical origins.
Multivariate analysis of magnetic resonance imaging of focal hepatic lesions
International Nuclear Information System (INIS)
Fujishima, Mamoru; Suemitsu, Ichizou; Sei, Tetsurou; Takeda, Yoshihiro; Hiraki, Yoshio
1993-01-01
A total of 124 lesions from 1 to 6 cm in diameter, including 31 cavernous hemangiomas, 32 metastases and 61 hepatocellular carcinomas (HCC) were analyzed to study the usefulness of magnetic resonance imaging (MRI) at 0.5 Tesla to differentiate focal hepatic lesions on the basis of qualitative criteria. Each focal hepatic lesion was assessed for shape, internal architecture and signal intensity relative to normal liver parenchyma. While all cavernous hemangiomas and metastases except one lesion could be detected, detection rate of HCC was significantly inferior to that of the other two diseases. A tumor capsule and a hyperintense focus on T 1 -weighted images were demonstrated in only HCC lesions in strong contrast with the other two diseases; however, metastases with slow-growing characteristics or subacute hematoma may appear as similar images. Cavernous hemangiomas appeared markedly hyperintense on T 2 -weighted images in 23 of 31 lesions, but one metastasis and one HCC had similar images. A multivariate analysis of several MRI resulted in the following mean discriminant scores: cavernous hemangioma, -1.2652; metastasis, 0.1830; and HCC, 0.7138. It appeared to be possible to differentiate the three diseases with 84.4 percent accuracy. (author)
Multivariate statistical analysis - an application to lunar materials
International Nuclear Information System (INIS)
Deb, M.
1978-01-01
The compositional characteristics of clinopyroxenes and spinels - two minerals considered to be very useful in deciphering lunar history, have been studied using the multivariate statistical method of principal component analysis. The mineral-chemical data used are from certain lunar rocks and fines collected by Apollo 11, 12, 14 and 15 and Luna 16 and 20 missions, representing mainly the mare basalts and also non-mare basalts, breccia and rock fragments from the highland regions, in which a large number of these minerals have been analyzed. The correlations noted in the mineral compositions, indicating substitutional relationships, have been interpreted on the basis of available crystal-chemical and petrological informations. Compositional trends for individual specimens have been delineated and compared by producing ''principal latent vector diagrams''. The percent variance of the principal components denoted by the eigenvalues, have been evaluated in terms of the crystallization history of the samples. Some of the major petrogenetic implications of this study concern the role of early formed cumulate phases in the near-surface fractionation of mare basalts, mixing of mineral compositions in the highland regolith and the subsolidus reduction trends in lunar spinels. (auth.)
Micro-Raman Imaging for Biology with Multivariate Spectral Analysis
Malvaso, Federica
2015-01-01
. The aim of the following thesis work is to analyze Raman maps related to three pairs of different cells, highlighting differences and similarities through multivariate algorithms. The first pair of analyzed cells are human embryonic stem cells (h
Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2007-01-01
This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...... the clock error) and to obtain estimates of the uncertainty with which the position is determined. Regression analysis is used in many other fields of application both in the natural, the technical and the social sciences. Examples may be curve fitting, calibration, establishing relationships between...
Multivariate factor analysis of Girgentana goat milk composition
Directory of Open Access Journals (Sweden)
Pietro Giaccone
2010-01-01
Full Text Available The interpretation of the several variables that contribute to defining milk quality is difficult due to the high degree of correlation among them. In this case, one of the best methods of statistical processing is factor analysis, which belongs to the multivariate groups; for our study this particular statistical approach was employed. A total of 1485 individual goat milk samples from 117 Girgentana goats, were collected fortnightly from January to July, and analysed for physical and chemical composition, and clotting properties. Milk pH and tritable acidity were within the normal range for fresh goat milk. Morning milk yield resulted 704 ± 323 g with 3.93 ± 1.23% and 3.48±0.38% for fat and protein percentages, respectively. The milk urea content was 43.70 ± 8.28 mg/dl. The clotting ability of Girgentana milk was quite good, with a renneting time equal to 16.96 ± 3.08 minutes, a rate of curd formation of 2.01 ± 1.63 min- utes and a curd firmness of 25.08 ± 7.67 millimetres. Factor analysis was performed by applying axis orthogonal rotation (rotation type VARIMAX; the analysis grouped the milk components into three latent or common factors. The first, which explained 51.2% of the total covariance, was defined as “slow milks”, because it was linked to r and pH. The second latent factor, which explained 36.2% of the total covariance, was defined as “milk yield”, because it is positively correlated to the morning milk yield and to the urea con- tent, whilst negatively correlated to the fat percentage. The third latent factor, which explained 12.6% of the total covari- ance, was defined as “curd firmness,” because it is linked to protein percentage, a30 and titatrable acidity. With the aim of evaluating the influence of environmental effects (stage of kidding, parity and type of kidding, factor scores were anal- ysed with the mixed linear model. Results showed significant effects of the season of
de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.
2018-04-01
A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.
Multivariate analysis of flow cytometric data using decision trees.
Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver
2012-01-01
Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.
Harrell , Jr , Frank E
2015-01-01
This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes. This text realistically...
Lina Wu; Wenyi Lu; Ye Li
2016-01-01
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We fin...
DEFF Research Database (Denmark)
Arenas-Garcia, J.; Petersen, K.; Camps-Valls, G.
2013-01-01
correlation analysis (CCA), and orthonormalized PLS (OPLS), as well as their nonlinear extensions derived by means of the theory of reproducing kernel Hilbert spaces (RKHSs). We also review their connections to other methods for classification and statistical dependence estimation and introduce some recent...
Research and analyze of physical health using multiple regression analysis
Directory of Open Access Journals (Sweden)
T. S. Kyi
2014-01-01
Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.
Multivariate Analysis for Animal Selection in Experimental Research
Directory of Open Access Journals (Sweden)
Renan Mercuri Pinto
2015-02-01
Full Text Available Background: Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective: To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods: The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA, aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results: The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion: The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate.
Antioxidant activity of Costa Rican propolis: a multivariate analysis approach
International Nuclear Information System (INIS)
Umana Rojas, Eduardo; Solado, Godofredo; Tamayo-Castillo, Giselle
2013-01-01
Propolis is produced by Apis mellifera bees from resins of plants that are found around the apiary. The chemical composition is highly variable and Costa Rica has reported without studies of characterization to define the types of propolis in the country. 119 samples were collected from beekeeping areas of the country. The spectrum of 1 H-NMR and its antioxidant activity against DPPH radical were measured. The spectra have been divided into 243 blocks of 0,04 ppm and processed with the Minitab software for multivariate analysis. 99 of the samples collected were used for construction of models for the valuation of the predictive ability of the model have been used coefficients of determination (R 2 ) of prediction by the software and the remaining 20 samples. The existence of three types of propolis with chemically different metabolomes were determined by principal component analysis (PCA). A prediction model was constructed by analysis of partial least squares (PLS). The prediction model has allowed to classify a propolis according to the level of antioxidant activity (AAO), high (type I and II) or low (type III) from the spectrum of 1 H-NMR. The R 2 has been 0.88 and R 2 prediction of 0, 718 for new samples. The nconiferyl benzoate of group I and nemorosone of the group II as two discriminated antioxidants among the groups I and II were isolated and high concentration levels of these compounds have been differentiated with respect to type III. This has allowed the construction of a linear discriminant model with a success rate of 100% for the samples used for formulation and 92,9 for the prediction of different samples. The classification systems could be applied to the standardization of the quality of propolis from Costa Rica for future medicinal or cosmetic applications that take advantage of its antioxidant properties. Also, the methylated derivative has isolated and identified of the nconiferyl benzoate thereof propolis than was obtained his counterpart
Directory of Open Access Journals (Sweden)
Valéria Rosa Lopes
2014-02-01
Full Text Available This work had the aim to evaluate the genetic divergence in sugarcane clones using the methodology of graphic dispersion by principal components analysis associated to linear mixed models, indentifying the more divergent and productive genotypes with more precision, for a subsequent combination. 138 sugarcane clones of the RB97 series of the Sugarcane Breeding Program of the Universidade Federal do Parana, more two standard cultivars were evaluated in three environments, with two replications. The two first components explained 96% of the total variation, sufficiently for explaining the divergence found. The variable that contributed the most to de divergence was kilogram of brix per plot (BKP followed by brix, mass of 10 stalks and number of stalks per plot. The more divergent sugarcane clones were RB975008, RB975112, RB975019, RB975153 and RB975067 and the more productive clones were RB975269, RB977533, RB975102, RB975317 and RB975038.
Optimal choice of basis functions in the linear regression analysis
International Nuclear Information System (INIS)
Khotinskij, A.M.
1988-01-01
Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs
Predicting Dropouts of University Freshmen: A Logit Regression Analysis.
Lam, Y. L. Jack
1984-01-01
Stepwise discriminant analysis coupled with logit regression analysis of freshmen data from Brandon University (Manitoba) indicated that six tested variables drawn from research on university dropouts were useful in predicting attrition: student status, residence, financial sources, distance from home town, goal fulfillment, and satisfaction with…
Simulation Experiments in Practice : Statistical Design and Regression Analysis
Kleijnen, J.P.C.
2007-01-01
In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic
imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.
Grapov, Dmitry; Newman, John W
2012-09-01
Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2013-12-03
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in
Background stratified Poisson regression analysis of cohort data.
Richardson, David B; Langholz, Bryan
2012-03-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.
Background stratified Poisson regression analysis of cohort data
International Nuclear Information System (INIS)
Richardson, David B.; Langholz, Bryan
2012-01-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
A multivariate analysis of factors affecting adoption of improved ...
African Journals Online (AJOL)
This paper analyzes the synergies/tradeoffs involved in the adoption of improved varieties of multiple crops in the mixed crop-livestock production systems of the highlands of Ethiopia A multivariate probit (MVP) model involving a system of four equations for the adoption decision of improved varieties of barley, potatoes, ...
Multivariate Stable Isotope Analysis to Determine Linkages between Benzocaine Seizures
Kemp, H. F.; Meier-Augenstein, W.; Collins, M.; Salouros, H.; Cunningham, A.; Harrison, M.
2012-04-01
In July 2010, a woman was jailed for nine years in the UK after the prosecution successfully argued that attempting to import a cutting agent was proof of involvement in a conspiracy to supply Cocaine. That landmark ruling provided law enforcement agencies with much greater scope to tackle those involved in this aspect of the drug trade, specifically targeting those importing the likes of benzocaine or lidocaine. Huge quantities of these compounds are imported into the UK and between May and August 2010, four shipments of Benzocaine amounting to more then 4 tons had been seized as part of Operation Kitley, a joint initiative between the UK Border Agency and the Serious Organised Crime Agency (SOCA). By diluting cocaine, traffickers can make it go a lot further for very little cost, leading to huge profits. In recent years, dealers have moved away from inert substances, like sugar and baby milk powder, in favour of active pharmaceutical ingredients (APIs), including anaesthetics like Benzocaine and Lidocaine. Both these mimic the numbing effect of cocaine, and resemble it closely in colour, texture and some chemical behaviours, making it easier to conceal the fact that the drug has been diluted. API cutting agents have helped traffickers to maintain steady supplies in the face of successful interdiction and even expand the market in the UK, particularly to young people aged from their mid teens to early twenties. From importation to street-level, the purity of the drug can be reduced up to a factor of 80 and street level cocaine can have a cocaine content as low as 1%. In view of the increasing use of Benzocaine as cutting agent for Cocaine, a study was carried out to investigate if 2H, 13C, 15N and 18O stable isotope signatures could be used in conjunction with multivariate chemometric data analysis to determine potential linkage between benzocaine exhibits seized from different locations or individuals to assist with investigation and prosecution of drug
International Nuclear Information System (INIS)
Skwarchuk, Mark W.; Jackson, Andrew; Zelefsky, Michael J.; Venkatraman, Ennapadam S.; Cowen, Didier M.; Levegruen, Sabine; Burman, Chandra M.; Fuks, Zvi; Leibel, Steven A.; Ling, C. Clifton
2000-01-01
Purpose: The purpose of this paper is to use the outcome of a dose escalation protocol for three-dimensional conformal radiation therapy (3D-CRT) of prostate cancer to study the dose-response for late rectal toxicity and to identify anatomic, dosimetric, and clinical factors that correlate with late rectal bleeding in multivariate analysis. Methods and Materials: Seven hundred forty-three patients with T1c-T3 prostate cancer were treated with 3D-CRT with prescribed doses of 64.8 to 81.0 Gy. The 5-year actuarial rate of late rectal toxicity was assessed using Kaplan-Meier statistics. A retrospective dosimetric analysis was performed for patients treated to 70.2 Gy (52 patients) or 75.6 Gy (119 patients) who either exhibited late rectal bleeding (RTOG Grade 2/3) within 30 months after treatment (i.e., 70.2 Gy--13 patients, 75.6 Gy--36 patients) or were nonbleeding for at least 30 months (i.e., 70.2 Gy--39 patients, 75.6 Gy--83 patients). Univariate and multivariate logistic regression was performed to correlate late rectal bleeding with several anatomic, dosimetric, and clinical variables. Results: A dose response for ≥ Grade 2 late rectal toxicity was observed. By multivariate analysis, the following factors were significantly correlated with ≥ Grade 2 late rectal bleeding for patients prescribed 70.2 Gy: 1) enclosure of the outer rectal contour by the 50% isodose on the isocenter slice (i.e., Iso50) (p max (p max
Multivariable analysis: a practical guide for clinicians and public health researchers
National Research Council Canada - National Science Library
Katz, Mitchell H
2011-01-01
.... It is the perfect introduction for all clinical researchers. It describes how to perform and interpret multivariable analysis, using plain language rather than complex derivations and mathematical formulae...
Regression analysis for LED color detection of visual-MIMO system
Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo
2018-04-01
Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.
Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.
Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina
2014-07-15
This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sparse Regression by Projection and Sparse Discriminant Analysis
Qi, Xin
2015-04-03
© 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.
Directory of Open Access Journals (Sweden)
Paulino José García Nieto
2016-05-01
Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.
Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad
2015-11-01
One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.
DEFF Research Database (Denmark)
Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels
1998-01-01
Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...
An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy
DEFF Research Database (Denmark)
Merlo, Juan; Wagner, Philippe; Ghith, Nermin
2016-01-01
BACKGROUND AND AIM: Many multilevel logistic regression analyses of "neighbourhood and health" focus on interpreting measures of associations (e.g., odds ratio, OR). In contrast, multilevel analysis of variance is rarely considered. We propose an original stepwise analytical approach that disting...
MULGRES: a computer program for stepwise multiple regression analysis
A. Jeff Martin
1971-01-01
MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.
Application of multilinear regression analysis in modeling of soil ...
African Journals Online (AJOL)
The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...
Regression Analysis: Instructional Resource for Cost/Managerial Accounting
Stout, David E.
2015-01-01
This paper describes a classroom-tested instructional resource, grounded in principles of active learning and a constructivism, that embraces two primary objectives: "demystify" for accounting students technical material from statistics regarding ordinary least-squares (OLS) regression analysis--material that students may find obscure or…
Real-time regression analysis with deep convolutional neural networks
Huerta, E. A.; George, Daniel; Zhao, Zhizhen; Allen, Gabrielle
2018-01-01
We discuss the development of novel deep learning algorithms to enable real-time regression analysis for time series data. We showcase the application of this new method with a timely case study, and then discuss the applicability of this approach to tackle similar challenges across science domains.
Evaluation of functional outcome of the floating knee injury using multivariate analysis.
Yokoyama, Kazuhiko; Tsukamoto, Tatsuro; Aoki, Shinichi; Wakita, Ryuji; Uchino, Masataka; Noumi, Takashi; Fukushima, Nobuaki; Itoman, Moritoshi
2002-11-01
The objective of this study is to evaluate significant contributing factors affecting the functional prognosis of floating knee injuries using multivariate analysis. A total of 68 floating knee injuries (67 patients) were treated at Kitasato University Hospital from 1986 to 1999. Both the femoral fractures and the tibial fractures were managed surgically by various methods. The functional results of these injuries were evaluated using the grading system of Karlström and Olerud. Follow-up periods ranged from 2 to 19 years (mean 50.2 months) after the original injury. We defined satisfactory (S) outcomes as those cases with excellent or good results and unsatisfactory (US) outcomes as those cases with acceptable or poor results. Logistic regression analysis was used as a multivariate analysis, and the dependent variables were defined as a satisfactory outcome or as an unsatisfactory outcome. The explanatory variables were predicting factors influencing the functional outcome such as age at trauma, gender, severity of soft-tissue injury in the femur and the tibia, AO fracture grade in the femur and the tibia, Fraser type (type I or type II), Injury Severity Score (ISS), and fixation time after injury (less than 1 week or more than 1 week) in the femur and the tibia. The final functional results were as follows: 25 cases had excellent results, 15 cases good results, 16 cases acceptable results, and 12 cases poor results. The predictive logistic regression equation was as follows: Log 1-p/p = 3.12-1.52 x Fraser type - 1.65 x severity of soft-tissue injury in the tibia - 1.31 x fixation time after injury in the tibia - 0.821 x AO fracture grade in the tibia + 1.025 x fixation time after injury in the femur - 0.687 x AO fracture grade in the femur ( p=0.01). Among the variables, Fraser type and the severity of soft-tissue injury in the tibia were significantly related to the final result. The multivariate analysis showed that both the involvement of the knee joint and
Management of Industrial Performance Indicators: Regression Analysis and Simulation
Directory of Open Access Journals (Sweden)
Walter Roberto Hernandez Vergara
2017-11-01
Full Text Available Stochastic methods can be used in problem solving and explanation of natural phenomena through the application of statistical procedures. The article aims to associate the regression analysis and systems simulation, in order to facilitate the practical understanding of data analysis. The algorithms were developed in Microsoft Office Excel software, using statistical techniques such as regression theory, ANOVA and Cholesky Factorization, which made it possible to create models of single and multiple systems with up to five independent variables. For the analysis of these models, the Monte Carlo simulation and analysis of industrial performance indicators were used, resulting in numerical indices that aim to improve the goals’ management for compliance indicators, by identifying systems’ instability, correlation and anomalies. The analytical models presented in the survey indicated satisfactory results with numerous possibilities for industrial and academic applications, as well as the potential for deployment in new analytical techniques.
Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye
2016-01-13
A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.
Directory of Open Access Journals (Sweden)
Ofélia Anjos
2015-07-01
Full Text Available Paper properties determine the product application potential and depend on the raw material, pulping conditions, and pulp refining. The aim of this study was to construct mathematical models that predict quantitative relations between the paper density and various mechanical and optical properties of the paper. A dataset of properties of paper handsheets produced with pulps of Acacia dealbata, Acacia melanoxylon, and Eucalyptus globulus beaten at 500, 2500, and 4500 revolutions was used. Unsupervised classification techniques were combined to assess the need to perform separated prediction models for each species, and multivariable regression techniques were used to establish such prediction models. It was possible to develop models with a high goodness of fit using paper density as the independent variable (or predictor for all variables except tear index and zero-span tensile strength, both dry and wet.
Searching for New Biomarkers and the Use of Multivariate Analysis in Gastric Cancer Diagnostics.
Kucera, Radek; Smid, David; Topolcan, Ondrej; Karlikova, Marie; Fiala, Ondrej; Slouka, David; Skalicky, Tomas; Treska, Vladislav; Kulda, Vlastimil; Simanek, Vaclav; Safanda, Martin; Pesta, Martin
2016-04-01
The first aim of this study was to search for new biomarkers to be used in gastric cancer diagnostics. The second aim was to verify the findings presented in literature on a sample of the local population and investigate the risk of gastric cancer in that population using a multivariant statistical analysis. We assessed a group of 36 patients with gastric cancer and 69 healthy individuals. We determined carcinoembryonic antigen, cancer antigen 19-9, cancer antigen 72-4, matrix metalloproteinases (-1, -2, -7, -8 and -9), osteoprotegerin, osteopontin, prothrombin induced by vitamin K absence-II, pepsinogen I, pepsinogen II, gastrin and Helicobacter pylori for each sample. The multivariate stepwise logistic regression identified the following biomarkers as the best gastric cancer predictors: CEA, CA72-4, pepsinogen I, Helicobacter pylori presence and MMP7. CEA and CA72-4 remain the best markers for gastric cancer diagnostics. We suggest a mathematical model for the assessment of risk of gastric cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Multivariate Time Series Analysis for Optimum Production Forecast ...
African Journals Online (AJOL)
FIRST LADY
(Amstrong, 1994, Bates, 1969, Newbold and Granger, 1974 and Whinkler and Makridakis ... distinct, essential components of inventory management while the random production is first ... To achieve this goal, model parameters are estimated or ... important regression model in forecasting of that nature, hence this study.
Systematic wavelength selection for improved multivariate spectral analysis
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.
1995-01-01
Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.
Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang
2014-10-01
Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Davies, Patrick Laurie
2014-01-01
Introduction IntroductionApproximate Models Notation Two Modes of Statistical AnalysisTowards One Mode of Analysis Approximation, Randomness, Chaos, Determinism ApproximationA Concept of Approximation Approximation Approximating a Data Set by a Model Approximation Regions Functionals and EquivarianceRegularization and Optimality Metrics and DiscrepanciesStrong and Weak Topologies On Being (almost) Honest Simulations and Tables Degree of Approximation and p-values ScalesStability of Analysis The Choice of En(α, P) Independence Procedures, Approximation and VaguenessDiscrete Models The Empirical Density Metrics and Discrepancies The Total Variation Metric The Kullback-Leibler and Chi-Squared Discrepancies The Po(λ) ModelThe b(k, p) and nb(k, p) Models The Flying Bomb Data The Student Study Times Data OutliersOutliers, Data Analysis and Models Breakdown Points and Equivariance Identifying Outliers and Breakdown Outliers in Multivariate Data Outliers in Linear Regression Outliers in Structured Data The Location...
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
Multivariate image analysis for quality inspection in fish feed production
DEFF Research Database (Denmark)
Ljungqvist, Martin Georg
Aquaculture is today one of the fastest growing food producing sectors in the world. Access to good and effective fish feed is a condition for optimised and sustainable aquaculture activity. In the aquaculture industry it is of utmost importance that the fish get feed of proper size and nutrition....... The colour appearance of fish products is important for customers. Salmonid fish get their red colour from a natural pigment called astaxanthin. To ensure a similar red colour of fish in aquaculture astaxanthin is used as an additive coated on the feed pellets. Astaxanthin can either be of natural origin......, or synthesised chemically. Common for both types is that they are relatively expensive in comparison to the other feed ingredients. This thesis investigates multi-variate data collection for visual inspection and optimisation of industrial production in the fish feed industry. Quality parameters focused on here...
A Multivariate Time Series Method for Monte Carlo Reactor Analysis
International Nuclear Information System (INIS)
Taro Ueki
2008-01-01
A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor
The Regression Analysis of Individual Financial Performance: Evidence from Croatia
Bahovec, Vlasta; Barbić, Dajana; Palić, Irena
2017-01-01
Background: A large body of empirical literature indicates that gender and financial literacy are significant determinants of individual financial performance. Objectives: The purpose of this paper is to recognize the impact of the variable financial literacy and the variable gender on the variation of the financial performance using the regression analysis. Methods/Approach: The survey was conducted using the systematically chosen random sample of Croatian financial consumers. The cross sect...
Regression analysis of a chemical reaction fouling model
International Nuclear Information System (INIS)
Vasak, F.; Epstein, N.
1996-01-01
A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs
Poisson Regression Analysis of Illness and Injury Surveillance Data
Energy Technology Data Exchange (ETDEWEB)
Frome E.L., Watkins J.P., Ellis E.D.
2012-12-12
The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra
International Nuclear Information System (INIS)
Martin, Madhavi Z.; Labbe, Nicole; Rials, Timothy G.; Wullschleger, Stan D.
2005-01-01
In this work, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood. The elemental composition of the samples was measured with a standard laboratory method of digestion followed by atomic absorption spectroscopy analysis. The elemental composition was then correlated with the LIBS spectra using projection to latent structures (PLS) models. The correlations for the different elements introduced by different treatments were very strong, with the correlation coefficients generally above 0.9. Additionally, principal component analysis (PCA) was used to differentiate the samples treated with different preservative formulations. The research has focused not only on demonstrating the application of LIBS as a tool for use in the forest products industry, but also considered sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis of this complex wood substrate
Energy Technology Data Exchange (ETDEWEB)
Martin, Madhavi Z. [Environmental Sciences Division Oak Ridge National Laboratory, P.O. Box 2008 MS 6422, Oak Ridge TN 37831-6422 (United States); Labbe, Nicole [Forest Products Center, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996-4570 (United States)]. E-mail: nlabbe@utk.edu; Rials, Timothy G. [Forest Products Center, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996-4570 (United States); Wullschleger, Stan D. [Environmental Sciences Division Oak Ridge National Laboratory, P.O. Box 2008 MS 6422, Oak Ridge TN 37831-6422 (United States)
2005-08-31
In this work, multivariate statistical analysis (MVA) techniques are coupled with laser-induced breakdown spectroscopy (LIBS) to identify preservative types (chromated copper arsenate, ammoniacal copper zinc or alkaline copper quat), and to predict elemental content in preservative-treated wood. The elemental composition of the samples was measured with a standard laboratory method of digestion followed by atomic absorption spectroscopy analysis. The elemental composition was then correlated with the LIBS spectra using projection to latent structures (PLS) models. The correlations for the different elements introduced by different treatments were very strong, with the correlation coefficients generally above 0.9. Additionally, principal component analysis (PCA) was used to differentiate the samples treated with different preservative formulations. The research has focused not only on demonstrating the application of LIBS as a tool for use in the forest products industry, but also considered sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis of this complex wood substrate.
Feldens, Carlos Alberto; Kramer, Paulo Floriani; Ferreira, Simone Helena; Spiguel, Mônica Hermann; Marquezan, Marcela
2010-04-01
This cross-sectional study aimed to investigate the factors associated with dental trauma in preschool children using Poisson regression analysis with robust variance. The study population comprised 888 children aged 3- to 5-year-old attending public nurseries in Canoas, southern Brazil. Questionnaires assessing information related to the independent variables (age, gender, race, mother's educational level and family income) were completed by the parents. Clinical examinations were carried out by five trained examiners in order to assess traumatic dental injuries (TDI) according to Andreasen's classification. One of the five examiners was calibrated to assess orthodontic characteristics (open bite and overjet). Multivariable Poisson regression analysis with robust variance was used to determine the factors associated with dental trauma as well as the strengths of association. Traditional logistic regression was also performed in order to compare the estimates obtained by both methods of statistical analysis. 36.4% (323/888) of the children suffered dental trauma and there was no difference in prevalence rates from 3 to 5 years of age. Poisson regression analysis showed that the probability of the outcome was almost 30% higher for children whose mothers had more than 8 years of education (Prevalence Ratio = 1.28; 95% CI = 1.03-1.60) and 63% higher for children with an overjet greater than 2 mm (Prevalence Ratio = 1.63; 95% CI = 1.31-2.03). Odds ratios clearly overestimated the size of the effect when compared with prevalence ratios. These findings indicate the need for preventive orientation regarding TDI, in order to educate parents and caregivers about supervising infants, particularly those with increased overjet and whose mothers have a higher level of education. Poisson regression with robust variance represents a better alternative than logistic regression to estimate the risk of dental trauma in preschool children.
MULTIVARIABLE ANALYSIS OF 2,4-D HERBICIDE PHOTOCATALYTIC DEGRADATION
Directory of Open Access Journals (Sweden)
ANDRÉS F. LÓPEZ-VÁSQUEZ
2011-01-01
Full Text Available La degradación del herbicida 2,4-D en suspensiones de TiO2 en agua real fue evaluada bajo condiciones de irradiación artificial. El análisis multivariable de metodología de superficie de respuesta (MSR, se aplicó para evaluar el efecto de variables como la concentración de catalizador y pesticida, el pH y el caudal volumétrico sobre la reacción fotocatalítica en dos fotorreactores catalíticos: placa plana y tubular. La variable de respuesta fue la mineralización del pesticida expresada como porcentaje de degradación de carbono orgánico total (COT después de cuatro horas de irradiación. Para el fotorreactor tubular, los cuatro factores tuvieron la misma significancia sobre la degradación, mientras que para el fotorreactor de placa plana inclinada, sólo la concentración de catalizador y el pH tuvieron significancia. La MSR fue una técnica adecuada para obtener parámetros de operación óptimos de un proceso fotocatalítico con un reactor específico y dentro de un rango de estudio determinado.
On macroeconomic values investigation using fuzzy linear regression analysis
Directory of Open Access Journals (Sweden)
Richard Pospíšil
2017-06-01
Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Ye, Lanhan; Song, Kunlin; Shen, Tingting
2018-01-01
Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445
Directory of Open Access Journals (Sweden)
Fei Liu
2018-02-01
Full Text Available Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS, coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice. For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV. Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.
Forecasting urban water demand: A meta-regression analysis.
Sebri, Maamar
2016-12-01
Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.
Models and analysis for multivariate failure time data
Shih, Joanna Huang
The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the
Directory of Open Access Journals (Sweden)
Khan M
2005-01-01
Full Text Available BACKGROUND: Laparoscopic cholecystectomy has become the gold standard in the treatment of symptomatic cholelithiasis. Some patients require conversion to open surgery and several preoperative variables have been identified as risk factors that are helpful in predicting the probability of conversion. However, there is a need to devise a risk-scoring system based on the identified risk factors to (a predict the risk of conversion preoperatively for selected patients, (b prepare the patient psychologically, (c arrange operating schedules accordingly, and (d minimize the procedure-related cost and help overcome financial constraints, which is a significant problem in developing countries. AIM: This study was aimed to evaluate preoperative risk factors for conversion from laparoscopic to open cholecystectomy in our setting. SETTINGS AND DESIGNS: A case control study of patients who underwent laparoscopic surgery from January 1997 to December 2001 was conducted at the Aga Khan University Hospital, Karachi, Pakistan. MATERIALS AND METHODS: All those patients who were converted to open surgery (n = 73 were enrolled as cases. Two controls who had successful laparoscopic surgery (n = 146 were matched with each case for operating surgeon and closest date of surgery. STATISTICAL ANALYSIS USED: Descriptive statistics were computed and, univariate and multivariate analysis was done through multiple logistic regression. RESULTS: The final multivariate model identified two risk factors for conversion: ultrasonographic signs of inflammation (adjusted odds ratio [aOR] = 8.5; 95% confidence interval [CI]: 3.3, 21.9 and age > 60 years (aOR = 8.1; 95% CI: 2.9, 22.2 after adjusting for physical signs, alkaline phosphatase and BMI levels. CONCLUSION: Preoperative risk factors evaluated by the present study confirm the likelihood of conversion. Recognition of these factors is important for understanding the characteristics of patients at a higher risk of conversion.
Tomás-Rodríguez, María I; Palazón-Bru, Antonio; Martínez-St John, Damian R J; Navarro-Cremades, Felipe; Toledo-Marhuenda, José V; Gil-Guillén, Vicente F
2017-04-01
In the literature about primary dysmenorrhea (PD), either a pain gradient has been studied just in women with PD or pain was assessed as a binary variable (presence or absence). Accordingly, we decided to carry out a study in young women to determine possible factors associated with intense pain. A cross-sectional observational study. A Spanish University in 2016. A total of 306 women, aged 18-30 years. A questionnaire was filled in by the participants to assess associated factors with dysmenorrhoea. Our outcome measure was the Andersch and Milsom scale (grade from 0 to 3). grade 0 (menstruation is not painful and daily activity is unaffected), grade 1 (menstruation is painful but seldom inhibits normal activity, analgesics are seldom required, and mild pain), grade 2 (daily activity affected, analgesics required and give relief so that absence from work or school is unusual, and moderate pain), and grade 3 (activity clearly inhibited, poor effect of analgesics, vegetative symptoms and severe pain). Factors significantly associated with more extreme pain: a higher menstrual flow (odds ratio [OR], 2.11; P < .001), a worse quality of life (OR, 0.97; P < .001) and use of medication for PD (OR, 8.22; P < .001). We determined factors associated with extreme pain in PD in a novel way. Further studies are required to corroborate our results. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Jiménez-Huete, Adolfo; Riva, Elena; Toledano, Rafael; Campo, Pablo; Esteban, Jesús; Barrio, Antonio Del; Franch, Oriol
2014-12-01
The validity of neuropsychological tests for the differential diagnosis of degenerative dementias may depend on the clinical context. We constructed a series of logistic models taking into account this factor. We retrospectively analyzed the demographic and neuropsychological data of 301 patients with probable Alzheimer's disease (AD), frontotemporal degeneration (FTLD), or dementia with Lewy bodies (DLB). Nine models were constructed taking into account the diagnostic question (eg, AD vs DLB) and subpopulation (incident vs prevalent). The AD versus DLB model for all patients, including memory recovery and phonological fluency, was highly accurate (area under the curve = 0.919, sensitivity = 90%, and specificity = 80%). The results were comparable in incident and prevalent cases. The FTLD versus AD and DLB versus FTLD models were both inaccurate. The models constructed from basic neuropsychological variables allowed an accurate differential diagnosis of AD versus DLB but not of FTLD versus AD or DLB. © The Author(s) 2014.
Yew, Ching Ching; Alam, Mohammad Khursheed; Rahman, Shaifulizan Abdul
2016-10-01
This study is to evaluate the dental arch relationship and palatal morphology of unilateral cleft lip and palate patients by using EUROCRAN index, and to assess the factors that affect them using multivariate statistical analysis. A total of one hundred and seven patients from age five to twelve years old with non-syndromic unilateral cleft lip and palate were included in the study. These patients have received cheiloplasty and one stage palatoplasty surgery but yet to receive alveolar bone grafting procedure. Five assessors trained in the use of the EUROCRAN index underwent calibration exercise and ranked the dental arch relationships and palatal morphology of the patients' study models. For intra-rater agreement, the examiners scored the models twice, with two weeks interval in between sessions. Variable factors of the patients were collected and they included gender, site, type and, family history of unilateral cleft lip and palate; absence of lateral incisor on cleft side, cheiloplasty and palatoplasty technique used. Associations between various factors and dental arch relationships were assessed using logistic regression analysis. Dental arch relationship among unilateral cleft lip and palate in local population had relatively worse scoring than other parts of the world. Crude logistics regression analysis did not demonstrate any significant associations among the various socio-demographic factors, cheiloplasty and palatoplasty techniques used with the dental arch relationship outcome. This study has limitations that might have affected the results, example: having multiple operators performing the surgeries and the inability to access the influence of underlying genetic predisposed cranio-facial variability. These may have substantial influence on the treatment outcome. The factors that can affect unilateral cleft lip and palate treatment outcome is multifactorial in nature and remained controversial in general. Copyright © 2016 Elsevier Ireland Ltd. All
Principal Feature Analysis: A Multivariate Feature Selection Method for fMRI Data
Directory of Open Access Journals (Sweden)
Lijun Wang
2013-01-01
Full Text Available Brain decoding with functional magnetic resonance imaging (fMRI requires analysis of complex, multivariate data. Multivoxel pattern analysis (MVPA has been widely used in recent years. MVPA treats the activation of multiple voxels from fMRI data as a pattern and decodes brain states using pattern classification methods. Feature selection is a critical procedure of MVPA because it decides which features will be included in the classification analysis of fMRI data, thereby improving the performance of the classifier. Features can be selected by limiting the analysis to specific anatomical regions or by computing univariate (voxel-wise or multivariate statistics. However, these methods either discard some informative features or select features with redundant information. This paper introduces the principal feature analysis as a novel multivariate feature selection method for fMRI data processing. This multivariate approach aims to remove features with redundant information, thereby selecting fewer features, while retaining the most information.
Prevalence of workplace violence in Northwest Ethiopia: a multivariate analysis.
Tiruneh, Bewket Tadesse; Bifftu, Berhanu Boru; Tumebo, Akililu Azazh; Kelkay, Mengistu Mekonnen; Anlay, Degefaye Zelalem; Dachew, Berihun Assefa
2016-01-01
Workplace violence has been acknowledged as a global problem, particularly in the health sector. However, there is scarce data on workplace violence among nurses in Ethiopia. The aim of this study was to assess the prevalence of workplace violence and associated factors among nurses in northwest Ethiopia. Hospital based cross-sectional study design was employed in 386 nurses from April 1 - April 30, 2015. Data were collected through the use of self-administered questionnaire developed by the International Labor Office/International Council of Nurses/World Health Organization and Public Services International. To keep the quality of the data collection training was given to supervisors and data collectors. Piloting was done in Debark hospital two weeks before actual data collection to assess the tool's clarity and make amendments. The proposal was approved by the Institutional Review Board of University of Gondar prior to study commencement and a written consent was obtained from each study participant. The overall prevalence of workplace violence was 26.7 %. Exploratory logistic regression analyses suggested that age, number of staff in the same work shift, working in a male ward, history of workplace violence, and marital status were factors independently associated with workplace violence. The prevalence of workplace violence among nurses was high. Creating a prevention strategy involving different stakeholders is recommended.
Finding determinants of audit delay by pooled OLS regression analysis
Vuko, Tina; Čular, Marko
2014-01-01
The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days) from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011). We use pooled OLS regression analysis, mode...
Garcia Nieto, P J; Sánchez Lasheras, F; de Cos Juez, F J; Alonso Fernández, J R
2011-11-15
There is an increasing need to describe cyanobacteria blooms since some cyanobacteria produce toxins, termed cyanotoxins. These latter can be toxic and dangerous to humans as well as other animals and life in general. It must be remarked that the cyanobacteria are reproduced explosively under certain conditions. This results in algae blooms, which can become harmful to other species if the cyanobacteria involved produce cyanotoxins. In this research work, the evolution of cyanotoxins in Trasona reservoir (Principality of Asturias, Northern Spain) was studied with success using the data mining methodology based on multivariate adaptive regression splines (MARS) technique. The results of the present study are two-fold. On one hand, the importance of the different kind of cyanobacteria over the presence of cyanotoxins in the reservoir is presented through the MARS model and on the other hand a predictive model able to forecast the possible presence of cyanotoxins in a short term was obtained. The agreement of the MARS model with experimental data confirmed the good performance of the same one. Finally, conclusions of this innovative research are exposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Kisi, Ozgur; Parmar, Kulwinder Singh
2016-03-01
This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.
Fuel economy and traffic fatalities: multivariate analysis of international data
International Nuclear Information System (INIS)
Noland, Robert B.
2005-01-01
In the US motor vehicle fuel economy standards were imposed in the late 1970s, in response to the oil crises of that decade. Since then, efforts to increase the standards have not occurred, one reason being the argument that smaller vehicles (which are generally more efficient) are considered less safe. Recent analyses (Energy J.( 2004)) suggests that variance in vehicle weights may be more important than the absolute weights of vehicles in making the highway network less safe. In Europe and other countries, which generally have smaller more efficient vehicle fleets, due to relatively high gasoline taxes, this debate has not occurred. In particular, countries such as Great Britain and Sweden have far safer road transport systems than the US but also have much more efficient vehicle fleets. This suggests that either vehicle weight and size are unimportant or if they have an effect it is small compared to other factors. This paper uses international data to build econometric models that examine whether average vehicle fuel economy has any association with road traffic fatalities, while controlling for other factors that are associated with fatalities. The effect on pedestrian fatalities is also analyzed. Cross-sectional time-series data on traffic fatalities from OECD countries is used and negative binomial regression models are developed using panel data to determine whether any associations are present. Results find that changes in vehicle efficiency are not associated with changes in traffic fatalities, suggesting either that size and weight changes over time have not had a strong effect or are not associated with fuel economy improvements
Helicopter Gas Turbine Engine Performance Analysis : A Multivariable Approach
Arush, Ilan; Pavel, M.D.
2017-01-01
Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test data in order to predict the available output power under different atmospheric
A multivariate analysis of water quality in lake Naivasha, Kenya
Ndungu, J.N.; Augustijn, Dionysius C.M.; Hulscher, Suzanne J.M.H.; Fulanda, B.; Kitaka, N.; Mathooko, J.M.
2014-01-01
Water quality information in aquatic ecosystems is crucial in setting up guidelines for resource management. This study explores the water quality status and pollution sources in Lake Naivasha, Kenya. Analysis of water quality parameters at seven sampling sites was carried out from water samples
Analysis of Surface Water Pollution in the Kinta River Using Multivariate Technique
International Nuclear Information System (INIS)
Hamza Ahmad Isiyaka; Hafizan Juahir
2015-01-01
This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76 % in the total variance and attributes the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear regression and principal component scores indicates that 41 % of the total pollution load is from rock weathering and untreated waste water, 26 % from waste discharge, 24 % from surface runoff and 7 % from faecal waste. This study proposes a reduction in the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and multivariate technique can provide a simple representation of complex and dynamic water quality characteristics. (author)
imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel
Grapov, Dmitry; Newman, John W.
2012-01-01
Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358
Multivariate analysis of factors affecting presence and/or agenesis of third molar tooth.
Directory of Open Access Journals (Sweden)
Mohammad Khursheed Alam
Full Text Available To investigate the presence and/or agenesis of third molar (M3 tooth germs in orthodontics patients in Malaysian Malay and Chinese population and evaluate the relationship between presence and/or agenesis of M3 with different skeletal malocclusion patterns and sagittal maxillomandibular jaw dimensions. Pretreatment records of 300 orthodontic patients (140 males and 160 females, 219 Malaysian Malay and 81 Chinese, average age was 16.27±4.59 were used. Third-molar agenesis was calculated with respect to race, genders, number of missing teeth, jaws, skeletal malocclusion patterns and sagittal maxillomandibular jaw dimensions. The Pearson chi-square test and ANOVA was performed to determine potential differences. Associations between various factors and M3 presence/agenesis groups were assessed using logistic regression analysis. The percentages of subjects with 1 or more M3 agenesis were 30%, 33% and 31% in the Malaysian Malay, Chinese and total population, respectively. Overall prevalence of M3 agenesis in male and female was equal (P>0.05. The frequency of the agenesis of M3s is greater in maxilla as well in the right side (P>0.05. The prevalence of M3 agenesis in those with a Class III and Class II malocclusion was relatively higher in Malaysian Malay and Malaysian Chinese population respectively. Using stepwise regression analyses, significant associations were found between Mx (P<0.05 and ANB (P<0.05 and M3 agenesis. This multivariate analysis suggested that Mx and ANB were significantly correlated with the M3 presence/agenesis.
Bayesian Analysis for Penalized Spline Regression Using WinBUGS
Directory of Open Access Journals (Sweden)
Ciprian M. Crainiceanu
2005-09-01
Full Text Available Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.
Determination of wheat quality by mass spectrometry and multivariate data analysis
DEFF Research Database (Denmark)
Gottlieb, D.M.; Schultz, J.; Petersen, M.
2002-01-01
Multivariate analysis has been applied as support to proteome analysis in order to implement an easier and faster way of data handling based on separation by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The characterisation phase in proteome analysis by means...... of simple visual inspection is a demanding process and also insecure because subjectivity is the controlling element. Multivariate analysis offers, to a considerable extent, objectivity and must therefore be regarded as a neutral way to evaluate results obtained by proteome analysis.Proteome analysis...
Multivariable Discriminant Analysis for the Differential Diagnosis of Microcytic Anemia
Directory of Open Access Journals (Sweden)
Eloísa Urrechaga
2013-01-01
Full Text Available Introduction. Iron deficiency anemia and thalassemia are the most common causes of microcytic anemia. Powerful statistical computer programming enables sensitive discriminant analyses to aid in the diagnosis. We aimed at investigating the performance of the multiple discriminant analysis (MDA to the differential diagnosis of microcytic anemia. Methods. The training group was composed of 200 β-thalassemia carriers, 65 α-thalassemia carriers, 170 iron deficiency anemia (IDA, and 45 mixed cases of thalassemia and acute phase response or iron deficiency. A set of potential predictor parameters that could detect differences among groups were selected: Red Blood Cells (RBC, hemoglobin (Hb, mean cell volume (MCV, mean cell hemoglobin (MCH, and RBC distribution width (RDW. The functions obtained with MDA analysis were applied to a set of 628 consecutive patients with microcytic anemia. Results. For classifying patients into two groups (genetic anemia and acquired anemia, only one function was needed; 87.9% β-thalassemia carriers, and 83.3% α-thalassemia carriers, and 72.1% in the mixed group were correctly classified. Conclusion. Linear discriminant functions based on hemogram data can aid in differentiating between IDA and thalassemia, so samples can be efficiently selected for further analysis to confirm the presence of genetic anemia.
Multivariate Statistical Methods as a Tool of Financial Analysis of Farm Business
Czech Academy of Sciences Publication Activity Database
Novák, J.; Sůvová, H.; Vondráček, Jiří
2002-01-01
Roč. 48, č. 1 (2002), s. 9-12 ISSN 0139-570X Institutional research plan: AV0Z1030915 Keywords : financial analysis * financial ratios * multivariate statistical methods * correlation analysis * discriminant analysis * cluster analysis Subject RIV: BB - Applied Statistics, Operational Research
DEFF Research Database (Denmark)
Ghirardo, A.; Sørensen, Helle Aagaard; Petersen, M.
2005-01-01
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and multivariate data analysis have been used for the determination of wheat quality at different stages of grain development. Wheat varieties with one of two different end-use qualities (i.e. suitable or not suitable...... data analysis, offers a method that can replace the traditional rather time-consuming ones such as gel electrophoresis. This study focused on the determination of wheat quality at 15 dpa, when the grain is due for harvest 1 month later....
Multivariate analysis of regional differentials of nuptiality in Bangladesh.
Chowdhury, A A; Islam, M A
1981-01-01
The importance of socioeconomics differentials in nuptiality has occupied a very important position in recent demographic research. An effort has been made in this paper to find out the nature and extent of the causal relationship between the dependent variable--nuptiality, and its determinants. Our findings suggest that education may play a vital role in raising mean age at marriage. This may be done by extending free and compulsory mass and primary education throughout the country. It has further been observed that urbanization through economic development is a precondition to increase the literacy rate and hence female labor force participation in the country's economy. Thus proper education will increase the female employment rate which in turn will raise the age at marriage. Equal distribution of population and insurance schemes for childless couples may also indirectly put a positive effect on nuptiality. Finally, this paper provides a guideline for using the path analysis technique in determining the factors causing the changes and the effects of these factors on nuptiality in Bangladesh. However, caution should be made in taking into account the causal ordering of the indices. Different ordering may give different results.
Patterns of regional development in Serbia: A multivariate statistical analysis
Directory of Open Access Journals (Sweden)
Čoček Ladislav
2010-01-01
Full Text Available The primary objective of this paper is to examine patterns of regional development in Serbia and to identify underlying geographical factors of these patterns. Principal component analysis is used to reveal the basic dimensions of regional differentiation. Its results are described in the context of findings from thematically similar research on Central European countries. An area's position in the national settlement system hierarchy has been identified as the strongest determinant of regional differentiation in Serbia. Other strong patterns seem to be connected with macro-geographical position. Success in economic development is most apparent in regions near the metropolitan area of Belgrade, and the general development level, along with a predisposition for agriculture, exhibits a strong north-south polarization. Specific attention is directed at demographic development, which is characterized by a west-east gradient. Central patterns of regional differentiation are similar to those uncovered in previous Central European research. Regional policy in Serbia should, therefore, try to learn from experience within this region to cope with processes and problems that are often quite similar. .
The Pomatocalpa maculosum Complex (Orchidaceae Resolved by Multivariate Morphometric Analysis
Directory of Open Access Journals (Sweden)
Santi Watthana
2006-03-01
Full Text Available Principal components analysis (PCA was employed to analyse the morphological variation among 63 herbarium specimens tentatively identified as Pomatocalpa andamanicum (Hook.f. J. J. Sm., P. koordersii (Rolfe J. J. Sm., P. latifolium (Lindl. J. J. Sm., P. linearifolium Seidenf., P. maculosum (Lindl. J. J. Sm., P. marsupiale (Kraenzl. J. J. Sm., P. naevatum J. J. Sm., or P. siamense (Rolfe ex Downie Summerh. Thirty-seven quantitative and 5 binary characters were included in the analyses. Taxa were delimited according to the observed clustering of specimens in the PCA plots, diagnostic characters were identified, and the correct nomenclature was established through examination of type material. Four species could be recognized viz, P. diffusum Breda (syn. P. latifolium, P. fuscum (Lindl. J. J. Sm. (syn. P. latifolium, P. marsupiale (syn. P. koordersii and P. maculosum. For the latter species, two subspecies could be recognized, viz P. maculosum (Lindl. J. J. Sm. subsp. maculosum (syn. P. maculosum, P. naevatum p.p. and P. maculosum (Lindl. J. J. Sm. subsp. andamanicum (Hook.f. S. Watthana (syn. P. andamanicum, P. linearifolium, P. siamense, P. naevatum p.p.. An identification key and a taxonomic synopsis are provided.
A multivariate analysis of serum nutrient levels and lung function
Directory of Open Access Journals (Sweden)
Smit Henriette A
2008-09-01
Full Text Available Abstract Background There is mounting evidence that estimates of intakes of a range of dietary nutrients are related to both lung function level and rate of decline, but far less evidence on the relation between lung function and objective measures of serum levels of individual nutrients. The aim of this study was to conduct a comprehensive examination of the independent associations of a wide range of serum markers of nutritional status with lung function, measured as the one-second forced expiratory volume (FEV1. Methods Using data from the Third National Health and Nutrition Examination Survey, a US population-based cross-sectional study, we investigated the relation between 21 serum markers of potentially relevant nutrients and FEV1, with adjustment for potential confounding factors. Systematic approaches were used to guide the analysis. Results In a mutually adjusted model, higher serum levels of antioxidant vitamins (vitamin A, beta-cryptoxanthin, vitamin C, vitamin E, selenium, normalized calcium, chloride, and iron were independently associated with higher levels of FEV1. Higher concentrations of potassium and sodium were associated with lower FEV1. Conclusion Maintaining higher serum concentrations of dietary antioxidant vitamins and selenium is potentially beneficial to lung health. In addition other novel associations found in this study merit further investigation.
Sparse Regression by Projection and Sparse Discriminant Analysis
Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu
2015-01-01
predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths
Callén, M S; López, J M; Mastral, A M
2010-08-15
The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R(2)=0.817, PRESS/SSY=0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q(CV)(2)=0.813, PRESS/SSY=0.187) and with the maximal external prediction for the 2001-2002 campaign (Q(ext)(2)=0.679 and PRESS/SSY=0.321) versus the 2001-2004 campaign (Q(ext)(2)=0.551, PRESS/SSY=0.449). Copyright 2010 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Callen, M.S.; Lopez, J.M.; Mastral, A.M.
2010-01-01
The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R 2 = 0.817, PRESS/SSY = 0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q CV 2 =0.813, PRESS/SSY = 0.187) and with the maximal external prediction for the 2001-2002 campaign (Q ext 2 =0.679 and PRESS/SSY = 0.321) versus the 2001-2004 campaign (Q ext 2 =0.551, PRESS/SSY = 0.449).
Multivariate analysis of full-term neonatal polysomnographic data.
Gerla, V; Paul, K; Lhotska, L; Krajca, V
2009-01-01
Polysomnography (PSG) is one of the most important noninvasive methods for studying maturation of the child brain. Sleep in infants is significantly different from sleep in adults. This paper addresses the problem of computer analysis of neonatal polygraphic signals. We applied methods designed for differentiating three important neonatal behavioral states: quiet sleep, active sleep, and wakefulness. The proportion of these states is a significant indicator of the maturity of the newborn brain in clinical practice. In this study, we used data provided by the Institute for Care of Mother and Child, Prague (12 newborn infants of similar postconceptional age). The data were scored by an experienced physician to four states (wake, quiet sleep, active sleep, movement artifact). For accurate classification, it was necessary to determine the most informative features. We used a method based on power spectral density (PSD) applied to each EEG channel. We also used features derived from electrooculogram (EOG), electromyogram (EMG), ECG, and respiration [pneumogram (PNG)] signals. The most informative feature was the measure of regularity of respiration from the PNG signal. We designed an algorithm for interpreting these characteristics. This algorithm was based on Markov models. The results of automatic detection of sleep states were compared to the "sleep profiles" determined visually. We evaluated both the success rate and the true positive rate of the classification, and statistically significant agreement of the two scorings was found. Two variants, for learning and for testing, were applied, namely learning from the data of all 12 newborns and tenfold cross-validation, and learning from the data of 11 newborns and testing on the data from the 12th newborn. We utilized information obtained from several biological signals (EEG, ECG, PNG, EMG, EOG) for our final classification. We reached the final success rate of 82.5%. The true positive rate was 81.8% and the false
MUMAL: Multivariate analysis in shotgun proteomics using machine learning techniques
Directory of Open Access Journals (Sweden)
Cerqueira Fabio R
2012-10-01
Full Text Available Abstract Background The shotgun strategy (liquid chromatography coupled with tandem mass spectrometry is widely applied for identification of proteins in complex mixtures. This method gives rise to thousands of spectra in a single run, which are interpreted by computational tools. Such tools normally use a protein database from which peptide sequences are extracted for matching with experimentally derived mass spectral data. After the database search, the correctness of obtained peptide-spectrum matches (PSMs needs to be evaluated also by algorithms, as a manual curation of these huge datasets would be impractical. The target-decoy database strategy is largely used to perform spectrum evaluation. Nonetheless, this method has been applied without considering sensitivity, i.e., only error estimation is taken into account. A recently proposed method termed MUDE treats the target-decoy analysis as an optimization problem, where sensitivity is maximized. This method demonstrates a significant increase in the retrieved number of PSMs for a fixed error rate. However, the MUDE model is constructed in such a way that linear decision boundaries are established to separate correct from incorrect PSMs. Besides, the described heuristic for solving the optimization problem has to be executed many times to achieve a significant augmentation in sensitivity. Results Here, we propose a new method, termed MUMAL, for PSM assessment that is based on machine learning techniques. Our method can establish nonlinear decision boundaries, leading to a higher chance to retrieve more true positives. Furthermore, we need few iterations to achieve high sensitivities, strikingly shortening the running time of the whole process. Experiments show that our method achieves a considerably higher number of PSMs compared with standard tools such as MUDE, PeptideProphet, and typical target-decoy approaches. Conclusion Our approach not only enhances the computational performance, and
Finding determinants of audit delay by pooled OLS regression analysis
Directory of Open Access Journals (Sweden)
Tina Vuko
2014-03-01
Full Text Available The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011. We use pooled OLS regression analysis, modelling audit delay as a function of the following explanatory variables: audit firm type, audit opinion, profitability, leverage, inventory and receivables to total assets, absolute value of total accruals, company size and audit committee existence. Our results indicate that audit committee existence, profitability and leverage are statistically significant determinants of audit delay in Croatia.
Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.
2011-01-01
Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715
Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin
2014-01-01
The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Ciudad, Antonio; Gutiérrez, Miguel; Cañas, Fernando; Gibert, Juan; Gascón, Josep; Carrasco, José-Luis; Bobes, Julio; Gómez, Juan-Carlos; Alvarez, Enrique
2005-07-01
This study investigated safety and effectiveness of olanzapine in monotherapy compared with conventional antipsychotics in treatment of acute inpatients with schizophrenia. This was a prospective, comparative, nonrandomized, open-label, multisite, observational study of Spanish inpatients with an acute episode of schizophrenia. Data included safety assessments with an extrapyramidal symptoms (EPS) questionnaire and the report of spontaneous adverse events, plus clinical assessments with the Brief Psychiatric Rating Scale (BPRS) and the Clinical Global Impressions-Severity of Illness (CGI-S). A multivariate methodology was used to more adequately determine which factors can influence safety and effectiveness of olanzapine in monotherapy. 339 patients treated with olanzapine in monotherapy (OGm) and 385 patients treated with conventional antipsychotics (CG) were included in the analysis. Treatment-emergent EPS were significantly higher in the CG (pOGm (p=0.005). Logistic regression analyses revealed that the only variable significantly correlated with treatment-emergent EPS and clinical response was treatment strategy, with patients in OGm having 1.5 times the probability of obtaining a clinical response and patients in CG having 5 times the risk of developing EPS. In this naturalistic study olanzapine in monotherapy was better-tolerated and at least as effective as conventional antipsychotics.
Wójcicki, Krzysztof; Khmelinskii, Igor; Sikorski, Marek; Sikorska, Ewa
2015-11-15
Infrared spectroscopic techniques and chemometric methods were used to study oxidation of olive, sunflower and rapeseed oils. Accelerated oxidative degradation of oils at 60°C was monitored using peroxide values and FT-MIR ATR and FT-NIR transmittance spectroscopy. Principal component analysis (PCA) facilitated visualization and interpretation of spectral changes occurring during oxidation. Multivariate curve resolution (MCR) method found three spectral components in the NIR and MIR spectral matrix, corresponding to the oxidation products, and saturated and unsaturated structures. Good quantitative relation was found between peroxide value and contribution of oxidation products evaluated using MCR--based on NIR (R(2) = 0.890), MIR (R(2) = 0.707) and combined NIR and MIR (R(2) = 0.747) data. Calibration models for prediction peroxide value established using partial least squares (PLS) regression were characterized for MIR (R(2) = 0.701, RPD = 1.7), NIR (R(2) = 0.970, RPD = 5.3), and combined NIR and MIR data (R(2) = 0.954, RPD = 3.1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Inferring gene expression dynamics via functional regression analysis
Directory of Open Access Journals (Sweden)
Leng Xiaoyan
2008-01-01
Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.
Weibull and lognormal Taguchi analysis using multiple linear regression
International Nuclear Information System (INIS)
Piña-Monarrez, Manuel R.; Ortiz-Yañez, Jesús F.
2015-01-01
The paper provides to reliability practitioners with a method (1) to estimate the robust Weibull family when the Taguchi method (TM) is applied, (2) to estimate the normal operational Weibull family in an accelerated life testing (ALT) analysis to give confidence to the extrapolation and (3) to perform the ANOVA analysis to both the robust and the normal operational Weibull family. On the other hand, because the Weibull distribution neither has the normal additive property nor has a direct relationship with the normal parameters (µ, σ), in this paper, the issues of estimating a Weibull family by using a design of experiment (DOE) are first addressed by using an L_9 (3"4) orthogonal array (OA) in both the TM and in the Weibull proportional hazard model approach (WPHM). Then, by using the Weibull/Gumbel and the lognormal/normal relationships and multiple linear regression, the direct relationships between the Weibull and the lifetime parameters are derived and used to formulate the proposed method. Moreover, since the derived direct relationships always hold, the method is generalized to the lognormal and ALT analysis. Finally, the method’s efficiency is shown through its application to the used OA and to a set of ALT data. - Highlights: • It gives the statistical relations and steps to use the Taguchi Method (TM) to analyze Weibull data. • It gives the steps to determine the unknown Weibull family to both the robust TM setting and the normal ALT level. • It gives a method to determine the expected lifetimes and to perform its ANOVA analysis in TM and ALT analysis. • It gives a method to give confidence to the extrapolation in an ALT analysis by using the Weibull family of the normal level.
Multivariate techniques of analysis for ToF-E recoil spectrometry data
Energy Technology Data Exchange (ETDEWEB)
Whitlow, H J; Bouanani, M E; Persson, L; Hult, M; Jonsson, P; Johnston, P N [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M; Zaring, C [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P N; Bubb, I F; Walker, B R; Stannard, W B [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)
1997-12-31
Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.
Multivariate techniques of analysis for ToF-E recoil spectrometry data
Energy Technology Data Exchange (ETDEWEB)
Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)
1996-12-31
Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.
Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students
Valero-Mora, Pedro M.; Ledesma, Ruben D.
2011-01-01
This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…
DEFF Research Database (Denmark)
Sohal, Muhammad Adeel Nassar; Kucheryavskiy, Sergey V.; Thyne, Geoffrey
2017-01-01
the critical mechanisms at the pore scale. Better pore scale physico-chemical understanding will guide to formulate accurate reservoir-scale models. This paper presents a comprehensive meta-analysis of the proposed mechanisms using multivariate data analysis. Detailed review of the subject, including...... mechanisms with supporting and contradictory evidence has been presented by Sohal et al. (2016). In this study, the significance of each contributing factor to EOR was quantified and subjected to rigorous multivariate statistical analysis. The analysis was limited because there is no uniform methodology...
International Nuclear Information System (INIS)
Tapping, C.R.; Scott, P.M.; Lakshminarayan, R.; Ettles, D.F.; Robinson, G.J.
2012-01-01
Aim: To identify variables related to complications following tunnelled dialysis catheter (TDC) replacement and stratifying the risk to reduce morbidity in patients with end-stage renal disease. Materials and methods: One hundred and forty TDCs (Split Cath, medCOMP) were replaced in 140 patients over a 5 year period. Multiple variables were retrospectively collected and analysed to stratify the risk and to predict patients who were more likely to suffer from complications. Multivariate regression analysis was used to identify variables predictive of complications. Results: There were six immediate complications, 42 early complications, and 37 late complications. Multivariate analysis revealed that variables significantly associated to complications were: female sex (p = 0.003; OR 2.9); previous TDC in the same anatomical position in the past (p = 0.014; OR 4.1); catheter exchange (p = 0.038; OR 3.8); haemoglobin 15 s (p = 0.002; OR 4.1); and C-reactive protein >50 mg/l (p = 0.007; OR 4.6). A high-risk score, which used the values from the multivariate analysis, predicted 100% of the immediate complications, 95% of the early complications, and 68% of the late complications. Conclusion: Patients can now be scored prior to TDC replacement. A patient with a high-risk score can be optimized to reduce the chance of complications. Further prospective studies to confirm that rotating the site of TDC reduces complications are warranted as this has implications for current guidelines.
Energy Technology Data Exchange (ETDEWEB)
Clegg, Samuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Sklute, Elizabeth [MT HOLYOKE COLLEGE; Dyare, Melinda D [MT HOLYOKE COLLEGE
2008-01-01
Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from which unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.
Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index
Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun
2018-02-01
It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.
International Nuclear Information System (INIS)
Coleman, D.J.; Lizzi, F.L.; Silverman, R.H.; Ellsworth, R.M.; Haik, B.G.; Abramson, D.H.; Smith, M.E.; Rondeau, M.J.
1985-01-01
Parameters derived from computer analysis of digital radio-frequency (rf) ultrasound scan data of untreated uveal malignant melanomas were examined for correlations with tumor regression following cobalt-60 plaque. Parameters included tumor height, normalized power spectrum and acoustic tissue type (ATT). Acoustic tissue type was based upon discriminant analysis of tumor power spectra, with spectra of tumors of known pathology serving as a model. Results showed ATT to be correlated with tumor regression during the first 18 months following treatment. Tumors with ATT associated with spindle cell malignant melanoma showed over twice the percentage reduction in height as those with ATT associated with mixed/epithelioid melanomas. Pre-treatment height was only weakly correlated with regression. Additionally, significant spectral changes were observed following treatment. Ultrasonic spectrum analysis thus provides a noninvasive tool for classification, prediction and monitoring of tumor response to cobalt-60 plaque
International Nuclear Information System (INIS)
Kumar, Akansha; Tsvetkov, Pavel V.
2015-01-01
Highlights: • This paper presents a new method useful for the optimization of complex dynamic systems. • The method uses the strengths of; genetic algorithms (GA), and regression splines. • The method is applied to the design of a gas cooled fast breeder reactor design. • Tools like Java, R, and codes like MCNP, Matlab are used in this research. - Abstract: A module based optimization method using genetic algorithms (GA), and multivariate regression analysis has been developed to optimize a set of parameters in the design of a nuclear reactor. GA simulates natural evolution to perform optimization, and is widely used in recent times by the scientific community. The GA fits a population of random solutions to the optimized solution of a specific problem. In this work, we have developed a genetic algorithm to determine the values for a set of nuclear reactor parameters to design a gas cooled fast breeder reactor core including a basis thermal–hydraulics analysis, and energy transfer. Multivariate regression is implemented using regression splines (RS). Reactor designs are usually complex and a simulation needs a significantly large amount of time to execute, hence the implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using RS in conjunction with GA. Due to using RS, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a multivariate regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The reactor parameters are given by the, radius of a fuel pin cell, isotopic enrichment of the fissile material in the fuel, mass flow rate of the coolant, and temperature of the coolant at the core inlet. And, the optimization objectives for the reactor core are, high breeding of U-233 and Pu-239 in
Mixed kernel function support vector regression for global sensitivity analysis
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
Framing an Nuclear Emergency Plan using Qualitative Regression Analysis
International Nuclear Information System (INIS)
Amy Hamijah Abdul Hamid; Ibrahim, M.Z.A.; Deris, S.R.
2014-01-01
Since the arising on safety maintenance issues due to post-Fukushima disaster, as well as, lack of literatures on disaster scenario investigation and theory development. This study is dealing with the initiation difficulty on the research purpose which is related to content and problem setting of the phenomenon. Therefore, the research design of this study refers to inductive approach which is interpreted and codified qualitatively according to primary findings and written reports. These data need to be classified inductively into thematic analysis as to develop conceptual framework related to several theoretical lenses. Moreover, the framing of the expected framework of the respective emergency plan as the improvised business process models are abundant of unstructured data abstraction and simplification. The structural methods of Qualitative Regression Analysis (QRA) and Work System snapshot applied to form the data into the proposed model conceptualization using rigorous analyses. These methods were helpful in organising and summarizing the snapshot into an ' as-is ' work system that being recommended as ' to-be' w ork system towards business process modelling. We conclude that these methods are useful to develop comprehensive and structured research framework for future enhancement in business process simulation. (author)
Online Statistical Modeling (Regression Analysis) for Independent Responses
Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus
2017-06-01
Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.
Robust Regression and its Application in Financial Data Analysis
Mansoor Momeni; Mahmoud Dehghan Nayeri; Ali Faal Ghayoumi; Hoda Ghorbani
2010-01-01
This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from th...
A comparison between multivariate and bivariate analysis used in marketing research
Directory of Open Access Journals (Sweden)
Constantin, C.
2012-01-01
Full Text Available This paper is about an instrumental research conducted in order to compare the information given by two multivariate data analysis in comparison with the usual bivariate analysis. The outcomes of the research reveal that sometimes the multivariate methods use more information from a certain variable, but sometimes they use only a part of the information considered the most important for certain associations. For this reason, a researcher should use both categories of data analysis in order to obtain entirely useful information.
A simple ergonomic measure reduces fluoroscopy time during ERCP: A multivariate analysis.
Jowhari, Fahd; Hopman, Wilma M; Hookey, Lawrence
2017-03-01
Background and study aims Endoscopic retrograde cholangiopancreatgraphy (ERCP) carries a radiation risk to patients undergoing the procedure and the team performing it. Fluoroscopy time (FT) has been shown to have a linear relationship with radiation exposure during ERCP. Recent modifications to our ERCP suite design were felt to impact fluoroscopy time and ergonomics. This multivariate analysis was therefore undertaken to investigate these effects, and to identify and validate various clinical, procedural and ergonomic factors influencing the total fluoroscopy time during ERCP. This would better assist clinicians with predicting prolonged fluoroscopic durations and to undertake relevant precautions accordingly. Patients and methods A retrospective analysis of 299 ERCPs performed by 4 endoscopists over an 18-month period, at a single tertiary care center was conducted. All inpatients/outpatients (121 males, 178 females) undergoing ERCP for any clinical indication from January 2012 to June 2013 in the chosen ERCP suite were included in the study. Various predetermined clinical, procedural and ergonomic factors were obtained via chart review. Univariate analyses identified factors to be included in the multivariate regression model with FT as the dependent variable. Results Bringing the endoscopy and fluoroscopy screens next to each other was associated with a significantly lesser FT than when the screens were separated further (-1.4 min, P = 0.026). Other significant factors associated with a prolonged FT included having a prior ERCP (+ 1.4 min, P = 0.031), and more difficult procedures (+ 4.2 min for each level of difficulty, P < 0.001). ERCPs performed by high-volume endoscopists used lesser FT vs. low-volume endoscopists (-1.82, P = 0.015). Conclusions Our study has identified and validated various factors that affect the total fluoroscopy time during ERCP. This is the first study to show that decreasing the distance
Kajbafzadeh, Abdol-Mohammad; Tourchi, Ali; Aryan, Zahra
2013-02-01
To identify independent factors that may predict vesicoureteral reflux (VUR) resolution after endoscopic treatment using dextranomer/hyaluronic acid copolymer (Deflux) in children free of anatomical anomalies. A retrospective study was conducted in our pediatric referral center from 1998 to 2011 on children with primary VUR who underwent endoscopic injection of Deflux with or without concomitant autologous blood injection (called HABIT or HIT, respectively). Children with secondary VUR or incomplete records were excluded from the study. Potential factors were divided into three categories including preoperative, intraoperative and postoperative. Success was defined as no sign of VUR on postoperative voiding cystourethrogram. Univariate and multivariate logistic regression models were constructed to identify independent factors that may predict success. Odds ratio (OR) and 95 % confidence interval (95 % CI) for prediction of success were estimated for each factor. From 485 children received Deflux injection, a total of 372 with a mean age of 3.10 years (ranged from 6 months to 12 years) were included in the study and endoscopic management was successful in 322 (86.6 %) of them. Of the patients, 185 (49.7 %) underwent HIT and 187 (50.3 %) underwent HABIT technique. On univariate analysis, VUR grade from preoperative category (OR = 4.79, 95 % CI = 2.22-10.30, p = 0.000), operation technique (OR = 0.33, 95 % CI = 0.17-0.64, p = 0.001) and presence of mound on postoperative sonography (OR = 0.06, 95 % CI = 0.02-0.16, p = 0.000) were associated with success. On multivariate analysis, preoperative VUR grade (OR = 4.85, 95 % CI = 2.49-8.96, p = 0.000) and identification of mound on postoperative sonography (OR = 0.07, 95 % CI = 0.01-0.18, p = 0.000) remained as independent success predictors. Based on this study, successful VUR correction after the endoscopic injection of Deflux can be predicted with respect to preoperative VUR grade and presence of mound after operation.
Simons, Monique; de Vet, Emely; Chinapaw, Mai Jm; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes
2014-04-04
Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games-active games-seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a correlate of both active and non-active gaming
de Vet, Emely; Chinapaw, Mai JM; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes
2014-01-01
Background Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games—active games—seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. Objective The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. Methods A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Results Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a
A multivariate tobit analysis of highway accident-injury-severity rates.
Anastasopoulos, Panagiotis Ch; Shankar, Venky N; Haddock, John E; Mannering, Fred L
2012-03-01
Relatively recent research has illustrated the potential that tobit regression has in studying factors that affect vehicle accident rates (accidents per distance traveled) on specific roadway segments. Tobit regression has been used because accident rates on specific roadway segments are continuous data that are left-censored at zero (they are censored because accidents may not be observed on all roadway segments during the period over which data are collected). This censoring may arise from a number of sources, one of which being the possibility that less severe crashes may be under-reported and thus may be less likely to appear in crash databases. Traditional tobit-regression analyses have dealt with the overall accident rate (all crashes regardless of injury severity), so the issue of censoring by the severity of crashes has not been addressed. However, a tobit-regression approach that considers accident rates by injury-severity level, such as the rate of no-injury, possible injury and injury accidents per distance traveled (as opposed to all accidents regardless of injury-severity), can potentially provide new insights, and address the possibility that censoring may vary by crash-injury severity. Using five-year data from highways in Washington State, this paper estimates a multivariate tobit model of accident-injury-severity rates that addresses the possibility of differential censoring across injury-severity levels, while also accounting for the possible contemporaneous error correlation resulting from commonly shared unobserved characteristics across roadway segments. The empirical results show that the multivariate tobit model outperforms its univariate counterpart, is practically equivalent to the multivariate negative binomial model, and has the potential to provide a fuller understanding of the factors determining accident-injury-severity rates on specific roadway segments. Published by Elsevier Ltd.
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Multivariate analysis of factors predicting prostate dose in intensity-modulated radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Tomita, Tsuneyuki [Division of Radiology, Osaka Red Cross Hospital, Osaka (Japan); Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Hirose, Yoshinori; Kitsuda, Kenji; Notogawa, Takuya; Miki, Katsuhito [Division of Radiology, Osaka Red Cross Hospital, Osaka (Japan); Nakamura, Kiyonao; Ishigaki, Takashi [Department of Radiation Oncology, Osaka Red Cross Hospital, Osaka (Japan)
2014-01-01
We conducted a multivariate analysis to determine relationships between prostate radiation dose and the state of surrounding organs, including organ volumes and the internal angle of the levator ani muscle (LAM), based on cone-beam computed tomography (CBCT) images after bone matching. We analyzed 270 CBCT data sets from 30 consecutive patients receiving intensity-modulated radiation therapy for prostate cancer. With patients in the supine position on a couch with the HipFix system, data for center of mass (COM) displacement of the prostate and the state of individual organs were acquired and compared between planning CT and CBCT scans. Dose distributions were then recalculated based on CBCT images. The relative effects of factors on the variance in COM, dose covering 95% of the prostate volume (D{sub 95%}), and percentage of prostate volume covered by the 100% isodose line (V{sub 100%}) were evaluated by a backward stepwise multiple regression analysis. COM displacement in the anterior-posterior direction (COM{sub AP}) correlated significantly with the rectum volume (δVr) and the internal LAM angle (δθ; R = 0.63). Weak correlations were seen for COM in the left-right (R = 0.18) and superior-inferior directions (R = 0.31). Strong correlations between COM{sub AP} and prostate D{sub 95%} and V{sub 100%} were observed (R ≥ 0.69). Additionally, the change ratios in δVr and δθ remained as predictors of prostate D{sub 95%} and V{sub 100%}. This study shows statistically that maintaining the same rectum volume and LAM state for both the planning CT simulation and treatment is important to ensure the correct prostate dose in the supine position with bone matching.
Davidson, Sandra K; Dowrick, Christopher F; Gunn, Jane M
2016-03-15
High rates of persistent depression highlight the need to identify the risk factors associated with poor depression outcomes and to provide targeted interventions to people at high risk. Although social relationships have been implicated in depression course, interventions targeting social relationships have been disappointing. Possibly, interventions have targeted the wrong elements of relationships. Alternatively, the statistical association between relationships and depression course is not causal, but due to shared variance with other factors. We investigated whether elements of social relationships predict major depressive episode (MDE) when multiple relevant variables are considered. Data is from a longitudinal study of primary care patients with depressive symptoms. 494 participants completed questionnaires at baseline and a depression measure (PHQ-9) two years later. Baseline measures included functional (i.e. quality) and structural (i.e. quantity) social relationships, depression, neuroticism, chronic illness, alcohol abuse, childhood abuse, partner violence and sociodemographic characteristics. Logistic regression with generalised estimating equations was used to estimate the association between social relationships and MDE. Both functional and structural social relationships predicted MDE in univariate analysis. Only functional social relationships remained significant in multivariate analysis (OR: 0.87; 95%CI: 0.79-0.97; p=0.01). Other unique predictors of MDE were baseline depression severity, neuroticism, childhood sexual abuse and intimate partner violence. We did not assess how a person's position in their depression trajectory influenced the association between social relationships and depression. Interventions targeting relationship quality may be part of a personalised treatment plan for people at high risk due of persistent depression due to poor social relationships. Copyright © 2015 Elsevier B.V. All rights reserved.
Statistical analysis of sediment toxicity by additive monotone regression splines
Boer, de W.J.; Besten, den P.J.; Braak, ter C.J.F.
2002-01-01
Modeling nonlinearity and thresholds in dose-effect relations is a major challenge, particularly in noisy data sets. Here we show the utility of nonlinear regression with additive monotone regression splines. These splines lead almost automatically to the estimation of thresholds. We applied this
A Study of Effects of MultiCollinearity in the Multivariable Analysis.
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W
2014-10-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.
Leite, Fábio R M; Nascimento, Gustavo G; Demarco, Flávio F; Gomes, Brenda P F A; Pucci, Cesar R; Martinho, Frederico C
2015-05-01
This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic cases. The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus databases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Regression and kriging analysis for grid power factor estimation
Directory of Open Access Journals (Sweden)
Rajesh Guntaka
2014-12-01
Full Text Available The measurement of power factor (PF in electrical utility grids is a mainstay of load balancing and is also a critical element of transmission and distribution efficiency. The measurement of PF dates back to the earliest periods of electrical power distribution to public grids. In the wide-area distribution grid, measurement of current waveforms is trivial and may be accomplished at any point in the grid using a current tap transformer. However, voltage measurement requires reference to ground and so is more problematic and measurements are normally constrained to points that have ready and easy access to a ground source. We present two mathematical analysis methods based on kriging and linear least square estimation (LLSE (regression to derive PF at nodes with unknown voltages that are within a perimeter of sample nodes with ground reference across a selected power grid. Our results indicate an error average of 1.884% that is within acceptable tolerances for PF measurements that are used in load balancing tasks.
A simplified procedure of linear regression in a preliminary analysis
Directory of Open Access Journals (Sweden)
Silvia Facchinetti
2013-05-01
Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.
D'Amico, E J; Neilands, T B; Zambarano, R
2001-11-01
Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin
2013-10-15
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin
2013-01-01
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436
An Analysis of Bank Service Satisfaction Based on Quantile Regression and Grey Relational Analysis
Directory of Open Access Journals (Sweden)
Wen-Tsao Pan
2016-01-01
Full Text Available Bank service satisfaction is vital to the success of a bank. In this paper, we propose to use the grey relational analysis to gauge the levels of service satisfaction of the banks. With the grey relational analysis, we compared the effects of different variables on service satisfaction. We gave ranks to the banks according to their levels of service satisfaction. We further used the quantile regression model to find the variables that affected the satisfaction of a customer at a specific quantile of satisfaction level. The result of the quantile regression analysis provided a bank manager with information to formulate policies to further promote satisfaction of the customers at different quantiles of satisfaction level. We also compared the prediction accuracies of the regression models at different quantiles. The experiment result showed that, among the seven quantile regression models, the median regression model has the best performance in terms of RMSE, RTIC, and CE performance measures.
Application of Multivariable Statistical Techniques in Plant-wide WWTP Control Strategies Analysis
DEFF Research Database (Denmark)
Flores Alsina, Xavier; Comas, J.; Rodríguez-Roda, I.
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant...... analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii......) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation...
Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup
2010-10-01
We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.
Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi
2015-11-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.
Methods of Detecting Outliers in A Regression Analysis Model ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-06-01
Jun 1, 2013 ... especially true in observational studies .... Simple linear regression and multiple ... The simple linear ..... Grubbs,F.E (1950): Sample Criteria for Testing Outlying observations: Annals of ... In experimental design, the Relative.
231 Using Multiple Regression Analysis in Modelling the Role of ...
African Journals Online (AJOL)
User
of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.
Juliano da Silva, Carlos; Pasquini, Celio
2015-01-21
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample
Analysis of quantile regression as alternative to ordinary least squares
Ibrahim Abdullahi; Abubakar Yahaya
2015-01-01
In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...
International Nuclear Information System (INIS)
Janssen, I.; Stebbings, J.H.
1990-01-01
In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs
Directory of Open Access Journals (Sweden)
Li eXiao
2014-08-01
Full Text Available Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR and pyrolysis-molecular beam mass spectrometry (Py-mbms are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis and for building regression models (partial least square regression between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated
Lutfi, R; Torquati, A; Sekhar, N; Richards, W O
2006-06-01
Laparoscopic gastric bypass (LGB) has proven efficacy in causing significant and durable weight loss. However, the degree of postoperative weight loss and metabolic improvement varies greatly among individuals. Our study is aimed to identify independent predictors of successful weight loss after LGB. Socioeconomic demographics were prospectively collected on patients undergoing LGB. Primary endpoint was percent of excess weight loss (EWL) at 1-year follow-up. Insufficient weight loss was defined as EWL or=52.8%. According to this definition, 147 patients (81.7%) achieved successful weight loss 1 year after LGB. On univariate analysis, preoperative BMI had a significant effect on EWL, with patients with BMI vs 61.6%; p = 0.001). Marriage status was also a significant predictor of successful outcome, with single patients achieving a higher percentage of EWL than married patients (89.8% vs 77.7%; p = 0.04). Race had a noticeable but not statistically significant effect, with Caucasian patients achieving a higher percentage of EWL than African Americans (82.9% vs 60%; p = 0.06). Marital status remained an independent predictor of success in the multivariate logistic regression model after adjusting for covariates. Married patients were at more than two times the risk of failure compared to those who were unmarried (OR 2.6; 95% CI: 1.1-6.5, p = 0.04). Weight loss achieved at 1 year after LGB is suboptimal in superobese patients. Single patients with BMI < 50 had the best chance of achieving greater weight loss.
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.
Directory of Open Access Journals (Sweden)
Binod Neupane
Full Text Available In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when
Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity
Dinov, Ivo D.; Christou, Nicolas
2011-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…
Denial-of-service attack detection based on multivariate correlation analysis
Tan, Zhiyuan; Jamdagni, Aruna; He, Xiangjian; Nanda, Priyadarsi; Liu, Ren Ping; Lu, Bao-Liang; Zhang, Liqing; Kwok, James
2011-01-01
The reliability and availability of network services are being threatened by the growing number of Denial-of-Service (DoS) attacks. Effective mechanisms for DoS attack detection are demanded. Therefore, we propose a multivariate correlation analysis approach to investigate and extract second-order
Van der Graaf, PH; Nilsson, J; Van Schaick, EA; Danhof, M
The aim of this study was to investigate the feasibility of a quantitative structure-pharmacokinetic relationships (QSPKR) method based on contemporary three-dimensional (3D) molecular characterization and multivariate statistical analysis. For this purpose, the programs SYBYL/CoMFA, GRID, and
Molenaar, P.C.M.
1987-01-01
Outlines a frequency domain analysis of the dynamic factor model and proposes a solution to the problem of constructing a causal filter of lagged factor loadings. The method is illustrated with applications to simulated and real multivariate time series. The latter applications involve topographic
Cardiovascular reactivity patterns and pathways to hypertension: a multivariate cluster analysis
Brindle, R. C.; Ginty, A. T.; Jones, A.; Phillips, A. C.; Roseboom, T. J.; Carroll, D.; Painter, R. C.; de Rooij, S. R.
2016-01-01
Substantial evidence links exaggerated mental stress induced blood pressure reactivity to future hypertension, but the results for heart rate reactivity are less clear. For this reason multivariate cluster analysis was carried out to examine the relationship between heart rate and blood pressure
Multivariate data analysis as a tool in advanced quality monitoring in the food production chain
DEFF Research Database (Denmark)
Bro, R.; van den Berg, F.; Thybo, A.
2002-01-01
This paper summarizes some recent advances in mathematical modeling of relevance in advanced quality monitoring in the food production chain. Using chemometrics-multivariate data analysis - it is illustrated how to tackle problems in food science more efficiently and, moreover, solve problems...
Decomposition of multivariate phenotypic means in multigroup genetic covarinace structure analysis
Dolan, C.V.; Molenaar, P.C.M.; Boomsma, D.I.
1992-01-01
Uses D. Sorbom's (1974) method to study differences in latent means in multivariate twin data. By restricting the analysis to a comparison between groups, the results pertain only to the additive contributions of common genetic and environmental factors to the deviation of the group means from what
Richard. D. Wood-Smith; John M. Buffington
1996-01-01
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...
Brink, van den P.J.; Braak, ter C.J.F.
1999-01-01
In this paper a novel multivariate method is proposed for the analysis of community response data from designed experiments repeatedly sampled in time. The long-term effects of the insecticide chlorpyrifos on the invertebrate community and the dissolved oxygen (DO)–pH–alkalinity–conductivity
Multiple regression for physiological data analysis: the problem of multicollinearity.
Slinker, B K; Glantz, S A
1985-07-01
Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.
Analysis of some methods for reduced rank Gaussian process regression
DEFF Research Database (Denmark)
Quinonero-Candela, J.; Rasmussen, Carl Edward
2005-01-01
While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...
Rubio, Francisco J.
2016-02-09
We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.
Intermediate and advanced topics in multilevel logistic regression analysis.
Austin, Peter C; Merlo, Juan
2017-09-10
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi
2017-01-01
High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multivariate Analysis of Multiple Datasets: a Practical Guide for Chemical Ecology.
Hervé, Maxime R; Nicolè, Florence; Lê Cao, Kim-Anh
2018-03-01
Chemical ecology has strong links with metabolomics, the large-scale study of all metabolites detectable in a biological sample. Consequently, chemical ecologists are often challenged by the statistical analyses of such large datasets. This holds especially true when the purpose is to integrate multiple datasets to obtain a holistic view and a better understanding of a biological system under study. The present article provides a comprehensive resource to analyze such complex datasets using multivariate methods. It starts from the necessary pre-treatment of data including data transformations and distance calculations, to the application of both gold standard and novel multivariate methods for the integration of different omics data. We illustrate the process of analysis along with detailed results interpretations for six issues representative of the different types of biological questions encountered by chemical ecologists. We provide the necessary knowledge and tools with reproducible R codes and chemical-ecological datasets to practice and teach multivariate methods.
Characterization of breast masses by dynamic enhanced MR imaging. A logistic regression analysis
International Nuclear Information System (INIS)
Ikeda, O.; Morishita, S.; Kido, T.; Kitajima, M.; Yamashita, Y.; Takahashi, M.; Okamura, K.; Fukuda, S.
1999-01-01
Purpose: To identify features useful for differentiation between malignant and benign breast neoplasms using multivariate analysis of findings by MR imaging. Material and Methods: In a retrospective analysis, 61 patients with 64 breast masses underwent MR imaging and the time-signal intensity curves for precontrast dynamic postcontrast images were quantitatively analyzed. Statistical analysis was performed using a logistic regression model, which was prospectively tested in another 34 patients with suspected breast masses. Results: Univariate analysis revealed that the reliable indicators for malignancy were first the appearance of the tumor border, followed by the washout ratio, internal architecture after contrast enhancement, and peak time. The factors significantly associated with malignancy were irregular tumor border, followed by washout ratio, internal architecture, and peak time. For differentiation between benignity and malignancy, the maximum cut-off point was to be found between 0.47 and 0.51. In a prospective application of this model, 91% of the lesions were accurately discriminated as benign or malignant lesions. Conclusion: Combination of contrast-enhanced dynamic and postcontrast-enhanced MR imaging provided accurate data for the diagnosis of malignant neoplasms of the breast. The model had an accuracy of 91% (sensitivity 90%, specificity 93%). (orig.)
Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.
Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K
2018-02-01
Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.
Grades, Gender, and Encouragement: A Regression Discontinuity Analysis
Owen, Ann L.
2010-01-01
The author employs a regression discontinuity design to provide direct evidence on the effects of grades earned in economics principles classes on the decision to major in economics and finds a differential effect for male and female students. Specifically, for female students, receiving an A for a final grade in the first economics class is…
The studies of post-medieval glass by multivariate and X-ray fluorescence analysis
International Nuclear Information System (INIS)
Kierzek, J.; Kunicki-Goldfinger, J.
2002-01-01
Multivariate statistical analysis of the results obtained by energy dispersive X-ray fluorescence analysis has been used in the study of baroque vessel glasses originated from central Europe. X-ray spectrometry can be applied as a completely non-destructive, non-sampling and multi-element method. It is very useful in the studies of valuable historical artefacts. For the last years, multivariate statistical analysis has been developed as an important tool for the archaeometric purposes. Cluster, principal component and discriminant analysis were applied for the classification of the examined objects. The obtained results show that these statistical tools are very useful and complementary in the studies of historical objects. (author)
Golay, Jean; Kanevski, Mikhaïl
2013-04-01
The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal
Design and analysis of experiments classical and regression approaches with SAS
Onyiah, Leonard C
2008-01-01
Introductory Statistical Inference and Regression Analysis Elementary Statistical Inference Regression Analysis Experiments, the Completely Randomized Design (CRD)-Classical and Regression Approaches Experiments Experiments to Compare Treatments Some Basic Ideas Requirements of a Good Experiment One-Way Experimental Layout or the CRD: Design and Analysis Analysis of Experimental Data (Fixed Effects Model) Expected Values for the Sums of Squares The Analysis of Variance (ANOVA) Table Follow-Up Analysis to Check fo
International Nuclear Information System (INIS)
Bakraji, E. H.; Othman, I.; Sarhil, A.; Al-Somel, N.
2002-01-01
Instrumental neutron activation analysis (INAA) has been utilized in the analysis of thirty-seven archaeological ceramics fragment samples collected from Tal AI-Wardiate site, Missiaf town, Hamma city, Syria. 36 chemical elements were determined. These elemental concentrations have been processed using two multivariate statistical methods, cluster and factor analysis in order to determine similarities and correlation between the various samples. Factor analysis confirms that samples were correctly classified by cluster analysis. The results showed that samples can be considered to be manufactured using three different sources of raw material. (author)
REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.
SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.
Cichy, Radoslaw Martin; Pantazis, Dimitrios
2017-09-01
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.
Marginal regression analysis of recurrent events with coarsened censoring times.
Hu, X Joan; Rosychuk, Rhonda J
2016-12-01
Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.
Morphological analysis of enlarged ventricle on CT image, using multivariate analysis
International Nuclear Information System (INIS)
Iwasaki, Satoru; Kichikawa, Kimihiko; Otsuji, Hideyuki; Fukusumi, Akio; Kobayashi, Yasuo.
1983-01-01
Multivariate analysis of enlarged cerebral ventricle on CT was undertaken to study the characteristics of ventricular morphology. Several ventricular segments of enlarged ventricle, defined on the basis of the study of normal group, were linearly measured on CT image. Then the discriminant analysis with the increase and decrease of variable was applied. The following are the results obtained. The error ratio of discrimination between pressure hydrocephalus and cerebral atrophy was 8.4 %, and between obstructive hydrocephalus and communicating hydrocephalus was 11.3 %. Ventricular segments were divided into three groups according to their character of enlargement: (1) the temporal horn and trigone are large in pressure hydrocephalus; (2) the hypothalamic segment of the third ventricle and the body of lateral ventricle are larger in obstructive hydrocephalus than in communicating hydrocephalus; (3) the anterior horn, cellae mediae at the level of the head of caudate nuclei and thalamic segment of the third ventricle are relatively large in cerebral atrophy and communicating hydrocephalus. The hypothalamic segment of the third ventricle assumes a round or oval shape in pressure hydrocephalus but a rectangular or teardrop shape in cerebral atrophy. These findings are contributory to pathological evaluation of ventricular enlargement. (author)
Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo
2013-01-01
Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593
Regression analysis of censored data using pseudo-observations
DEFF Research Database (Denmark)
Parner, Erik T.; Andersen, Per Kragh
2010-01-01
We draw upon a series of articles in which a method based on pseu- dovalues is proposed for direct regression modeling of the survival function, the restricted mean, and the cumulative incidence function in competing risks with right-censored data. The models, once the pseudovalues have been...... computed, can be fit using standard generalized estimating equation software. Here we present Stata procedures for computing these pseudo-observations. An example from a bone marrow transplantation study is used to illustrate the method....
Application of regression analysis to creep of space shuttle materials
International Nuclear Information System (INIS)
Rummler, D.R.
1975-01-01
Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed
Model performance analysis and model validation in logistic regression
Directory of Open Access Journals (Sweden)
Rosa Arboretti Giancristofaro
2007-10-01
Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.
BRGLM, Interactive Linear Regression Analysis by Least Square Fit
International Nuclear Information System (INIS)
Ringland, J.T.; Bohrer, R.E.; Sherman, M.E.
1985-01-01
1 - Description of program or function: BRGLM is an interactive program written to fit general linear regression models by least squares and to provide a variety of statistical diagnostic information about the fit. Stepwise and all-subsets regression can be carried out also. There are facilities for interactive data management (e.g. setting missing value flags, data transformations) and tools for constructing design matrices for the more commonly-used models such as factorials, cubic Splines, and auto-regressions. 2 - Method of solution: The least squares computations are based on the orthogonal (QR) decomposition of the design matrix obtained using the modified Gram-Schmidt algorithm. 3 - Restrictions on the complexity of the problem: The current release of BRGLM allows maxima of 1000 observations, 99 variables, and 3000 words of main memory workspace. For a problem with N observations and P variables, the number of words of main memory storage required is MAX(N*(P+6), N*P+P*P+3*N, and 3*P*P+6*N). Any linear model may be fit although the in-memory workspace will have to be increased for larger problems
International Nuclear Information System (INIS)
Sarrach, D.; Strohner, P.
1986-01-01
The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2016-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms
Oxidative stability of frozen mackerel batches ― A multivariate data analysis approach
DEFF Research Database (Denmark)
Helbo Ekgreen, M.; Frosch, Stina; Baron, Caroline Pascale
2011-01-01
deterioration and texture changes. The aim was to investigate the correlation between the raw material history and the quality loss observed during frozen storage using relevant multivariate data analysis such as Principal Component Analysis (PCA) and Partial Least Square Analysis (PLS). Preliminary results...... showed that it was possible to differentiate between the different batches depending on their history and that some batches were more oxidised than others. Furthermore, based on the results from the data analysis, critical control points in the entire production chain will be identified and strategies...
Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung
2016-01-01
A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kleijnen, J.P.C.
1995-01-01
This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for
Bathke, Arne C; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne
2018-03-22
To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer's disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved.
Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun
2014-08-01
Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.
Semiparametric regression analysis of interval-censored competing risks data.
Mao, Lu; Lin, Dan-Yu; Zeng, Donglin
2017-09-01
Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes. © 2017, The International Biometric Society.
Authentication of Trappist beers by LC-MS fingerprints and multivariate data analysis.
Mattarucchi, Elia; Stocchero, Matteo; Moreno-Rojas, José Manuel; Giordano, Giuseppe; Reniero, Fabiano; Guillou, Claude
2010-12-08
The aim of this study was to asses the applicability of LC-MS profiling to authenticate a selected Trappist beer as part of a program on traceability funded by the European Commission. A total of 232 beers were fingerprinted and classified through multivariate data analysis. The selected beer was clearly distinguished from beers of different brands, while only 3 samples (3.5% of the test set) were wrongly classified when compared with other types of beer of the same Trappist brewery. The fingerprints were further analyzed to extract the most discriminating variables, which proved to be sufficient for classification, even using a simplified unsupervised model. This reduced fingerprint allowed us to study the influence of batch-to-batch variability on the classification model. Our results can easily be applied to different matrices and they confirmed the effectiveness of LC-MS profiling in combination with multivariate data analysis for the characterization of food products.
Clinical patch test data evaluated by multivariate analysis. Danish Contact Dermatitis Group
DEFF Research Database (Denmark)
Christophersen, J; Menné, T; Tanghøj, P
1989-01-01
The aim of the present study was to evaluate the influence of individual explanatory factors, such as sex, age, atopy, test time and presence of diseased skin, on clinical patch test results, by application of multivariate statistical analysis. The study population was 2166 consecutive patients...... patch tested with the standard series of the International Contact Dermatitis Research Group (ICDRG) by members of the Danish Contact Dermatitis Group (DCDG) over a period of 6 months. For the 8 test allergens most often found positive (nickel, fragrance-mix, cobalt, chromate, balsam of Peru, carba......-mix, colophony, and formaldehyde), one or more individual factors were of significance for the risk of being sensitized, except for chromate and formaldehyde. It is concluded that patch test results can be compared only after stratification of the material or by multivariate analysis....
International Nuclear Information System (INIS)
Kuruva, Manohar; Mittal, Bhagwant Rai; Abrar, Mohammed Labeeb; Kashyap, Raghava; Bhattacharya, Anish
2012-01-01
Standardized uptake value (SUV) is the most commonly used semi-quantitative PET parameter. Various response assessment criteria grade the tumor uptake relative to liver or mediastinal uptake. However various factors can affect the background SUV values. This prospective study was carried out to assess the variability of liver and mediastinal SUVs normalized to lean body mass (SUL-L, SUL-M), body surface area (SUB-L, SUB-M), and body weight (SUW-L, SUW-M) and their dependence on various factors which can affect SUV values. Eighty-eight patients who underwent F-18 FDG PET/CT for various oncological indications were prospectively included in this study. SUVs of liver and mediastinum were calculated by ROIs drawn as suggested by Wahl, et al., in PERCIST 1.0 criteria. Multivariate linear regression analysis was done to assess for the various factors influencing the SUVs of liver and mediastinum. Factors assessed were age, sex, weight, blood glucose level, diabetic status, and uptake period. A P value less than 0.01 was considered significant. SUL-L, SUL-M, SUB-L, SUB-M, SUW-L, SUW-M were not affected significantly by age, sex, blood glucose levels, diabetic status. The uptake period had a statistically significant effect on SUL-L (P = 0.007) and SUW-L (P = 0.008) with a progressive decrease with increasing uptake time. Body weight showed a statistically significant effect on SUW-L (P = 0.001) while SUL-L and SUB-L were not dependent on weight. SUB-L was least dependent on weight (P = 0.851) when compared with SUL-L (P = 0.425). However SUL-L was also not affected statistically significantly by variations in body weight (P = 0.425). Mediastinal SUVs were not significantly affected by any of the factors. As mediastinal SUVs are not affected significantly by any of the factors, it can be considered as background when wide variations occur in uptake times or weight of the patient when comparing two PET/CT studies to evaluate response
Accelerated fractionation in cancers of the esophagus: a multivariate analysis on 102 patients
International Nuclear Information System (INIS)
Girinsky, T.; Marsiglia, H.; Auperin, A.
1995-01-01
for T1, T2, T3 are 67%, 43%, and 25% respectively. Late toxicity included esophageal stricture and pulmonary fibrosis in 8% and 9% of the patients respectively. Multivariate analysis found that stage, the Karnofsky index, chemotherapy, and overall treatment time were independent prognostic factors for the cause specific survival. Conclusions: Accelerated fractionation for cancer of the esophagus seems to be useful in small tumors. Chemotherapy was found to be beneficial to patients when cause specific survival was the end point. Overall radiation treatment time was also an independent prognostic factor for the same end point
Accelerated fractionation in cancers of the esophagus: a multivariate analysis on 102 patients
Energy Technology Data Exchange (ETDEWEB)
Girinsky, T; Marsiglia, H; Auperin, A
1995-07-01
for T1, T2, T3 are 67%, 43%, and 25% respectively. Late toxicity included esophageal stricture and pulmonary fibrosis in 8% and 9% of the patients respectively. Multivariate analysis found that stage, the Karnofsky index, chemotherapy, and overall treatment time were independent prognostic factors for the cause specific survival. Conclusions: Accelerated fractionation for cancer of the esophagus seems to be useful in small tumors. Chemotherapy was found to be beneficial to patients when cause specific survival was the end point. Overall radiation treatment time was also an independent prognostic factor for the same end point.
Banoeng-Yakubo, B.; Yidana, S.M.; Nti, E.
2009-01-01
Q and R-mode multivariate statistical analyses were applied to groundwater chemical data from boreholes and wells in the northern section of the Volta region Ghana. The objective was to determine the processes that affect the hydrochemistry and the variation of these processes in space among the three main geological terrains: the Buem formation, Voltaian System and the Togo series that underlie the area. The analyses revealed three zones in the groundwater flow system: recharge, intermediate and discharge regions. All three zones are clearly different with respect to all the major chemical parameters, with concentrations increasing from the perceived recharge areas through the intermediate regions to the discharge areas. R-mode HCA and factor analysis (using varimax rotation and Kaiser Criterion) were then applied to determine the significant sources of variation in the hydrochemistry. This study finds that groundwater hydrochemistry in the area is controlled by the weathering of silicate and carbonate minerals, as well as the chemistry of infiltrating precipitation. This study finds that the ??D and ??18O data from the area fall along the Global Meteoric Water Line (GMWL). An equation of regression derived for the relationship between ??D and ??18O bears very close semblance to the equation which describes the GMWL. On the basis of this, groundwater in the study area is probably meteoric and fresh. The apparently low salinities and sodicities of the groundwater seem to support this interpretation. The suitability of groundwater for domestic and irrigation purposes is related to its source, which determines its constitution. A plot of the sodium adsorption ratio (SAR) and salinity (EC) data on a semilog axis, suggests that groundwater serves good irrigation quality in the area. Sixty percent (60%), 20% and 20% of the 67 data points used in this study fall within the medium salinity - low sodicity (C2-S1), low salinity -low sodicity (C1-S1) and high salinity - low
Poisson regression analysis of the mortality among a cohort of World War II nuclear industry workers
International Nuclear Information System (INIS)
Frome, E.L.; Cragle, D.L.; McLain, R.W.
1990-01-01
A historical cohort mortality study was conducted among 28,008 white male employees who had worked for at least 1 month in Oak Ridge, Tennessee, during World War II. The workers were employed at two plants that were producing enriched uranium and a research and development laboratory. Vital status was ascertained through 1980 for 98.1% of the cohort members and death certificates were obtained for 96.8% of the 11,671 decedents. A modified version of the traditional standardized mortality ratio (SMR) analysis was used to compare the cause-specific mortality experience of the World War II workers with the U.S. white male population. An SMR and a trend statistic were computed for each cause-of-death category for the 30-year interval from 1950 to 1980. The SMR for all causes was 1.11, and there was a significant upward trend of 0.74% per year. The excess mortality was primarily due to lung cancer and diseases of the respiratory system. Poisson regression methods were used to evaluate the influence of duration of employment, facility of employment, socioeconomic status, birth year, period of follow-up, and radiation exposure on cause-specific mortality. Maximum likelihood estimates of the parameters in a main-effects model were obtained to describe the joint effects of these six factors on cause-specific mortality of the World War II workers. We show that these multivariate regression techniques provide a useful extension of conventional SMR analysis and illustrate their effective use in a large occupational cohort study
Bakraji, Elias Hanna; Abboud, Rana; Issa, Haissm
2014-01-01
Thermoluminescence (TL) dating and multivariate statistical methods based on radioisotope X-ray fluorescence analysis have been utilized to date and classify Syrian archaeological ceramics fragment from Tel Jamous site. 54 samples were analyzed by radioisotope X-ray fluorescence; 51 of them come from Tel Jamous archaeological site in Sahel Akkar region, Syria, which fairly represent ceramics belonging to the Middle Bronze Age (2150 to 1600 B.C.) and the remaining three samples come from Mar-T...
Multivariate Analysis Approach to the Serum Peptide Profile of Morbidly Obese Patients
Directory of Open Access Journals (Sweden)
M. Agostini
2013-01-01
Full Text Available Background: Obesity is currently epidemic in many countries worldwide and is strongly related to diabetes and cardiovascular disease. Mass spectrometry, in particular matrix-assisted laser desorption/ionization time of flight (MALDI-TOF is currently used for detecting different pattern of expressed protein. This study investigated the differences in low molecular weight (LMW peptide profiles between obese and normal-weight subjects in combination with multivariate statistical analysis.
Structural analysis and design of multivariable control systems: An algebraic approach
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
Estimation of age in forensic medicine using multivariate approach to image analysis
DEFF Research Database (Denmark)
Kucheryavskiy, Sergey V.; Belyaev, Ivan; Fominykh, Sergey
2009-01-01
approach based on statistical analysis of grey-level co-occurrence matrix, fractal analysis, wavelet transformation and Angle Measure Technique. Projection on latent structures regression was chosen for calibration and prediction. The method has been applied to 70 male and 63 female individuals aged from...... 21 to 93 and results were compared with traditional approach. Some important questions and problems have been raised....
International Nuclear Information System (INIS)
Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.
2004-01-01
The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images
Estimation of failure criteria in multivariate sensory shelf life testing using survival analysis.
Giménez, Ana; Gagliardi, Andrés; Ares, Gastón
2017-09-01
For most food products, shelf life is determined by changes in their sensory characteristics. A predetermined increase or decrease in the intensity of a sensory characteristic has frequently been used to signal that a product has reached the end of its shelf life. Considering all attributes change simultaneously, the concept of multivariate shelf life allows a single measurement of deterioration that takes into account all these sensory changes at a certain storage time. The aim of the present work was to apply survival analysis to estimate failure criteria in multivariate sensory shelf life testing using two case studies, hamburger buns and orange juice, by modelling the relationship between consumers' rejection of the product and the deterioration index estimated using PCA. In both studies, a panel of 13 trained assessors evaluated the samples using descriptive analysis whereas a panel of 100 consumers answered a "yes" or "no" question regarding intention to buy or consume the product. PC1 explained the great majority of the variance, indicating all sensory characteristics evolved similarly with storage time. Thus, PC1 could be regarded as index of sensory deterioration and a single failure criterion could be estimated through survival analysis for 25 and 50% consumers' rejection. The proposed approach based on multivariate shelf life testing may increase the accuracy of shelf life estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Resent state and multivariate analysis of a few juniper forests of baluchistan, pakistan
International Nuclear Information System (INIS)
Ahmed, M.; Siddiqui, M.F.
2015-01-01
Quantitative multivariate investigations were carried out to explore various forms of Juniper trees resulting human disturbances and natural phenomenon. Thirty stands were sampled by point centered quarter method and data were analysed using Wards cluster analysis and Bray-Curtis ordination. On the basis of multivariate analysis eight various forms i.e. healthy, unhealthy, over mature, disturbed, dieback, standing dead, logs and cut stem were recognized. Structural attributes were computed. Highest numbers (130-133 stem ha-1) of logs were recorded from Cautair and Khunk forests. Highest density ha-1 (229 ha-1) of healthy plants was estimated from Tangi Top area while lowest number (24 ha-1) of healthy plants was found from Saraghara area. Multivariate analysis showed five groups in cluster and ordination diagrams. These groups are characterized on the basis of healthy, over mature, disturbed and logged trees of Juniper. Higher number (115, 96, 84, 80 ha-1) of disturbed trees were distributed at Speena Sukher, Srag Kazi, Prang Shella and Tangi Top respectively. Overall density does not show any significant relation with basal area m2 ha-1, degree of slopes and the elevation of the sampling stands. Present study show that each and every Juniper stands are highly disturbed mostly due to human influence, therefore prompt conservational steps should be taken to safe these forests. (author)
Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis
Energy Technology Data Exchange (ETDEWEB)
Wang, Feng, E-mail: fwang@unu.edu [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Huisman, Jaco [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Stevels, Ab [Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Baldé, Cornelis Peter [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Statistics Netherlands, Henri Faasdreef 312, 2492 JP Den Haag (Netherlands)
2013-11-15
Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e
Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis
International Nuclear Information System (INIS)
Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter
2013-01-01
Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e
Point defect characterization in HAADF-STEM images using multivariate statistical analysis
International Nuclear Information System (INIS)
Sarahan, Michael C.; Chi, Miaofang; Masiel, Daniel J.; Browning, Nigel D.
2011-01-01
Quantitative analysis of point defects is demonstrated through the use of multivariate statistical analysis. This analysis consists of principal component analysis for dimensional estimation and reduction, followed by independent component analysis to obtain physically meaningful, statistically independent factor images. Results from these analyses are presented in the form of factor images and scores. Factor images show characteristic intensity variations corresponding to physical structure changes, while scores relate how much those variations are present in the original data. The application of this technique is demonstrated on a set of experimental images of dislocation cores along a low-angle tilt grain boundary in strontium titanate. A relationship between chemical composition and lattice strain is highlighted in the analysis results, with picometer-scale shifts in several columns measurable from compositional changes in a separate column. -- Research Highlights: → Multivariate analysis of HAADF-STEM images. → Distinct structural variations among SrTiO 3 dislocation cores. → Picometer atomic column shifts correlated with atomic column population changes.
Multivariate data analysis approach to understand magnetic properties of perovskite manganese oxides
International Nuclear Information System (INIS)
Imamura, N.; Mizoguchi, T.; Yamauchi, H.; Karppinen, M.
2008-01-01
Here we apply statistical multivariate data analysis techniques to obtain some insights into the complex structure-property relations in antiferromagnetic (AFM) and ferromagnetic (FM) manganese perovskite systems, AMnO 3 . The 131 samples included in the present analyses are described by 21 crystal-structure or crystal-chemical (CS/CC) parameters. Principal component analysis (PCA), carried out separately for the AFM and FM compounds, is used to model and evaluate the various relationships among the magnetic properties and the various CS/CC parameters. Moreover, for the AFM compounds, PLS (partial least squares projections to latent structures) analysis is performed so as to predict the magnitude of the Neel temperature on the bases of the CS/CC parameters. Finally, so-called PLS-DA (PLS discriminant analysis) method is employed to find out the most influential/characteristic CS/CC parameters that differentiate the two classes of compounds from each other. - Graphical abstract: Statistical multivariate data analysis techniques are applied to detect structure-property relations in antiferromagnetic (AFM) and ferromagnetic (FM) manganese perovskites. For AFM compounds, partial least squares projections to latent structures analysis predict the magnitude of the Neel temperature on the bases of structural parameters only. Moreover, AFM and FM compounds are well separated by means of so-called partial least squares discriminant analysis method
Simulation Experiments in Practice : Statistical Design and Regression Analysis
Kleijnen, J.P.C.
2007-01-01
In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is
Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun
2018-03-01
Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.
Directory of Open Access Journals (Sweden)
Ying Peng
2018-03-01
Full Text Available Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Chung, Jae Ho; Cho, Seok Hyun; Jeong, Jin Hyeok; Park, Chul Won; Lee, Seung Hwan
2015-09-01
To evaluate clinical characteristics and possible associated factors of idiopathic sudden sensorineural hearing loss (ISSNHL) in children using univariate and multivariate analyses. A retrospective case series with comparisons. From January 2007 to December 2013, medical records of 37 pediatric ISSNHL patients were reviewed to assess hearing recovery rate and examine factors associated with prognosis (gender; side of hearing loss; opposite side hearing loss; treatment onset; presence of vertigo, tinnitus, and ear fullness; initial hearing threshold), using univariate and multivariate analysis, and compare them with 276 adult ISSNHL patients. Pediatric patients comprised only 6.6% of pediatric/adult cases of ISSNHL, and those below 10 years old were only 0.7%. The overall recovery rates (complete and partial) of the pediatric and adult patients were 57.4% and 47.2%, respectively. The complete recovery rate of the pediatric group (46.6%) was higher than that of the adult group (30.8%, P = .040). According to multivariate analysis, absence of tinnitus, later onset of treatment, and higher hearing threshold at initial presentation were associated with a poor prognosis in pediatric ISSNHL. The recovery rate of ISSNHL in pediatric patients is higher than in adults, and the presence of tinnitus and earlier treatment onset is associated with favorable outcomes. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Analysis of Relationship Between Personality and Favorite Places with Poisson Regression Analysis
Directory of Open Access Journals (Sweden)
Yoon Song Ha
2018-01-01
Full Text Available A relationship between human personality and preferred locations have been a long conjecture for human mobility research. In this paper, we analyzed the relationship between personality and visiting place with Poisson Regression. Poisson Regression can analyze correlation between countable dependent variable and independent variable. For this analysis, 33 volunteers provided their personality data and 49 location categories data are used. Raw location data is preprocessed to be normalized into rates of visit and outlier data is prunned. For the regression analysis, independent variables are personality data and dependent variables are preprocessed location data. Several meaningful results are found. For example, persons with high tendency of frequent visiting to university laboratory has personality with high conscientiousness and low openness. As well, other meaningful location categories are presented in this paper.
Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.
Ferrari, Alberto
2017-01-01
Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.
Quantile regression analysis of body mass and wages.
Johar, Meliyanni; Katayama, Hajime
2012-05-01
Using the National Longitudinal Survey of Youth 1979, we explore the relationship between body mass and wages. We use quantile regression to provide a broad description of the relationship across the wage distribution. We also allow the relationship to vary by the degree of social skills involved in different jobs. Our results find that for female workers body mass and wages are negatively correlated at all points in their wage distribution. The strength of the relationship is larger at higher-wage levels. For male workers, the relationship is relatively constant across wage distribution but heterogeneous across ethnic groups. When controlling for the endogeneity of body mass, we find that additional body mass has a negative causal impact on the wages of white females earning more than the median wages and of white males around the median wages. Among these workers, the wage penalties are larger for those employed in jobs that require extensive social skills. These findings may suggest that labor markets reward white workers for good physical shape differently, depending on the level of wages and the type of job a worker has. Copyright © 2011 John Wiley & Sons, Ltd.
Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan
2016-04-01
Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.
Spatial compression algorithm for the analysis of very large multivariate images
Keenan, Michael R [Albuquerque, NM
2008-07-15
A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.
Parsons, Vickie s.
2009-01-01
The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.
CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions
Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.
Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis
Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.
2018-05-01
Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.
The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard
and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...
DEFF Research Database (Denmark)
Jørgensen, Lasse Vigel; Huss, Hans Henrik; Dalgaard, Paw
2001-01-01
alcohols, which were produced by microbial activity. Partial least- squares regression of volatile compounds and sensory results allowed for a multiple compound quality index to be developed. This index was based on volatile bacterial metabolites, 1- propanol and 2-butanone, and 2-furan......, 1- penten-3-ol, and 1-propanol. The potency and importance of these compounds was confirmed by gas chromatography- olfactometry. The present study provides valuable information on the bacterial reactions responsible for spoilage off-flavors of cold-smoked salmon, which can be used to develop...
Methods of Detecting Outliers in A Regression Analysis Model. | Ogu ...
African Journals Online (AJOL)
A Boilers data with dependent variable Y (man-Hour) and four independent variables X1 (Boiler Capacity), X2 (Design Pressure), X3 (Boiler Type), X4 (Drum Type) were used. The analysis of the Boilers data reviewed an unexpected group of Outliers. The results from the findings showed that an observation can be outlying ...
Quantitative electron microscope autoradiography: application of multiple linear regression analysis
International Nuclear Information System (INIS)
Markov, D.V.
1986-01-01
A new method for the analysis of high resolution EM autoradiographs is described. It identifies labelled cell organelle profiles in sections on a strictly statistical basis and provides accurate estimates for their radioactivity without the need to make any assumptions about their size, shape and spatial arrangement. (author)
Microhabitat analysis using radiotelemetry locations and polytomous logistic regression
Malcolm P. North; Joel H. Reynolds
1996-01-01
Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's...
Choi, Young Hae; Sertic, Sarah; Kim, Hye Kyong; Wilson, Erica G; Michopoulos, Filippos; Lefeber, Alfons W M; Erkelens, Cornelis; Prat Kricun, Sergio D; Verpoorte, Robert
2005-02-23
The metabolomic analysis of 11 Ilex species, I. argentina, I. brasiliensis, I. brevicuspis, I. dumosavar. dumosa, I. dumosa var. guaranina, I. integerrima, I. microdonta, I. paraguariensis var. paraguariensis, I. pseudobuxus, I. taubertiana, and I. theezans, was carried out by NMR spectroscopy and multivariate data analysis. The analysis using principal component analysis and classification of the (1)H NMR spectra showed a clear discrimination of those samples based on the metabolites present in the organic and aqueous fractions. The major metabolites that contribute to the discrimination are arbutin, caffeine, phenylpropanoids, and theobromine. Among those metabolites, arbutin, which has not been reported yet as a constituent of Ilex species, was found to be a biomarker for I. argentina,I. brasiliensis, I. brevicuspis, I. integerrima, I. microdonta, I. pseudobuxus, I. taubertiana, and I. theezans. This reliable method based on the determination of a large number of metabolites makes the chemotaxonomical analysis of Ilex species possible.
Multivariate data analysis as a fast tool in evaluation of solid state phenomena
DEFF Research Database (Denmark)
Jørgensen, Anna Cecilia; Miroshnyk, Inna; Karjalainen, Milja
2006-01-01
of information generated can be overwhelming and the need for more effective data analysis tools is well recognized. The aim of this study was to investigate the use of multivariate data analysis, in particular principal component analysis (PCA), for fast analysis of solid state information. The data sets...... the molecular level interpretation of the structural changes related to the loss of water, as well as interpretation of the phenomena related to the crystallization. The critical temperatures or critical time points were identified easily using the principal component analysis. The variables (diffraction angles...... or wavenumbers) that changed could be identified by the careful interpretation of the loadings plots. The PCA approach provides an effective tool for fast screening of solid state information....
Analysis of cost regression and post-accident absence
Wojciech, Drozd
2017-07-01
The article presents issues related with costs of work safety. It proves the thesis that economic aspects cannot be overlooked in effective management of occupational health and safety and that adequate expenditures on safety can bring tangible benefits to the company. Reliable analysis of this problem is essential for the description the problem of safety the work. In the article attempts to carry it out using the procedures of mathematical statistics [1, 2, 3].
DEFF Research Database (Denmark)
Krogsgaard, K; Christensen, E; Gluud, C
1987-01-01
In 46 alcoholic patients the association of wedged-to-free hepatic-vein pressure with other variables (clinical, histologic, hemodynamic, and liver function data) was studied by means of multiple regression analysis, taking the wedged-to-free hepatic-vein pressure as the dependent variable. Four ...
Directory of Open Access Journals (Sweden)
Yeon-Jee Yoo
2013-08-01
Full Text Available Objectives The aim of this study was to compare the cleaning efficacy of different final irrigation regimens in canal and isthmus of mandibular molars, and to evaluate the influence of related variables on cleaning efficacy of the irrigation systems. Materials and Methods Mesial root canals from 60 mandibular molars were prepared and divided into 4 experimental groups according to the final irrigation technique: Group C, syringe irrigation; Group U, ultrasonics activation; Group SC, VPro StreamClean irrigation; Group EV, EndoVac irrigation. Cross-sections at 1, 3 and 5 mm levels from the apex were examined to calculate remaining debris area in the canal and isthmus spaces. Statistical analysis was completed by using Kruskal-Wallis test and Mann-Whitney U test for comparison among groups, and multivariate linear analysis to identify the significant variables (regular replenishment of irrigant, vapor lock management, and ultrasonic activation of irrigant affecting the cleaning efficacy of the experimental groups. Results Group SC and EV showed significantly higher canal cleanliness values than group C and U at 1 mm level (p < 0.05, and higher isthmus cleanliness values than group U at 3 mm and all levels of group C (p < 0.05. Multivariate linear regression analysis demonstrated that all variables had independent positive correlation at 1 mm level of canal and at all levels of isthmus with statistical significances. Conclusions Both VPro StreamClean and EndoVac system showed favorable result as final irrigation regimens for cleaning debris in the complicated root canal system having curved canal and/or isthmus. The debridement of the isthmi significantly depends on the variables rather than the canals.