WorldWideScience

Sample records for regression models determined

  1. Determining factors influencing survival of breast cancer by fuzzy logistic regression model.

    Science.gov (United States)

    Nikbakht, Roya; Bahrampour, Abbas

    2017-01-01

    Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.

  2. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  3. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    Science.gov (United States)

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  4. [From clinical judgment to linear regression model.

    Science.gov (United States)

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  5. Automated Decisional Model for Optimum Economic Order Quantity Determination Using Price Regressive Rates

    Science.gov (United States)

    Roşu, M. M.; Tarbă, C. I.; Neagu, C.

    2016-11-01

    The current models for inventory management are complementary, but together they offer a large pallet of elements for solving complex problems of companies when wanting to establish the optimum economic order quantity for unfinished products, row of materials, goods etc. The main objective of this paper is to elaborate an automated decisional model for the calculus of the economic order quantity taking into account the price regressive rates for the total order quantity. This model has two main objectives: first, to determine the periodicity when to be done the order n or the quantity order q; second, to determine the levels of stock: lighting control, security stock etc. In this way we can provide the answer to two fundamental questions: How much must be ordered? When to Order? In the current practice, the business relationships with its suppliers are based on regressive rates for price. This means that suppliers may grant discounts, from a certain level of quantities ordered. Thus, the unit price of the products is a variable which depends on the order size. So, the most important element for choosing the optimum for the economic order quantity is the total cost for ordering and this cost depends on the following elements: the medium price per units, the stock cost, the ordering cost etc.

  6. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  7. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  8. Determination of osteoporosis risk factors using a multiple logistic regression model in postmenopausal Turkish women.

    Science.gov (United States)

    Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal

    2005-09-01

    To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.

  9. Application of Logistic Regression Tree Model in Determining Habitat Distribution of Astragalus verus

    Directory of Open Access Journals (Sweden)

    M. Saki

    2013-03-01

    Full Text Available The relationship between plant species and environmental factors has always been a central issue in plant ecology. With rising power of statistical techniques, geo-statistics and geographic information systems (GIS, the development of predictive habitat distribution models of organisms has rapidly increased in ecology. This study aimed to evaluate the ability of Logistic Regression Tree model to create potential habitat map of Astragalus verus. This species produces Tragacanth and has economic value. A stratified- random sampling was applied to 100 sites (50 presence- 50 absence of given species, and produced environmental and edaphic factors maps by using Kriging and Inverse Distance Weighting methods in the ArcGIS software for the whole study area. Relationships between species occurrence and environmental factors were determined by Logistic Regression Tree model and extended to the whole study area. The results indicated species occurrence has strong correlation with environmental factors such as mean daily temperature and clay, EC and organic carbon content of the soil. Species occurrence showed direct relationship with mean daily temperature and clay and organic carbon, and inverse relationship with EC. Model accuracy was evaluated both by Cohen’s kappa statistics (κ and by area under Receiver Operating Characteristics curve based on independent test data set. Their values (kappa=0.9, Auc of ROC=0.96 indicated the high power of LRT to create potential habitat map on local scales. This model, therefore, can be applied to recognize potential sites for rangeland reclamation projects.

  10. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  11. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  12. Significance tests to determine the direction of effects in linear regression models.

    Science.gov (United States)

    Wiedermann, Wolfgang; Hagmann, Michael; von Eye, Alexander

    2015-02-01

    Previous studies have discussed asymmetric interpretations of the Pearson correlation coefficient and have shown that higher moments can be used to decide on the direction of dependence in the bivariate linear regression setting. The current study extends this approach by illustrating that the third moment of regression residuals may also be used to derive conclusions concerning the direction of effects. Assuming non-normally distributed variables, it is shown that the distribution of residuals of the correctly specified regression model (e.g., Y is regressed on X) is more symmetric than the distribution of residuals of the competing model (i.e., X is regressed on Y). Based on this result, 4 one-sample tests are discussed which can be used to decide which variable is more likely to be the response and which one is more likely to be the explanatory variable. A fifth significance test is proposed based on the differences of skewness estimates, which leads to a more direct test of a hypothesis that is compatible with direction of dependence. A Monte Carlo simulation study was performed to examine the behaviour of the procedures under various degrees of associations, sample sizes, and distributional properties of the underlying population. An empirical example is given which illustrates the application of the tests in practice. © 2014 The British Psychological Society.

  13. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    Science.gov (United States)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  14. THE DETERMINATION OF BETA COEFFICIENTS OF PUBLICLY-HELD COMPANIES BY A REGRESSION MODEL AND AN APPLICATION ON PRIVATE FIRMS

    Directory of Open Access Journals (Sweden)

    METİN KAMİL ERCAN

    2013-06-01

    Full Text Available It is possible to determine the value of private companies by means of suggestions and assumptions derived from their financial statements. However, there comes out a serious problem in the determination of equity costs of these private companies using Capital Assets Pricing Model (CAPM as beta coefficients are unknown or unavailable. In this study, firstly, a regression model that represents the relationship between the beta coefficients and financial statements’ Variables of publicly-held companies will be developed. Then, this model will be tested and applied on private companies.

  15. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  16. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  17. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  18. An attempt to evaluate some regression models used for radiometric ash determination in the brown coal

    International Nuclear Information System (INIS)

    Karamuz, S.; Urbanski, P.; Antoniak, W.; Wagner, D.

    1984-01-01

    Five different regression models for determination of the ash as well as iron and calcium contents in brown coal using fluorescence and scattering of X-rays have been evaluated. Calculations were done using experimental results obtained from the natural brown coal samples to which appropriate quantities of iron, calcium and silicon oxides were added. The secondary radiation was excited by Pu-238 source and detected by X-ray argone filled proportional counter. The investigation has shown the superiority of the multiparametric models over the radiometric ash determination in the pit-coal applying aluminium filter for the correction of the influence of iron content on the intensity of scattered radiation. Standard error of estimation for the best algorithm is about three time smaler than that for algorithm simulating application of the aluminium filter. Statistical parameters of the considered algorithm were reviewed and discussed. (author)

  19. Determination of benzo(apyrene content in PM10 using regression methods

    Directory of Open Access Journals (Sweden)

    Jacek Gębicki

    2015-12-01

    Full Text Available The paper presents an attempt of application of multidimensional linear regression to estimation of an empirical model describing the factors influencing on B(aP content in suspended dust PM10 in Olsztyn and Elbląg city regions between 2010 and 2013. During this period annual average concentration of B(aP in PM10 exceeded the admissible level 1.5-3 times. Conducted investigations confirm that the reasons of B(aP concentration increase are low-efficiency individual home heat stations or low-temperature heat sources, which are responsible for so-called low emission during heating period. Dependences between the following quantities were analysed: concentration of PM10 dust in air, air temperature, wind velocity, air humidity. A measure of model fitting to actual B(aP concentration in PM10 was the coefficient of determination of the model. Application of multidimensional linear regression yielded the equations characterized by high values of the coefficient of determination of the model, especially during heating season. This parameter ranged from 0.54 to 0.80 during the analyzed period.

  20. Regression Models for Market-Shares

    DEFF Research Database (Denmark)

    Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue

    2005-01-01

    On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....

  1. Exploratory regression analysis: a tool for selecting models and determining predictor importance.

    Science.gov (United States)

    Braun, Michael T; Oswald, Frederick L

    2011-06-01

    Linear regression analysis is one of the most important tools in a researcher's toolbox for creating and testing predictive models. Although linear regression analysis indicates how strongly a set of predictor variables, taken together, will predict a relevant criterion (i.e., the multiple R), the analysis cannot indicate which predictors are the most important. Although there is no definitive or unambiguous method for establishing predictor variable importance, there are several accepted methods. This article reviews those methods for establishing predictor importance and provides a program (in Excel) for implementing them (available for direct download at http://dl.dropbox.com/u/2480715/ERA.xlsm?dl=1) . The program investigates all 2(p) - 1 submodels and produces several indices of predictor importance. This exploratory approach to linear regression, similar to other exploratory data analysis techniques, has the potential to yield both theoretical and practical benefits.

  2. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  3. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  4. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Science.gov (United States)

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  5. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  6. Sample size calculation to externally validate scoring systems based on logistic regression models.

    Directory of Open Access Journals (Sweden)

    Antonio Palazón-Bru

    Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.

  7. Robust geographically weighted regression of modeling the Air Polluter Standard Index (APSI)

    Science.gov (United States)

    Warsito, Budi; Yasin, Hasbi; Ispriyanti, Dwi; Hoyyi, Abdul

    2018-05-01

    The Geographically Weighted Regression (GWR) model has been widely applied to many practical fields for exploring spatial heterogenity of a regression model. However, this method is inherently not robust to outliers. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression model. One of solution to handle the outliers in the regression model is to use the robust models. So this model was called Robust Geographically Weighted Regression (RGWR). This research aims to aid the government in the policy making process related to air pollution mitigation by developing a standard index model for air polluter (Air Polluter Standard Index - APSI) based on the RGWR approach. In this research, we also consider seven variables that are directly related to the air pollution level, which are the traffic velocity, the population density, the business center aspect, the air humidity, the wind velocity, the air temperature, and the area size of the urban forest. The best model is determined by the smallest AIC value. There are significance differences between Regression and RGWR in this case, but Basic GWR using the Gaussian kernel is the best model to modeling APSI because it has smallest AIC.

  8. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  9. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  10. Determination of the Static Anthropometric Characteristics of Iranian Microscope Users Via Regression Model

    Directory of Open Access Journals (Sweden)

    Toktam Balandeh

    2016-04-01

    Full Text Available Background: Anthropometry is a branch of Ergonomics that considers the measurement and description of the human body dimensions. Accordingly, equipment, environments, and workstations should be designed using user-centered design processes. Anthropometric dimensions differ considerably across gender, race, ethnicity and age, taking into account ergonomic and anthropometric principles. The aim of this study was to determine anthropometric characteristics of microscope users and provide a regression model for anthropometric dimensions. Methods: In this cross-sectional study, anthropometric dimensions (18 dimensions of the microscope users (N=174; 78 males and 96 females in Shiraz were measured. Instruments included a Studio meter, 2 type calipers, adjustable seats, a 40-cm ruler, a tape measure, and scales. The study data were analyzed using SPSS, version 20. Results: The means of male and female microscope users’ age were 31.64±8.86 and 35±10.9 years, respectively and their height were 161.03±6.87cm and 174.81±5.45cm, respectively. The results showed that sitting and standing eye height and sitting horizontal range of accessibility had a significant correlation with stature. Conclusion: The established anthropometric database can be used as a source for designing workstations for working with microscopes in this group of users. The regression analysis showed that three dimensions, i.e. standing eye height, sitting eye height, and horizontal range of accessibility sitting had a significant correlation with stature. Therefore, given one’s stature, these dimensions can be obtained with less measurement.

  11. Mixture of Regression Models with Single-Index

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2016-01-01

    In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

  12. An Additive-Multiplicative Cox-Aalen Regression Model

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...

  13. Linear regression based on Minimum Covariance Determinant (MCD) and TELBS methods on the productivity of phytoplankton

    Science.gov (United States)

    Gusriani, N.; Firdaniza

    2018-03-01

    The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.

  14. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  15. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  16. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette V; Hasman, Henrik

    2018-01-01

    strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene...... family enrichment. We show that our models are robust and capture the data's underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis...... on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host...

  17. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  18. Sample size determination for logistic regression on a logit-normal distribution.

    Science.gov (United States)

    Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance

    2017-06-01

    Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.

  19. Determination of regression laws: Linear and nonlinear

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1994-01-01

    A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab

  20. Categorical regression dose-response modeling

    Science.gov (United States)

    The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...

  1. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  2. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  3. Variable selection and model choice in geoadditive regression models.

    Science.gov (United States)

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  4. Improved model of the retardance in citric acid coated ferrofluids using stepwise regression

    Science.gov (United States)

    Lin, J. F.; Qiu, X. R.

    2017-06-01

    Citric acid (CA) coated Fe3O4 ferrofluids (FFs) have been conducted for biomedical application. The magneto-optical retardance of CA coated FFs was measured by a Stokes polarimeter. Optimization and multiple regression of retardance in FFs were executed by Taguchi method and Microsoft Excel previously, and the F value of regression model was large enough. However, the model executed by Excel was not systematic. Instead we adopted the stepwise regression to model the retardance of CA coated FFs. From the results of stepwise regression by MATLAB, the developed model had highly predictable ability owing to F of 2.55897e+7 and correlation coefficient of one. The average absolute error of predicted retardances to measured retardances was just 0.0044%. Using the genetic algorithm (GA) in MATLAB, the optimized parametric combination was determined as [4.709 0.12 39.998 70.006] corresponding to the pH of suspension, molar ratio of CA to Fe3O4, CA volume, and coating temperature. The maximum retardance was found as 31.712°, close to that obtained by evolutionary solver in Excel and a relative error of -0.013%. Above all, the stepwise regression method was successfully used to model the retardance of CA coated FFs, and the maximum global retardance was determined by the use of GA.

  5. Determinants of Birthweight Outcomes: Quantile Regressions Based on Panel Data

    DEFF Research Database (Denmark)

    Bache, Stefan Holst; Dahl, Christian Møller; Kristensen, Johannes Tang

    to the possibility that smoking habits can be influenced through policy conduct. It is widely believed that maternal smoking reduces birthweight; however, the crucial difficulty in estimating such effects is the unobserved heterogeneity among mothers. We consider extensions of three panel data models to a quantile......Low birthweight outcomes are associated with large social and economic costs, and therefore the possible determinants of low birthweight are of great interest. One such determinant which has received considerable attention is maternal smoking. From an economic perspective this is in part due...... regression framework in order to control for heterogeneity and to infer conclusions about causality across the entire birthweight distribution. We obtain estimation results for maternal smoking and other interesting determinants, applying these to data obtained from Aarhus University Hospital, Skejby...

  6. The MIDAS Touch: Mixed Data Sampling Regression Models

    OpenAIRE

    Ghysels, Eric; Santa-Clara, Pedro; Valkanov, Rossen

    2004-01-01

    We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Technically speaking MIDAS models specify conditional expectations as a distributed lag of regressors recorded at some higher sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation and compare it with traditional distributed lag models. MIDAS regressions have wide applicability in macroeconomics and �nance.

  7. A hydrologic regression sediment-yield model for two ungaged watershed outlet stations in Africa

    International Nuclear Information System (INIS)

    Moussa, O.M.; Smith, S.E.; Shrestha, R.L.

    1991-01-01

    A hydrologic regression sediment-yield model was established to determine the relationship between water discharge and suspended sediment discharge at the Blue Nile and the Atbara River outlet stations during the flood season. The model consisted of two main submodels: (1) a suspended sediment discharge model, which was used to determine suspended sediment discharge for each basin outlet; and (2) a sediment rating model, which related water discharge and suspended sediment discharge for each outlet station. Due to the absence of suspended sediment concentration measurements at or near the outlet stations, a minimum norm solution, which is based on the minimization of the unknowns rather than the residuals, was used to determine the suspended sediment discharges at the stations. In addition, the sediment rating submodel was regressed by using an observation equations procedure. Verification analyses on the model were carried out and the mean percentage errors were found to be +12.59 and -12.39, respectively, for the Blue Nile and Atbara. The hydrologic regression model was found to be most sensitive to the relative weight matrix, moderately sensitive to the mean water discharge ratio, and slightly sensitive to the concentration variation along the River Nile's course

  8. Introduction to the use of regression models in epidemiology.

    Science.gov (United States)

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  9. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  10. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  11. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  12. A computational approach to compare regression modelling strategies in prediction research.

    Science.gov (United States)

    Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H

    2016-08-25

    It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

  13. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  14. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  15. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    Science.gov (United States)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both

  16. Estimasi Model Seemingly Unrelated Regression (SUR dengan Metode Generalized Least Square (GLS

    Directory of Open Access Journals (Sweden)

    Ade Widyaningsih

    2015-04-01

    Full Text Available Regression analysis is a statistical tool that is used to determine the relationship between two or more quantitative variables so that one variable can be predicted from the other variables. A method that can used to obtain a good estimation in the regression analysis is ordinary least squares method. The least squares method is used to estimate the parameters of one or more regression but relationships among the errors in the response of other estimators are not allowed. One way to overcome this problem is Seemingly Unrelated Regression model (SUR in which parameters are estimated using Generalized Least Square (GLS. In this study, the author applies SUR model using GLS method on world gasoline demand data. The author obtains that SUR using GLS is better than OLS because SUR produce smaller errors than the OLS.

  17. Estimasi Model Seemingly Unrelated Regression (SUR dengan Metode Generalized Least Square (GLS

    Directory of Open Access Journals (Sweden)

    Ade Widyaningsih

    2014-06-01

    Full Text Available Regression analysis is a statistical tool that is used to determine the relationship between two or more quantitative variables so that one variable can be predicted from the other variables. A method that can used to obtain a good estimation in the regression analysis is ordinary least squares method. The least squares method is used to estimate the parameters of one or more regression but relationships among the errors in the response of other estimators are not allowed. One way to overcome this problem is Seemingly Unrelated Regression model (SUR in which parameters are estimated using Generalized Least Square (GLS. In this study, the author applies SUR model using GLS method on world gasoline demand data. The author obtains that SUR using GLS is better than OLS because SUR produce smaller errors than the OLS.

  18. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  19. Regression Models For Multivariate Count Data.

    Science.gov (United States)

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  20. New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression

    Science.gov (United States)

    de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.

    2018-04-01

    A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.

  1. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  2. Analytical and regression models of glass rod drawing process

    Science.gov (United States)

    Alekseeva, L. B.

    2018-03-01

    The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.

  3. Determinants of Inequality in Cameroon: A Regression-Based ...

    African Journals Online (AJOL)

    This paper applies the regression-based inequality decomposition approach to explore determinants of income inequality in Cameroon using the 2007 Cameroon household consumption survey. The contribution of each source to measured income inequality is the sum of its weighted marginal contributions in all possible ...

  4. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves

    2012-09-01

    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  5. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  6. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators; Modelos de regresion en la determinacion de la dosis absorbida con camara de extrapolacion para aplicadores oftalmologicos

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J T; Morales P, R

    1992-06-15

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ({sup 90} Sr/{sup 90} Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  7. Finding determinants of audit delay by pooled OLS regression analysis

    Directory of Open Access Journals (Sweden)

    Tina Vuko

    2014-03-01

    Full Text Available The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011. We use pooled OLS regression analysis, modelling audit delay as a function of the following explanatory variables: audit firm type, audit opinion, profitability, leverage, inventory and receivables to total assets, absolute value of total accruals, company size and audit committee existence. Our results indicate that audit committee existence, profitability and leverage are statistically significant determinants of audit delay in Croatia.

  8. Robust mislabel logistic regression without modeling mislabel probabilities.

    Science.gov (United States)

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  9. Mixed Frequency Data Sampling Regression Models: The R Package midasr

    Directory of Open Access Journals (Sweden)

    Eric Ghysels

    2016-08-01

    Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.

  10. Replica analysis of overfitting in regression models for time-to-event data

    Science.gov (United States)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  11. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    Science.gov (United States)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  12. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  13. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  14. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  15. Multiple regression models for energy use in air-conditioned office buildings in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Liu Dalong; Tsang, C.L.

    2010-01-01

    An attempt was made to develop multiple regression models for office buildings in the five major climates in China - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter. A total of 12 key building design variables were identified through parametric and sensitivity analysis, and considered as inputs in the regression models. The coefficient of determination R 2 varies from 0.89 in Harbin to 0.97 in Kunming, indicating that 89-97% of the variations in annual building energy use can be explained by the changes in the 12 parameters. A pseudo-random number generator based on three simple multiplicative congruential generators was employed to generate random designs for evaluation of the regression models. The difference between regression-predicted and DOE-simulated annual building energy use are largely within 10%. It is envisaged that the regression models developed can be used to estimate the likely energy savings/penalty during the initial design stage when different building schemes and design concepts are being considered.

  16. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia; Rue, Haavard

    2018-01-01

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite

  17. Detection of epistatic effects with logic regression and a classical linear regression model.

    Science.gov (United States)

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  18. AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

    OpenAIRE

    Krzyśko, Mirosław; Smaga, Łukasz

    2017-01-01

    In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...

  19. INVESTIGATION OF E-MAIL TRAFFIC BY USING ZERO-INFLATED REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Yılmaz KAYA

    2012-06-01

    Full Text Available Based on count data obtained with a value of zero may be greater than anticipated. These types of data sets should be used to analyze by regression methods taking into account zero values. Zero- Inflated Poisson (ZIP, Zero-Inflated negative binomial (ZINB, Poisson Hurdle (PH, negative binomial Hurdle (NBH are more common approaches in modeling more zero value possessing dependent variables than expected. In the present study, the e-mail traffic of Yüzüncü Yıl University in 2009 spring semester was investigated. ZIP and ZINB, PH and NBH regression methods were applied on the data set because more zeros counting (78.9% were found in data set than expected. ZINB and NBH regression considered zero dispersion and overdispersion were found to be more accurate results due to overdispersion and zero dispersion in sending e-mail. ZINB is determined to be best model accordingto Vuong statistics and information criteria.

  20. Alternative regression models to assess increase in childhood BMI.

    Science.gov (United States)

    Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M

    2008-09-08

    Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  1. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  2. Alternative regression models to assess increase in childhood BMI

    OpenAIRE

    Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M

    2008-01-01

    Abstract Background Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 childre...

  3. Determinants of LSIL Regression in Women from a Colombian Cohort

    International Nuclear Information System (INIS)

    Molano, Monica; Gonzalez, Mauricio; Gamboa, Oscar; Ortiz, Natasha; Luna, Joaquin; Hernandez, Gustavo; Posso, Hector; Murillo, Raul; Munoz, Nubia

    2010-01-01

    Objective: To analyze the role of Human Papillomavirus (HPV) and other risk factors in the regression of cervical lesions in women from the Bogota Cohort. Methods: 200 HPV positive women with abnormal cytology were included for regression analysis. The time of lesion regression was modeled using methods for interval censored survival time data. Median duration of total follow-up was 9 years. Results: 80 (40%) women were diagnosed with Atypical Squamous Cells of Undetermined Significance (ASCUS) or Atypical Glandular Cells of Undetermined Significance (AGUS) while 120 (60%) were diagnosed with Low Grade Squamous Intra-epithelial Lesions (LSIL). Globally, 40% of the lesions were still present at first year of follow up, while 1.5% was still present at 5 year check-up. The multivariate model showed similar regression rates for lesions in women with ASCUS/AGUS and women with LSIL (HR= 0.82, 95% CI 0.59-1.12). Women infected with HR HPV types and those with mixed infections had lower regression rates for lesions than did women infected with LR types (HR=0.526, 95% CI 0.33-0.84, for HR types and HR=0.378, 95% CI 0.20-0.69, for mixed infections). Furthermore, women over 30 years had a higher lesion regression rate than did women under 30 years (HR1.53, 95% CI 1.03-2.27). The study showed that the median time for lesion regression was 9 months while the median time for HPV clearance was 12 months. Conclusions: In the studied population, the type of infection and the age of the women are critical factors for the regression of cervical lesions.

  4. Random regression models for detection of gene by environment interaction

    Directory of Open Access Journals (Sweden)

    Meuwissen Theo HE

    2007-02-01

    Full Text Available Abstract Two random regression models, where the effect of a putative QTL was regressed on an environmental gradient, are described. The first model estimates the correlation between intercept and slope of the random regression, while the other model restricts this correlation to 1 or -1, which is expected under a bi-allelic QTL model. The random regression models were compared to a model assuming no gene by environment interactions. The comparison was done with regards to the models ability to detect QTL, to position them accurately and to detect possible QTL by environment interactions. A simulation study based on a granddaughter design was conducted, and QTL were assumed, either by assigning an effect independent of the environment or as a linear function of a simulated environmental gradient. It was concluded that the random regression models were suitable for detection of QTL effects, in the presence and absence of interactions with environmental gradients. Fixing the correlation between intercept and slope of the random regression had a positive effect on power when the QTL effects re-ranked between environments.

  5. Alternative regression models to assess increase in childhood BMI

    Directory of Open Access Journals (Sweden)

    Mansmann Ulrich

    2008-09-01

    Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  6. The microcomputer scientific software series 2: general linear model--regression.

    Science.gov (United States)

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  7. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  8. Accounting for Zero Inflation of Mussel Parasite Counts Using Discrete Regression Models

    Directory of Open Access Journals (Sweden)

    Emel Çankaya

    2017-06-01

    Full Text Available In many ecological applications, the absences of species are inevitable due to either detection faults in samples or uninhabitable conditions for their existence, resulting in high number of zero counts or abundance. Usual practice for modelling such data is regression modelling of log(abundance+1 and it is well know that resulting model is inadequate for prediction purposes. New discrete models accounting for zero abundances, namely zero-inflated regression (ZIP and ZINB, Hurdle-Poisson (HP and Hurdle-Negative Binomial (HNB amongst others are widely preferred to the classical regression models. Due to the fact that mussels are one of the economically most important aquatic products of Turkey, the purpose of this study is therefore to examine the performances of these four models in determination of the significant biotic and abiotic factors on the occurrences of Nematopsis legeri parasite harming the existence of Mediterranean mussels (Mytilus galloprovincialis L.. The data collected from the three coastal regions of Sinop city in Turkey showed more than 50% of parasite counts on the average are zero-valued and model comparisons were based on information criterion. The results showed that the probability of the occurrence of this parasite is here best formulated by ZINB or HNB models and influential factors of models were found to be correspondent with ecological differences of the regions.

  9. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  10. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis

    Directory of Open Access Journals (Sweden)

    BUDIMAN

    2012-01-01

    Full Text Available Budiman, Arisoesilaningsih E. 2012. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis. Biodiversitas 13: 18-22. The aims of this research was to determine the multiple regression models of vegetative and corm growth of Amorphophallus muelleri Blume in some age variations and habitat conditions of agroforestry in East Java. Descriptive exploratory research method was conducted by systematic random sampling at five agroforestries on four plantations in East Java: Saradan, Bojonegoro, Nganjuk and Blitar. In each agroforestry, we observed A. muelleri vegetative and corm growth on four growing age (1, 2, 3 and 4 years old respectively as well as environmental variables such as altitude, vegetation, climate and soil conditions. Data were analyzed using descriptive statistics to compare A. muelleri habitat in five agroforestries. Meanwhile, the influence and contribution of each environmental variable to the growth of A. muelleri vegetative and corm were determined using multiple regression analysis of SPSS 17.0. The multiple regression models of A. muelleri vegetative and corm growth were generated based on some characteristics of agroforestries and age showed high validity with R2 = 88-99%. Regression model showed that age, monthly temperatures, percentage of radiation and soil calcium (Ca content either simultaneously or partially determined the growth of A. muelleri vegetative and corm. Based on these models, the A. muelleri corm reached the optimal growth after four years of cultivation and they will be ready to be harvested. Additionally, the soil Ca content should reach 25.3 me.hg-1 as Sugihwaras agroforestry, with the maximal radiation of 60%.

  11. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  12. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  13. Logistic regression modelling: procedures and pitfalls in developing and interpreting prediction models

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2017-01-01

    Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.

  14. Regression Techniques for Determining the Effective Impervious Area in Southern California Watersheds

    Science.gov (United States)

    Sultana, R.; Mroczek, M.; Dallman, S.; Sengupta, A.; Stein, E. D.

    2016-12-01

    The portion of the Total Impervious Area (TIA) that is hydraulically connected to the storm drainage network is called the Effective Impervious Area (EIA). The remaining fraction of impervious area, called the non-effective impervious area, drains onto pervious surfaces which do not contribute to runoff for smaller events. Using the TIA instead of EIA in models and calculations can lead to overestimates of runoff volumes peak discharges and oversizing of drainage system since it is assumed all impervious areas produce urban runoff that is directly connected to storm drains. This makes EIA a better predictor of actual runoff from urban catchments for hydraulic design of storm drain systems and modeling non-point source pollution. Compared to TIA, determining the EIA is considerably more difficult to calculate since it cannot be found by using remote sensing techniques, readily available EIA datasets, or aerial imagery interpretation alone. For this study, EIA percentages were calculated by two successive regression methods for five watersheds (with areas of 8.38 - 158mi2) located in Southern California using rainfall-runoff event data for the years 2004 - 2007. Runoff generated from the smaller storm events are considered to be emanating only from the effective impervious areas. Therefore, larger events that were considered to have runoff from both impervious and pervious surfaces were successively removed in the regression methods using a criterion of (1) 1mm and (2) a max (2 , 1mm) above the regression line. MSE is calculated from actual runoff and runoff predicted by the regression. Analysis of standard deviations showed that criterion of max (2 , 1mm) better fit the regression line and is the preferred method in predicting the EIA percentage. The estimated EIAs have shown to be approximately 78% to 43% of the TIA which shows use of EIA instead of TIA can have significant impact on the cost building urban hydraulic systems and stormwater capture devices.

  15. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  16. Determinants of Non-Performing Assets in India - Panel Regression

    Directory of Open Access Journals (Sweden)

    Saikat Ghosh Roy

    2014-12-01

    Full Text Available It is well known that level of banks‟ credit plays an important role in economic developments. Indian banking sector has played a seminal role in supporting economic growth in India. Recently, Indian banks are experiencing consistent increase in non-performing assets (NPA. In this perspective, this paper investigates the trends in NPA in Indian banks and its determinants. The panel regressions, fixed effect allows evaluating the impact of selected macroeconomic variables on the NPA. The Panel regression result indicates that the GDP growth, change in exchange rate and global volatility have major effects on the NPA level of Indian banking sector.

  17. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    Directory of Open Access Journals (Sweden)

    Nora Fenske

    Full Text Available BACKGROUND: Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. OBJECTIVE: We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. DESIGN: Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. RESULTS: At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. CONCLUSIONS: Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  18. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    Science.gov (United States)

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A

    2013-01-01

    Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  19. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    Science.gov (United States)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  20. On a Robust MaxEnt Process Regression Model with Sample-Selection

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2018-04-01

    Full Text Available In a regression analysis, a sample-selection bias arises when a dependent variable is partially observed as a result of the sample selection. This study introduces a Maximum Entropy (MaxEnt process regression model that assumes a MaxEnt prior distribution for its nonparametric regression function and finds that the MaxEnt process regression model includes the well-known Gaussian process regression (GPR model as a special case. Then, this special MaxEnt process regression model, i.e., the GPR model, is generalized to obtain a robust sample-selection Gaussian process regression (RSGPR model that deals with non-normal data in the sample selection. Various properties of the RSGPR model are established, including the stochastic representation, distributional hierarchy, and magnitude of the sample-selection bias. These properties are used in the paper to develop a hierarchical Bayesian methodology to estimate the model. This involves a simple and computationally feasible Markov chain Monte Carlo algorithm that avoids analytical or numerical derivatives of the log-likelihood function of the model. The performance of the RSGPR model in terms of the sample-selection bias correction, robustness to non-normality, and prediction, is demonstrated through results in simulations that attest to its good finite-sample performance.

  1. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  2. Multivariate Multiple Regression Models for a Big Data-Empowered SON Framework in Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yoonsu Shin

    2016-01-01

    Full Text Available In the 5G era, the operational cost of mobile wireless networks will significantly increase. Further, massive network capacity and zero latency will be needed because everything will be connected to mobile networks. Thus, self-organizing networks (SON are needed, which expedite automatic operation of mobile wireless networks, but have challenges to satisfy the 5G requirements. Therefore, researchers have proposed a framework to empower SON using big data. The recent framework of a big data-empowered SON analyzes the relationship between key performance indicators (KPIs and related network parameters (NPs using machine-learning tools, and it develops regression models using a Gaussian process with those parameters. The problem, however, is that the methods of finding the NPs related to the KPIs differ individually. Moreover, the Gaussian process regression model cannot determine the relationship between a KPI and its various related NPs. In this paper, to solve these problems, we proposed multivariate multiple regression models to determine the relationship between various KPIs and NPs. If we assume one KPI and multiple NPs as one set, the proposed models help us process multiple sets at one time. Also, we can find out whether some KPIs are conflicting or not. We implement the proposed models using MapReduce.

  3. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  4. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.

    Science.gov (United States)

    Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H

    2014-12-30

    For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. Copyright © 2014 John Wiley & Sons

  5. Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling

    International Nuclear Information System (INIS)

    Che Jinxing; Wang Jianzhou

    2010-01-01

    In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.

  6. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju

    2015-01-01

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  7. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    Science.gov (United States)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  8. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  9. Model building strategy for logistic regression: purposeful selection.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  10. The APT model as reduced-rank regression

    NARCIS (Netherlands)

    Bekker, P.A.; Dobbelstein, P.; Wansbeek, T.J.

    Integrating the two steps of an arbitrage pricing theory (APT) model leads to a reduced-rank regression (RRR) model. So the results on RRR can be used to estimate APT models, making estimation very simple. We give a succinct derivation of estimation of RRR, derive the asymptotic variance of RRR

  11. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  12. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... The research identified logistic regression as a powerful tool for analysis of DMSMS and further developed twenty models attempting to identify the "best" way to model and predict DMSMS using logistic regression...

  14. Modeling geochemical datasets for source apportionment: Comparison of least square regression and inversion approaches.

    Digital Repository Service at National Institute of Oceanography (India)

    Tripathy, G.R.; Das, Anirban.

    used methods, the Least Square Regression (LSR) and Inverse Modeling (IM), to determine the contributions of (i) solutes from different sources to global river water, and (ii) various rocks to a glacial till. The purpose of this exercise is to compare...

  15. Analysis of dental caries using generalized linear and count regression models

    Directory of Open Access Journals (Sweden)

    Javali M. Phil

    2013-11-01

    Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

  16. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model

    International Nuclear Information System (INIS)

    Hong, W.-C.

    2009-01-01

    Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. Recently, support vector regression (SVR), with nonlinear mapping capabilities of forecasting, has been successfully employed to solve nonlinear regression and time series problems. However, it is still lack of systematic approaches to determine appropriate parameter combination for a SVR model. This investigation elucidates the feasibility of applying chaotic particle swarm optimization (CPSO) algorithm to choose the suitable parameter combination for a SVR model. The empirical results reveal that the proposed model outperforms the other two models applying other algorithms, genetic algorithm (GA) and simulated annealing algorithm (SA). Finally, it also provides the theoretical exploration of the electric load forecasting support system (ELFSS)

  17. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  18. [Application of detecting and taking overdispersion into account in Poisson regression model].

    Science.gov (United States)

    Bouche, G; Lepage, B; Migeot, V; Ingrand, P

    2009-08-01

    Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.

  19. Variable Selection for Regression Models of Percentile Flows

    Science.gov (United States)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high

  20. [Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].

    Science.gov (United States)

    Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L

    2017-03-10

    To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.

  1. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  2. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  3. Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones

    International Nuclear Information System (INIS)

    Rosli, A D; Baharudin, R; Hashim, H; Khairuzzaman, N A; Mohd Sampian, A F; Abdullah, N E; Kamaru'zzaman, M; Sulaiman, M S

    2015-01-01

    This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water. (paper)

  4. Structured Additive Regression Models: An R Interface to BayesX

    Directory of Open Access Journals (Sweden)

    Nikolaus Umlauf

    2015-02-01

    Full Text Available Structured additive regression (STAR models provide a flexible framework for model- ing possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models and generalized additive models as special cases but also allow a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specification of complex and realistic models. BayesX is standalone software package providing software for fitting general class of STAR models. Based on a comprehensive open-source regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR models based on Markov chain Monte Carlo simulation techniques, a mixed model representation of STAR models, or stepwise regression techniques combining penalized least squares estimation with model selection. BayesX not only covers models for responses from univariate exponential families, but also models from less-standard regression situations such as models for multi-categorical responses with either ordered or unordered categories, continuous time survival data, or continuous time multi-state models. This paper presents a new fully interactive R interface to BayesX: the R package R2BayesX. With the new package, STAR models can be conveniently specified using Rs formula language (with some extended terms, fitted using the BayesX binary, represented in R with objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX much more accessible to users familiar with R and adds extensive graphics capabilities for visualizing fitted STAR models. Furthermore, R2BayesX complements the already impressive capabilities for semiparametric regression in R by a comprehensive toolbox comprising in particular more complex response types and alternative inferential procedures such as simulation-based Bayesian inference.

  5. Multiple regression and beyond an introduction to multiple regression and structural equation modeling

    CERN Document Server

    Keith, Timothy Z

    2014-01-01

    Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.

  6. Time series regression model for infectious disease and weather.

    Science.gov (United States)

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Linear regression crash prediction models : issues and proposed solutions.

    Science.gov (United States)

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  8. Identification of Influential Points in a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Jan Grosz

    2011-03-01

    Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.

  9. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    Science.gov (United States)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  10. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  11. The art of regression modeling in road safety

    CERN Document Server

    Hauer, Ezra

    2015-01-01

    This unique book explains how to fashion useful regression models from commonly available data to erect models essential for evidence-based road safety management and research. Composed from techniques and best practices presented over many years of lectures and workshops, The Art of Regression Modeling in Road Safety illustrates that fruitful modeling cannot be done without substantive knowledge about the modeled phenomenon. Class-tested in courses and workshops across North America, the book is ideal for professionals, researchers, university professors, and graduate students with an interest in, or responsibilities related to, road safety. This book also: · Presents for the first time a powerful analytical tool for road safety researchers and practitioners · Includes problems and solutions in each chapter as well as data and spreadsheets for running models and PowerPoint presentation slides · Features pedagogy well-suited for graduate courses and workshops including problems, solutions, and PowerPoint p...

  12. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  13. Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis

    International Nuclear Information System (INIS)

    Fang, Xiande; Xu, Yu

    2011-01-01

    The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination R c 2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines. -- Highlights: → Performed a critical review of empirical models of turbine efficiency. → Developed an empirical model in the desired form for air cycle refrigeration, using the Taylor expansion and regression analysis. → Verified the method for developing the empirical model. → Verified the model.

  14. Flexible competing risks regression modeling and goodness-of-fit

    DEFF Research Database (Denmark)

    Scheike, Thomas; Zhang, Mei-Jie

    2008-01-01

    In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....

  15. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  16. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  17. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  18. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  19. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  20. Determination of gaussian peaks in gamma spectra by iterative regression

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1987-05-01

    The parameters of the peaks in gamma-ray spectra are determined by a simple iterative regression method. For each peak, the parameters are associated with a gaussian curve (3 parameters) located above a linear continuum (2 parameters). This method may produces the complete result of the calculation of statistical uncertainties and an accuracy higher than others methods. (author) [pt

  1. Characteristics and Properties of a Simple Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

  2. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?

    Science.gov (United States)

    Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun

    2014-12-01

    Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.

  4. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

    Directory of Open Access Journals (Sweden)

    Mohd. Hafiz A.W

    2016-12-01

    Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

  5. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  6. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  7. Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its stru....... Further fundamental extensions and advances to more sophisticated theory models, such as those related to dynamics and expectations (in the structural relations) are left for future papers......This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its......, it is demonstrated how other controversial hypotheses such as Rational Expectations can be formulated directly as restrictions on the CVAR-parameters. A simple example of a "Neoclassical synthetic" AS-AD model is also formulated. Finally, the partial- general equilibrium distinction is related to the CVAR as well...

  8. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Science.gov (United States)

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  9. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  10. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  11. Bayesian approach to errors-in-variables in regression models

    Science.gov (United States)

    Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad

    2017-05-01

    In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.

  12. Application of Soft Computing Techniques and Multiple Regression Models for CBR prediction of Soils

    Directory of Open Access Journals (Sweden)

    Fatimah Khaleel Ibrahim

    2017-08-01

    Full Text Available The techniques of soft computing technique such as Artificial Neutral Network (ANN have improved the predicting capability and have actually discovered application in Geotechnical engineering. The aim of this research is to utilize the soft computing technique and Multiple Regression Models (MLR for forecasting the California bearing ratio CBR( of soil from its index properties. The indicator of CBR for soil could be predicted from various soils characterizing parameters with the assist of MLR and ANN methods. The data base that collected from the laboratory by conducting tests on 86 soil samples that gathered from different projects in Basrah districts. Data gained from the experimental result were used in the regression models and soft computing techniques by using artificial neural network. The liquid limit, plastic index , modified compaction test and the CBR test have been determined. In this work, different ANN and MLR models were formulated with the different collection of inputs to be able to recognize their significance in the prediction of CBR. The strengths of the models that were developed been examined in terms of regression coefficient (R2, relative error (RE% and mean square error (MSE values. From the results of this paper, it absolutely was noticed that all the proposed ANN models perform better than that of MLR model. In a specific ANN model with all input parameters reveals better outcomes than other ANN models.

  13. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  14. Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression

    OpenAIRE

    Plata, Maria R.; Koch, Cosima; Wechselberger, Patrick; Herwig, Christoph; Lendl, Bernhard

    2013-01-01

    A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference anal...

  15. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    Science.gov (United States)

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  16. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    Science.gov (United States)

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p logistic regression model for the classification of risk groups for PTB.

  17. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  18. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design.

    Science.gov (United States)

    Meaney, Christopher; Moineddin, Rahim

    2014-01-24

    In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the

  19. Tutorial on Using Regression Models with Count Outcomes Using R

    Directory of Open Access Journals (Sweden)

    A. Alexander Beaujean

    2016-02-01

    Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.

  20. Statistical approach for selection of regression model during validation of bioanalytical method

    Directory of Open Access Journals (Sweden)

    Natalija Nakov

    2014-06-01

    Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.

  1. Linear regression models for quantitative assessment of left ...

    African Journals Online (AJOL)

    Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...

  2. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  3. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  4. Poisson regression for modeling count and frequency outcomes in trauma research.

    Science.gov (United States)

    Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T

    2008-10-01

    The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared.

  5. Sulfur Speciation of Crude Oils by Partial Least Squares Regression Modeling of Their Infrared Spectra

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Wagemans, R.W.P.; Blomberg, J.; Chaabani, H.; Soulimani, F.; Weckhuysen, B.M.

    2013-01-01

    Research has been carried out to determine the feasibility of partial least-squares regression (PLS) modeling of infrared (IR) spectra of crude oils as a tool for fast sulfur speciation. The study is a continuation of a previously developed method to predict long and short residue properties of

  6. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  7. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  8. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of cranial sex determination by discriminant analysis and logistic regression.

    Science.gov (United States)

    Amores-Ampuero, Anabel; Alemán, Inmaculada

    2016-04-05

    Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

  10. A generalized right truncated bivariate Poisson regression model with applications to health data.

    Science.gov (United States)

    Islam, M Ataharul; Chowdhury, Rafiqul I

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

  11. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Science.gov (United States)

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  12. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  13. LINEAR REGRESSION MODEL ESTİMATİON FOR RIGHT CENSORED DATA

    Directory of Open Access Journals (Sweden)

    Ersin Yılmaz

    2016-05-01

    Full Text Available In this study, firstly we will define a right censored data. If we say shortly right-censored data is censoring values that above the exact line. This may be related with scaling device. And then  we will use response variable acquainted from right-censored explanatory variables. Then the linear regression model will be estimated. For censored data’s existence, Kaplan-Meier weights will be used for  the estimation of the model. With the weights regression model  will be consistent and unbiased with that.   And also there is a method for the censored data that is a semi parametric regression and this method also give  useful results  for censored data too. This study also might be useful for the health studies because of the censored data used in medical issues generally.

  14. Developing and testing a global-scale regression model to quantify mean annual streamflow

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  15. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    Science.gov (United States)

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  16. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  17. Confidence bands for inverse regression models

    International Nuclear Information System (INIS)

    Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo

    2010-01-01

    We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract

  18. Electricity consumption forecasting in Italy using linear regression models

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2009-09-15

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  19. Electricity consumption forecasting in Italy using linear regression models

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio

    2009-01-01

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  20. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Directory of Open Access Journals (Sweden)

    Drzewiecki Wojciech

    2016-12-01

    Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

  1. Determinants of the probability of adopting quality protein maize (QPM) technology in Tanzania: A logistic regression analysis

    OpenAIRE

    Gregory, T.; Sewando, P.

    2013-01-01

    Adoption of technology is an important factor in economic development. The thrust of this study was to establish factors affecting adoption of QPM technology in Northern zone of Tanzania. Primary data was collected from a random sample of 120 smallholder maize farmers in four villages. Data collected were analysed using descriptive and quantitative methods. Logit model was used to determine factors that influence adoption of QPM technology. The regression results indicated that education of t...

  2. Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method

    Science.gov (United States)

    Prahutama, Alan; Sudarno

    2018-05-01

    The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9).

  3. Augmented Beta rectangular regression models: A Bayesian perspective.

    Science.gov (United States)

    Wang, Jue; Luo, Sheng

    2016-01-01

    Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bayesian semiparametric regression models to characterize molecular evolution

    Directory of Open Access Journals (Sweden)

    Datta Saheli

    2012-10-01

    Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.

  5. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  6. Regression Modeling of EDM Process for AISI D2 Tool Steel with RSM

    Directory of Open Access Journals (Sweden)

    Shakir M. Mousa

    2018-01-01

    Full Text Available In this paper, Response Surface Method (RSM is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T. [Gr, Cu and CuW], pulse duration of current (Ip, pulse duration on time (Ton, and pulse duration off time (Toff on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra. Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of Variance (ANOVA at the 5 % confidence interval. The outcomes discover that Surface Roughness (Ra is much more impacted by E.T., Ton, Toff, Ip and little of their interactions action or influence. To predict the average Surface Roughness (Ra, a mathematical regression model was developed. Furthermore, for saving in time, the created model could be utilized for the choice of the high levels in the EDM procedure. The model adequacy was extremely agreeable as the constant Coefficient of Determination (R2 is observed to be 99.72% and adjusted R2-measurement (R2adj 99.60%.

  7. Correlation-regression model for physico-chemical quality of ...

    African Journals Online (AJOL)

    abusaad

    areas, suggesting that groundwater quality in urban areas is closely related with land use ... the ground water, with correlation and regression model is also presented. ...... WHO (World Health Organization) (1985). Health hazards from nitrates.

  8. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia.

    Science.gov (United States)

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  9. Multivariate Frequency-Severity Regression Models in Insurance

    Directory of Open Access Journals (Sweden)

    Edward W. Frees

    2016-02-01

    Full Text Available In insurance and related industries including healthcare, it is common to have several outcome measures that the analyst wishes to understand using explanatory variables. For example, in automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the literature on multivariate frequency-severity regression modeling with a focus on insurance industry applications. Regression models for understanding the distribution of each outcome continue to be developed yet there now exists a solid body of literature for the marginal outcomes. This paper contributes to this body of literature by focusing on the use of a copula for modeling the dependence among these outcomes; a major advantage of this tool is that it preserves the body of work established for marginal models. We illustrate this approach using data from the Wisconsin Local Government Property Insurance Fund. This fund offers insurance protection for (i property; (ii motor vehicle; and (iii contractors’ equipment claims. In addition to several claim types and frequency-severity components, outcomes can be further categorized by time and space, requiring complex dependency modeling. We find significant dependencies for these data; specifically, we find that dependencies among lines are stronger than the dependencies between the frequency and average severity within each line.

  10. Quantile Regression Methods

    DEFF Research Database (Denmark)

    Fitzenberger, Bernd; Wilke, Ralf Andreas

    2015-01-01

    if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...

  11. Application of random regression models to the genetic evaluation ...

    African Journals Online (AJOL)

    The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...

  12. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  13. Multivariate regression models for the simultaneous quantitative analysis of calcium and magnesium carbonates and magnesium oxide through drifts data

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2006-01-01

    Full Text Available In the present work multivariate regression models were developed for the quantitative analysis of ternary systems using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS to determine the concentration in weight of calcium carbonate, magnesium carbonate and magnesium oxide. Nineteen spectra of standard samples previously defined in ternary diagram by mixture design were prepared and mid-infrared diffuse reflectance spectra were recorded. The partial least squares (PLS regression method was applied to the model. The spectra set was preprocessed by either mean-centered and variance-scaled (model 2 or mean-centered only (model 1. The results based on the prediction performance of the external validation set expressed by RMSEP (root mean square error of prediction demonstrated that it is possible to develop good models to simultaneously determine calcium carbonate, magnesium carbonate and magnesium oxide content in powdered samples that can be used in the study of the thermal decomposition of dolomite rocks.

  14. Approximating prediction uncertainty for random forest regression models

    Science.gov (United States)

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  15. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  16. Profile-driven regression for modeling and runtime optimization of mobile networks

    DEFF Research Database (Denmark)

    McClary, Dan; Syrotiuk, Violet; Kulahci, Murat

    2010-01-01

    Computer networks often display nonlinear behavior when examined over a wide range of operating conditions. There are few strategies available for modeling such behavior and optimizing such systems as they run. Profile-driven regression is developed and applied to modeling and runtime optimization...... of throughput in a mobile ad hoc network, a self-organizing collection of mobile wireless nodes without any fixed infrastructure. The intermediate models generated in profile-driven regression are used to fit an overall model of throughput, and are also used to optimize controllable factors at runtime. Unlike...

  17. Accounting for measurement error in log regression models with applications to accelerated testing.

    Science.gov (United States)

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  18. Accounting for measurement error in log regression models with applications to accelerated testing.

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  19. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    Science.gov (United States)

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  20. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    Science.gov (United States)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  1. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  2. Ajuste de modelos de platô de resposta via regressão isotônica Response plateau models fitting via isotonic regression

    Directory of Open Access Journals (Sweden)

    Renata Pires Gonçalves

    2012-02-01

    . The experiments of type dosage x response are very common in the determination of levels of nutrients in optimal food balance and include the use of regression models to achieve this objective. Nevertheless, the regression analysis routine, generally, uses a priori information about a possible relationship between the response variable. The isotonic regression is a method of estimation by least squares that generates estimates which preserves data ordering. In the theory of isotonic regression this information is essential and it is expected to increase fitting efficiency. The objective of this work was to use an isotonic regression methodology, as an alternative way of analyzing data of Zn deposition in tibia of male birds of Hubbard lineage. We considered the models of plateau response of polynomial quadratic and linear exponential forms. In addition to these models, we also proposed the fitting of a logarithmic model to the data and the efficiency of the methodology was evaluated by Monte Carlo simulations, considering different scenarios for the parametric values. The isotonization of the data yielded an improvement in all the fitting quality parameters evaluated. Among the models used, the logarithmic presented estimates of the parameters more consistent with the values reported in literature.

  3. Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications

    Directory of Open Access Journals (Sweden)

    Guoqi Qian

    2016-01-01

    Full Text Available Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method.

  4. Estimation of genetic parameters related to eggshell strength using random regression models.

    Science.gov (United States)

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  5. Prediction of hourly PM2.5 using a space-time support vector regression model

    Science.gov (United States)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  6. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Science.gov (United States)

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  7. SPSS macros to compare any two fitted values from a regression model.

    Science.gov (United States)

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  8. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Science.gov (United States)

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  9. SPLINE LINEAR REGRESSION USED FOR EVALUATING FINANCIAL ASSETS 1

    Directory of Open Access Journals (Sweden)

    Liviu GEAMBAŞU

    2010-12-01

    Full Text Available One of the most important preoccupations of financial markets participants was and still is the problem of determining more precise the trend of financial assets prices. For solving this problem there were written many scientific papers and were developed many mathematical and statistical models in order to better determine the financial assets price trend. If until recently the simple linear models were largely used due to their facile utilization, the financial crises that affected the world economy starting with 2008 highlight the necessity of adapting the mathematical models to variation of economy. A simple to use model but adapted to economic life realities is the spline linear regression. This type of regression keeps the continuity of regression function, but split the studied data in intervals with homogenous characteristics. The characteristics of each interval are highlighted and also the evolution of market over all the intervals, resulting reduced standard errors. The first objective of the article is the theoretical presentation of the spline linear regression, also referring to scientific national and international papers related to this subject. The second objective is applying the theoretical model to data from the Bucharest Stock Exchange

  10. Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?

    Science.gov (United States)

    Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.

    2016-12-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.

  11. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    Science.gov (United States)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  12. Time series modeling by a regression approach based on a latent process.

    Science.gov (United States)

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.

  13. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    Science.gov (United States)

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  14. Regression to Causality : Regression-style presentation influences causal attribution

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

  15. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  16. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

    Science.gov (United States)

    Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H

    2016-01-01

    Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.

  17. Finding determinants of audit delay by pooled OLS regression analysis

    OpenAIRE

    Vuko, Tina; Čular, Marko

    2014-01-01

    The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days) from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011). We use pooled OLS regression analysis, mode...

  18. Data analysis and approximate models model choice, location-scale, analysis of variance, nonparametric regression and image analysis

    CERN Document Server

    Davies, Patrick Laurie

    2014-01-01

    Introduction IntroductionApproximate Models Notation Two Modes of Statistical AnalysisTowards One Mode of Analysis Approximation, Randomness, Chaos, Determinism ApproximationA Concept of Approximation Approximation Approximating a Data Set by a Model Approximation Regions Functionals and EquivarianceRegularization and Optimality Metrics and DiscrepanciesStrong and Weak Topologies On Being (almost) Honest Simulations and Tables Degree of Approximation and p-values ScalesStability of Analysis The Choice of En(α, P) Independence Procedures, Approximation and VaguenessDiscrete Models The Empirical Density Metrics and Discrepancies The Total Variation Metric The Kullback-Leibler and Chi-Squared Discrepancies The Po(λ) ModelThe b(k, p) and nb(k, p) Models The Flying Bomb Data The Student Study Times Data OutliersOutliers, Data Analysis and Models Breakdown Points and Equivariance Identifying Outliers and Breakdown Outliers in Multivariate Data Outliers in Linear Regression Outliers in Structured Data The Location...

  19. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  20. Logistic regression for risk factor modelling in stuttering research.

    Science.gov (United States)

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  2. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  3. Advanced statistics: linear regression, part I: simple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  4. Regression: The Apple Does Not Fall Far From the Tree.

    Science.gov (United States)

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  5. Advanced statistics: linear regression, part II: multiple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  6. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    Directory of Open Access Journals (Sweden)

    Chuanglin Fang

    2015-11-01

    Full Text Available Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI values at the city level, and employed Ordinary Least Squares (OLS, Spatial Lag Model (SAR, and Geographically Weighted Regression (GWR to quantitatively estimate the comprehensive impact and spatial variations of China’s urbanization process on air quality. The results show that a significant spatial dependence and heterogeneity existed in AQI values. Regression models revealed urbanization has played an important negative role in determining air quality in Chinese cities. The population, urbanization rate, automobile density, and the proportion of secondary industry were all found to have had a significant influence over air quality. Per capita Gross Domestic Product (GDP and the scale of urban land use, however, failed the significance test at 10% level. The GWR model performed better than global models and the results of GWR modeling show that the relationship between urbanization and air quality was not constant in space. Further, the local parameter estimates suggest significant spatial variation in the impacts of various urbanization factors on air quality.

  7. Crime Modeling using Spatial Regression Approach

    Science.gov (United States)

    Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.

    2018-01-01

    Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.

  8. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  9. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  10. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  11. Using the classical linear regression model in analysis of the dependences of conveyor belt life

    Directory of Open Access Journals (Sweden)

    Miriam Andrejiová

    2013-12-01

    Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

  12. Modeling the frequency of opposing left-turn conflicts at signalized intersections using generalized linear regression models.

    Science.gov (United States)

    Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei

    2014-01-01

    The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.

  13. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.

    Science.gov (United States)

    Chen, Baojiang; Qin, Jing

    2014-05-10

    In statistical analysis, a regression model is needed if one is interested in finding the relationship between a response variable and covariates. When the response depends on the covariate, then it may also depend on the function of this covariate. If one has no knowledge of this functional form but expect for monotonic increasing or decreasing, then the isotonic regression model is preferable. Estimation of parameters for isotonic regression models is based on the pool-adjacent-violators algorithm (PAVA), where the monotonicity constraints are built in. With missing data, people often employ the augmented estimating method to improve estimation efficiency by incorporating auxiliary information through a working regression model. However, under the framework of the isotonic regression model, the PAVA does not work as the monotonicity constraints are violated. In this paper, we develop an empirical likelihood-based method for isotonic regression model to incorporate the auxiliary information. Because the monotonicity constraints still hold, the PAVA can be used for parameter estimation. Simulation studies demonstrate that the proposed method can yield more efficient estimates, and in some situations, the efficiency improvement is substantial. We apply this method to a dementia study. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Predictive market segmentation model: An application of logistic regression model and CHAID procedure

    Directory of Open Access Journals (Sweden)

    Soldić-Aleksić Jasna

    2009-01-01

    Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.

  15. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  16. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    Science.gov (United States)

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  18. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi

    2014-01-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both

  19. Modeling the kinetics of essential oil hydrodistillation from juniper berries (Juniperus communis L. using non-linear regression

    Directory of Open Access Journals (Sweden)

    Radosavljević Dragana B.

    2017-01-01

    Full Text Available This paper presents kinetics modeling of essential oil hydrodistillation from juniper berries (Juniperus communis L. by using a non-linear regression methodology. The proposed model has the polynomial-logarithmic form. The initial equation of the proposed non-linear model is q = q∞•(a•(logt2 + b•logt + c and by substituting a1=q∞•a, b1 = q∞•b and c1 = q∞•c, the final equation is obtained as q = a1•(logt2 + b1•logt + c1. In this equation q is the quantity of the obtained oil at time t, while a1, b1 and c1 are parameters to be determined for each sample. From the final equation it can be seen that the key parameter q∞, which presents the maximal oil quantity obtained after infinite time, is already included in parameters a1, b1 and c1. In this way, experimental determination of this parameter is avoided. Using the proposed model with parameters obtained by regression, the values of oil hydrodistillation in time are calculated for each sample and compared to the experimental values. In addition, two kinetic models previously proposed in literature were applied to the same experimental results. The developed model provided better agreements with the experimental values than the two, generally accepted kinetic models of this process. The average values of error measures (RSS, RSE, AIC and MRPD obtained for our model (0.005; 0.017; –84.33; 1.65 were generally lower than the corresponding values of the other two models (0.025; 0.041; –53.20; 3.89 and (0.0035; 0.015; –86.83; 1.59. Also, parameter estimation for the proposed model was significantly simpler (maximum 2 iterations per sample using the non-linear regression than that for the existing models (maximum 9 iterations per sample. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-35026

  20. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  1. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  2. Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Gunaseelan, V.N. [PSG College of Arts and Science, Coimbatore (India). Department of Zoology

    2007-04-15

    Several fractions of fruits and vegetable solid wastes (FVSW), sorghum and napiergrass were analyzed for total solids (TS), volatile solids (VS), total organic carbon, total kjeldahl nitrogen, total soluble carbohydrate, extractable protein, acid-detergent fiber (ADF), lignin, cellulose and ash contents. Their ultimate methane yields (B{sub o}) were determined using the biochemical methane potential (BMP) assay. A series of simple and multiple regression models relating the B{sub o} to the various substrate constituents were generated and evaluated using computer statistical software, Statistical Package for Social Sciences (SPSS). The results of simple regression analyses revealed that, only weak relationship existed between the individual components such as carbohydrate, protein, ADF, lignin and cellulose versus B{sub o}. A regression of B{sub o} versus combination of two variables as a single independent variable such as carbohydrate/ADF and carbohydrate + protein/ADF also showed that the relationship is not strong. Thus it does not appear possible to relate the B{sub o} of FVSW, sorghum and napiergrass with single compositional characteristics. The results of multiple regression analyses showed promise and the relationship appeared to be good. When ADF and lignin/ADF were used as independent variables, the percentage of variation accounted for by the model is low for FVSW (r{sup 2}=0.665) and sorghum and napiergrass (r{sup 2}=0.746). Addition of nitrogen, ash and total soluble carbohydrate data to the model had a significantly higher effect on prediction of B{sub o} of these wastes with the r{sup 2} values ranging from 0.9 to 0.99. More than 90% of variation in B{sub o} of FVSW could be accounted for by the models when the variables carbohydrate, lignin, lignin/ADF, nitrogen and ash (r{sup 2}=0.904), carbohydrate, ADF, lignin/ADF, nitrogen and ash (r{sup 2}=0.90) and carbohydrate/ADF, lignin/ADF, lignin and ash (r{sup 2}=0.901) were used. All the models have

  3. Modeling and prediction of flotation performance using support vector regression

    Directory of Open Access Journals (Sweden)

    Despotović Vladimir

    2017-01-01

    Full Text Available Continuous efforts have been made in recent year to improve the process of paper recycling, as it is of critical importance for saving the wood, water and energy resources. Flotation deinking is considered to be one of the key methods for separation of ink particles from the cellulose fibres. Attempts to model the flotation deinking process have often resulted in complex models that are difficult to implement and use. In this paper a model for prediction of flotation performance based on Support Vector Regression (SVR, is presented. Representative data samples were created in laboratory, under a variety of practical control variables for the flotation deinking process, including different reagents, pH values and flotation residence time. Predictive model was created that was trained on these data samples, and the flotation performance was assessed showing that Support Vector Regression is a promising method even when dataset used for training the model is limited.

  4. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  5. Cross-validation pitfalls when selecting and assessing regression and classification models.

    Science.gov (United States)

    Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon

    2014-03-29

    We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.

  6. A Model for Shovel Capital Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks

    Directory of Open Access Journals (Sweden)

    Abdolreza Yazdani-Chamzini

    2017-12-01

    Full Text Available Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1 artificial intelligence, (2 statistical methods, and (3 analytical methods. In this paper, the multivariate regression (MVR method, which is one of the most popular linear models, and the artificial neural network (ANN method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy.

  7. A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA

    NARCIS (Netherlands)

    WEDEL, M; DESARBO, WS; BULT, [No Value; RAMASWAMY, [No Value

    1993-01-01

    In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing

  8. Analyzing hospitalization data: potential limitations of Poisson regression.

    Science.gov (United States)

    Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R

    2015-08-01

    Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  9. Continuous validation of ASTEC containment models and regression testing

    International Nuclear Information System (INIS)

    Nowack, Holger; Reinke, Nils; Sonnenkalb, Martin

    2014-01-01

    The focus of the ASTEC (Accident Source Term Evaluation Code) development at GRS is primarily on the containment module CPA (Containment Part of ASTEC), whose modelling is to a large extent based on the GRS containment code COCOSYS (COntainment COde SYStem). Validation is usually understood as the approval of the modelling capabilities by calculations of appropriate experiments done by external users different from the code developers. During the development process of ASTEC CPA, bugs and unintended side effects may occur, which leads to changes in the results of the initially conducted validation. Due to the involvement of a considerable number of developers in the coding of ASTEC modules, validation of the code alone, even if executed repeatedly, is not sufficient. Therefore, a regression testing procedure has been implemented in order to ensure that the initially obtained validation results are still valid with succeeding code versions. Within the regression testing procedure, calculations of experiments and plant sequences are performed with the same input deck but applying two different code versions. For every test-case the up-to-date code version is compared to the preceding one on the basis of physical parameters deemed to be characteristic for the test-case under consideration. In the case of post-calculations of experiments also a comparison to experimental data is carried out. Three validation cases from the regression testing procedure are presented within this paper. The very good post-calculation of the HDR E11.1 experiment shows the high quality modelling of thermal-hydraulics in ASTEC CPA. Aerosol behaviour is validated on the BMC VANAM M3 experiment, and the results show also a very good agreement with experimental data. Finally, iodine behaviour is checked in the validation test-case of the THAI IOD-11 experiment. Within this test-case, the comparison of the ASTEC versions V2.0r1 and V2.0r2 shows how an error was detected by the regression testing

  10. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    Science.gov (United States)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  11. Regression and artificial neural network modeling for the prediction of gray leaf spot of maize.

    Science.gov (United States)

    Paul, P A; Munkvold, G P

    2005-04-01

    ABSTRACT Regression and artificial neural network (ANN) modeling approaches were combined to develop models to predict the severity of gray leaf spot of maize, caused by Cercospora zeae-maydis. In all, 329 cases consisting of environmental, cultural, and location-specific variables were collected for field plots in Iowa between 1998 and 2002. Disease severity on the ear leaf at the dough to dent plant growth stage was used as the response variable. Correlation and regression analyses were performed to select potentially useful predictor variables. Predictors from the best 9 of 80 regression models were used to develop ANN models. A random sample of 60% of the cases was used to train the networks, and 20% each for testing and validation. Model performance was evaluated based on coefficient of determination (R(2)) and mean square error (MSE) for the validation data set. The best models had R(2) ranging from 0.70 to 0.75 and MSE ranging from 174.7 to 202.8. The most useful predictor variables were hours of daily temperatures between 22 and 30 degrees C (85.50 to 230.50 h) and hours of nightly relative humidity >/=90% (122 to 330 h) for the period between growth stages V4 and V12, mean nightly temperature (65.26 to 76.56 degrees C) for the period between growth stages V12 and R2, longitude (90.08 to 95.14 degrees W), maize residue on the soil surface (0 to 100%), planting date (in day of the year; 112 to 182), and gray leaf spot resistance rating (2 to 7; based on a 1-to-9 scale, where 1 = most susceptible to 9 = most resistant).

  12. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  13. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  14. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    Science.gov (United States)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  15. Reconstruction of missing daily streamflow data using dynamic regression models

    Science.gov (United States)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  16. Carbon 13 nuclear magnetic resonance chemical shifts empiric calculations of polymers by multi linear regression and molecular modeling

    International Nuclear Information System (INIS)

    Da Silva Pinto, P.S.; Eustache, R.P.; Audenaert, M.; Bernassau, J.M.

    1996-01-01

    This work deals with carbon 13 nuclear magnetic resonance chemical shifts empiric calculations by multi linear regression and molecular modeling. The multi linear regression is indeed one way to obtain an equation able to describe the behaviour of the chemical shift for some molecules which are in the data base (rigid molecules with carbons). The methodology consists of structures describer parameters definition which can be bound to carbon 13 chemical shift known for these molecules. Then, the linear regression is used to determine the equation significant parameters. This one can be extrapolated to molecules which presents some resemblances with those of the data base. (O.L.). 20 refs., 4 figs., 1 tab

  17. Detection of Outliers in Regression Model for Medical Data

    Directory of Open Access Journals (Sweden)

    Stephen Raj S

    2017-07-01

    Full Text Available In regression analysis, an outlier is an observation for which the residual is large in magnitude compared to other observations in the data set. The detection of outliers and influential points is an important step of the regression analysis. Outlier detection methods have been used to detect and remove anomalous values from data. In this paper, we detect the presence of outliers in simple linear regression models for medical data set. Chatterjee and Hadi mentioned that the ordinary residuals are not appropriate for diagnostic purposes; a transformed version of them is preferable. First, we investigate the presence of outliers based on existing procedures of residuals and standardized residuals. Next, we have used the new approach of standardized scores for detecting outliers without the use of predicted values. The performance of the new approach was verified with the real-life data.

  18. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  19. LOGISTIC REGRESSION AS A TOOL FOR DETERMINATION OF THE PROBABILITY OF DEFAULT FOR ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Erika SPUCHLAKOVA

    2017-12-01

    Full Text Available In a rapidly changing world it is necessary to adapt to new conditions. From a day to day approaches can vary. For the proper management of the company it is essential to know the financial situation. Assessment of the company financial health can be carried out by financial analysis which provides a number of methods how to evaluate the company financial health. Analysis indicators are often included in the company assessment, in obtaining bank loans and other financial resources to ensure the functioning of the company. As company focuses on the future and its planning, it is essential to forecast the future financial situation. According to the results of company´s financial health prediction, the company decides on the extension or limitation of its business. It depends mainly on the capabilities of company´s management how they will use information obtained from financial analysis in practice. The findings of logistic regression methods were published firstly in the 60s, as an alternative to the least squares method. The essence of logistic regression is to determine the relationship between being explained (dependent variable and explanatory (independent variables. The basic principle of this static method is based on the regression analysis, but unlike linear regression, it can predict the probability of a phenomenon that has occurred or not. The aim of this paper is to determine the probability of bankruptcy enterprises.

  20. Bayesian Regression of Thermodynamic Models of Redox Active Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).

  1. On pseudo-values for regression analysis in competing risks models

    DEFF Research Database (Denmark)

    Graw, F; Gerds, Thomas Alexander; Schumacher, M

    2009-01-01

    For regression on state and transition probabilities in multi-state models Andersen et al. (Biometrika 90:15-27, 2003) propose a technique based on jackknife pseudo-values. In this article we analyze the pseudo-values suggested for competing risks models and prove some conjectures regarding their...

  2. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression

    International Nuclear Information System (INIS)

    Kavaklioglu, Kadir

    2011-01-01

    Support Vector Regression (SVR) methodology is used to model and predict Turkey's electricity consumption. Among various SVR formalisms, ε-SVR method was used since the training pattern set was relatively small. Electricity consumption is modeled as a function of socio-economic indicators such as population, Gross National Product, imports and exports. In order to facilitate future predictions of electricity consumption, a separate SVR model was created for each of the input variables using their current and past values; and these models were combined to yield consumption prediction values. A grid search for the model parameters was performed to find the best ε-SVR model for each variable based on Root Mean Square Error. Electricity consumption of Turkey is predicted until 2026 using data from 1975 to 2006. The results show that electricity consumption can be modeled using Support Vector Regression and the models can be used to predict future electricity consumption. (author)

  3. Cluster regression model and level fluctuation features of Van Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Z. Şen

    1999-02-01

    Full Text Available Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.Key words. Hydrology (hydrologic budget; stochastic processes · Meteorology and atmospheric dynamics (ocean-atmosphere interactions

  4. Cluster regression model and level fluctuation features of Van Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Z. Şen

    Full Text Available Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.

    Key words. Hydrology (hydrologic budget; stochastic processes · Meteorology and atmospheric dynamics (ocean-atmosphere interactions

  5. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    Science.gov (United States)

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic

  6. Identification of Determinants of Sports Skill Level in Badminton Players Using the Multiple Regression Model

    Directory of Open Access Journals (Sweden)

    Jaworski Janusz

    2016-03-01

    Full Text Available Purpose. The aim of the study was to evaluate somatic and functional determinants of sports skill level in badminton players at three consecutive stages of training. Methods. The study examined 96 badminton players aged 11 to 19 years. The scope of the study included somatic characteristics, physical abilities and neurosensory abilities. Thirty nine variables were analysed in each athlete. Coefficients of multiple determination were used to evaluate the effect of structural and functional parameters on sports skill level in badminton players. Results. In the group of younger cadets, quality and effectiveness of playing were mostly determined by the level of physical abilities. In the group of cadets, the most important determinants were physical abilities, followed by somatic characteristics. In this group, coordination abilities were also important. In juniors, the most pronounced was a set of the variables that reflect physical abilities. Conclusions. Models of determination of sports skill level are most noticeable in the group of cadets. In all three groups of badminton players, the dominant effect on the quality of playing is due to a set of the variables that determine physical abilities.

  7. Accounting for spatial effects in land use regression for urban air pollution modeling.

    Science.gov (United States)

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Regression analysis understanding and building business and economic models using Excel

    CERN Document Server

    Wilson, J Holton

    2012-01-01

    The technique of regression analysis is used so often in business and economics today that an understanding of its use is necessary for almost everyone engaged in the field. This book will teach you the essential elements of building and understanding regression models in a business/economic context in an intuitive manner. The authors take a non-theoretical treatment that is accessible even if you have a limited statistical background. It is specifically designed to teach the correct use of regression, while advising you of its limitations and teaching about common pitfalls. This book describe

  9. The prediction of intelligence in preschool children using alternative models to regression.

    Science.gov (United States)

    Finch, W Holmes; Chang, Mei; Davis, Andrew S; Holden, Jocelyn E; Rothlisberg, Barbara A; McIntosh, David E

    2011-12-01

    Statistical prediction of an outcome variable using multiple independent variables is a common practice in the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide predictions of preinjury cognitive functioning for individuals who have suffered a traumatic brain injury. Typically, these predictions are made using standard multiple linear regression models with several demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has shown conflicting evidence regarding the ability of such models to provide accurate predictions of outcome variables such as full-scale intelligence (FSIQ) test scores. The present study had two goals: (1) to demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the natural sciences and business but have not been frequently explored in the social sciences and (2) to develop models that can be used to predict premorbid cognitive functioning in preschool children. Predictions of Stanford-Binet 5 FSIQ scores for preschool-aged children is used to compare the performance of a multiple regression model with several of these alternative methods. Results demonstrate that classification and regression trees provided more accurate predictions of FSIQ scores than does the more traditional regression approach. Implications of these results are discussed.

  10. FUZZY REGRESSION MODEL TO PREDICT THE BEAD GEOMETRY IN THE ROBOTIC WELDING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.S. Sung; I.S. Kim; Y. Xue; H.H. Kim; Y.H. Cha

    2007-01-01

    Recently, there has been a rapid development in computer technology, which has in turn led todevelop the fully robotic welding system using artificial intelligence (AI) technology. However, therobotic welding system has not been achieved due to difficulties of the mathematical model andsensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry,such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metalarc) welding process is presented. The approach, a well-known method to deal with the problemswith a high degree of fuzziness, is used to build the relationship between four process variablesand the four quality characteristics, respectively. Using these models, the proper prediction of theprocess variables for obtaining the optimal bead geometry can be determined.

  11. A primer for biomedical scientists on how to execute model II linear regression analysis.

    Science.gov (United States)

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  12. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  13. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2017-07-01

    Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

  14. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    Full Text Available Introduction: Soil aggregate stability is a key factor in soil resistivity to mechanical stresses, including the impacts of rainfall and surface runoff, and thus to water erosion (Canasveras et al., 2010. Various indicators have been proposed to characterize and quantify soil aggregate stability, for example percentage of water-stable aggregates (WSA, mean weight diameter (MWD, geometric mean diameter (GMD of aggregates, and water-dispersible clay (WDC content (Calero et al., 2008. Unfortunately, the experimental methods available to determine these indicators are laborious, time-consuming and difficult to standardize (Canasveras et al., 2010. Therefore, it would be advantageous if aggregate stability could be predicted indirectly from more easily available data (Besalatpour et al., 2014. The main objective of this study is to investigate the potential use of support vector machines (SVMs method for estimating soil aggregate stability (as quantified by GMD as compared to multiple linear regression approach. Materials and Methods: The study area was part of the Bazoft watershed (31° 37′ to 32° 39′ N and 49° 34′ to 50° 32′ E, which is located in the Northern part of the Karun river basin in central Iran. A total of 160 soil samples were collected from the top 5 cm of soil surface. Some easily available characteristics including topographic, vegetation, and soil properties were used as inputs. Soil organic matter (SOM content was determined by the Walkley-Black method (Nelson & Sommers, 1986. Particle size distribution in the soil samples (clay, silt, sand, fine sand, and very fine sand were measured using the procedure described by Gee & Bauder (1986 and calcium carbonate equivalent (CCE content was determined by the back-titration method (Nelson, 1982. The modified Kemper & Rosenau (1986 method was used to determine wet-aggregate stability (GMD. The topographic attributes of elevation, slope, and aspect were characterized using a 20-m

  15. Linear regression and sensitivity analysis in nuclear reactor design

    International Nuclear Information System (INIS)

    Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.

    2015-01-01

    Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

  16. Using the Logistic Regression model in supporting decisions of establishing marketing strategies

    Directory of Open Access Journals (Sweden)

    Cristinel CONSTANTIN

    2015-12-01

    Full Text Available This paper is about an instrumental research regarding the using of Logistic Regression model for data analysis in marketing research. The decision makers inside different organisation need relevant information to support their decisions regarding the marketing strategies. The data provided by marketing research could be computed in various ways but the multivariate data analysis models can enhance the utility of the information. Among these models we can find the Logistic Regression model, which is used for dichotomous variables. Our research is based on explanation the utility of this model and interpretation of the resulted information in order to help practitioners and researchers to use it in their future investigations

  17. Vector regression introduced

    Directory of Open Access Journals (Sweden)

    Mok Tik

    2014-06-01

    Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

  18. CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Hansen, Lars Kai

    2004-01-01

    We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....

  19. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    Science.gov (United States)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  20. The number of subjects per variable required in linear regression analyses.

    Science.gov (United States)

    Austin, Peter C; Steyerberg, Ewout W

    2015-06-01

    To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda

    Directory of Open Access Journals (Sweden)

    Faustin Habyarimana

    2017-06-01

    Full Text Available Childhood anemia is among the most significant health problems faced by public health departments in developing countries. This study aims at assessing the determinants and possible spatial effects associated with childhood anemia in Rwanda. The 2014/2015 Rwanda Demographic and Health Survey (RDHS data was used. The analysis was done using the structured spatial additive quantile regression model. The findings of this study revealed that the child’s age; the duration of breastfeeding; gender of the child; the nutritional status of the child (whether underweight and/or wasting; whether the child had a fever; had a cough in the two weeks prior to the survey or not; whether the child received vitamin A supplementation in the six weeks before the survey or not; the household wealth index; literacy of the mother; mother’s anemia status; mother’s age at the birth are all significant factors associated with childhood anemia in Rwanda. Furthermore, significant structured spatial location effects on childhood anemia was found.

  2. Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda.

    Science.gov (United States)

    Habyarimana, Faustin; Zewotir, Temesgen; Ramroop, Shaun

    2017-06-17

    Childhood anemia is among the most significant health problems faced by public health departments in developing countries. This study aims at assessing the determinants and possible spatial effects associated with childhood anemia in Rwanda. The 2014/2015 Rwanda Demographic and Health Survey (RDHS) data was used. The analysis was done using the structured spatial additive quantile regression model. The findings of this study revealed that the child's age; the duration of breastfeeding; gender of the child; the nutritional status of the child (whether underweight and/or wasting); whether the child had a fever; had a cough in the two weeks prior to the survey or not; whether the child received vitamin A supplementation in the six weeks before the survey or not; the household wealth index; literacy of the mother; mother's anemia status; mother's age at the birth are all significant factors associated with childhood anemia in Rwanda. Furthermore, significant structured spatial location effects on childhood anemia was found.

  3. Determining the Relationship between U.S. County-Level Adult Obesity Rate and Multiple Risk Factors by PLS Regression and SVM Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Chau-Kuang Chen

    2015-02-01

    Full Text Available Data from the Center for Disease Control (CDC has shown that the obesity rate doubled among adults within the past two decades. This upsurge was the result of changes in human behavior and environment. Partial least squares (PLS regression and support vector machine (SVM models were conducted to determine the relationship between U.S. county-level adult obesity rate and multiple risk factors. The outcome variable was the adult obesity rate. The 23 risk factors were categorized into four domains of the social ecological model including biological/behavioral factor, socioeconomic status, food environment, and physical environment. Of the 23 risk factors related to adult obesity, the top eight significant risk factors with high normalized importance were identified including physical inactivity, natural amenity, percent of households receiving SNAP benefits, and percent of all restaurants being fast food. The study results were consistent with those in the literature. The study showed that adult obesity rate was influenced by biological/behavioral factor, socioeconomic status, food environment, and physical environment embedded in the social ecological theory. By analyzing multiple risk factors of obesity in the communities, may lead to the proposal of more comprehensive and integrated policies and intervention programs to solve the population-based problem.

  4. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  5. Two-step variable selection in quantile regression models

    Directory of Open Access Journals (Sweden)

    FAN Yali

    2015-06-01

    Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions, in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform ℓ1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.

  6. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  7. The Relationship between Economic Growth and Money Laundering – a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Daniel Rece

    2009-09-01

    Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.

  8. Regression analysis of informative current status data with the additive hazards model.

    Science.gov (United States)

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  9. Poisson regression approach for modeling fatal injury rates amongst Malaysian workers

    International Nuclear Information System (INIS)

    Kamarulzaman Ibrahim; Heng Khai Theng

    2005-01-01

    Many safety studies are based on the analysis carried out on injury surveillance data. The injury surveillance data gathered for the analysis include information on number of employees at risk of injury in each of several strata where the strata are defined in terms of a series of important predictor variables. Further insight into the relationship between fatal injury rates and predictor variables may be obtained by the poisson regression approach. Poisson regression is widely used in analyzing count data. In this study, poisson regression is used to model the relationship between fatal injury rates and predictor variables which are year (1995-2002), gender, recording system and industry type. Data for the analysis were obtained from PERKESO and Jabatan Perangkaan Malaysia. It is found that the assumption that the data follow poisson distribution has been violated. After correction for the problem of over dispersion, the predictor variables that are found to be significant in the model are gender, system of recording, industry type, two interaction effects (interaction between recording system and industry type and between year and industry type). Introduction Regression analysis is one of the most popular

  10. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    Science.gov (United States)

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  11. Transpiration of glasshouse rose crops: evaluation of regression models

    NARCIS (Netherlands)

    Baas, R.; Rijssel, van E.

    2006-01-01

    Regression models of transpiration (T) based on global radiation inside the greenhouse (G), with or without energy input from heating pipes (Eh) and/or vapor pressure deficit (VPD) were parameterized. Therefore, data on T, G, temperatures from air, canopy and heating pipes, and VPD from both a

  12. Determinants of orphan drugs prices in France: a regression analysis.

    Science.gov (United States)

    Korchagina, Daria; Millier, Aurelie; Vataire, Anne-Lise; Aballea, Samuel; Falissard, Bruno; Toumi, Mondher

    2017-04-21

    The introduction of the orphan drug legislation led to the increase in the number of available orphan drugs, but the access to them is often limited due to the high price. Social preferences regarding funding orphan drugs as well as the criteria taken into consideration while setting the price remain unclear. The study aimed at identifying the determinant of orphan drug prices in France using a regression analysis. All drugs with a valid orphan designation at the moment of launch for which the price was available in France were included in the analysis. The selection of covariates was based on a literature review and included drug characteristics (Anatomical Therapeutic Chemical (ATC) class, treatment line, age of target population), diseases characteristics (severity, prevalence, availability of alternative therapeutic options), health technology assessment (HTA) details (actual benefit (AB) and improvement in actual benefit (IAB) scores, delay between the HTA and commercialisation), and study characteristics (type of study, comparator, type of endpoint). The main data sources were European public assessment reports, HTA reports, summaries of opinion on orphan designation of the European Medicines Agency, and the French insurance database of drugs and tariffs. A generalized regression model was developed to test the association between the annual treatment cost and selected covariates. A total of 68 drugs were included. The mean annual treatment cost was €96,518. In the univariate analysis, the ATC class (p = 0.01), availability of alternative treatment options (p = 0.02) and the prevalence (p = 0.02) showed a significant correlation with the annual cost. The multivariate analysis demonstrated significant association between the annual cost and availability of alternative treatment options, ATC class, IAB score, type of comparator in the pivotal clinical trial, as well as commercialisation date and delay between the HTA and commercialisation. The

  13. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.

    Science.gov (United States)

    Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek

    2018-03-01

    One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.

  14. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    Directory of Open Access Journals (Sweden)

    Ivanka Jerić

    2011-11-01

    Full Text Available Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample.

  15. A simulation study on Bayesian Ridge regression models for several collinearity levels

    Science.gov (United States)

    Efendi, Achmad; Effrihan

    2017-12-01

    When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.

  16. Utilizing the Quantile Regression to Explore the Determinants on the Application of E-Learning

    OpenAIRE

    Quang Linh Huynh; Thuy Lan Le Thi

    2014-01-01

    In this research, the quantile regression is applied to investigate the affecting factors associated with the application of e-learning. The findings provide a comprehensive picture about the relationships between the application of e-learning and its determinants. It sheds light on these complicated relationships that, at the different quantiles of the conditional distribution of e-learning adopting levels, the influence of the determinants on the application of e-learning is different. More...

  17. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  18. Comparison of height-diameter models based on geographically weighted regressions and linear mixed modelling applied to large scale forest inventory data

    Energy Technology Data Exchange (ETDEWEB)

    Quirós Segovia, M.; Condés Ruiz, S.; Drápela, K.

    2016-07-01

    Aim of the study: The main objective of this study was to test Geographically Weighted Regression (GWR) for developing height-diameter curves for forests on a large scale and to compare it with Linear Mixed Models (LMM). Area of study: Monospecific stands of Pinus halepensis Mill. located in the region of Murcia (Southeast Spain). Materials and Methods: The dataset consisted of 230 sample plots (2582 trees) from the Third Spanish National Forest Inventory (SNFI) randomly split into training data (152 plots) and validation data (78 plots). Two different methodologies were used for modelling local (Petterson) and generalized height-diameter relationships (Cañadas I): GWR, with different bandwidths, and linear mixed models. Finally, the quality of the estimated models was compared throughout statistical analysis. Main results: In general, both LMM and GWR provide better prediction capability when applied to a generalized height-diameter function than when applied to a local one, with R2 values increasing from around 0.6 to 0.7 in the model validation. Bias and RMSE were also lower for the generalized function. However, error analysis showed that there were no large differences between these two methodologies, evidencing that GWR provides results which are as good as the more frequently used LMM methodology, at least when no additional measurements are available for calibrating. Research highlights: GWR is a type of spatial analysis for exploring spatially heterogeneous processes. GWR can model spatial variation in tree height-diameter relationship and its regression quality is comparable to LMM. The advantage of GWR over LMM is the possibility to determine the spatial location of every parameter without additional measurements. Abbreviations: GWR (Geographically Weighted Regression); LMM (Linear Mixed Model); SNFI (Spanish National Forest Inventory). (Author)

  19. Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2013-01-01

    regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...

  20. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  1. Method validation using weighted linear regression models for quantification of UV filters in water samples.

    Science.gov (United States)

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-01-01

    This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2007-01-01

    This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...... the clock error) and to obtain estimates of the uncertainty with which the position is determined. Regression analysis is used in many other fields of application both in the natural, the technical and the social sciences. Examples may be curve fitting, calibration, establishing relationships between...

  3. Focused information criterion and model averaging based on weighted composite quantile regression

    KAUST Repository

    Xu, Ganggang; Wang, Suojin; Huang, Jianhua Z.

    2013-01-01

    We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non

  4. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  5. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    Science.gov (United States)

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ordinal regression models to describe tourist satisfaction with Sintra's world heritage

    Science.gov (United States)

    Mouriño, Helena

    2013-10-01

    In Tourism Research, ordinal regression models are becoming a very powerful tool in modelling the relationship between an ordinal response variable and a set of explanatory variables. In August and September 2010, we conducted a pioneering Tourist Survey in Sintra, Portugal. The data were obtained by face-to-face interviews at the entrances of the Palaces and Parks of Sintra. The work developed in this paper focus on two main points: tourists' perception of the entrance fees; overall level of satisfaction with this heritage site. For attaining these goals, ordinal regression models were developed. We concluded that tourist's nationality was the only significant variable to describe the perception of the admission fees. Also, Sintra's image among tourists depends not only on their nationality, but also on previous knowledge about Sintra's World Heritage status.

  7. Combination of supervised and semi-supervised regression models for improved unbiased estimation

    DEFF Research Database (Denmark)

    Arenas-Garía, Jeronimo; Moriana-Varo, Carlos; Larsen, Jan

    2010-01-01

    In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised and semisupervi......In this paper we investigate the steady-state performance of semisupervised regression models adjusted using a modified RLS-like algorithm, identifying the situations where the new algorithm is expected to outperform standard RLS. By using an adaptive combination of the supervised...

  8. Random regression models for daily feed intake in Danish Duroc pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Mark, Thomas; Jensen, Just

    The objective of this study was to develop random regression models and estimate covariance functions for daily feed intake (DFI) in Danish Duroc pigs. A total of 476201 DFI records were available on 6542 Duroc boars between 70 to 160 days of age. The data originated from the National test station......-year-season, permanent, and animal genetic effects. The functional form was based on Legendre polynomials. A total of 64 models for random regressions were initially ranked by BIC to identify the approximate order for the Legendre polynomials using AI-REML. The parsimonious model included Legendre polynomials of 2nd...... order for genetic and permanent environmental curves and a heterogeneous residual variance, allowing the daily residual variance to change along the age trajectory due to scale effects. The parameters of the model were estimated in a Bayesian framework, using the RJMC module of the DMU package, where...

  9. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    Science.gov (United States)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  10. Longitudinal beta regression models for analyzing health-related quality of life scores over time

    Directory of Open Access Journals (Sweden)

    Hunger Matthias

    2012-09-01

    Full Text Available Abstract Background Health-related quality of life (HRQL has become an increasingly important outcome parameter in clinical trials and epidemiological research. HRQL scores are typically bounded at both ends of the scale and often highly skewed. Several regression techniques have been proposed to model such data in cross-sectional studies, however, methods applicable in longitudinal research are less well researched. This study examined the use of beta regression models for analyzing longitudinal HRQL data using two empirical examples with distributional features typically encountered in practice. Methods We used SF-6D utility data from a German older age cohort study and stroke-specific HRQL data from a randomized controlled trial. We described the conceptual differences between mixed and marginal beta regression models and compared both models to the commonly used linear mixed model in terms of overall fit and predictive accuracy. Results At any measurement time, the beta distribution fitted the SF-6D utility data and stroke-specific HRQL data better than the normal distribution. The mixed beta model showed better likelihood-based fit statistics than the linear mixed model and respected the boundedness of the outcome variable. However, it tended to underestimate the true mean at the upper part of the distribution. Adjusted group means from marginal beta model and linear mixed model were nearly identical but differences could be observed with respect to standard errors. Conclusions Understanding the conceptual differences between mixed and marginal beta regression models is important for their proper use in the analysis of longitudinal HRQL data. Beta regression fits the typical distribution of HRQL data better than linear mixed models, however, if focus is on estimating group mean scores rather than making individual predictions, the two methods might not differ substantially.

  11. A Gompertz regression model for fern spores germination

    Directory of Open Access Journals (Sweden)

    Gabriel y Galán, Jose María

    2015-06-01

    Full Text Available Germination is one of the most important biological processes for both seed and spore plants, also for fungi. At present, mathematical models of germination have been developed in fungi, bryophytes and several plant species. However, ferns are the only group whose germination has never been modelled. In this work we develop a regression model of the germination of fern spores. We have found that for Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei and Polypodium feuillei species the Gompertz growth model describe satisfactorily cumulative germination. An important result is that regression parameters are independent of fern species and the model is not affected by intraspecific variation. Our results show that the Gompertz curve represents a general germination model for all the non-green spore leptosporangiate ferns, including in the paper a discussion about the physiological and ecological meaning of the model.La germinación es uno de los procesos biológicos más relevantes tanto para las plantas con esporas, como para las plantas con semillas y los hongos. Hasta el momento, se han desarrollado modelos de germinación para hongos, briofitos y diversas especies de espermatófitos. Los helechos son el único grupo de plantas cuya germinación nunca ha sido modelizada. En este trabajo se desarrolla un modelo de regresión para explicar la germinación de las esporas de helechos. Observamos que para las especies Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei y Polypodium feuillei el modelo de crecimiento de Gompertz describe satisfactoriamente la germinación acumulativa. Un importante resultado es que los parámetros de la regresión son independientes de la especie y que el modelo no está afectado por variación intraespecífica. Por lo tanto, los resultados del trabajo muestran que la curva de Gompertz puede representar un modelo general para todos los helechos leptosporangiados

  12. Determination of carbohydrates present in Saccharomyces cerevisiae using mid-infrared spectroscopy and partial least squares regression.

    Science.gov (United States)

    Plata, Maria R; Koch, Cosima; Wechselberger, Patrick; Herwig, Christoph; Lendl, Bernhard

    2013-10-01

    A fast and simple method to control variations in carbohydrate composition of Saccharomyces cerevisiae, baker's yeast, during fermentation was developed using mid-infrared (mid-IR) spectroscopy. The method allows for precise and accurate determinations with minimal or no sample preparation and reagent consumption based on mid-IR spectra and partial least squares (PLS) regression. The PLS models were developed employing the results from reference analysis of the yeast cells. The reference analyses quantify the amount of trehalose, glucose, glycogen, and mannan in S. cerevisiae. The selection and optimization of pretreatment steps of samples such as the disruption of the yeast cells and the hydrolysis of mannan and glycogen to obtain monosaccharides were carried out. Trehalose, glucose, and mannose were determined using high-performance liquid chromatography coupled with a refractive index detector and total carbohydrates were measured using the phenol-sulfuric method. Linear concentration range, accuracy, precision, LOD and LOQ were examined to check the reliability of the chromatographic method for each analyte.

  13. Generic global regression models for growth prediction of Salmonella in ground pork and pork cuts

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2017-01-01

    Introduction and Objectives Models for the prediction of bacterial growth in fresh pork are primarily developed using two-step regression (i.e. primary models followed by secondary models). These models are also generally based on experiments in liquids or ground meat and neglect surface growth....... It has been shown that one-step global regressions can result in more accurate models and that bacterial growth on intact surfaces can substantially differ from growth in liquid culture. Material and Methods We used a global-regression approach to develop predictive models for the growth of Salmonella....... One part of obtained logtransformed cell counts was used for model development and another for model validation. The Ratkowsky square root model and the relative lag time (RLT) model were integrated into the logistic model with delay. Fitted parameter estimates were compared to investigate the effect...

  14. Evapotranspiration Modeling by Linear, Nonlinear Regression and Artificial Neural Network in Greenhouse (Case study Reference Crop, Cucumber and Tomato

    Directory of Open Access Journals (Sweden)

    vahid Rezaverdinejad

    2017-01-01

    Full Text Available Introduction: Greenhouse cultivation is a steadily developing agricultural sector throughout the world. In addition, it is known that water is a major issue almost all part of the world especially for countries which have insufficient water source. With this great expansion of greenhouse cultivation, the need of appropriate irrigation management has a great importance. Accurate determination of irrigation scheduling (irrigation timing and frequency is one of the main factors in achieving high yields and avoiding loss of quality in greenhouse tomato and cucumber. To do this, it is fundamental to know the crop water requirements or real evapotranspiration. Accurate estimation on crop water requirement is needed to avoid the excess or deficit water application, with consequent impacts on nutrient availability for plants. This can be done by using appropriate method to determine the crop evapotranspiration (ETc. In greenhouse cultivation, crop transpiration is the most important energy dissipation mechanisms that influence ETc rate. There are a large number of literatures on methods to estimate ETc in greenhouses. ETc can be measured or estimated by direct or indirect methods. The most common direct method estimates ETc from measurements with weighing lysimeters. Thisalsoincludes the evaporation measuring equipment, class A pan, Piche atmometer and modified atmometer. Indirect method includes the measurement of net radiation, temperature, relative humidity, and air vapour pressure deficit. A large number of models have been developed from these measurements to estimate ETc. Due to the fast development of under greenhouse cultivation all around the world, the needs of information on how it affects ETc in greenhouses has to be known and summarized. The existing models for ETc calculation have to be studied to know whether it is reliable for greenhouse climate (hereafter, microclimate or not. Regression and artificial neural network models are two

  15. Application of multilinear regression analysis in modeling of soil ...

    African Journals Online (AJOL)

    The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...

  16. EMD-regression for modelling multi-scale relationships, and application to weather-related cardiovascular mortality

    Science.gov (United States)

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.

    2018-01-01

    In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.

  17. The Application of Classical and Neural Regression Models for the Valuation of Residential Real Estate

    Directory of Open Access Journals (Sweden)

    Mach Łukasz

    2017-06-01

    Full Text Available The research process aimed at building regression models, which helps to valuate residential real estate, is presented in the following article. Two widely used computational tools i.e. the classical multiple regression and regression models of artificial neural networks were used in order to build models. An attempt to define the utilitarian usefulness of the above-mentioned tools and comparative analysis of them is the aim of the conducted research. Data used for conducting analyses refers to the secondary transactional residential real estate market.

  18. A review of a priori regression models for warfarin maintenance dose prediction.

    Directory of Open Access Journals (Sweden)

    Ben Francis

    Full Text Available A number of a priori warfarin dosing algorithms, derived using linear regression methods, have been proposed. Although these dosing algorithms may have been validated using patients derived from the same centre, rarely have they been validated using a patient cohort recruited from another centre. In order to undertake external validation, two cohorts were utilised. One cohort formed by patients from a prospective trial and the second formed by patients in the control arm of the EU-PACT trial. Of these, 641 patients were identified as having attained stable dosing and formed the dataset used for validation. Predicted maintenance doses from six criterion fulfilling regression models were then compared to individual patient stable warfarin dose. Predictive ability was assessed with reference to several statistics including the R-square and mean absolute error. The six regression models explained different amounts of variability in the stable maintenance warfarin dose requirements of the patients in the two validation cohorts; adjusted R-squared values ranged from 24.2% to 68.6%. An overview of the summary statistics demonstrated that no one dosing algorithm could be considered optimal. The larger validation cohort from the prospective trial produced more consistent statistics across the six dosing algorithms. The study found that all the regression models performed worse in the validation cohort when compared to the derivation cohort. Further, there was little difference between regression models that contained pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic coefficients. The inconsistency of results between the validation cohorts suggests that unaccounted population specific factors cause variability in dosing algorithm performance. Better methods for dosing that take into account inter- and intra-individual variability, at the initiation and maintenance phases of warfarin treatment, are needed.

  19. A review of a priori regression models for warfarin maintenance dose prediction.

    Science.gov (United States)

    Francis, Ben; Lane, Steven; Pirmohamed, Munir; Jorgensen, Andrea

    2014-01-01

    A number of a priori warfarin dosing algorithms, derived using linear regression methods, have been proposed. Although these dosing algorithms may have been validated using patients derived from the same centre, rarely have they been validated using a patient cohort recruited from another centre. In order to undertake external validation, two cohorts were utilised. One cohort formed by patients from a prospective trial and the second formed by patients in the control arm of the EU-PACT trial. Of these, 641 patients were identified as having attained stable dosing and formed the dataset used for validation. Predicted maintenance doses from six criterion fulfilling regression models were then compared to individual patient stable warfarin dose. Predictive ability was assessed with reference to several statistics including the R-square and mean absolute error. The six regression models explained different amounts of variability in the stable maintenance warfarin dose requirements of the patients in the two validation cohorts; adjusted R-squared values ranged from 24.2% to 68.6%. An overview of the summary statistics demonstrated that no one dosing algorithm could be considered optimal. The larger validation cohort from the prospective trial produced more consistent statistics across the six dosing algorithms. The study found that all the regression models performed worse in the validation cohort when compared to the derivation cohort. Further, there was little difference between regression models that contained pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic coefficients. The inconsistency of results between the validation cohorts suggests that unaccounted population specific factors cause variability in dosing algorithm performance. Better methods for dosing that take into account inter- and intra-individual variability, at the initiation and maintenance phases of warfarin treatment, are needed.

  20. Modeling of chemical exergy of agricultural biomass using improved general regression neural network

    International Nuclear Information System (INIS)

    Huang, Y.W.; Chen, M.Q.; Li, Y.; Guo, J.

    2016-01-01

    A comprehensive evaluation for energy potential contained in agricultural biomass was a vital step for energy utilization of agricultural biomass. The chemical exergy of typical agricultural biomass was evaluated based on the second law of thermodynamics. The chemical exergy was significantly influenced by C and O elements rather than H element. The standard entropy of the samples also was examined based on their element compositions. Two predicted models of the chemical exergy were developed, which referred to a general regression neural network model based upon the element composition, and a linear model based upon the high heat value. An auto-refinement algorithm was firstly developed to improve the performance of regression neural network model. The developed general regression neural network model with K-fold cross-validation had a better ability for predicting the chemical exergy than the linear model, which had lower predicted errors (±1.5%). - Highlights: • Chemical exergies of agricultural biomass were evaluated based upon fifty samples. • Values for the standard entropy of agricultural biomass samples were calculated. • A linear relationship between chemical exergy and HHV of samples was detected. • An improved GRNN prediction model for the chemical exergy of biomass was developed.

  1. A study on direct determination of uranium in ore by analyzing γ-ray spectrum with dual linear regression

    International Nuclear Information System (INIS)

    Liu Chunkui

    1996-01-01

    The method introduced is based on different energy of γ-ray emitted from radionuclide in the uranium-radium decay series in ore. The pulse counting rates of two spectra bands, i.e. N 1 (55∼193 keV) and N 2 (260∼1500 keV), are measured by portable type HYX-3 400-channel γ-ray spectrometer. On the other side, the uranium content (Q U ) is obtained by chemical analysis of channel sampling. Then the regression coefficients (b 0 , b 1 ,b 2 ) can be determined through dual linear regression by using Q U and N 1 , N 2 . The direct determination of uranium can be made with the regression equation Q U = b 0 + b 1 N 1 + b 2 N 2

  2. New robust statistical procedures for the polytomous logistic regression models.

    Science.gov (United States)

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  3. Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S.S. [Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi, 83 200 Samos (Greece); Ekonomou, L.; Chatzarakis, G.E. [Department of Electrical Engineering Educators, ASPETE - School of Pedagogical and Technological Education, N. Heraklion, 141 21 Athens (Greece); Karamousantas, D.C. [Technological Educational Institute of Kalamata, Antikalamos, 24100 Kalamata (Greece); Katsikas, S.K. [Department of Technology Education and Digital Systems, University of Piraeus, 150 Androutsou Srt., 18 532 Piraeus (Greece); Liatsis, P. [Division of Electrical Electronic and Information Engineering, School of Engineering and Mathematical Sciences, Information and Biomedical Engineering Centre, City University, Northampton Square, London EC1V 0HB (United Kingdom)

    2008-09-15

    This study addresses the problem of modeling the electricity demand loads in Greece. The provided actual load data is deseasonilized and an AutoRegressive Moving Average (ARMA) model is fitted on the data off-line, using the Akaike Corrected Information Criterion (AICC). The developed model fits the data in a successful manner. Difficulties occur when the provided data includes noise or errors and also when an on-line/adaptive modeling is required. In both cases and under the assumption that the provided data can be represented by an ARMA model, simultaneous order and parameter estimation of ARMA models under the presence of noise are performed. The produced results indicate that the proposed method, which is based on the multi-model partitioning theory, tackles successfully the studied problem. For validation purposes the produced results are compared with three other established order selection criteria, namely AICC, Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC). The developed model could be useful in the studies that concern electricity consumption and electricity prices forecasts. (author)

  4. Genetic analysis of partial egg production records in Japanese quail using random regression models.

    Science.gov (United States)

    Abou Khadiga, G; Mahmoud, B Y F; Farahat, G S; Emam, A M; El-Full, E A

    2017-08-01

    The main objectives of this study were to detect the most appropriate random regression model (RRM) to fit the data of monthly egg production in 2 lines (selected and control) of Japanese quail and to test the consistency of different criteria of model choice. Data from 1,200 female Japanese quails for the first 5 months of egg production from 4 consecutive generations of an egg line selected for egg production in the first month (EP1) was analyzed. Eight RRMs with different orders of Legendre polynomials were compared to determine the proper model for analysis. All criteria of model choice suggested that the adequate model included the second-order Legendre polynomials for fixed effects, and the third-order for additive genetic effects and permanent environmental effects. Predictive ability of the best model was the highest among all models (ρ = 0.987). According to the best model fitted to the data, estimates of heritability were relatively low to moderate (0.10 to 0.17) showed a descending pattern from the first to the fifth month of production. A similar pattern was observed for permanent environmental effects with greater estimates in the first (0.36) and second (0.23) months of production than heritability estimates. Genetic correlations between separate production periods were higher (0.18 to 0.93) than their phenotypic counterparts (0.15 to 0.87). The superiority of the selected line over the control was observed through significant (P egg production in earlier ages (first and second months) than later ones. A methodology based on random regression animal models can be recommended for genetic evaluation of egg production in Japanese quail. © 2017 Poultry Science Association Inc.

  5. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    Science.gov (United States)

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  6. Laser-induced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model

    International Nuclear Information System (INIS)

    Yang, Jianhong; Yi, Cancan; Xu, Jinwu; Ma, Xianghong

    2015-01-01

    A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine. - Highlights: • Both training and testing samples are considered for analytical lines selection. • The analytical lines are auto-selected based on the built-in characteristics of spectral lines. • The new method can achieve better prediction accuracy and modeling robustness. • Model predictions are given with confidence interval of probabilistic distribution

  7. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study.

    Science.gov (United States)

    Adamkiewicz, Gary; Hsu, Hsiao-Hsien; Vallarino, Jose; Melly, Steven J; Spengler, John D; Levy, Jonathan I

    2010-11-17

    There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment) to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2) in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR) modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008) and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs) of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32), the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p GIS variables, and the regression model structure was robust to various model-building approaches. Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  8. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  9. Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916

  10. Analysis of the Influence of Quantile Regression Model on Mainland Tourists’ Service Satisfaction Performance

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2014-01-01

    Full Text Available It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  11. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  12. truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Maria Karlsson

    2014-05-01

    Full Text Available Problems with truncated data occur in many areas, complicating estimation and inference. Regarding linear regression models, the ordinary least squares estimator is inconsistent and biased for these types of data and is therefore unsuitable for use. Alternative estimators, designed for the estimation of truncated regression models, have been developed. This paper presents the R package truncSP. The package contains functions for the estimation of semi-parametric truncated linear regression models using three different estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated estimators, all of which have been shown to have good asymptotic and ?nite sample properties. The package also provides functions for the analysis of the estimated models. Data from the environmental sciences are used to illustrate the functions in the package.

  13. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  14. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  15. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Maity, Arnab

    2011-01-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work

  16. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    Science.gov (United States)

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have

  17. Regression algorithm for emotion detection

    OpenAIRE

    Berthelon , Franck; Sander , Peter

    2013-01-01

    International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...

  18. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    Science.gov (United States)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  19. Better Autologistic Regression

    Directory of Open Access Journals (Sweden)

    Mark A. Wolters

    2017-11-01

    Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.

  20. The number of subjects per variable required in linear regression analyses

    NARCIS (Netherlands)

    P.C. Austin (Peter); E.W. Steyerberg (Ewout)

    2015-01-01

    textabstractObjectives To determine the number of independent variables that can be included in a linear regression model. Study Design and Setting We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression

  1. Simultaneous determination of estrogens (ethinylestradiol and norgestimate) concentrations in human and bovine serum albumin by use of fluorescence spectroscopy and multivariate regression analysis.

    Science.gov (United States)

    Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O

    2016-05-15

    The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation

  2. Alternative Methods of Regression

    CERN Document Server

    Birkes, David

    2011-01-01

    Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s

  3. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  4. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  5. A method to determine the necessity for global signal regression in resting-state fMRI studies.

    Science.gov (United States)

    Chen, Gang; Chen, Guangyu; Xie, Chunming; Ward, B Douglas; Li, Wenjun; Antuono, Piero; Li, Shi-Jiang

    2012-12-01

    In resting-state functional MRI studies, the global signal (operationally defined as the global average of resting-state functional MRI time courses) is often considered a nuisance effect and commonly removed in preprocessing. This global signal regression method can introduce artifacts, such as false anticorrelated resting-state networks in functional connectivity analyses. Therefore, the efficacy of this technique as a correction tool remains questionable. In this article, we establish that the accuracy of the estimated global signal is determined by the level of global noise (i.e., non-neural noise that has a global effect on the resting-state functional MRI signal). When the global noise level is low, the global signal resembles the resting-state functional MRI time courses of the largest cluster, but not those of the global noise. Using real data, we demonstrate that the global signal is strongly correlated with the default mode network components and has biological significance. These results call into question whether or not global signal regression should be applied. We introduce a method to quantify global noise levels. We show that a criteria for global signal regression can be found based on the method. By using the criteria, one can determine whether to include or exclude the global signal regression in minimizing errors in functional connectivity measures. Copyright © 2012 Wiley Periodicals, Inc.

  6. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE

    OpenAIRE

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-01-01

    Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran?s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran?s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For pr...

  7. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    Science.gov (United States)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  8. An appraisal of convergence failures in the application of logistic regression model in published manuscripts.

    Science.gov (United States)

    Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A

    2014-09-01

    Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.

  9. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  10. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  11. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Eric R. Edelman

    2017-06-01

    Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related

  12. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.

    Science.gov (United States)

    Edelman, Eric R; van Kuijk, Sander M J; Hamaekers, Ankie E W; de Korte, Marcel J M; van Merode, Godefridus G; Buhre, Wolfgang F F A

    2017-01-01

    For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.

  13. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  14. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    Science.gov (United States)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  15. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  16. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.

    Science.gov (United States)

    Kolasa-Wiecek, Alicja

    2015-04-01

    The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.

  17. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  18. ON THE EFFECTS OF THE PRESENCE AND METHODS OF THE ELIMINATION HETEROSCEDASTICITY AND AUTOCORRELATION IN THE REGRESSION MODEL

    Directory of Open Access Journals (Sweden)

    Nina L. Timofeeva

    2014-01-01

    Full Text Available The article presents the methodological and technical bases for the creation of regression models that adequately reflect reality. The focus is on methods of removing residual autocorrelation in models. Algorithms eliminating heteroscedasticity and autocorrelation of the regression model residuals: reweighted least squares method, the method of Cochran-Orkutta are given. A model of "pure" regression is build, as well as to compare the effect on the dependent variable of the different explanatory variables when the latter are expressed in different units, a standardized form of the regression equation. The scheme of abatement techniques of heteroskedasticity and autocorrelation for the creation of regression models specific to the social and cultural sphere is developed.

  19. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  20. The use of logistic regression in modelling the distributions of bird ...

    African Journals Online (AJOL)

    The method of logistic regression was used to model the observed geographical distribution patterns of bird species in Swaziland in relation to a set of environmental variables. Reporting rates derived from bird atlas data are used as an index of population densities. This is justified in part by the success of the modelling ...

  1. Modeling Tetanus Neonatorum case using the regression of negative binomial and zero-inflated negative binomial

    Science.gov (United States)

    Amaliana, Luthfatul; Sa'adah, Umu; Wayan Surya Wardhani, Ni

    2017-12-01

    Tetanus Neonatorum is an infectious disease that can be prevented by immunization. The number of Tetanus Neonatorum cases in East Java Province is the highest in Indonesia until 2015. Tetanus Neonatorum data contain over dispersion and big enough proportion of zero-inflation. Negative Binomial (NB) regression is an alternative method when over dispersion happens in Poisson regression. However, the data containing over dispersion and zero-inflation are more appropriately analyzed by using Zero-Inflated Negative Binomial (ZINB) regression. The purpose of this study are: (1) to model Tetanus Neonatorum cases in East Java Province with 71.05 percent proportion of zero-inflation by using NB and ZINB regression, (2) to obtain the best model. The result of this study indicates that ZINB is better than NB regression with smaller AIC.

  2. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

    Science.gov (United States)

    Ferrari, Alberto

    2017-01-01

    Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

  3. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models.

    Science.gov (United States)

    Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan

    2010-03-01

    Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians

  4. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    Science.gov (United States)

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of

  5. Notes on power of normality tests of error terms in regression models

    International Nuclear Information System (INIS)

    Střelec, Luboš

    2015-01-01

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models

  6. Notes on power of normality tests of error terms in regression models

    Energy Technology Data Exchange (ETDEWEB)

    Střelec, Luboš [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, Brno, 61300 (Czech Republic)

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.

  7. Multiple linear regression and artificial neural networks for delta-endotoxin and protease yields modelling of Bacillus thuringiensis.

    Science.gov (United States)

    Ennouri, Karim; Ben Ayed, Rayda; Triki, Mohamed Ali; Ottaviani, Ennio; Mazzarello, Maura; Hertelli, Fathi; Zouari, Nabil

    2017-07-01

    The aim of the present work was to develop a model that supplies accurate predictions of the yields of delta-endotoxins and proteases produced by B. thuringiensis var. kurstaki HD-1. Using available medium ingredients as variables, a mathematical method, based on Plackett-Burman design (PB), was employed to analyze and compare data generated by the Bootstrap method and processed by multiple linear regressions (MLR) and artificial neural networks (ANN) including multilayer perceptron (MLP) and radial basis function (RBF) models. The predictive ability of these models was evaluated by comparison of output data through the determination of coefficient (R 2 ) and mean square error (MSE) values. The results demonstrate that the prediction of the yields of delta-endotoxin and protease was more accurate by ANN technique (87 and 89% for delta-endotoxin and protease determination coefficients, respectively) when compared with MLR method (73.1 and 77.2% for delta-endotoxin and protease determination coefficients, respectively), suggesting that the proposed ANNs, especially MLP, is a suitable new approach for determining yields of bacterial products that allow us to make more appropriate predictions in a shorter time and with less engineering effort.

  8. Comparison of autoregressive (AR) strategy with that of regression approach for determining ozone layer depletion as a physical process

    International Nuclear Information System (INIS)

    Yousufzai, M.A.K; Aansari, M.R.K.; Quamar, J.; Iqbal, J.; Hussain, M.A.

    2010-01-01

    This communication presents the development of a comprehensive characterization of ozone layer depletion (OLD) phenomenon as a physical process in the form of mathematical models that comprise the usual regression, multiple or polynomial regression and stochastic strategy. The relevance of these models has been illuminated using predicted values of different parameters under a changing environment. The information obtained from such analysis can be employed to alter the possible factors and variables to achieve optimum performance. This kind of analysis initiates a study towards formulating the phenomenon of OLD as a physical process with special reference to the stratospheric region of Pakistan. The data presented here establishes that the Auto regressive (AR) nature of modeling OLD as a physical process is an appropriate scenario rather than using usual regression. The data reported in literature suggest quantitatively the OLD is occurring in our region. For this purpose we have modeled this phenomenon using the data recorded at the Geophysical Centre Quetta during the period 1960-1999. The predictions made by this analysis are useful for public, private and other relevant organizations. (author)

  9. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  10. The Transmuted Geometric-Weibull distribution: Properties, Characterizations and Regression Models

    Directory of Open Access Journals (Sweden)

    Zohdy M Nofal

    2017-06-01

    Full Text Available We propose a new lifetime model called the transmuted geometric-Weibull distribution. Some of its structural properties including ordinary and incomplete moments, quantile and generating functions, probability weighted moments, Rényi and q-entropies and order statistics are derived. The maximum likelihood method is discussed to estimate the model parameters by means of Monte Carlo simulation study. A new location-scale regression model is introduced based on the proposed distribution. The new distribution is applied to two real data sets to illustrate its flexibility. Empirical results indicate that proposed distribution can be alternative model to other lifetime models available in the literature for modeling real data in many areas.

  11. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  12. Conditional Monte Carlo randomization tests for regression models.

    Science.gov (United States)

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Use of multiple linear regression and logistic regression models to investigate changes in birthweight for term singleton infants in Scotland.

    Science.gov (United States)

    Bonellie, Sandra R

    2012-10-01

    To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother.   Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.

  14. Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks

    Science.gov (United States)

    Gray-Davies, Tristan; Holmes, Chris C.; Caron, François

    2018-01-01

    We present a novel Bayesian nonparametric regression model for covariates X and continuous response variable Y ∈ ℝ. The model is parametrized in terms of marginal distributions for Y and X and a regression function which tunes the stochastic ordering of the conditional distributions F (y|x). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model. This procedure can scale to very large datasets and allows for the use of standard, existing, software from Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As an illustration, we show an application of our approach to a US Census dataset, with over 1,300,000 data points and more than 100 covariates. PMID:29623150

  15. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Science.gov (United States)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  16. Logistic regression for dichotomized counts.

    Science.gov (United States)

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  17. Logistic regression models for polymorphic and antagonistic pleiotropic gene action on human aging and longevity

    DEFF Research Database (Denmark)

    Tan, Qihua; Bathum, L; Christiansen, L

    2003-01-01

    In this paper, we apply logistic regression models to measure genetic association with human survival for highly polymorphic and pleiotropic genes. By modelling genotype frequency as a function of age, we introduce a logistic regression model with polytomous responses to handle the polymorphic...... situation. Genotype and allele-based parameterization can be used to investigate the modes of gene action and to reduce the number of parameters, so that the power is increased while the amount of multiple testing minimized. A binomial logistic regression model with fractional polynomials is used to capture...... the age-dependent or antagonistic pleiotropic effects. The models are applied to HFE genotype data to assess the effects on human longevity by different alleles and to detect if an age-dependent effect exists. Application has shown that these methods can serve as useful tools in searching for important...

  18. Modeling daily soil temperature over diverse climate conditions in Iran—a comparison of multiple linear regression and support vector regression techniques

    Science.gov (United States)

    Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan

    2018-02-01

    The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.

  19. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    Science.gov (United States)

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  20. Endogenous glucose production from infancy to adulthood: a non-linear regression model

    NARCIS (Netherlands)

    Huidekoper, Hidde H.; Ackermans, Mariëtte T.; Ruiter, An F. C.; Sauerwein, Hans P.; Wijburg, Frits A.

    2014-01-01

    To construct a regression model for endogenous glucose production (EGP) as a function of age, and compare this with glucose supplementation using commonly used dextrose-based saline solutions at fluid maintenance rate in children. A model was constructed based on EGP data, as quantified by

  1. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    Science.gov (United States)

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  2. Geographically weighted negative binomial regression applied to zonal level safety performance models.

    Science.gov (United States)

    Gomes, Marcos José Timbó Lima; Cunto, Flávio; da Silva, Alan Ricardo

    2017-09-01

    Generalized Linear Models (GLM) with negative binomial distribution for errors, have been widely used to estimate safety at the level of transportation planning. The limited ability of this technique to take spatial effects into account can be overcome through the use of local models from spatial regression techniques, such as Geographically Weighted Poisson Regression (GWPR). Although GWPR is a system that deals with spatial dependency and heterogeneity and has already been used in some road safety studies at the planning level, it fails to account for the possible overdispersion that can be found in the observations on road-traffic crashes. Two approaches were adopted for the Geographically Weighted Negative Binomial Regression (GWNBR) model to allow discrete data to be modeled in a non-stationary form and to take note of the overdispersion of the data: the first examines the constant overdispersion for all the traffic zones and the second includes the variable for each spatial unit. This research conducts a comparative analysis between non-spatial global crash prediction models and spatial local GWPR and GWNBR at the level of traffic zones in Fortaleza/Brazil. A geographic database of 126 traffic zones was compiled from the available data on exposure, network characteristics, socioeconomic factors and land use. The models were calibrated by using the frequency of injury crashes as a dependent variable and the results showed that GWPR and GWNBR achieved a better performance than GLM for the average residuals and likelihood as well as reducing the spatial autocorrelation of the residuals, and the GWNBR model was more able to capture the spatial heterogeneity of the crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Distributed Monitoring of the R(sup 2) Statistic for Linear Regression

    Science.gov (United States)

    Bhaduri, Kanishka; Das, Kamalika; Giannella, Chris R.

    2011-01-01

    The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and one or more dependent target variables. This problem becomes challenging for large scale data in a distributed computing environment when only a subset of instances is available at individual nodes and the local data changes frequently. Data centralization and periodic model recomputation can add high overhead to tasks like anomaly detection in such dynamic settings. Therefore, the goal is to develop techniques for monitoring and updating the model over the union of all nodes data in a communication-efficient fashion. Correctness guarantees on such techniques are also often highly desirable, especially in safety-critical application scenarios. In this paper we develop DReMo a distributed algorithm with very low resource overhead, for monitoring the quality of a regression model in terms of its coefficient of determination (R2 statistic). When the nodes collectively determine that R2 has dropped below a fixed threshold, the linear regression model is recomputed via a network-wide convergecast and the updated model is broadcast back to all nodes. We show empirically, using both synthetic and real data, that our proposed method is highly communication-efficient and scalable, and also provide theoretical guarantees on correctness.

  4. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  5. Regression-based model of skin diffuse reflectance for skin color analysis

    Science.gov (United States)

    Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi

    2008-11-01

    A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.

  6. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    Science.gov (United States)

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  8. Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors

    Directory of Open Access Journals (Sweden)

    Xibin Zhang

    2016-04-01

    Full Text Available This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP growth rates among the organisation for economic co-operation and development (OECD and non-OECD countries.

  9. Understanding poisson regression.

    Science.gov (United States)

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  10. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Directory of Open Access Journals (Sweden)

    J. Chardon

    2018-01-01

    Full Text Available Statistical downscaling models (SDMs are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  11. A test of inflated zeros for Poisson regression models.

    Science.gov (United States)

    He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

    2017-01-01

    Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

  12. Computing group cardinality constraint solutions for logistic regression problems.

    Science.gov (United States)

    Zhang, Yong; Kwon, Dongjin; Pohl, Kilian M

    2017-01-01

    We derive an algorithm to directly solve logistic regression based on cardinality constraint, group sparsity and use it to classify intra-subject MRI sequences (e.g. cine MRIs) of healthy from diseased subjects. Group cardinality constraint models are often applied to medical images in order to avoid overfitting of the classifier to the training data. Solutions within these models are generally determined by relaxing the cardinality constraint to a weighted feature selection scheme. However, these solutions relate to the original sparse problem only under specific assumptions, which generally do not hold for medical image applications. In addition, inferring clinical meaning from features weighted by a classifier is an ongoing topic of discussion. Avoiding weighing features, we propose to directly solve the group cardinality constraint logistic regression problem by generalizing the Penalty Decomposition method. To do so, we assume that an intra-subject series of images represents repeated samples of the same disease patterns. We model this assumption by combining series of measurements created by a feature across time into a single group. Our algorithm then derives a solution within that model by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The minimum to the smooth and convex logistic regression problem is determined via gradient descent while we derive a closed form solution for finding a sparse approximation of that minimum. We apply our method to cine MRI of 38 healthy controls and 44 adult patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. Our method correctly identifies regions impacted by TOF and generally obtains statistically significant higher classification accuracy than alternative solutions to this model, i.e., ones relaxing group cardinality constraints. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Financial analysis and forecasting of the results of small businesses performance based on regression model

    Directory of Open Access Journals (Sweden)

    Svetlana O. Musienko

    2017-03-01

    Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small

  14. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    Science.gov (United States)

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  16. Flexible regression models for estimating postmortem interval (PMI) in forensic medicine.

    Science.gov (United States)

    Muñoz Barús, José Ignacio; Febrero-Bande, Manuel; Cadarso-Suárez, Carmen

    2008-10-30

    Correct determination of time of death is an important goal in forensic medicine. Numerous methods have been described for estimating postmortem interval (PMI), but most are imprecise, poorly reproducible and/or have not been validated with real data. In recent years, however, some progress in PMI estimation has been made, notably through the use of new biochemical methods for quantifying relevant indicator compounds in the vitreous humour. The best, but unverified, results have been obtained with [K+] and hypoxanthine [Hx], using simple linear regression (LR) models. The main aim of this paper is to offer more flexible alternatives to LR, such as generalized additive models (GAMs) and support vector machines (SVMs) in order to obtain improved PMI estimates. The present study, based on detailed analysis of [K+] and [Hx] in more than 200 vitreous humour samples from subjects with known PMI, compared classical LR methodology with GAM and SVM methodologies. Both proved better than LR for estimation of PMI. SVM showed somewhat greater precision than GAM, but GAM offers a readily interpretable graphical output, facilitating understanding of findings by legal professionals; there are thus arguments for using both types of models. R code for these methods is available from the authors, permitting accurate prediction of PMI from vitreous humour [K+], [Hx] and [U], with confidence intervals and graphical output provided. Copyright 2008 John Wiley & Sons, Ltd.

  17. Comparison of logistic regression and neural models in predicting the outcome of biopsy in breast cancer from MRI findings

    International Nuclear Information System (INIS)

    Abdolmaleki, P.; Yarmohammadi, M.; Gity, M.

    2004-01-01

    Background: We designed an algorithmic model based on regression analysis and a non-algorithmic model based on the Artificial Neural Network. Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patient's records. Each patient's record consisted of 6 subjective features extracted from MRI appearance. These findings were enclosed as features extracted for an Artificial Neural Network as well as a logistic regression model to predict biopsy outcome. After both models had been trained perfectly on samples (n=100), the validation samples (n=61) were presented to the trained network as well as the established logistic regression models. Finally, the diagnostic performance of models were compared to the that of the radiologist in terms of sensitivity, specificity and accuracy, using receiver operating characteristic curve analysis. Results: The average out put of the Artificial Neural Network yielded a perfect sensitivity (98%) and high accuracy (90%) similar to that one of an expert radiologist (96% and 92%) while specificity was smaller than that (67%) verses 80%). The output of the logistic regression model using significant features showed improvement in specificity from 60% for the logistic regression model using all features to 93% for the reduced logistic regression model, keeping the accuracy around 90%. Conclusion: Results show that Artificial Neural Network and logistic regression model prove the relationship between extracted morphological features and biopsy results. Using statistically significant variables reduced logistic regression model outperformed of Artificial Neural Network with remarkable specificity while keeping high sensitivity is achieved

  18. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    Science.gov (United States)

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  19. Partial F-tests with multiply imputed data in the linear regression framework via coefficient of determination.

    Science.gov (United States)

    Chaurasia, Ashok; Harel, Ofer

    2015-02-10

    Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.

    Science.gov (United States)

    Salmerón, Diego; Cano, Juan A; Chirlaque, María D

    2015-08-30

    In cohort studies, binary outcomes are very often analyzed by logistic regression. However, it is well known that when the goal is to estimate a risk ratio, the logistic regression is inappropriate if the outcome is common. In these cases, a log-binomial regression model is preferable. On the other hand, the estimation of the regression coefficients of the log-binomial model is difficult owing to the constraints that must be imposed on these coefficients. Bayesian methods allow a straightforward approach for log-binomial regression models and produce smaller mean squared errors in the estimation of risk ratios than the frequentist methods, and the posterior inferences can be obtained using the software WinBUGS. However, Markov chain Monte Carlo methods implemented in WinBUGS can lead to large Monte Carlo errors in the approximations to the posterior inferences because they produce correlated simulations, and the accuracy of the approximations are inversely related to this correlation. To reduce correlation and to improve accuracy, we propose a reparameterization based on a Poisson model and a sampling algorithm coded in R. Copyright © 2015 John Wiley & Sons, Ltd.

  1. A prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2, based on simple clinical parameters.

    Science.gov (United States)

    Koeneman, Margot M; van Lint, Freyja H M; van Kuijk, Sander M J; Smits, Luc J M; Kooreman, Loes F S; Kruitwagen, Roy F P M; Kruse, Arnold J

    2017-01-01

    This study aims to develop a prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2 (CIN 2) lesions based on simple clinicopathological parameters. The study was conducted at Maastricht University Medical Center, the Netherlands. The prediction model was developed in a retrospective cohort of 129 women with a histologic diagnosis of CIN 2 who were managed by watchful waiting for 6 to 24months. Five potential predictors for spontaneous regression were selected based on the literature and expert opinion and were analyzed in a multivariable logistic regression model, followed by backward stepwise deletion based on the Wald test. The prediction model was internally validated by the bootstrapping method. Discriminative capacity and accuracy were tested by assessing the area under the receiver operating characteristic curve (AUC) and a calibration plot. Disease regression within 24months was seen in 91 (71%) of 129 patients. A prediction model was developed including the following variables: smoking, Papanicolaou test outcome before the CIN 2 diagnosis, concomitant CIN 1 diagnosis in the same biopsy, and more than 1 biopsy containing CIN 2. Not smoking, Papanicolaou class predictive of disease regression. The AUC was 69.2% (95% confidence interval, 58.5%-79.9%), indicating a moderate discriminative ability of the model. The calibration plot indicated good calibration of the predicted probabilities. This prediction model for spontaneous regression of CIN 2 may aid physicians in the personalized management of these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regression models for interval censored survival data: Application to HIV infection in Danish homosexual men

    DEFF Research Database (Denmark)

    Carstensen, Bendix

    1996-01-01

    This paper shows how to fit excess and relative risk regression models to interval censored survival data, and how to implement the models in standard statistical software. The methods developed are used for the analysis of HIV infection rates in a cohort of Danish homosexual men.......This paper shows how to fit excess and relative risk regression models to interval censored survival data, and how to implement the models in standard statistical software. The methods developed are used for the analysis of HIV infection rates in a cohort of Danish homosexual men....

  3. Early cost estimating for road construction projects using multiple regression techniques

    Directory of Open Access Journals (Sweden)

    Ibrahim Mahamid

    2011-12-01

    Full Text Available The objective of this study is to develop early cost estimating models for road construction projects using multiple regression techniques, based on 131 sets of data collected in the West Bank in Palestine. As the cost estimates are required at early stages of a project, considerations were given to the fact that the input data for the required regression model could be easily extracted from sketches or scope definition of the project. 11 regression models are developed to estimate the total cost of road construction project in US dollar; 5 of them include bid quantities as input variables and 6 include road length and road width. The coefficient of determination r2 for the developed models is ranging from 0.92 to 0.98 which indicate that the predicted values from a forecast models fit with the real-life data. The values of the mean absolute percentage error (MAPE of the developed regression models are ranging from 13% to 31%, the results compare favorably with past researches which have shown that the estimate accuracy in the early stages of a project is between ±25% and ±50%.

  4. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  5. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  6. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    Science.gov (United States)

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  7. Association of footprint measurements with plantar kinetics: a linear regression model.

    Science.gov (United States)

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2014-03-01

    The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability. Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables. The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions. Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.

  8. Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.

  9. An evaluation of bias in propensity score-adjusted non-linear regression models.

    Science.gov (United States)

    Wan, Fei; Mitra, Nandita

    2018-03-01

    Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.

  10. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    Science.gov (United States)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  11. Modeling the number of car theft using Poisson regression

    Science.gov (United States)

    Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura

    2016-10-01

    Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.

  12. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  13. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    Science.gov (United States)

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  14. Determinants of the probability of adopting quality protein maize (QPM technology in Tanzania: A logistic regression analysis

    Directory of Open Access Journals (Sweden)

    Gregory, T.

    2013-06-01

    Full Text Available Adoption of technology is an important factor in economic development. The thrust of this study was to establish factors affecting adoption of QPM technology in Northern zone of Tanzania. Primary data was collected from a random sample of 120 smallholder maize farmers in four villages. Data collected were analysed using descriptive and quantitative methods. Logit model was used to determine factors that influence adoption of QPM technology. The regression results indicated that education of the household head, farmers’ participation on demonstration trials, attendance to field days, and numbers of livestock owned have positively influenced the rate of adoption of the technology. Access to credit, and poor QPM marketing problem perception by farmers negatively influenced the rate of adoption. The study recommended government to ensure efficiency input-output linkage for QPM production.

  15. Dynamic Regression Intervention Modeling for the Malaysian Daily Load

    Directory of Open Access Journals (Sweden)

    Fadhilah Abdrazak

    2014-05-01

    Full Text Available Malaysia is a unique country due to having both fixed and moving holidays.  These moving holidays may overlap with other fixed holidays and therefore, increase the complexity of the load forecasting activities. The errors due to holidays’ effects in the load forecasting are known to be higher than other factors.  If these effects can be estimated and removed, the behavior of the series could be better viewed.  Thus, the aim of this paper is to improve the forecasting errors by using a dynamic regression model with intervention analysis.   Based on the linear transfer function method, a daily load model consists of either peak or average is developed.  The developed model outperformed the seasonal ARIMA model in estimating the fixed and moving holidays’ effects and achieved a smaller Mean Absolute Percentage Error (MAPE in load forecast.

  16. Analysis of quantile regression as alternative to ordinary least squares

    OpenAIRE

    Ibrahim Abdullahi; Abubakar Yahaya

    2015-01-01

    In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...

  17. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  18. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  19. Climate Impacts on Chinese Corn Yields: A Fractional Polynomial Regression Model

    NARCIS (Netherlands)

    Kooten, van G.C.; Sun, Baojing

    2012-01-01

    In this study, we examine the effect of climate on corn yields in northern China using data from ten districts in Inner Mongolia and two in Shaanxi province. A regression model with a flexible functional form is specified, with explanatory variables that include seasonal growing degree days,

  20. Comparison of two regression-based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed

    Science.gov (United States)

    Moyer, Douglas; Hirsch, Robert M.; Hyer, Kenneth

    2012-01-01

    Nutrient and sediment fluxes and changes in fluxes over time are key indicators that water resource managers can use to assess the progress being made in improving the structure and function of the Chesapeake Bay ecosystem. The U.S. Geological Survey collects annual nutrient (nitrogen and phosphorus) and sediment flux data and computes trends that describe the extent to which water-quality conditions are changing within the major Chesapeake Bay tributaries. Two regression-based approaches were compared for estimating annual nutrient and sediment fluxes and for characterizing how these annual fluxes are changing over time. The two regression models compared are the traditionally used ESTIMATOR and the newly developed Weighted Regression on Time, Discharge, and Season (WRTDS). The model comparison focused on answering three questions: (1) What are the differences between the functional form and construction of each model? (2) Which model produces estimates of flux with the greatest accuracy and least amount of bias? (3) How different would the historical estimates of annual flux be if WRTDS had been used instead of ESTIMATOR? One additional point of comparison between the two models is how each model determines trends in annual flux once the year-to-year variations in discharge have been determined. All comparisons were made using total nitrogen, nitrate, total phosphorus, orthophosphorus, and suspended-sediment concentration data collected at the nine U.S. Geological Survey River Input Monitoring stations located on the Susquehanna, Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank Rivers in the Chesapeake Bay watershed. Two model characteristics that uniquely distinguish ESTIMATOR and WRTDS are the fundamental model form and the determination of model coefficients. ESTIMATOR and WRTDS both predict water-quality constituent concentration by developing a linear relation between the natural logarithm of observed constituent

  1. Relative accuracy of spatial predictive models for lynx Lynx canadensis derived using logistic regression-AIC, multiple criteria evaluation and Bayesian approaches

    Directory of Open Access Journals (Sweden)

    Shelley M. ALEXANDER

    2009-02-01

    Full Text Available We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS-based approaches: logistic regression and Akaike’s Information Criterion (AIC, Multiple Criteria Evaluation (MCE, and Bayesian Analysis (specifically Dempster-Shafer theory. We used lynx Lynx canadensis as our focal species, and developed our environment relationship model using track data collected in Banff National Park, Alberta, Canada, during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy, the failure to predict a species where it occurred (omission error and the prediction of presence where there was absence (commission error. Our overall accuracy showed the logistic regression approach was the most accurate (74.51%. The multiple criteria evaluation was intermediate (39.22%, while the Dempster-Shafer (D-S theory model was the poorest (29.90%. However, omission and commission error tell us a different story: logistic regression had the lowest commission error, while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least, the logistic regression model is optimal. However, where sample size is small or the species is very rare, it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer that would over-predict, protect more sites, and thereby minimize the risk of missing critical habitat in conservation plans[Current Zoology 55(1: 28 – 40, 2009].

  2. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  3. Regression-Based Norms for a Bi-factor Model for Scoring the Brief Test of Adult Cognition by Telephone (BTACT).

    Science.gov (United States)

    Gurnani, Ashita S; John, Samantha E; Gavett, Brandon E

    2015-05-01

    The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

    Science.gov (United States)

    Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

    2011-11-01

    To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

  5. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Science.gov (United States)

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, PLogarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  6. Regression analysis using dependent Polya trees.

    Science.gov (United States)

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Auto-associative Kernel Regression Model with Weighted Distance Metric for Instrument Drift Monitoring

    International Nuclear Information System (INIS)

    Shin, Ho Cheol; Park, Moon Ghu; You, Skin

    2006-01-01

    Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto associative kernel regression (AAKR) by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression

  8. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    Science.gov (United States)

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected

  9. Predictors of course in obsessive-compulsive disorder: logistic regression versus Cox regression for recurrent events.

    Science.gov (United States)

    Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M

    2007-09-01

    Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.

  10. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    Science.gov (United States)

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  11. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study.

    Science.gov (United States)

    Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y

    2008-02-18

    The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.

  12. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  13. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    Science.gov (United States)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  14. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    Science.gov (United States)

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  15. Fitting multistate transition models with autoregressive logistic regression : Supervised exercise in intermittent claudication

    NARCIS (Netherlands)

    de Vries, S O; Fidler, Vaclav; Kuipers, Wietze D; Hunink, Maria G M

    1998-01-01

    The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a

  16. SPECIFICS OF THE APPLICATIONS OF MULTIPLE REGRESSION MODEL IN THE ANALYSES OF THE EFFECTS OF GLOBAL FINANCIAL CRISES

    Directory of Open Access Journals (Sweden)

    Željko V. Račić

    2010-12-01

    Full Text Available This paper aims to present the specifics of the application of multiple linear regression model. The economic (financial crisis is analyzed in terms of gross domestic product which is in a function of the foreign trade balance (on one hand and the credit cards, i.e. indebtedness of the population on this basis (on the other hand, in the USA (from 1999. to 2008. We used the extended application model which shows how the analyst should run the whole development process of regression model. This process began with simple statistical features and the application of regression procedures, and ended with residual analysis, intended for the study of compatibility of data and model settings. This paper also analyzes the values of some standard statistics used in the selection of appropriate regression model. Testing of the model is carried out with the use of the Statistics PASW 17 program.

  17. Linear support vector regression and partial least squares chemometric models for determination of Hydrochlorothiazide and Benazepril hydrochloride in presence of related impurities: A comparative study

    Science.gov (United States)

    Naguib, Ibrahim A.; Abdelaleem, Eglal A.; Draz, Mohammed E.; Zaazaa, Hala E.

    2014-09-01

    Partial least squares regression (PLSR) and support vector regression (SVR) are two popular chemometric models that are being subjected to a comparative study in the presented work. The comparison shows their characteristics via applying them to analyze Hydrochlorothiazide (HCZ) and Benazepril hydrochloride (BZ) in presence of HCZ impurities; Chlorothiazide (CT) and Salamide (DSA) as a case study. The analysis results prove to be valid for analysis of the two active ingredients in raw materials and pharmaceutical dosage form through handling UV spectral data in range (220-350 nm). For proper analysis a 4 factor 4 level experimental design was established resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of 8 mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze HCZ and BZ in presence of HCZ impurities CT and DSA with high selectivity and accuracy of mean percentage recoveries of (101.01 ± 0.80) and (100.01 ± 0.87) for HCZ and BZ respectively using PLSR model and of (99.78 ± 0.80) and (99.85 ± 1.08) for HCZ and BZ respectively using SVR model. The analysis results of the dosage form were statistically compared to the reference HPLC method with no significant differences regarding accuracy and precision. SVR model gives more accurate results compared to PLSR model and show high generalization ability, however, PLSR still keeps the advantage of being fast to optimize and implement.

  18. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.

    Science.gov (United States)

    Mi, Gu; Di, Yanming; Schafer, Daniel W

    2015-01-01

    This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.

  19. Noise model based ν-support vector regression with its application to short-term wind speed forecasting.

    Science.gov (United States)

    Hu, Qinghua; Zhang, Shiguang; Xie, Zongxia; Mi, Jusheng; Wan, Jie

    2014-09-01

    Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden in sample data. Most existing regression techniques take the assumption that the error distribution is Gaussian. However, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy Gaussian distribution, but a beta distribution, Laplacian distribution, or other models. In these cases the current regression techniques are not optimal. According to the Bayesian approach, we derive a general loss function and develop a technique of the uniform model of ν-support vector regression for the general noise model (N-SVR). The Augmented Lagrange Multiplier method is introduced to solve N-SVR. Numerical experiments on artificial data sets, UCI data and short-term wind speed prediction are conducted. The results show the effectiveness of the proposed technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    Science.gov (United States)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  1. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  2. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    Science.gov (United States)

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for

  3. Deriving Genomic Breeding Values for Residual Feed Intake from Covariance Functions of Random Regression Models

    DEFF Research Database (Denmark)

    Strathe, Anders B; Mark, Thomas; Nielsen, Bjarne

    2014-01-01

    Random regression models were used to estimate covariance functions between cumulated feed intake (CFI) and body weight (BW) in 8424 Danish Duroc pigs. Random regressions on second order Legendre polynomials of age were used to describe genetic and permanent environmental curves in BW and CFI...

  4. A Predictive Logistic Regression Model of World Conflict Using Open Source Data

    Science.gov (United States)

    2015-03-26

    No correlation between the error terms and the independent variables 9. Absence of perfect multicollinearity (Menard, 2001) When assumptions are...some of the variables before initial model building. Multicollinearity , or near-linear dependence among the variables will cause problems in the...model. High multicollinearity tends to produce unreasonably high logistic regression coefficients and can result in coefficients that are not

  5. Efficient Blind System Identification of Non-Gaussian Auto-Regressive Models with HMM Modeling of the Excitation

    DEFF Research Database (Denmark)

    Li, Chunjian; Andersen, Søren Vang

    2007-01-01

    We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....

  6. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...

  7. Predicting Performance on MOOC Assessments using Multi-Regression Models

    OpenAIRE

    Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya

    2016-01-01

    The past few years has seen the rapid growth of data min- ing approaches for the analysis of data obtained from Mas- sive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a stu- dent may achieve on a given grade-related assessment based on information, considered as prior performance or prior ac- tivity in the course. We develop a personalized linear mul- tiple regression (PLMR) model to predict the grade for a student, prior to attempt...

  8. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.

    Science.gov (United States)

    Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong

    2017-12-28

    Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which

  9. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams

    Directory of Open Access Journals (Sweden)

    Yuanyuan Yu

    2017-12-01

    Full Text Available Abstract Background Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Methods Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM were compared. The “do-calculus” was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Results Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal

  10. Regression analysis for LED color detection of visual-MIMO system

    Science.gov (United States)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  11. A note on modeling of tumor regression for estimation of radiobiological parameters

    International Nuclear Information System (INIS)

    Zhong, Hualiang; Chetty, Indrin

    2014-01-01

    Purpose: Accurate calculation of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on derived parameters. In this study, the authors have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for estimation of radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time T d , half-life of dead cells T r , and cell survival fraction SF D under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models: Chvetsov's model (C-model) and Lim's model (L-model). The C-model and L-model were optimized with the parameter T d fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43 ± 0.08, and the half-life of dead cells averaged over the six patients is 17.5 ± 3.2 days. The parameters T r and SF D optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the T d -fixed C-model, and by 32.1% and 112.3% from those optimized with the T d -fixed L-model, respectively. Conclusions: The Z-model was analytically constructed from the differential equations of cell populations that describe changes in the number of different tumor cells during the course of radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The generated model and its optimization method may help develop high-quality treatment regimens for individual patients

  12. A method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  13. ANALYSIS OF THE FINANCIAL PERFORMANCES OF THE FIRM, BY USING THE MULTIPLE REGRESSION MODEL

    Directory of Open Access Journals (Sweden)

    Constantin Anghelache

    2011-11-01

    Full Text Available The information achieved through the use of simple linear regression are not always enough to characterize the evolution of an economic phenomenon and, furthermore, to identify its possible future evolution. To remedy these drawbacks, the special literature includes multiple regression models, in which the evolution of the dependant variable is defined depending on two or more factorial variables.

  14. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  15. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    Science.gov (United States)

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  16. Estimating transmitted waves of floating breakwater using support vector regression model

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Hegde, A.V.; Kumar, V.; Patil, S.G.

    is first mapped onto an m-dimensional feature space using some fixed (nonlinear) mapping, and then a linear model is constructed in this feature space (Ivanciuc Ovidiu 2007). Using mathematical notation, the linear model in the feature space f(x, w... regressive vector machines, Ocean Engineering Journal, Vol – 36, pp 339 – 347, 2009. 3. Ivanciuc Ovidiu, Applications of support vector machines in chemistry, Review in Computational Chemistry, Eds K. B. Lipkouitz and T. R. Cundari, Vol – 23...

  17. Temporal Synchronization Analysis for Improving Regression Modeling of Fecal Indicator Bacteria Levels

    Science.gov (United States)

    Multiple linear regression models are often used to predict levels of fecal indicator bacteria (FIB) in recreational swimming waters based on independent variables (IVs) such as meteorologic, hydrodynamic, and water-quality measures. The IVs used for these analyses are traditiona...

  18. A logistic regression model for Ghana National Health Insurance claims

    Directory of Open Access Journals (Sweden)

    Samuel Antwi

    2013-07-01

    Full Text Available In August 2003, the Ghanaian Government made history by implementing the first National Health Insurance System (NHIS in Sub-Saharan Africa. Within three years, over half of the country’s population had voluntarily enrolled into the National Health Insurance Scheme. This study had three objectives: 1 To estimate the risk factors that influences the Ghana national health insurance claims. 2 To estimate the magnitude of each of the risk factors in relation to the Ghana national health insurance claims. In this work, data was collected from the policyholders of the Ghana National Health Insurance Scheme with the help of the National Health Insurance database and the patients’ attendance register of the Koforidua Regional Hospital, from 1st January to 31st December 2011. Quantitative analysis was done using the generalized linear regression (GLR models. The results indicate that risk factors such as sex, age, marital status, distance and length of stay at the hospital were important predictors of health insurance claims. However, it was found that the risk factors; health status, billed charges and income level are not good predictors of national health insurance claim. The outcome of the study shows that sex, age, marital status, distance and length of stay at the hospital are statistically significant in the determination of the Ghana National health insurance premiums since they considerably influence claims. We recommended, among other things that, the National Health Insurance Authority should facilitate the institutionalization of the collection of appropriate data on a continuous basis to help in the determination of future premiums.

  19. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression

    Science.gov (United States)

    Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.

    2013-02-01

    Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local

  20. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  1. Review and Recommendations for Zero-inflated Count Regression Modeling of Dental Caries Indices in Epidemiological Studies

    Science.gov (United States)

    Stamm, John W.; Long, D. Leann; Kincade, Megan E.

    2012-01-01

    Over the past five to ten years, zero-inflated count regression models have been increasingly applied to the analysis of dental caries indices (e.g., DMFT, dfms, etc). The main reason for that is linked to the broad decline in children’s caries experience, such that dmf and DMF indices more frequently generate low or even zero counts. This article specifically reviews the application of zero-inflated Poisson and zero-inflated negative binomial regression models to dental caries, with emphasis on the description of the models and the interpretation of fitted model results given the study goals. The review finds that interpretations provided in the published caries research are often imprecise or inadvertently misleading, particularly with respect to failing to discriminate between inference for the class of susceptible persons defined by such models and inference for the sampled population in terms of overall exposure effects. Recommendations are provided to enhance the use as well as the interpretation and reporting of results of count regression models when applied to epidemiological studies of dental caries. PMID:22710271

  2. A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000)

    International Nuclear Information System (INIS)

    Howarth, Richard J.

    2001-01-01

    The (statistical) modeling of the behavior of a dependent variate as a function of one or more predictors provides examples of model-fitting which span the development of the earth sciences from the 17th Century to the present. The historical development of these methods and their subsequent application is reviewed. Bond's predictions (c. 1636 and 1668) of change in the magnetic declination at London may be the earliest attempt to fit such models to geophysical data. Following publication of Newton's theory of gravitation in 1726, analysis of data on the length of a 1 o meridian arc, and the length of a pendulum beating seconds, as a function of sin 2 (latitude), was used to determine the ellipticity of the oblate spheroid defining the Figure of the Earth. The pioneering computational methods of Mayer in 1750, Boscovich in 1755, and Lambert in 1765, and the subsequent independent discoveries of the principle of least squares by Gauss in 1799, Legendre in 1805, and Adrain in 1808, and its later substantiation on the basis of probability theory by Gauss in 1809 were all applied to the analysis of such geodetic and geophysical data. Notable later applications include: the geomagnetic survey of Ireland by Lloyd, Sabine, and Ross in 1836, Gauss's model of the terrestrial magnetic field in 1838, and Airy's 1845 analysis of the residuals from a fit to pendulum lengths, from which he recognized the anomalous character of measurements of gravitational force which had been made on islands. In the early 20th Century applications to geological topics proliferated, but the computational burden effectively held back applications of multivariate analysis. Following World War II, the arrival of digital computers in universities in the 1950s facilitated computation, and fitting linear or polynomial models as a function of geographic coordinates, trend surface analysis, became popular during the 1950-60s. The inception of geostatistics in France at this time by Matheron had its

  3. The Norwegian Healthier Goats program--modeling lactation curves using a multilevel cubic spline regression model.

    Science.gov (United States)

    Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S

    2014-07-01

    In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield. Copyright © 2014

  4. From Rasch scores to regression

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  5. Estimation of Panel Data Regression Models with Two-Sided Censoring or Truncation

    DEFF Research Database (Denmark)

    Alan, Sule; Honore, Bo E.; Hu, Luojia

    2014-01-01

    This paper constructs estimators for panel data regression models with individual speci…fic heterogeneity and two–sided censoring and truncation. Following Powell (1986) the estimation strategy is based on moment conditions constructed from re–censored or re–truncated residuals. While these moment...

  6. White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these

  7. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  8. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  9. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Science.gov (United States)

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  10. Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing

    NARCIS (Netherlands)

    Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.

    2006-01-01

    The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval

  11. Development of a predictive model for distribution coefficient (Kd) of 13'7Cs and 60Co in marine sediments using multiple linear regression analysis

    International Nuclear Information System (INIS)

    Kumar, Ajay; Ravi, P.M.; Guneshwar, S.L.; Rout, Sabyasachi; Mishra, Manish K.; Pulhani, Vandana; Tripathi, R.M.

    2018-01-01

    Numerous common methods (batch laboratory, the column laboratory, field-batch method, field modeling and K 0c method) are used frequently for determination of K d values. Recently, multiple regression models are considered as new best estimates for predicting the K d of radionuclides in the environment. It is also well known fact that the K d value is highly influenced by physico-chemical properties of sediment. Due to the significant variability in influencing parameters, the measured K d values can range over several orders of magnitude under different environmental conditions. The aim of this study is to develop a predictive model for K d values of 137 Cs and 60 Co based on the sediment properties using multiple linear regression analysis

  12. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Science.gov (United States)

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  13. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    Science.gov (United States)

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  14. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    Science.gov (United States)

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  15. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    Science.gov (United States)

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  16. An Application of Robust Method in Multiple Linear Regression Model toward Credit Card Debt

    Science.gov (United States)

    Amira Azmi, Nur; Saifullah Rusiman, Mohd; Khalid, Kamil; Roslan, Rozaini; Sufahani, Suliadi; Mohamad, Mahathir; Salleh, Rohayu Mohd; Hamzah, Nur Shamsidah Amir

    2018-04-01

    Credit card is a convenient alternative replaced cash or cheque, and it is essential component for electronic and internet commerce. In this study, the researchers attempt to determine the relationship and significance variables between credit card debt and demographic variables such as age, household income, education level, years with current employer, years at current address, debt to income ratio and other debt. The provided data covers 850 customers information. There are three methods that applied to the credit card debt data which are multiple linear regression (MLR) models, MLR models with least quartile difference (LQD) method and MLR models with mean absolute deviation method. After comparing among three methods, it is found that MLR model with LQD method became the best model with the lowest value of mean square error (MSE). According to the final model, it shows that the years with current employer, years at current address, household income in thousands and debt to income ratio are positively associated with the amount of credit debt. Meanwhile variables for age, level of education and other debt are negatively associated with amount of credit debt. This study may serve as a reference for the bank company by using robust methods, so that they could better understand their options and choice that is best aligned with their goals for inference regarding to the credit card debt.

  17. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  18. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood.

    Science.gov (United States)

    Ghaedi, M; Rahimi, Mahmoud Reza; Ghaedi, A M; Tyagi, Inderjeet; Agarwal, Shilpi; Gupta, Vinod Kumar

    2016-01-01

    Two novel and eco friendly adsorbents namely tin oxide nanoparticles loaded on activated carbon (SnO2-NP-AC) and activated carbon prepared from wood tree Pistacia atlantica (AC-PAW) were used for the rapid removal and fast adsorption of methyl orange (MO) from the aqueous phase. The dependency of MO removal with various adsorption influential parameters was well modeled and optimized using multiple linear regressions (MLR) and least squares support vector regression (LSSVR). The optimal parameters for the LSSVR model were found based on γ value of 0.76 and σ(2) of 0.15. For testing the data set, the mean square error (MSE) values of 0.0010 and the coefficient of determination (R(2)) values of 0.976 were obtained for LSSVR model, and the MSE value of 0.0037 and the R(2) value of 0.897 were obtained for the MLR model. The adsorption equilibrium and kinetic data was found to be well fitted and in good agreement with Langmuir isotherm model and second-order equation and intra-particle diffusion models respectively. The small amount of the proposed SnO2-NP-AC and AC-PAW (0.015 g and 0.08 g) is applicable for successful rapid removal of methyl orange (>95%). The maximum adsorption capacity for SnO2-NP-AC and AC-PAW was 250 mg g(-1) and 125 mg g(-1) respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  20. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  1. A brief introduction to regression designs and mixed-effects modelling by a recent convert

    OpenAIRE

    Balling, Laura Winther

    2008-01-01

    This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable sele...

  2. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    Science.gov (United States)

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  3. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables.

    Science.gov (United States)

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2017-03-21

    Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Genomic prediction based on data from three layer lines using non-linear regression models

    NARCIS (Netherlands)

    Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.

    2014-01-01

    Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate

  5. Double Length Regressions for Testing the Box-Cox Difference Transformation.

    OpenAIRE

    Park, Timothy

    1991-01-01

    The Box-Cox difference transformation is used to determine the appropriate specification for estimation of hedge ratios and a new double length regression form of the Lagrange multiplier test is presented for the difference transformation. The Box-Cox difference transformation allows the testing of the first difference model and the returns model as special cases of the Box-Cox difference transformation. Copyright 1991 by MIT Press.

  6. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    Science.gov (United States)

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  7. Mapping geogenic radon potential by regression kriging

    Energy Technology Data Exchange (ETDEWEB)

    Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)

    2016-02-15

    Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method

  8. Mapping geogenic radon potential by regression kriging

    International Nuclear Information System (INIS)

    Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos

    2016-01-01

    Radon ( 222 Rn) gas is produced in the radioactive decay chain of uranium ( 238 U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method, regression

  9. Bias and Uncertainty in Regression-Calibrated Models of Groundwater Flow in Heterogeneous Media

    DEFF Research Database (Denmark)

    Cooley, R.L.; Christensen, Steen

    2006-01-01

    small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate θ* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear...... are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis....

  10. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.

    Science.gov (United States)

    Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won

    2016-07-01

    In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.

  11. Assessing the performance of variational methods for mixed logistic regression models

    Czech Academy of Sciences Publication Activity Database

    Rijmen, F.; Vomlel, Jiří

    2008-01-01

    Roč. 78, č. 8 (2008), s. 765-779 ISSN 0094-9655 R&D Projects: GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mixed models * Logistic regression * Variational methods * Lower bound approximation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.353, year: 2008

  12. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    Science.gov (United States)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  13. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  14. Logistic Regression: Concept and Application

    Science.gov (United States)

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  15. Nitrogen dioxide concentrations in neighborhoods adjacent to a commercial airport: a land use regression modeling study

    Directory of Open Access Journals (Sweden)

    Spengler John D

    2010-11-01

    Full Text Available Abstract Background There is growing concern in communities surrounding airports regarding the contribution of various emission sources (such as aircraft and ground support equipment to nearby ambient concentrations. We used extensive monitoring of nitrogen dioxide (NO2 in neighborhoods surrounding T.F. Green Airport in Warwick, RI, and land-use regression (LUR modeling techniques to determine the impact of proximity to the airport and local traffic on these concentrations. Methods Palmes diffusion tube samplers were deployed along the airport's fence line and within surrounding neighborhoods for one to two weeks. In total, 644 measurements were collected over three sampling campaigns (October 2007, March 2008 and June 2008 and each sampling location was geocoded. GIS-based variables were created as proxies for local traffic and airport activity. A forward stepwise regression methodology was employed to create general linear models (GLMs of NO2 variability near the airport. The effect of local meteorology on associations with GIS-based variables was also explored. Results Higher concentrations of NO2 were seen near the airport terminal, entrance roads to the terminal, and near major roads, with qualitatively consistent spatial patterns between seasons. In our final multivariate model (R2 = 0.32, the local influences of highways and arterial/collector roads were statistically significant, as were local traffic density and distance to the airport terminal (all p Conclusion Our study has shown that there are clear local variations in NO2 in the neighborhoods that surround an urban airport, which are spatially consistent across seasons. LUR modeling demonstrated a strong influence of local traffic, except the smallest roads that predominate in residential areas, as well as proximity to the airport terminal.

  16. The limiting behavior of the estimated parameters in a misspecified random field regression model

    DEFF Research Database (Denmark)

    Dahl, Christian Møller; Qin, Yu

    This paper examines the limiting properties of the estimated parameters in the random field regression model recently proposed by Hamilton (Econometrica, 2001). Though the model is parametric, it enjoys the flexibility of the nonparametric approach since it can approximate a large collection of n...

  17. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  18. Application of nonlinear regression analysis for ammonium exchange by natural (Bigadic) clinoptilolite

    International Nuclear Information System (INIS)

    Gunay, Ahmet

    2007-01-01

    The experimental data of ammonium exchange by natural Bigadic clinoptilolite was evaluated using nonlinear regression analysis. Three two-parameters isotherm models (Langmuir, Freundlich and Temkin) and three three-parameters isotherm models (Redlich-Peterson, Sips and Khan) were used to analyse the equilibrium data. Fitting of isotherm models was determined using values of standard normalization error procedure (SNE) and coefficient of determination (R 2 ). HYBRID error function provided lowest sum of normalized error and Khan model had better performance for modeling the equilibrium data. Thermodynamic investigation indicated that ammonium removal by clinoptilolite was favorable at lower temperatures and exothermic in nature

  19. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  20. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-05-01

    Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.