Helmreich, James E.; Krog, K. Peter
2018-01-01
We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...
Directory of Open Access Journals (Sweden)
Hailun Wang
2017-01-01
Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.
Alternative Methods of Regression
Birkes, David
2011-01-01
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s
Gusriani, N.; Firdaniza
2018-03-01
The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.
A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.
Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem
2018-06-12
Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.
Correcting for cryptic relatedness by a regression-based genomic control method
Directory of Open Access Journals (Sweden)
Yang Yaning
2009-12-01
Full Text Available Abstract Background Genomic control (GC method is a useful tool to correct for the cryptic relatedness in population-based association studies. It was originally proposed for correcting for the variance inflation of Cochran-Armitage's additive trend test by using information from unlinked null markers, and was later generalized to be applicable to other tests with the additional requirement that the null markers are matched with the candidate marker in allele frequencies. However, matching allele frequencies limits the number of available null markers and thus limits the applicability of the GC method. On the other hand, errors in genotype/allele frequencies may cause further bias and variance inflation and thereby aggravate the effect of GC correction. Results In this paper, we propose a regression-based GC method using null markers that are not necessarily matched in allele frequencies with the candidate marker. Variation of allele frequencies of the null markers is adjusted by a regression method. Conclusion The proposed method can be readily applied to the Cochran-Armitage's trend tests other than the additive trend test, the Pearson's chi-square test and other robust efficiency tests. Simulation results show that the proposed method is effective in controlling type I error in the presence of population substructure.
Directory of Open Access Journals (Sweden)
Guan Lian
2018-01-01
Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.
Real-time prediction of respiratory motion based on local regression methods
International Nuclear Information System (INIS)
Ruan, D; Fessler, J A; Balter, J M
2007-01-01
Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths
Geographically weighted regression based methods for merging satellite and gauge precipitation
Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo
2018-03-01
Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.
Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won
2014-08-01
As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.
EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.
Lian, Yao; Ge, Meng; Pan, Xian-Ming
2014-12-19
B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .
Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V
2012-01-01
In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999
Regression methods for medical research
Tai, Bee Choo
2013-01-01
Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the
Kaneko, Hiromasa
2018-02-26
To develop a new ensemble learning method and construct highly predictive regression models in chemoinformatics and chemometrics, applicability domains (ADs) are introduced into the ensemble learning process of prediction. When estimating values of an objective variable using subregression models, only the submodels with ADs that cover a query sample, i.e., the sample is inside the model's AD, are used. By constructing submodels and changing a list of selected explanatory variables, the union of the submodels' ADs, which defines the overall AD, becomes large, and the prediction performance is enhanced for diverse compounds. By analyzing a quantitative structure-activity relationship data set and a quantitative structure-property relationship data set, it is confirmed that the ADs can be enlarged and the estimation performance of regression models is improved compared with traditional methods.
International Nuclear Information System (INIS)
Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao
2013-01-01
Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests
Directory of Open Access Journals (Sweden)
Sergei Vladimirovich Varaksin
2017-06-01
Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.
Directory of Open Access Journals (Sweden)
Jun Bi
2018-04-01
Full Text Available Battery electric vehicles (BEVs reduce energy consumption and air pollution as compared with conventional vehicles. However, the limited driving range and potential long charging time of BEVs create new problems. Accurate charging time prediction of BEVs helps drivers determine travel plans and alleviate their range anxiety during trips. This study proposed a combined model for charging time prediction based on regression and time-series methods according to the actual data from BEVs operating in Beijing, China. After data analysis, a regression model was established by considering the charged amount for charging time prediction. Furthermore, a time-series method was adopted to calibrate the regression model, which significantly improved the fitting accuracy of the model. The parameters of the model were determined by using the actual data. Verification results confirmed the accuracy of the model and showed that the model errors were small. The proposed model can accurately depict the charging time characteristics of BEVs in Beijing.
Consistency analysis of subspace identification methods based on a linear regression approach
DEFF Research Database (Denmark)
Knudsen, Torben
2001-01-01
In the literature results can be found which claim consistency for the subspace method under certain quite weak assumptions. Unfortunately, a new result gives a counter example showing inconsistency under these assumptions and then gives new more strict sufficient assumptions which however does n...... not include important model structures as e.g. Box-Jenkins. Based on a simple least squares approach this paper shows the possible inconsistency under the weak assumptions and develops only slightly stricter assumptions sufficient for consistency and which includes any model structure...
Directory of Open Access Journals (Sweden)
Liyun Su
2012-01-01
Full Text Available We introduce the extension of local polynomial fitting to the linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to nonparametric technique of local polynomial estimation, we do not need to know the heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we focus on comparison of parameters and reach an optimal fitting. Besides, we verify the asymptotic normality of parameters based on numerical simulations. Finally, this approach is applied to a case of economics, and it indicates that our method is surely effective in finite-sample situations.
Directory of Open Access Journals (Sweden)
Xiaoyan Yang
2018-04-01
Full Text Available The Advanced Spaceborne Thermal-Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM is important to a wide range of geographical and environmental studies. Its accuracy, to some extent associated with land-use types reflecting topography, vegetation coverage, and human activities, impacts the results and conclusions of these studies. In order to improve the accuracy of ASTER GDEM prior to its application, we investigated ASTER GDEM errors based on individual land-use types and proposed two linear regression calibration methods, one considering only land use-specific errors and the other considering the impact of both land-use and topography. Our calibration methods were tested on the coastal prefectural city of Lianyungang in eastern China. Results indicate that (1 ASTER GDEM is highly accurate for rice, wheat, grass and mining lands but less accurate for scenic, garden, wood and bare lands; (2 despite improvements in ASTER GDEM2 accuracy, multiple linear regression calibration requires more data (topography and a relatively complex calibration process; (3 simple linear regression calibration proves a practicable and simplified means to systematically investigate and improve the impact of land-use on ASTER GDEM accuracy. Our method is applicable to areas with detailed land-use data based on highly accurate field-based point-elevation measurements.
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
Directory of Open Access Journals (Sweden)
Corrado Dimauro
2010-01-01
Full Text Available Two methods of SNPs pre-selection based on single marker regression for the estimation of genomic breeding values (G-EBVs were compared using simulated data provided by the XII QTL-MAS workshop: i Bonferroni correction of the significance threshold and ii Permutation test to obtain the reference distribution of the null hypothesis and identify significant markers at P<0.01 and P<0.001 significance thresholds. From the set of markers significant at P<0.001, random subsets of 50% and 25% markers were extracted, to evaluate the effect of further reducing the number of significant SNPs on G-EBV predictions. The Bonferroni correction method allowed the identification of 595 significant SNPs that gave the best G-EBV accuracies in prediction generations (82.80%. The permutation methods gave slightly lower G-EBV accuracies even if a larger number of SNPs resulted significant (2,053 and 1,352 for 0.01 and 0.001 significance thresholds, respectively. Interestingly, halving or dividing by four the number of SNPs significant at P<0.001 resulted in an only slightly decrease of G-EBV accuracies. The genetic structure of the simulated population with few QTL carrying large effects, might have favoured the Bonferroni method.
Directory of Open Access Journals (Sweden)
Lüdtke Rainer
2008-08-01
Full Text Available Abstract Background Regression to the mean (RTM occurs in situations of repeated measurements when extreme values are followed by measurements in the same subjects that are closer to the mean of the basic population. In uncontrolled studies such changes are likely to be interpreted as a real treatment effect. Methods Several statistical approaches have been developed to analyse such situations, including the algorithm of Mee and Chua which assumes a known population mean μ. We extend this approach to a situation where μ is unknown and suggest to vary it systematically over a range of reasonable values. Using differential calculus we provide formulas to estimate the range of μ where treatment effects are likely to occur when RTM is present. Results We successfully applied our method to three real world examples denoting situations when (a no treatment effect can be confirmed regardless which μ is true, (b when a treatment effect must be assumed independent from the true μ and (c in the appraisal of results of uncontrolled studies. Conclusion Our method can be used to separate the wheat from the chaff in situations, when one has to interpret the results of uncontrolled studies. In meta-analysis, health-technology reports or systematic reviews this approach may be helpful to clarify the evidence given from uncontrolled observational studies.
Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika
2015-12-01
Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.
Regression modeling methods, theory, and computation with SAS
Panik, Michael
2009-01-01
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,
SDE based regression for random PDEs
Bayer, Christian
2016-01-01
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
SDE based regression for random PDEs
Bayer, Christian
2016-01-06
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
International Nuclear Information System (INIS)
Briggs, D.J.; De Hoogh, C.; Elliot, P.; Gulliver, J.; Wills, J.; Kingham, S.; Smallbone, K.
2000-01-01
Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model - developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project - uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO 2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO 2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO 2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO 2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r 2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to
A multiple regression method for genomewide association studies ...
Indian Academy of Sciences (India)
Bujun Mei
2018-06-07
Jun 7, 2018 ... Similar to the typical genomewide association tests using LD ... new approach performed validly when the multiple regression based on linkage method was employed. .... the model, two groups of scenarios were simulated.
Collaborative regression-based anatomical landmark detection
International Nuclear Information System (INIS)
Gao, Yaozong; Shen, Dinggang
2015-01-01
Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head and neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods. (paper)
Stochastic development regression using method of moments
DEFF Research Database (Denmark)
Kühnel, Line; Sommer, Stefan Horst
2017-01-01
This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using...... the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using...... the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds....
Robust Mediation Analysis Based on Median Regression
Yuan, Ying; MacKinnon, David P.
2014-01-01
Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925
International Nuclear Information System (INIS)
Hu, Chao; Jain, Gaurav; Zhang, Puqiang; Schmidt, Craig; Gomadam, Parthasarathy; Gorka, Tom
2014-01-01
Highlights: • We develop a data-driven method for the battery capacity estimation. • Five charge-related features that are indicative of the capacity are defined. • The kNN regression model captures the dependency of the capacity on the features. • Results with 10 years’ continuous cycling data verify the effectiveness of the method. - Abstract: Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate reliably, it is important to be able to assess the battery health condition by estimating the battery capacity over the life-time. This paper presents a data-driven method for estimating the capacity of Li-ion battery based on the charge voltage and current curves. The contributions of this paper are three-fold: (i) the definition of five characteristic features of the charge curves that are indicative of the capacity, (ii) the development of a non-linear kernel regression model, based on the k-nearest neighbor (kNN) regression, that captures the complex dependency of the capacity on the five features, and (iii) the adaptation of particle swarm optimization (PSO) to finding the optimal combination of feature weights for creating a kNN regression model that minimizes the cross validation (CV) error in the capacity estimation. Verification with 10 years’ continuous cycling data suggests that the proposed method is able to accurately estimate the capacity of Li-ion battery throughout the whole life-time
Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.
2016-01-04
This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.
Farhadian, Maryam; Aliabadi, Mohsen; Darvishi, Ebrahim
2015-01-01
Prediction models are used in a variety of medical domains, and they are frequently built from experience which constitutes data acquired from actual cases. This study aimed to analyze the potential of artificial neural networks and logistic regression techniques for estimation of hearing impairment among industrial workers. A total of 210 workers employed in a steel factory (in West of Iran) were selected, and their occupational exposure histories were analyzed. The hearing loss thresholds of the studied workers were determined using a calibrated audiometer. The personal noise exposures were also measured using a noise dosimeter in the workstations. Data obtained from five variables, which can influence the hearing loss, were used as input features, and the hearing loss thresholds were considered as target feature of the prediction methods. Multilayer feedforward neural networks and logistic regression were developed using MATLAB R2011a software. Based on the World Health Organization classification for the grades of hearing loss, 74.2% of the studied workers have normal hearing thresholds, 23.4% have slight hearing loss, and 2.4% have moderate hearing loss. The accuracy and kappa coefficient of the best developed neural networks for prediction of the grades of hearing loss were 88.6 and 66.30, respectively. The accuracy and kappa coefficient of the logistic regression were also 84.28 and 51.30, respectively. Neural networks could provide more accurate predictions of the hearing loss than logistic regression. The prediction method can provide reliable and comprehensible information for occupational health and medicine experts.
Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation
Directory of Open Access Journals (Sweden)
Sharad Damodar Gore
2009-10-01
Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
International Nuclear Information System (INIS)
Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu
2015-01-01
In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u – g, 3 mmag in g – r, and 2 mmag in r – i and i – z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys
Thermal Efficiency Degradation Diagnosis Method Using Regression Model
International Nuclear Information System (INIS)
Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol
2011-01-01
This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant
A method for nonlinear exponential regression analysis
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
DEFF Research Database (Denmark)
Christensen, Steen; Moore, C.; Doherty, J.
2006-01-01
accurate and required a few hundred model calls to be computed. (b) The linearized regression-based interval (Cooley, 2004) required just over a hundred model calls and also appeared to be nearly correct. (c) The calibration-constrained Monte-Carlo interval (Doherty, 2003) was found to be narrower than......For a synthetic case we computed three types of individual prediction intervals for the location of the aquifer entry point of a particle that moves through a heterogeneous aquifer and ends up in a pumping well. (a) The nonlinear regression-based interval (Cooley, 2004) was found to be nearly...... the regression-based intervals but required about half a million model calls. It is unclear whether or not this type of prediction interval is accurate....
Directory of Open Access Journals (Sweden)
Yi Liang
2016-11-01
Full Text Available The power industry is the main battlefield of CO2 emission reduction, which plays an important role in the implementation and development of the low carbon economy. The forecasting of electricity demand can provide a scientific basis for the country to formulate a power industry development strategy and further promote the sustained, healthy and rapid development of the national economy. Under the goal of low-carbon economy, medium and long term electricity demand forecasting will have very important practical significance. In this paper, a new hybrid electricity demand model framework is characterized as follows: firstly, integration of grey relation degree (GRD with induced ordered weighted harmonic averaging operator (IOWHA to propose a new weight determination method of hybrid forecasting model on basis of forecasting accuracy as induced variables is presented; secondly, utilization of the proposed weight determination method to construct the optimal hybrid forecasting model based on extreme learning machine (ELM forecasting model and multiple regression (MR model; thirdly, three scenarios in line with the level of realization of various carbon emission targets and dynamic simulation of effect of low-carbon economy on future electricity demand are discussed. The resulting findings show that, the proposed model outperformed and concentrated some monomial forecasting models, especially in boosting the overall instability dramatically. In addition, the development of a low-carbon economy will increase the demand for electricity, and have an impact on the adjustment of the electricity demand structure.
Modeling oil production based on symbolic regression
International Nuclear Information System (INIS)
Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju
2015-01-01
Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak
Aszyk, Justyna; Kot, Jacek; Tkachenko, Yurii; Woźniak, Michał; Bogucka-Kocka, Anna; Kot-Wasik, Agata
2017-04-15
A simple, fast, sensitive and accurate methodology based on a LLE followed by liquid chromatography-tandem mass spectrometry for simultaneous determination of four regioisomers (8-iso prostaglandin F 2α , 8-iso-15(R)-prostaglandin F 2α , 11β-prostaglandin F 2α , 15(R)-prostaglandin F 2α ) in routine analysis of human plasma samples was developed. Isoprostanes are stable products of arachidonic acid peroxidation and are regarded as the most reliable markers of oxidative stress in vivo. Validation of method was performed by evaluation of the key analytical parameters such as: matrix effect, analytical curve, trueness, precision, limits of detection and limits of quantification. As a homoscedasticity was not met for analytical data, weighted linear regression was applied in order to improve the accuracy at the lower end points of calibration curve. The detection limits (LODs) ranged from 1.0 to 2.1pg/mL. For plasma samples spiked with the isoprostanes at the level of 50pg/mL, intra-and interday repeatability ranged from 2.1 to 3.5% and 0.1 to 5.1%, respectively. The applicability of the proposed approach has been verified by monitoring of isoprostane isomers level in plasma samples collected from young patients (n=8) subjected to hyperbaric hyperoxia (100% oxygen at 280kPa(a) for 30min) in a multiplace hyperbaric chamber. Copyright © 2017 Elsevier B.V. All rights reserved.
Dimension Reduction and Discretization in Stochastic Problems by Regression Method
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
1996-01-01
The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation, ...
Credit Scoring Problem Based on Regression Analysis
Khassawneh, Bashar Suhil Jad Allah
2014-01-01
ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....
Comparing parametric and nonparametric regression methods for panel data
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...
Linear Regression Based Real-Time Filtering
Directory of Open Access Journals (Sweden)
Misel Batmend
2013-01-01
Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.
FATAL, General Experiment Fitting Program by Nonlinear Regression Method
International Nuclear Information System (INIS)
Salmon, L.; Budd, T.; Marshall, M.
1982-01-01
1 - Description of problem or function: A generalized fitting program with a free-format keyword interface to the user. It permits experimental data to be fitted by non-linear regression methods to any function describable by the user. The user requires the minimum of computer experience but needs to provide a subroutine to define his function. Some statistical output is included as well as 'best' estimates of the function's parameters. 2 - Method of solution: The regression method used is based on a minimization technique devised by Powell (Harwell Subroutine Library VA05A, 1972) which does not require the use of analytical derivatives. The method employs a quasi-Newton procedure balanced with a steepest descent correction. Experience shows this to be efficient for a very wide range of application. 3 - Restrictions on the complexity of the problem: The current version of the program permits functions to be defined with up to 20 parameters. The function may be fitted to a maximum of 400 points, preferably with estimated values of weight given
Mapping urban environmental noise: a land use regression method.
Xie, Dan; Liu, Yi; Chen, Jining
2011-09-01
Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.
Regression Discontinuity Designs Based on Population Thresholds
DEFF Research Database (Denmark)
Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica
In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...
BOX-COX REGRESSION METHOD IN TIME SCALING
Directory of Open Access Journals (Sweden)
ATİLLA GÖKTAŞ
2013-06-01
Full Text Available Box-Cox regression method with λj, for j = 1, 2, ..., k, power transformation can be used when dependent variable and error term of the linear regression model do not satisfy the continuity and normality assumptions. The situation obtaining the smallest mean square error when optimum power λj, transformation for j = 1, 2, ..., k, of Y has been discussed. Box-Cox regression method is especially appropriate to adjust existence skewness or heteroscedasticity of error terms for a nonlinear functional relationship between dependent and explanatory variables. In this study, the advantage and disadvantage use of Box-Cox regression method have been discussed in differentiation and differantial analysis of time scale concept.
On two flexible methods of 2-dimensional regression analysis
Czech Academy of Sciences Publication Activity Database
Volf, Petr
2012-01-01
Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf
Model-based Quantile Regression for Discrete Data
Padellini, Tullia; Rue, Haavard
2018-01-01
Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite
Model-based Quantile Regression for Discrete Data
Padellini, Tullia
2018-04-10
Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.
Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun
2018-03-01
Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.
Directory of Open Access Journals (Sweden)
Ying Peng
2018-03-01
Full Text Available Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.
Linear regression methods a ccording to objective functions
Yasemin Sisman; Sebahattin Bektas
2012-01-01
The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.
Image Jacobian Matrix Estimation Based on Online Support Vector Regression
Directory of Open Access Journals (Sweden)
Shangqin Mao
2012-10-01
Full Text Available Research into robotics visual servoing is an important area in the field of robotics. It has proven difficult to achieve successful results for machine vision and robotics in unstructured environments without using any a priori camera or kinematic models. In uncalibrated visual servoing, image Jacobian matrix estimation methods can be divided into two groups: the online method and the offline method. The offline method is not appropriate for most natural environments. The online method is robust but rough. Moreover, if the images feature configuration changes, it needs to restart the approximating procedure. A novel approach based on an online support vector regression (OL-SVR algorithm is proposed which overcomes the drawbacks and combines the virtues just mentioned.
Wu, Chunhung
2016-04-01
Few researches have discussed about the applicability of applying the statistical landslide susceptibility (LS) model for extreme rainfall-induced landslide events. The researches focuses on the comparison and applicability of LS models based on four methods, including landslide ratio-based logistic regression (LRBLR), frequency ratio (FR), weight of evidence (WOE), and instability index (II) methods, in an extreme rainfall-induced landslide cases. The landslide inventory in the Chishan river watershed, Southwestern Taiwan, after 2009 Typhoon Morakot is the main materials in this research. The Chishan river watershed is a tributary watershed of Kaoping river watershed, which is a landslide- and erosion-prone watershed with the annual average suspended load of 3.6×107 MT/yr (ranks 11th in the world). Typhoon Morakot struck Southern Taiwan from Aug. 6-10 in 2009 and dumped nearly 2,000 mm of rainfall in the Chishan river watershed. The 24-hour, 48-hour, and 72-hours accumulated rainfall in the Chishan river watershed exceeded the 200-year return period accumulated rainfall. 2,389 landslide polygons in the Chishan river watershed were extracted from SPOT 5 images after 2009 Typhoon Morakot. The total landslide area is around 33.5 km2, equals to the landslide ratio of 4.1%. The main landslide types based on Varnes' (1978) classification are rotational and translational slides. The two characteristics of extreme rainfall-induced landslide event are dense landslide distribution and large occupation of downslope landslide areas owing to headward erosion and bank erosion in the flooding processes. The area of downslope landslide in the Chishan river watershed after 2009 Typhoon Morakot is 3.2 times higher than that of upslope landslide areas. The prediction accuracy of LS models based on LRBLR, FR, WOE, and II methods have been proven over 70%. The model performance and applicability of four models in a landslide-prone watershed with dense distribution of rainfall
Chen, Xi; Lu, Fang; Jiang, Lu-di; Cai, Yi-Lian; Li, Gong-Yu; Zhang, Yan-Ling
2016-07-01
Inhibition of cytochrome P450 (CYP450) enzymes is the most common reasons for drug interactions, so the study on early prediction of CYPs inhibitors can help to decrease the incidence of adverse reactions caused by drug interactions.CYP450 2E1(CYP2E1), as a key role in drug metabolism process, has broad spectrum of drug metabolism substrate. In this study, 32 CYP2E1 inhibitors were collected for the construction of support vector regression (SVR) model. The test set data were used to verify CYP2E1 quantitative models and obtain the optimal prediction model of CYP2E1 inhibitor. Meanwhile, one molecular docking program, CDOCKER, was utilized to analyze the interaction pattern between positive compounds and active pocket to establish the optimal screening model of CYP2E1 inhibitors.SVR model and molecular docking prediction model were combined to screen traditional Chinese medicine database (TCMD), which could improve the calculation efficiency and prediction accuracy. 6 376 traditional Chinese medicine (TCM) compounds predicted by SVR model were obtained, and in further verification by using molecular docking model, 247 TCM compounds with potential inhibitory activities against CYP2E1 were finally retained. Some of them have been verified by experiments. The results demonstrated that this study could provide guidance for the virtual screening of CYP450 inhibitors and the prediction of CYPs-mediated DDIs, and also provide references for clinical rational drug use. Copyright© by the Chinese Pharmaceutical Association.
Directory of Open Access Journals (Sweden)
Hong-Juan Li
2013-04-01
Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Testing the equality of nonparametric regression curves based on ...
African Journals Online (AJOL)
Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients of the regression functions f1 and f2 respectively. As our main results we obtain the ...
Energy Technology Data Exchange (ETDEWEB)
Lopez Fontan, J.L.; Costa, J.; Ruso, J.M.; Prieto, G. [Dept. of Applied Physics, Univ. of Santiago de Compostela, Santiago de Compostela (Spain); Sarmiento, F. [Dept. of Mathematics, Faculty of Informatics, Univ. of A Coruna, A Coruna (Spain)
2004-02-01
The application of a statistical method, the local polynomial regression method, (LPRM), based on a nonparametric estimation of the regression function to determine the critical micelle concentration (cmc) is presented. The method is extremely flexible because it does not impose any parametric model on the subjacent structure of the data but rather allows the data to speak for themselves. Good concordance of cmc values with those obtained by other methods was found for systems in which the variation of a measured physical property with concentration showed an abrupt change. When this variation was slow, discrepancies between the values obtained by LPRM and others methods were found. (orig.)
Gradient descent for robust kernel-based regression
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Analyzing Big Data with the Hybrid Interval Regression Methods
Directory of Open Access Journals (Sweden)
Chia-Hui Huang
2014-01-01
Full Text Available Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the smooth support vector machine (SSVM to analyze big data. Recently, the smooth support vector machine (SSVM was proposed as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data. In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone that the distribution of data becomes hard to be described and the separation margin between classes.
DEFF Research Database (Denmark)
Sharifzadeh, Sara; Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann
2012-01-01
Statistical solutions find wide spread use in food and medicine quality control. We investigate the effect of different regression and sparse regression methods for a viscosity estimation problem using the spectro-temporal features from new Sub-Surface Laser Scattering (SLS) vision system. From...... with sparse LAR, lasso and Elastic Net (EN) sparse regression methods. Due to the inconsistent measurement condition, Locally Weighted Scatter plot Smoothing (Loess) has been employed to alleviate the undesired variation in the estimated viscosity. The experimental results of applying different methods show...
A regression-based Kansei engineering system based on form feature lines for product form design
Directory of Open Access Journals (Sweden)
Yan Xiong
2016-06-01
Full Text Available When developing new products, it is important for a designer to understand users’ perceptions and develop product form with the corresponding perceptions. In order to establish the mapping between users’ perceptions and product design features effectively, in this study, we presented a regression-based Kansei engineering system based on form feature lines for product form design. First according to the characteristics of design concept representation, product form features–product form feature lines were defined. Second, Kansei words were chosen to describe image perceptions toward product samples. Then, multiple linear regression and support vector regression were used to construct the models, respectively, that predicted users’ image perceptions. Using mobile phones as experimental samples, Kansei prediction models were established based on the front view form feature lines of the samples. From the experimental results, these two predict models were of good adaptability. But in contrast to multiple linear regression, the predict performance of support vector regression model was better, and support vector regression is more suitable for form regression prediction. The results of the case showed that the proposed method provided an effective means for designers to manipulate product features as a whole, and it can optimize Kansei model and improve practical values.
Martens, Edwin P; de Boer, Anthonius; Pestman, Wiebe R; Belitser, Svetlana V; Stricker, Bruno H Ch; Klungel, Olaf H
PURPOSE: To compare adjusted effects of drug treatment for hypertension on the risk of stroke from propensity score (PS) methods with a multivariable Cox proportional hazards (Cox PH) regression in an observational study with censored data. METHODS: From two prospective population-based cohort
Sparling, D.W.; Barzen, J.A.; Lovvorn, J.R.; Serie, J.R.
1992-01-01
Regression equations that use mensural data to estimate body condition have been developed for several water birds. These equations often have been based on data that represent different sexes, age classes, or seasons, without being adequately tested for intergroup differences. We used proximate carcass analysis of 538 adult and juvenile canvasbacks (Aythya valisineria ) collected during fall migration, winter, and spring migrations in 1975-76 and 1982-85 to test regression methods for estimating body condition.
Regression-based Multi-View Facial Expression Recognition
Rudovic, Ognjen; Patras, Ioannis; Pantic, Maja
2010-01-01
We present a regression-based scheme for multi-view facial expression recognition based on 2蚠D geometric features. We address the problem by mapping facial points (e.g. mouth corners) from non-frontal to frontal view where further recognition of the expressions can be performed using a
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
Methods of Detecting Outliers in A Regression Analysis Model ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-06-01
Jun 1, 2013 ... especially true in observational studies .... Simple linear regression and multiple ... The simple linear ..... Grubbs,F.E (1950): Sample Criteria for Testing Outlying observations: Annals of ... In experimental design, the Relative.
Determinants of Inequality in Cameroon: A Regression-Based ...
African Journals Online (AJOL)
This paper applies the regression-based inequality decomposition approach to explore determinants of income inequality in Cameroon using the 2007 Cameroon household consumption survey. The contribution of each source to measured income inequality is the sum of its weighted marginal contributions in all possible ...
Treating experimental data of inverse kinetic method by unitary linear regression analysis
International Nuclear Information System (INIS)
Zhao Yusen; Chen Xiaoliang
2009-01-01
The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)
An improved partial least-squares regression method for Raman spectroscopy
Momenpour Tehran Monfared, Ali; Anis, Hanan
2017-10-01
It is known that the performance of partial least-squares (PLS) regression analysis can be improved using the backward variable selection method (BVSPLS). In this paper, we further improve the BVSPLS based on a novel selection mechanism. The proposed method is based on sorting the weighted regression coefficients, and then the importance of each variable of the sorted list is evaluated using root mean square errors of prediction (RMSEP) criterion in each iteration step. Our Improved BVSPLS (IBVSPLS) method has been applied to leukemia and heparin data sets and led to an improvement in limit of detection of Raman biosensing ranged from 10% to 43% compared to PLS. Our IBVSPLS was also compared to the jack-knifing (simpler) and Genetic Algorithm (more complex) methods. Our method was consistently better than the jack-knifing method and showed either a similar or a better performance compared to the genetic algorithm.
Analysis of some methods for reduced rank Gaussian process regression
DEFF Research Database (Denmark)
Quinonero-Candela, J.; Rasmussen, Carl Edward
2005-01-01
While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...
Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula
2011-01-01
Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.
DEFF Research Database (Denmark)
Kirkeby, Carsten Thure; Hisham Beshara Halasa, Tariq; Gussmann, Maya Katrin
2017-01-01
the transmission rate. We use data from the two simulation models and vary the sampling intervals and the size of the population sampled. We devise two new methods to determine transmission rate, and compare these to the frequently used Poisson regression method in both epidemic and endemic situations. For most...... tested scenarios these new methods perform similar or better than Poisson regression, especially in the case of long sampling intervals. We conclude that transmission rate estimates are easily biased, which is important to take into account when using these rates in simulation models....
Directory of Open Access Journals (Sweden)
Yi-Ming Kuo
2011-06-01
Full Text Available Fine airborne particulate matter (PM2.5 has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS, the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME method. The resulting epistemic framework can assimilate knowledge bases including: (a empirical-based spatial trends of PM concentration based on landuse regression, (b the spatio-temporal dependence among PM observation information, and (c site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan from 2005–2007.
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-06-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K
2011-10-01
To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods
Fault trend prediction of device based on support vector regression
International Nuclear Information System (INIS)
Song Meicun; Cai Qi
2011-01-01
The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)
International Nuclear Information System (INIS)
Shuke, Noriyuki
1991-01-01
In hepatobiliary scintigraphy, kinetic model analysis, which provides kinetic parameters like hepatic extraction or excretion rate, have been done for quantitative evaluation of liver function. In this analysis, unknown model parameters are usually determined using nonlinear least square regression method (NLS method) where iterative calculation and initial estimate for unknown parameters are required. As a simple alternative to NLS method, direct integral linear least square regression method (DILS method), which can determine model parameters by a simple calculation without initial estimate, is proposed, and tested the applicability to analysis of hepatobiliary scintigraphy. In order to see whether DILS method could determine model parameters as good as NLS method, or to determine appropriate weight for DILS method, simulated theoretical data based on prefixed parameters were fitted to 1 compartment model using both DILS method with various weightings and NLS method. The parameter values obtained were then compared with prefixed values which were used for data generation. The effect of various weights on the error of parameter estimate was examined, and inverse of time was found to be the best weight to make the error minimum. When using this weight, DILS method could give parameter values close to those obtained by NLS method and both parameter values were very close to prefixed values. With appropriate weighting, the DILS method could provide reliable parameter estimate which is relatively insensitive to the data noise. In conclusion, the DILS method could be used as a simple alternative to NLS method, providing reliable parameter estimate. (author)
A different approach to estimate nonlinear regression model using numerical methods
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
Detecting nonsense for Chinese comments based on logistic regression
Zhuolin, Ren; Guang, Chen; Shu, Chen
2016-07-01
To understand cyber citizens' opinion accurately from Chinese news comments, the clear definition on nonsense is present, and a detection model based on logistic regression (LR) is proposed. The detection of nonsense can be treated as a binary-classification problem. Besides of traditional lexical features, we propose three kinds of features in terms of emotion, structure and relevance. By these features, we train an LR model and demonstrate its effect in understanding Chinese news comments. We find that each of proposed features can significantly promote the result. In our experiments, we achieve a prediction accuracy of 84.3% which improves the baseline 77.3% by 7%.
Convert a low-cost sensor to a colorimeter using an improved regression method
Wu, Yifeng
2008-01-01
Closed loop color calibration is a process to maintain consistent color reproduction for color printers. To perform closed loop color calibration, a pre-designed color target should be printed, and automatically measured by a color measuring instrument. A low cost sensor has been embedded to the printer to perform the color measurement. A series of sensor calibration and color conversion methods have been developed. The purpose is to get accurate colorimetric measurement from the data measured by the low cost sensor. In order to get high accuracy colorimetric measurement, we need carefully calibrate the sensor, and minimize all possible errors during the color conversion. After comparing several classical color conversion methods, a regression based color conversion method has been selected. The regression is a powerful method to estimate the color conversion functions. But the main difficulty to use this method is to find an appropriate function to describe the relationship between the input and the output data. In this paper, we propose to use 1D pre-linearization tables to improve the linearity between the input sensor measuring data and the output colorimetric data. Using this method, we can increase the accuracy of the regression method, so as to improve the accuracy of the color conversion.
Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network.
Wan, Mengting; Ouyang, Yunbo; Kaplan, Lance; Han, Jiawei
2015-01-01
A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model ( Grempt ), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.
A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary
Gillis, Nicolas; Luce, Robert
2018-01-01
A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.
Finding-equal regression method and its application in predication of U resources
International Nuclear Information System (INIS)
Cao Huimo
1995-03-01
The commonly adopted deposit model method in mineral resources predication has two main part: one is model data that show up geological mineralization law for deposit, the other is statistics predication method that accords with characters of the data namely pretty regression method. This kind of regression method may be called finding-equal regression, which is made of the linear regression and distribution finding-equal method. Because distribution finding-equal method is a data pretreatment which accords with advanced mathematical precondition for the linear regression namely equal distribution theory, and this kind of data pretreatment is possible of realization. Therefore finding-equal regression not only can overcome nonlinear limitations, that are commonly occurred in traditional linear regression or other regression and always have no solution, but also can distinguish outliers and eliminate its weak influence, which would usually appeared when Robust regression possesses outlier in independent variables. Thus this newly finding-equal regression stands the best status in all kind of regression methods. Finally, two good examples of U resource quantitative predication are provided
A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Abraham, Simon, E-mail: Simon.Abraham@ulb.ac.be [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium); Raisee, Mehrdad [School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran (Iran, Islamic Republic of); Ghorbaniasl, Ghader; Contino, Francesco; Lacor, Chris [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium)
2017-03-01
Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.
Directory of Open Access Journals (Sweden)
Massoud Tabesh
2011-07-01
Full Text Available Optimum operation of water distribution networks is one of the priorities of sustainable development of water resources, considering the issues of increasing efficiency and decreasing the water losses. One of the key subjects in optimum operational management of water distribution systems is preparing rehabilitation and replacement schemes, prediction of pipes break rate and evaluation of their reliability. Several approaches have been presented in recent years regarding prediction of pipe failure rates which each one requires especial data sets. Deterministic models based on age and deterministic multi variables and stochastic group modeling are examples of the solutions which relate pipe break rates to parameters like age, material and diameters. In this paper besides the mentioned parameters, more factors such as pipe depth and hydraulic pressures are considered as well. Then using multi variable regression method, intelligent approaches (Artificial neural network and neuro fuzzy models and Evolutionary polynomial Regression method (EPR pipe burst rate are predicted. To evaluate the results of different approaches, a case study is carried out in a part ofMashhadwater distribution network. The results show the capability and advantages of ANN and EPR methods to predict pipe break rates, in comparison with neuro fuzzy and multi-variable regression methods.
Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne
2018-03-01
When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-03-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.
2008-04-01
Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.
Directory of Open Access Journals (Sweden)
Nina L. Timofeeva
2014-01-01
Full Text Available The article presents the methodological and technical bases for the creation of regression models that adequately reflect reality. The focus is on methods of removing residual autocorrelation in models. Algorithms eliminating heteroscedasticity and autocorrelation of the regression model residuals: reweighted least squares method, the method of Cochran-Orkutta are given. A model of "pure" regression is build, as well as to compare the effect on the dependent variable of the different explanatory variables when the latter are expressed in different units, a standardized form of the regression equation. The scheme of abatement techniques of heteroskedasticity and autocorrelation for the creation of regression models specific to the social and cultural sphere is developed.
Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Directory of Open Access Journals (Sweden)
Xu Yu
2018-01-01
Full Text Available Cross-domain collaborative filtering (CDCF solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR. We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Comparing the index-flood and multiple-regression methods using L-moments
Malekinezhad, H.; Nachtnebel, H. P.; Klik, A.
In arid and semi-arid regions, the length of records is usually too short to ensure reliable quantile estimates. Comparing index-flood and multiple-regression analyses based on L-moments was the main objective of this study. Factor analysis was applied to determine main influencing variables on flood magnitude. Ward’s cluster and L-moments approaches were applied to several sites in the Namak-Lake basin in central Iran to delineate homogeneous regions based on site characteristics. Homogeneity test was done using L-moments-based measures. Several distributions were fitted to the regional flood data and index-flood and multiple-regression methods as two regional flood frequency methods were compared. The results of factor analysis showed that length of main waterway, compactness coefficient, mean annual precipitation, and mean annual temperature were the main variables affecting flood magnitude. The study area was divided into three regions based on the Ward’s method of clustering approach. The homogeneity test based on L-moments showed that all three regions were acceptably homogeneous. Five distributions were fitted to the annual peak flood data of three homogeneous regions. Using the L-moment ratios and the Z-statistic criteria, GEV distribution was identified as the most robust distribution among five candidate distributions for all the proposed sub-regions of the study area, and in general, it was concluded that the generalised extreme value distribution was the best-fit distribution for every three regions. The relative root mean square error (RRMSE) measure was applied for evaluating the performance of the index-flood and multiple-regression methods in comparison with the curve fitting (plotting position) method. In general, index-flood method gives more reliable estimations for various flood magnitudes of different recurrence intervals. Therefore, this method should be adopted as regional flood frequency method for the study area and the Namak-Lake basin
The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard
and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...
Regularized Regression and Density Estimation based on Optimal Transport
Burger, M.
2012-03-11
The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).
Landslide susceptibility mapping on a global scale using the method of logistic regression
Directory of Open Access Journals (Sweden)
L. Lin
2017-08-01
Full Text Available This paper proposes a statistical model for mapping global landslide susceptibility based on logistic regression. After investigating explanatory factors for landslides in the existing literature, five factors were selected for model landslide susceptibility: relative relief, extreme precipitation, lithology, ground motion and soil moisture. When building the model, 70 % of landslide and nonlandslide points were randomly selected for logistic regression, and the others were used for model validation. To evaluate the accuracy of predictive models, this paper adopts several criteria including a receiver operating characteristic (ROC curve method. Logistic regression experiments found all five factors to be significant in explaining landslide occurrence on a global scale. During the modeling process, percentage correct in confusion matrix of landslide classification was approximately 80 % and the area under the curve (AUC was nearly 0.87. During the validation process, the above statistics were about 81 % and 0.88, respectively. Such a result indicates that the model has strong robustness and stable performance. This model found that at a global scale, soil moisture can be dominant in the occurrence of landslides and topographic factor may be secondary.
Development of K-Nearest Neighbour Regression Method in Forecasting River Stream Flow
Directory of Open Access Journals (Sweden)
Mohammad Azmi
2012-07-01
Full Text Available Different statistical, non-statistical and black-box methods have been used in forecasting processes. Among statistical methods, K-nearest neighbour non-parametric regression method (K-NN due to its natural simplicity and mathematical base is one of the recommended methods for forecasting processes. In this study, K-NN method is explained completely. Besides, development and improvement approaches such as best neighbour estimation, data transformation functions, distance functions and proposed extrapolation method are described. K-NN method in company with its development approaches is used in streamflow forecasting of Zayandeh-Rud Dam upper basin. Comparing between final results of classic K-NN method and modified K-NN (number of neighbour 5, transformation function of Range Scaling, distance function of Mahanalobis and proposed extrapolation method shows that modified K-NN in criteria of goodness of fit, root mean square error, percentage of volume of error and correlation has had performance improvement 45% , 59% and 17% respectively. These results approve necessity of applying mentioned approaches to derive more accurate forecasts.
Study on Thermal Degradation Characteristics and Regression Rate Measurement of Paraffin-Based Fuel
Directory of Open Access Journals (Sweden)
Songqi Hu
2015-09-01
Full Text Available Paraffin fuel has been found to have a regression rate that is higher than conventional HTPB (hydroxyl-terminated polybutadiene fuel and, thus, presents itself as an ideal energy source for a hybrid rocket engine. The energy characteristics of paraffin-based fuel and HTPB fuel have been calculated by the method of minimum free energy. The thermal degradation characteristics were measured for paraffin, pretreated paraffin, HTPB and paraffin-based fuel in different working conditions by the using differential scanning calorimetry (DSC and a thermogravimetric analyzer (TGA. The regression rates of paraffin-based fuel and HTPB fuel were tested by a rectangular solid-gas hybrid engine. The research findings showed that: the specific impulse of paraffin-based fuel is almost the same as that of HTPB fuel; the decomposition temperature of pretreated paraffin is higher than that of the unprocessed paraffin, but lower than that of HTPB; with the increase of paraffin, the initial reaction exothermic peak of paraffin-based fuel is reached in advance, and the initial reaction heat release also increases; the regression rate of paraffin-based fuel is higher than the common HTPB fuel under the same conditions; with the increase of oxidizer mass flow rate, the regression rate of solid fuel increases accordingly for the same fuel formulation.
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2004-01-01
This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel
Directory of Open Access Journals (Sweden)
Roland Pfister
2013-10-01
Full Text Available Three different methods for extracting coefficientsof linear regression analyses are presented. The focus is on automatic and easy-to-use approaches for common statistical packages: SPSS, R, and MS Excel / LibreOffice Calc. Hands-on examples are included for each analysis, followed by a brief description of how a subsequent regression coefficient analysis is performed.
Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.
Directory of Open Access Journals (Sweden)
Guangwei Gao
Full Text Available In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.
Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume
Xiao, Mengting; Li, Cheng
2018-01-01
Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.
Anderson, Carl A; McRae, Allan F; Visscher, Peter M
2006-07-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.
On-line mixture-based alternative to logistic regression
Czech Academy of Sciences Publication Activity Database
Nagy, Ivan; Suzdaleva, Evgenia
2016-01-01
Roč. 26, č. 5 (2016), s. 417-437 ISSN 1210-0552 R&D Projects: GA ČR GA15-03564S Institutional support: RVO:67985556 Keywords : on-line modeling * on-line logistic regression * recursive mixture estimation * data dependent pointer Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.394, year: 2016 http://library.utia.cas.cz/separaty/2016/ZS/suzdaleva-0464463.pdf
Directory of Open Access Journals (Sweden)
Adi Syahputra
2014-03-01
Full Text Available Quantitative structure activity relationship (QSAR for 21 insecticides of phthalamides containing hydrazone (PCH was studied using multiple linear regression (MLR, principle component regression (PCR and artificial neural network (ANN. Five descriptors were included in the model for MLR and ANN analysis, and five latent variables obtained from principle component analysis (PCA were used in PCR analysis. Calculation of descriptors was performed using semi-empirical PM6 method. ANN analysis was found to be superior statistical technique compared to the other methods and gave a good correlation between descriptors and activity (r2 = 0.84. Based on the obtained model, we have successfully designed some new insecticides with higher predicted activity than those of previously synthesized compounds, e.g.2-(decalinecarbamoyl-5-chloro-N’-((5-methylthiophen-2-ylmethylene benzohydrazide, 2-(decalinecarbamoyl-5-chloro-N’-((thiophen-2-yl-methylene benzohydrazide and 2-(decaline carbamoyl-N’-(4-fluorobenzylidene-5-chlorobenzohydrazide with predicted log LC50 of 1.640, 1.672, and 1.769 respectively.
Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement
Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.
2018-04-01
Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).
Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method
Directory of Open Access Journals (Sweden)
Seçil YALAZ
2016-10-01
Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.
An NCME Instructional Module on Data Mining Methods for Classification and Regression
Sinharay, Sandip
2016-01-01
Data mining methods for classification and regression are becoming increasingly popular in various scientific fields. However, these methods have not been explored much in educational measurement. This module first provides a review, which should be accessible to a wide audience in education measurement, of some of these methods. The module then…
Cohen, Ayala; Nahum-Shani, Inbal; Doveh, Etti
2010-01-01
In their seminal paper, Edwards and Parry (1993) presented the polynomial regression as a better alternative to applying difference score in the study of congruence. Although this method is increasingly applied in congruence research, its complexity relative to other methods for assessing congruence (e.g., difference score methods) was one of the…
Statistical approach for selection of regression model during validation of bioanalytical method
Directory of Open Access Journals (Sweden)
Natalija Nakov
2014-06-01
Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.
International Nuclear Information System (INIS)
Che Jinxing; Wang Jianzhou
2010-01-01
In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.
Determinants of Birthweight Outcomes: Quantile Regressions Based on Panel Data
DEFF Research Database (Denmark)
Bache, Stefan Holst; Dahl, Christian Møller; Kristensen, Johannes Tang
to the possibility that smoking habits can be influenced through policy conduct. It is widely believed that maternal smoking reduces birthweight; however, the crucial difficulty in estimating such effects is the unobserved heterogeneity among mothers. We consider extensions of three panel data models to a quantile......Low birthweight outcomes are associated with large social and economic costs, and therefore the possible determinants of low birthweight are of great interest. One such determinant which has received considerable attention is maternal smoking. From an economic perspective this is in part due...... regression framework in order to control for heterogeneity and to infer conclusions about causality across the entire birthweight distribution. We obtain estimation results for maternal smoking and other interesting determinants, applying these to data obtained from Aarhus University Hospital, Skejby...
Forecast Model of Urban Stagnant Water Based on Logistic Regression
Directory of Open Access Journals (Sweden)
Liu Pan
2017-01-01
Full Text Available With the development of information technology, the construction of water resource system has been gradually carried out. In the background of big data, the work of water information needs to carry out the process of quantitative to qualitative change. Analyzing the correlation of data and exploring the deep value of data which are the key of water information’s research. On the basis of the research on the water big data and the traditional data warehouse architecture, we try to find out the connection of different data source. According to the temporal and spatial correlation of stagnant water and rainfall, we use spatial interpolation to integrate data of stagnant water and rainfall which are from different data source and different sensors, then use logistic regression to find out the relationship between them.
Generating patient specific pseudo-CT of the head from MR using atlas-based regression
International Nuclear Information System (INIS)
Sjölund, J; Forsberg, D; Andersson, M; Knutsson, H
2015-01-01
Radiotherapy planning and attenuation correction of PET images require simulation of radiation transport. The necessary physical properties are typically derived from computed tomography (CT) images, but in some cases, including stereotactic neurosurgery and combined PET/MR imaging, only magnetic resonance (MR) images are available. With these applications in mind, we describe how a realistic, patient-specific, pseudo-CT of the head can be derived from anatomical MR images. We refer to the method as atlas-based regression, because of its similarity to atlas-based segmentation. Given a target MR and an atlas database comprising MR and CT pairs, atlas-based regression works by registering each atlas MR to the target MR, applying the resulting displacement fields to the corresponding atlas CTs and, finally, fusing the deformed atlas CTs into a single pseudo-CT. We use a deformable registration algorithm known as the Morphon and augment it with a certainty mask that allows a tailoring of the influence certain regions are allowed to have on the registration. Moreover, we propose a novel method of fusion, wherein the collection of deformed CTs is iteratively registered to their joint mean and find that the resulting mean CT becomes more similar to the target CT. However, the voxelwise median provided even better results; at least as good as earlier work that required special MR imaging techniques. This makes atlas-based regression a good candidate for clinical use. (paper)
Applications of Monte Carlo method to nonlinear regression of rheological data
Kim, Sangmo; Lee, Junghaeng; Kim, Sihyun; Cho, Kwang Soo
2018-02-01
In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.
Multi-step polynomial regression method to model and forecast malaria incidence.
Directory of Open Access Journals (Sweden)
Chandrajit Chatterjee
Full Text Available Malaria is one of the most severe problems faced by the world even today. Understanding the causative factors such as age, sex, social factors, environmental variability etc. as well as underlying transmission dynamics of the disease is important for epidemiological research on malaria and its eradication. Thus, development of suitable modeling approach and methodology, based on the available data on the incidence of the disease and other related factors is of utmost importance. In this study, we developed a simple non-linear regression methodology in modeling and forecasting malaria incidence in Chennai city, India, and predicted future disease incidence with high confidence level. We considered three types of data to develop the regression methodology: a longer time series data of Slide Positivity Rates (SPR of malaria; a smaller time series data (deaths due to Plasmodium vivax of one year; and spatial data (zonal distribution of P. vivax deaths for the city along with the climatic factors, population and previous incidence of the disease. We performed variable selection by simple correlation study, identification of the initial relationship between variables through non-linear curve fitting and used multi-step methods for induction of variables in the non-linear regression analysis along with applied Gauss-Markov models, and ANOVA for testing the prediction, validity and constructing the confidence intervals. The results execute the applicability of our method for different types of data, the autoregressive nature of forecasting, and show high prediction power for both SPR and P. vivax deaths, where the one-lag SPR values plays an influential role and proves useful for better prediction. Different climatic factors are identified as playing crucial role on shaping the disease curve. Further, disease incidence at zonal level and the effect of causative factors on different zonal clusters indicate the pattern of malaria prevalence in the city
Directory of Open Access Journals (Sweden)
ELİF BULUT
2013-06-01
Full Text Available Partial Least Squares Regression (PLSR is a multivariate statistical method that consists of partial least squares and multiple linear regression analysis. Explanatory variables, X, having multicollinearity are reduced to components which explain the great amount of covariance between explanatory and response variable. These components are few in number and they don’t have multicollinearity problem. Then multiple linear regression analysis is applied to those components to model the response variable Y. There are various PLSR algorithms. In this study NIPALS and PLS-Kernel algorithms will be studied and illustrated on a real data set.
Delwiche, Stephen R; Reeves, James B
2010-01-01
In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various
The Bland-Altman Method Should Not Be Used in Regression Cross-Validation Studies
O'Connor, Daniel P.; Mahar, Matthew T.; Laughlin, Mitzi S.; Jackson, Andrew S.
2011-01-01
The purpose of this study was to demonstrate the bias in the Bland-Altman (BA) limits of agreement method when it is used to validate regression models. Data from 1,158 men were used to develop three regression equations to estimate maximum oxygen uptake (R[superscript 2] = 0.40, 0.61, and 0.82, respectively). The equations were evaluated in a…
Support vector regression model based predictive control of water level of U-tube steam generators
Energy Technology Data Exchange (ETDEWEB)
Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr
2014-10-15
Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.
Mass estimation of loose parts in nuclear power plant based on multiple regression
International Nuclear Information System (INIS)
He, Yuanfeng; Cao, Yanlong; Yang, Jiangxin; Gan, Chunbiao
2012-01-01
According to the application of the Hilbert–Huang transform to the non-stationary signal and the relation between the mass of loose parts in nuclear power plant and corresponding frequency content, a new method for loose part mass estimation based on the marginal Hilbert–Huang spectrum (MHS) and multiple regression is proposed in this paper. The frequency spectrum of a loose part in a nuclear power plant can be expressed by the MHS. The multiple regression model that is constructed by the MHS feature of the impact signals for mass estimation is used to predict the unknown masses of a loose part. A simulated experiment verified that the method is feasible and the errors of the results are acceptable. (paper)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition
DEFF Research Database (Denmark)
Purwins, Hendrik; Barak, Bernd; Nagi, Ahmed
2014-01-01
The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (Virtual Metrology). In this paper, a survey on regression methods is given to predict...... average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process. Process and production equipment Fault Detection and Classification (FDC) data are used as predictor variables. Various variable sets are compared: one most...... algorithm, and Support Vector Regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust towards changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process...
Statistical methods in regression and calibration analysis of chromosome aberration data
International Nuclear Information System (INIS)
Merkle, W.
1983-01-01
The method of iteratively reweighted least squares for the regression analysis of Poisson distributed chromosome aberration data is reviewed in the context of other fit procedures used in the cytogenetic literature. As an application of the resulting regression curves methods for calculating confidence intervals on dose from aberration yield are described and compared, and, for the linear quadratic model a confidence interval is given. Emphasis is placed on the rational interpretation and the limitations of various methods from a statistical point of view. (orig./MG)
A Novel Imbalanced Data Classification Approach Based on Logistic Regression and Fisher Discriminant
Directory of Open Access Journals (Sweden)
Baofeng Shi
2015-01-01
Full Text Available We introduce an imbalanced data classification approach based on logistic regression significant discriminant and Fisher discriminant. First of all, a key indicators extraction model based on logistic regression significant discriminant and correlation analysis is derived to extract features for customer classification. Secondly, on the basis of the linear weighted utilizing Fisher discriminant, a customer scoring model is established. And then, a customer rating model where the customer number of all ratings follows normal distribution is constructed. The performance of the proposed model and the classical SVM classification method are evaluated in terms of their ability to correctly classify consumers as default customer or nondefault customer. Empirical results using the data of 2157 customers in financial engineering suggest that the proposed approach better performance than the SVM model in dealing with imbalanced data classification. Moreover, our approach contributes to locating the qualified customers for the banks and the bond investors.
COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS
Directory of Open Access Journals (Sweden)
K. Seetharaman
2015-08-01
Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.
Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.
2017-06-01
The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.
Thompson, Russel L.
Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…
Calculation of U, Ra, Th and K contents in uranium ore by multiple linear regression method
International Nuclear Information System (INIS)
Lin Chao; Chen Yingqiang; Zhang Qingwen; Tan Fuwen; Peng Guanghui
1991-01-01
A multiple linear regression method was used to compute γ spectra of uranium ore samples and to calculate contents of U, Ra, Th, and K. In comparison with the inverse matrix method, its advantage is that no standard samples of pure U, Ra, Th and K are needed for obtaining response coefficients
Directory of Open Access Journals (Sweden)
Xiangbing Zhou
2018-04-01
Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.
A dynamic particle filter-support vector regression method for reliability prediction
International Nuclear Information System (INIS)
Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico
2013-01-01
Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR
Accounting for estimated IQ in neuropsychological test performance with regression-based techniques.
Testa, S Marc; Winicki, Jessica M; Pearlson, Godfrey D; Gordon, Barry; Schretlen, David J
2009-11-01
Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.
Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding
de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.
2013-01-01
Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228
Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering
Directory of Open Access Journals (Sweden)
Xianglin ZHU
2014-06-01
Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.
Weighted functional linear regression models for gene-based association analysis.
Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I
2018-01-01
Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.
Time series modeling by a regression approach based on a latent process.
Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice
2009-01-01
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
Polychotomization of continuous variables in regression models based on the overall C index
Directory of Open Access Journals (Sweden)
Bax Leon
2006-12-01
Full Text Available Abstract Background When developing multivariable regression models for diagnosis or prognosis, continuous independent variables can be categorized to make a prediction table instead of a prediction formula. Although many methods have been proposed to dichotomize prognostic variables, to date there has been no integrated method for polychotomization. The latter is necessary when dichotomization results in too much loss of information or when central values refer to normal states and more dispersed values refer to less preferable states, a situation that is not unusual in medical settings (e.g. body temperature, blood pressure. The goal of our study was to develop a theoretical and practical method for polychotomization. Methods We used the overall discrimination index C, introduced by Harrel, as a measure of the predictive ability of an independent regressor variable and derived a method for polychotomization mathematically. Since the naïve application of our method, like some existing methods, gives rise to positive bias, we developed a parametric method that minimizes this bias and assessed its performance by the use of Monte Carlo simulation. Results The overall C is closely related to the area under the ROC curve and the produced di(polychotomized variable's predictive performance is comparable to the original continuous variable. The simulation shows that the parametric method is essentially unbiased for both the estimates of performance and the cutoff points. Application of our method to the predictor variables of a previous study on rhabdomyolysis shows that it can be used to make probability profile tables that are applicable to the diagnosis or prognosis of individual patient status. Conclusion We propose a polychotomization (including dichotomization method for independent continuous variables in regression models based on the overall discrimination index C and clarified its meaning mathematically. To avoid positive bias in
Wang, Jiangbo; Liu, Junhui; Li, Tiantian; Yin, Shuo; He, Xinhui
2018-01-01
The monthly electricity sales forecasting is a basic work to ensure the safety of the power system. This paper presented a monthly electricity sales forecasting method which comprehensively considers the coupled multi-factors of temperature, economic growth, electric power replacement and business expansion. The mathematical model is constructed by using regression method. The simulation results show that the proposed method is accurate and effective.
Quadratic Regression-based Non-uniform Response Correction for Radiochromic Film Scanners
International Nuclear Information System (INIS)
Jeong, Hae Sun; Kim, Chan Hyeong; Han, Young Yih; Kum, O Yeon
2009-01-01
In recent years, several types of radiochromic films have been extensively used for two-dimensional dose measurements such as dosimetry in radiotherapy as well as imaging and radiation protection applications. One of the critical aspects in radiochromic film dosimetry is the accurate readout of the scanner without dose distortion. However, most of charge-coupled device (CCD) scanners used for the optical density readout of the film employ a fluorescent lamp or a coldcathode lamp as a light source, which leads to a significant amount of light scattering on the active layer of the film. Due to the effect of the light scattering, dose distortions are produced with non-uniform responses, although the dose is uniformly irradiated to the film. In order to correct the distorted doses, a method based on correction factors (CF) has been reported and used. However, the prediction of the real incident doses is difficult when the indiscreet doses are delivered to the film, since the dose correction with the CF-based method is restrictively used in case that the incident doses are already known. In a previous study, therefore, a pixel-based algorithm with linear regression was developed to correct the dose distortion of a flatbed scanner, and to estimate the initial doses. The result, however, was not very good for some cases especially when the incident dose is under approximately 100 cGy. In the present study, the problem was addressed by replacing the linear regression with the quadratic regression. The corrected doses using this method were also compared with the results of other conventional methods
Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek
2018-03-01
One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.
Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C
2011-04-01
The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Müller, M. S.; Urban, S.; Jutzi, B.
2017-08-01
The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett
2009-01-01
Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....
Cox regression with missing covariate data using a modified partial likelihood method
DEFF Research Database (Denmark)
Martinussen, Torben; Holst, Klaus K.; Scheike, Thomas H.
2016-01-01
Missing covariate values is a common problem in survival analysis. In this paper we propose a novel method for the Cox regression model that is close to maximum likelihood but avoids the use of the EM-algorithm. It exploits that the observed hazard function is multiplicative in the baseline hazard...
Short-term solar irradiation forecasting based on Dynamic Harmonic Regression
International Nuclear Information System (INIS)
Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.
2015-01-01
Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed
Sidik, S. M.
1975-01-01
Ridge, Marquardt's generalized inverse, shrunken, and principal components estimators are discussed in terms of the objectives of point estimation of parameters, estimation of the predictive regression function, and hypothesis testing. It is found that as the normal equations approach singularity, more consideration must be given to estimable functions of the parameters as opposed to estimation of the full parameter vector; that biased estimators all introduce constraints on the parameter space; that adoption of mean squared error as a criterion of goodness should be independent of the degree of singularity; and that ordinary least-squares subset regression is the best overall method.
Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.
2006-01-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...
International Nuclear Information System (INIS)
Yang, Jianhong; Yi, Cancan; Xu, Jinwu; Ma, Xianghong
2015-01-01
A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine. - Highlights: • Both training and testing samples are considered for analytical lines selection. • The analytical lines are auto-selected based on the built-in characteristics of spectral lines. • The new method can achieve better prediction accuracy and modeling robustness. • Model predictions are given with confidence interval of probabilistic distribution
Extreme Learning Machine and Moving Least Square Regression Based Solar Panel Vision Inspection
Directory of Open Access Journals (Sweden)
Heng Liu
2017-01-01
Full Text Available In recent years, learning based machine intelligence has aroused a lot of attention across science and engineering. Particularly in the field of automatic industry inspection, the machine learning based vision inspection plays a more and more important role in defect identification and feature extraction. Through learning from image samples, many features of industry objects, such as shapes, positions, and orientations angles, can be obtained and then can be well utilized to determine whether there is defect or not. However, the robustness and the quickness are not easily achieved in such inspection way. In this work, for solar panel vision inspection, we present an extreme learning machine (ELM and moving least square regression based approach to identify solder joint defect and detect the panel position. Firstly, histogram peaks distribution (HPD and fractional calculus are applied for image preprocessing. Then an ELM-based defective solder joints identification is discussed in detail. Finally, moving least square regression (MLSR algorithm is introduced for solar panel position determination. Experimental results and comparisons show that the proposed ELM and MLSR based inspection method is efficient not only in detection accuracy but also in processing speed.
Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data
International Nuclear Information System (INIS)
Guikema, S.D.; Quiring, S.M.
2012-01-01
Infrastructure disaster risk assessment seeks to estimate the probability of a given customer or area losing service during a disaster, sometimes in conjunction with estimating the duration of each outage. This is often done on the basis of past data about the effects of similar events impacting the same or similar systems. In many situations this past performance data from infrastructure systems is zero-inflated; it has more zeros than can be appropriately modeled with standard probability distributions. The data are also often non-linear and exhibit threshold effects due to the complexities of infrastructure system performance. Standard zero-inflated statistical models such as zero-inflated Poisson and zero-inflated negative binomial regression models do not adequately capture these complexities. In this paper we develop a novel method that is a hybrid classification tree/regression method for complex, zero-inflated data sets. We investigate its predictive accuracy based on a large number of simulated data sets and then demonstrate its practical usefulness with an application to hurricane power outage risk assessment for a large utility based on actual data from the utility. While formulated for infrastructure disaster risk assessment, this method is promising for data-driven analysis for other situations with zero-inflated, complex data exhibiting response thresholds.
Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi
2017-06-01
Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p logistic regression model for the classification of risk groups for PTB.
Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood
Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models
Ding, Bo; Fang, Huajing
2017-05-01
This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
U.S. Environmental Protection Agency — Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression...
Directory of Open Access Journals (Sweden)
Giuliano de Oliveira Freitas
2013-10-01
Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.
Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings
International Nuclear Information System (INIS)
Chung, William
2012-01-01
Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.
Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering
Xiang, Sijia; Yao, Weixin
2017-01-01
In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...
Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu
2017-09-01
Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.
A method to determine the necessity for global signal regression in resting-state fMRI studies.
Chen, Gang; Chen, Guangyu; Xie, Chunming; Ward, B Douglas; Li, Wenjun; Antuono, Piero; Li, Shi-Jiang
2012-12-01
In resting-state functional MRI studies, the global signal (operationally defined as the global average of resting-state functional MRI time courses) is often considered a nuisance effect and commonly removed in preprocessing. This global signal regression method can introduce artifacts, such as false anticorrelated resting-state networks in functional connectivity analyses. Therefore, the efficacy of this technique as a correction tool remains questionable. In this article, we establish that the accuracy of the estimated global signal is determined by the level of global noise (i.e., non-neural noise that has a global effect on the resting-state functional MRI signal). When the global noise level is low, the global signal resembles the resting-state functional MRI time courses of the largest cluster, but not those of the global noise. Using real data, we demonstrate that the global signal is strongly correlated with the default mode network components and has biological significance. These results call into question whether or not global signal regression should be applied. We introduce a method to quantify global noise levels. We show that a criteria for global signal regression can be found based on the method. By using the criteria, one can determine whether to include or exclude the global signal regression in minimizing errors in functional connectivity measures. Copyright © 2012 Wiley Periodicals, Inc.
Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.
Choi, Jae-Seok; Kim, Munchurl
2017-03-01
Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement
Zhang, Jun; Cain, Elizabeth Hope; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.
2018-02-01
Breast mass detection in mammography and digital breast tomosynthesis (DBT) is an essential step in computerized breast cancer analysis. Deep learning-based methods incorporate feature extraction and model learning into a unified framework and have achieved impressive performance in various medical applications (e.g., disease diagnosis, tumor detection, and landmark detection). However, these methods require large-scale accurately annotated data. Unfortunately, it is challenging to get precise annotations of breast masses. To address this issue, we propose a fully convolutional network (FCN) based heatmap regression method for breast mass detection, using only weakly annotated mass regions in mammography images. Specifically, we first generate heat maps of masses based on human-annotated rough regions for breast masses. We then develop an FCN model for end-to-end heatmap regression with an F-score loss function, where the mammography images are regarded as the input and heatmaps for breast masses are used as the output. Finally, the probability map of mass locations can be estimated with the trained model. Experimental results on a mammography dataset with 439 subjects demonstrate the effectiveness of our method. Furthermore, we evaluate whether we can use mammography data to improve detection models for DBT, since mammography shares similar structure with tomosynthesis. We propose a transfer learning strategy by fine-tuning the learned FCN model from mammography images. We test this approach on a small tomosynthesis dataset with only 40 subjects, and we show an improvement in the detection performance as compared to training the model from scratch.
Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)
2016-10-15
This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)
Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method
International Nuclear Information System (INIS)
Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon
2016-01-01
This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)
Energy Technology Data Exchange (ETDEWEB)
Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)
2006-02-15
This paper presents an implementation of the least absolute value (LAV) power system state estimator based on obtaining a sequence of solutions to the L{sub 1}-regression problem using an iteratively reweighted least squares (IRLS{sub L1}) method. The proposed implementation avoids reformulating the regression problem into standard linear programming (LP) form and consequently does not require the use of common methods of LP, such as those based on the simplex method or interior-point methods. It is shown that the IRLS{sub L1} method is equivalent to solving a sequence of linear weighted least squares (LS) problems. Thus, its implementation presents little additional effort since the sparse LS solver is common to existing LS state estimators. Studies on the termination criteria of the IRLS{sub L1} method have been carried out to determine a procedure for which the proposed estimator is more computationally efficient than a previously proposed non-linear iteratively reweighted least squares (IRLS) estimator. Indeed, it is revealed that the proposed method is a generalization of the previously reported IRLS estimator, but is based on more rigorous theory. (author)
Coelho, Lúcia H G; Gutz, Ivano G R
2006-03-15
A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.
James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll
2003-01-01
This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...
Assessing the performance of variational methods for mixed logistic regression models
Czech Academy of Sciences Publication Activity Database
Rijmen, F.; Vomlel, Jiří
2008-01-01
Roč. 78, č. 8 (2008), s. 765-779 ISSN 0094-9655 R&D Projects: GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mixed models * Logistic regression * Variational methods * Lower bound approximation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.353, year: 2008
Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting
Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD
2018-01-01
Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.
Selecting minimum dataset soil variables using PLSR as a regressive multivariate method
Stellacci, Anna Maria; Armenise, Elena; Castellini, Mirko; Rossi, Roberta; Vitti, Carolina; Leogrande, Rita; De Benedetto, Daniela; Ferrara, Rossana M.; Vivaldi, Gaetano A.
2017-04-01
Long-term field experiments and science-based tools that characterize soil status (namely the soil quality indices, SQIs) assume a strategic role in assessing the effect of agronomic techniques and thus in improving soil management especially in marginal environments. Selecting key soil variables able to best represent soil status is a critical step for the calculation of SQIs. Current studies show the effectiveness of statistical methods for variable selection to extract relevant information deriving from multivariate datasets. Principal component analysis (PCA) has been mainly used, however supervised multivariate methods and regressive techniques are progressively being evaluated (Armenise et al., 2013; de Paul Obade et al., 2016; Pulido Moncada et al., 2014). The present study explores the effectiveness of partial least square regression (PLSR) in selecting critical soil variables, using a dataset comparing conventional tillage and sod-seeding on durum wheat. The results were compared to those obtained using PCA and stepwise discriminant analysis (SDA). The soil data derived from a long-term field experiment in Southern Italy. On samples collected in April 2015, the following set of variables was quantified: (i) chemical: total organic carbon and nitrogen (TOC and TN), alkali-extractable C (TEC and humic substances - HA-FA), water extractable N and organic C (WEN and WEOC), Olsen extractable P, exchangeable cations, pH and EC; (ii) physical: texture, dry bulk density (BD), macroporosity (Pmac), air capacity (AC), and relative field capacity (RFC); (iii) biological: carbon of the microbial biomass quantified with the fumigation-extraction method. PCA and SDA were previously applied to the multivariate dataset (Stellacci et al., 2016). PLSR was carried out on mean centered and variance scaled data of predictors (soil variables) and response (wheat yield) variables using the PLS procedure of SAS/STAT. In addition, variable importance for projection (VIP
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
Weiss, Brandi A.; Dardick, William
2016-01-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…
Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation
Directory of Open Access Journals (Sweden)
Chunqing Li
2012-01-01
Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.
A subagging regression method for estimating the qualitative and quantitative state of groundwater
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young
2017-08-01
A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.
Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María
2009-02-01
Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.
Impact of regression methods on improved effects of soil structure on soil water retention estimates
Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim
2015-06-01
Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.
Cost-of-illness studies based on massive data: a prevalence-based, top-down regression approach.
Stollenwerk, Björn; Welchowski, Thomas; Vogl, Matthias; Stock, Stephanie
2016-04-01
Despite the increasing availability of routine data, no analysis method has yet been presented for cost-of-illness (COI) studies based on massive data. We aim, first, to present such a method and, second, to assess the relevance of the associated gain in numerical efficiency. We propose a prevalence-based, top-down regression approach consisting of five steps: aggregating the data; fitting a generalized additive model (GAM); predicting costs via the fitted GAM; comparing predicted costs between prevalent and non-prevalent subjects; and quantifying the stochastic uncertainty via error propagation. To demonstrate the method, it was applied to aggregated data in the context of chronic lung disease to German sickness funds data (from 1999), covering over 7.3 million insured. To assess the gain in numerical efficiency, the computational time of the innovative approach has been compared with corresponding GAMs applied to simulated individual-level data. Furthermore, the probability of model failure was modeled via logistic regression. Applying the innovative method was reasonably fast (19 min). In contrast, regarding patient-level data, computational time increased disproportionately by sample size. Furthermore, using patient-level data was accompanied by a substantial risk of model failure (about 80 % for 6 million subjects). The gain in computational efficiency of the innovative COI method seems to be of practical relevance. Furthermore, it may yield more precise cost estimates.
Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana
2015-05-01
Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Prastuti, M.; Suhartono; Salehah, NA
2018-04-01
The need for energy supply, especially for electricity in Indonesia has been increasing in the last past years. Furthermore, the high electricity usage by people at different times leads to the occurrence of heteroscedasticity issue. Estimate the electricity supply that could fulfilled the community’s need is very important, but the heteroscedasticity issue often made electricity forecasting hard to be done. An accurate forecast of electricity consumptions is one of the key challenges for energy provider to make better resources and service planning and also take control actions in order to balance the electricity supply and demand for community. In this paper, hybrid ARIMAX Quantile Regression (ARIMAX-QR) approach was proposed to predict the short-term electricity consumption in East Java. This method will also be compared to time series regression using RMSE, MAPE, and MdAPE criteria. The data used in this research was the electricity consumption per half-an-hour data during the period of September 2015 to April 2016. The results show that the proposed approach can be a competitive alternative to forecast short-term electricity in East Java. ARIMAX-QR using lag values and dummy variables as predictors yield more accurate prediction in both in-sample and out-sample data. Moreover, both time series regression and ARIMAX-QR methods with addition of lag values as predictor could capture accurately the patterns in the data. Hence, it produces better predictions compared to the models that not use additional lag variables.
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Fruit fly optimization based least square support vector regression for blind image restoration
Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei
2014-11-01
The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and
Energy Technology Data Exchange (ETDEWEB)
Keilacker, H; Becker, G; Ziegler, M; Gottschling, H D [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)
1980-10-01
In order to handle all types of radioimmunoassay (RIA) calibration curves obtained in the authors' laboratory in the same way, they tried to find a non-linear expression for their regression which allows calibration curves with different degrees of curvature to be fitted. Considering the two boundary cases of the incubation protocol they derived a hyperbolic inverse regression function: x = a/sub 1/y + a/sub 0/ + asub(-1)y/sup -1/, where x is the total concentration of antigen, asub(i) are constants, and y is the specifically bound radioactivity. An RIA evaluation procedure based on this function is described providing a fitted inverse RIA calibration curve and some statistical quality parameters. The latter are of an order which is normal for RIA systems. There is an excellent agreement between fitted and experimentally obtained calibration curves having a different degree of curvature.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues
2015-01-01
This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Xiaofeng; Suk, Heung-Il; Wang, Li; Lee, Seong-Whan; Shen, Dinggang
2017-05-01
In this paper, we focus on joint regression and classification for Alzheimer's disease diagnosis and propose a new feature selection method by embedding the relational information inherent in the observations into a sparse multi-task learning framework. Specifically, the relational information includes three kinds of relationships (such as feature-feature relation, response-response relation, and sample-sample relation), for preserving three kinds of the similarity, such as for the features, the response variables, and the samples, respectively. To conduct feature selection, we first formulate the objective function by imposing these three relational characteristics along with an ℓ 2,1 -norm regularization term, and further propose a computationally efficient algorithm to optimize the proposed objective function. With the dimension-reduced data, we train two support vector regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and also a support vector classification model to determine the clinical label. We conducted extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to validate the effectiveness of the proposed method. Our experimental results showed the efficacy of the proposed method in enhancing the performances of both clinical scores prediction and disease status identification, compared to the state-of-the-art methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Gholam Reza Sheykhzadeh
2017-02-01
Full Text Available Introduction: Penetration resistance is one of the criteria for evaluating soil compaction. It correlates with several soil properties such as vehicle trafficability, resistance to root penetration, seedling emergence, and soil compaction by farm machinery. Direct measurement of penetration resistance is time consuming and difficult because of high temporal and spatial variability. Therefore, many different regressions and artificial neural network pedotransfer functions have been proposed to estimate penetration resistance from readily available soil variables such as particle size distribution, bulk density (Db and gravimetric water content (θm. The lands of Ardabil Province are one of the main production regions of potato in Iran, thus, obtaining the soil penetration resistance in these regions help with the management of potato production. The objective of this research was to derive pedotransfer functions by using regression and artificial neural network to predict penetration resistance from some soil variations in the agricultural soils of Ardabil plain and to compare the performance of artificial neural network with regression models. Materials and methods: Disturbed and undisturbed soil samples (n= 105 were systematically taken from 0-10 cm soil depth with nearly 3000 m distance in the agricultural lands of the Ardabil plain ((lat 38°15' to 38°40' N, long 48°16' to 48°61' E. The contents of sand, silt and clay (hydrometer method, CaCO3 (titration method, bulk density (cylinder method, particle density (Dp (pychnometer method, organic carbon (wet oxidation method, total porosity(calculating from Db and Dp, saturated (θs and field soil water (θf using the gravimetric method were measured in the laboratory. Mean geometric diameter (dg and standard deviation (σg of soil particles were computed using the percentages of sand, silt and clay. Penetration resistance was measured in situ using cone penetrometer (analog model at 10
Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin
2015-02-09
The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Zhixun; Zhang, Yingtao; Gong, Huiling; Li, Weimin; Tang, Xianglong
2016-12-01
Coronary artery disease has become the most dangerous diseases to human life. And coronary artery segmentation is the basis of computer aided diagnosis and analysis. Existing segmentation methods are difficult to handle the complex vascular texture due to the projective nature in conventional coronary angiography. Due to large amount of data and complex vascular shapes, any manual annotation has become increasingly unrealistic. A fully automatic segmentation method is necessary in clinic practice. In this work, we study a method based on reliable boundaries via multi-domains remapping and robust discrepancy correction via distance balance and quantile regression for automatic coronary artery segmentation of angiography images. The proposed method can not only segment overlapping vascular structures robustly, but also achieve good performance in low contrast regions. The effectiveness of our approach is demonstrated on a variety of coronary blood vessels compared with the existing methods. The overall segmentation performances si, fnvf, fvpf and tpvf were 95.135%, 3.733%, 6.113%, 96.268%, respectively. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Koeneman, Margot M; van Lint, Freyja H M; van Kuijk, Sander M J; Smits, Luc J M; Kooreman, Loes F S; Kruitwagen, Roy F P M; Kruse, Arnold J
2017-01-01
This study aims to develop a prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2 (CIN 2) lesions based on simple clinicopathological parameters. The study was conducted at Maastricht University Medical Center, the Netherlands. The prediction model was developed in a retrospective cohort of 129 women with a histologic diagnosis of CIN 2 who were managed by watchful waiting for 6 to 24months. Five potential predictors for spontaneous regression were selected based on the literature and expert opinion and were analyzed in a multivariable logistic regression model, followed by backward stepwise deletion based on the Wald test. The prediction model was internally validated by the bootstrapping method. Discriminative capacity and accuracy were tested by assessing the area under the receiver operating characteristic curve (AUC) and a calibration plot. Disease regression within 24months was seen in 91 (71%) of 129 patients. A prediction model was developed including the following variables: smoking, Papanicolaou test outcome before the CIN 2 diagnosis, concomitant CIN 1 diagnosis in the same biopsy, and more than 1 biopsy containing CIN 2. Not smoking, Papanicolaou class predictive of disease regression. The AUC was 69.2% (95% confidence interval, 58.5%-79.9%), indicating a moderate discriminative ability of the model. The calibration plot indicated good calibration of the predicted probabilities. This prediction model for spontaneous regression of CIN 2 may aid physicians in the personalized management of these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Bangyong Sun
2014-01-01
Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.
Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method
Asavaskulkiet, Krissada
2018-04-01
In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.
Directory of Open Access Journals (Sweden)
Svetlana O. Musienko
2017-03-01
Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small
Local regression type methods applied to the study of geophysics and high frequency financial data
Mariani, M. C.; Basu, K.
2014-09-01
In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.
Distance Based Root Cause Analysis and Change Impact Analysis of Performance Regressions
Directory of Open Access Journals (Sweden)
Junzan Zhou
2015-01-01
Full Text Available Performance regression testing is applied to uncover both performance and functional problems of software releases. A performance problem revealed by performance testing can be high response time, low throughput, or even being out of service. Mature performance testing process helps systematically detect software performance problems. However, it is difficult to identify the root cause and evaluate the potential change impact. In this paper, we present an approach leveraging server side logs for identifying root causes of performance problems. Firstly, server side logs are used to recover call tree of each business transaction. We define a novel distance based metric computed from call trees for root cause analysis and apply inverted index from methods to business transactions for change impact analysis. Empirical studies show that our approach can effectively and efficiently help developers diagnose root cause of performance problems.
Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.
2018-06-01
Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.
A robust regression based on weighted LSSVM and penalized trimmed squares
International Nuclear Information System (INIS)
Liu, Jianyong; Wang, Yong; Fu, Chengqun; Guo, Jie; Yu, Qin
2016-01-01
Least squares support vector machine (LS-SVM) for nonlinear regression is sensitive to outliers in the field of machine learning. Weighted LS-SVM (WLS-SVM) overcomes this drawback by adding weight to each training sample. However, as the number of outliers increases, the accuracy of WLS-SVM may decrease. In order to improve the robustness of WLS-SVM, a new robust regression method based on WLS-SVM and penalized trimmed squares (WLSSVM–PTS) has been proposed. The algorithm comprises three main stages. The initial parameters are obtained by least trimmed squares at first. Then, the significant outliers are identified and eliminated by the Fast-PTS algorithm. The remaining samples with little outliers are estimated by WLS-SVM at last. The statistical tests of experimental results carried out on numerical datasets and real-world datasets show that the proposed WLSSVM–PTS is significantly robust than LS-SVM, WLS-SVM and LSSVM–LTS.
Large biases in regression-based constituent flux estimates: causes and diagnostic tools
Hirsch, Robert M.
2014-01-01
It has been documented in the literature that, in some cases, widely used regression-based models can produce severely biased estimates of long-term mean river fluxes of various constituents. These models, estimated using sample values of concentration, discharge, and date, are used to compute estimated fluxes for a multiyear period at a daily time step. This study compares results of the LOADEST seven-parameter model, LOADEST five-parameter model, and the Weighted Regressions on Time, Discharge, and Season (WRTDS) model using subsampling of six very large datasets to better understand this bias problem. This analysis considers sample datasets for dissolved nitrate and total phosphorus. The results show that LOADEST-7 and LOADEST-5, although they often produce very nearly unbiased results, can produce highly biased results. This study identifies three conditions that can give rise to these severe biases: (1) lack of fit of the log of concentration vs. log discharge relationship, (2) substantial differences in the shape of this relationship across seasons, and (3) severely heteroscedastic residuals. The WRTDS model is more resistant to the bias problem than the LOADEST models but is not immune to them. Understanding the causes of the bias problem is crucial to selecting an appropriate method for flux computations. Diagnostic tools for identifying the potential for bias problems are introduced, and strategies for resolving bias problems are described.
Directory of Open Access Journals (Sweden)
Hongjian Wang
2014-01-01
Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.
Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad
2015-01-01
Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.
International Nuclear Information System (INIS)
Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun
2010-01-01
In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method
Observer-Based and Regression Model-Based Detection of Emerging Faults in Coal Mills
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Lin, Bao; Jørgensen, Sten Bay
2006-01-01
In order to improve the reliability of power plants it is important to detect fault as fast as possible. Doing this it is interesting to find the most efficient method. Since modeling of large scale systems is time consuming it is interesting to compare a model-based method with data driven ones....
Genomic prediction based on data from three layer lines using non-linear regression models
Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.
2014-01-01
Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate
Nonparametric Methods in Astronomy: Think, Regress, Observe—Pick Any Three
Steinhardt, Charles L.; Jermyn, Adam S.
2018-02-01
Telescopes are much more expensive than astronomers, so it is essential to minimize required sample sizes by using the most data-efficient statistical methods possible. However, the most commonly used model-independent techniques for finding the relationship between two variables in astronomy are flawed. In the worst case they can lead without warning to subtly yet catastrophically wrong results, and even in the best case they require more data than necessary. Unfortunately, there is no single best technique for nonparametric regression. Instead, we provide a guide for how astronomers can choose the best method for their specific problem and provide a python library with both wrappers for the most useful existing algorithms and implementations of two new algorithms developed here.
An Application of Robust Method in Multiple Linear Regression Model toward Credit Card Debt
Amira Azmi, Nur; Saifullah Rusiman, Mohd; Khalid, Kamil; Roslan, Rozaini; Sufahani, Suliadi; Mohamad, Mahathir; Salleh, Rohayu Mohd; Hamzah, Nur Shamsidah Amir
2018-04-01
Credit card is a convenient alternative replaced cash or cheque, and it is essential component for electronic and internet commerce. In this study, the researchers attempt to determine the relationship and significance variables between credit card debt and demographic variables such as age, household income, education level, years with current employer, years at current address, debt to income ratio and other debt. The provided data covers 850 customers information. There are three methods that applied to the credit card debt data which are multiple linear regression (MLR) models, MLR models with least quartile difference (LQD) method and MLR models with mean absolute deviation method. After comparing among three methods, it is found that MLR model with LQD method became the best model with the lowest value of mean square error (MSE). According to the final model, it shows that the years with current employer, years at current address, household income in thousands and debt to income ratio are positively associated with the amount of credit debt. Meanwhile variables for age, level of education and other debt are negatively associated with amount of credit debt. This study may serve as a reference for the bank company by using robust methods, so that they could better understand their options and choice that is best aligned with their goals for inference regarding to the credit card debt.
A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data
Directory of Open Access Journals (Sweden)
Ruzzo Walter L
2006-03-01
Full Text Available Abstract Background As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. Methods In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN algorithm. The choice of KNN is motivated by its simplicity, flexibility to incorporate different data types and adaptability to irregular feature spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is that performance is subject to the often ad hoc choice of similarity metric. To address this weakness, we apply regression methods to infer a similarity metric as a weighted combination of a set of base similarity measures, which helps to locate the neighbors that are most likely to be in the same class as the target gene. We also suggest a novel voting scheme to generate confidence scores that estimate the accuracy of predictions. The method gracefully extends to multi-way classification problems. Results We apply this technique to gene function prediction according to three well-known Escherichia coli classification schemes suggested by biologists, using information derived from microarray and genome sequencing data. We demonstrate that our algorithm dramatically outperforms the naive KNN methods and is competitive with support vector machine (SVM algorithms for integrating heterogenous data. We also show that by combining different data sources, prediction accuracy can improve significantly. Conclusion Our extension of KNN with automatic feature weighting, multi-class prediction, and probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive and flexible. This general framework can also be applied to similar classification problems involving heterogeneous datasets.
Estimating HIES Data through Ratio and Regression Methods for Different Sampling Designs
Directory of Open Access Journals (Sweden)
Faqir Muhammad
2007-01-01
Full Text Available In this study, comparison has been made for different sampling designs, using the HIES data of North West Frontier Province (NWFP for 2001-02 and 1998-99 collected from the Federal Bureau of Statistics, Statistical Division, Government of Pakistan, Islamabad. The performance of the estimators has also been considered using bootstrap and Jacknife. A two-stage stratified random sample design is adopted by HIES. In the first stage, enumeration blocks and villages are treated as the first stage Primary Sampling Units (PSU. The sample PSU’s are selected with probability proportional to size. Secondary Sampling Units (SSU i.e., households are selected by systematic sampling with a random start. They have used a single study variable. We have compared the HIES technique with some other designs, which are: Stratified Simple Random Sampling. Stratified Systematic Sampling. Stratified Ranked Set Sampling. Stratified Two Phase Sampling. Ratio and Regression methods were applied with two study variables, which are: Income (y and Household sizes (x. Jacknife and Bootstrap are used for variance replication. Simple Random Sampling with sample size (462 to 561 gave moderate variances both by Jacknife and Bootstrap. By applying Systematic Sampling, we received moderate variance with sample size (467. In Jacknife with Systematic Sampling, we obtained variance of regression estimator greater than that of ratio estimator for a sample size (467 to 631. At a sample size (952 variance of ratio estimator gets greater than that of regression estimator. The most efficient design comes out to be Ranked set sampling compared with other designs. The Ranked set sampling with jackknife and bootstrap, gives minimum variance even with the smallest sample size (467. Two Phase sampling gave poor performance. Multi-stage sampling applied by HIES gave large variances especially if used with a single study variable.
A Gaussian process regression based hybrid approach for short-term wind speed prediction
International Nuclear Information System (INIS)
Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian
2016-01-01
Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.
Xie, Yang; Schreier, Günter; Chang, David C W; Neubauer, Sandra; Redmond, Stephen J; Lovell, Nigel H
2014-01-01
Healthcare administrators worldwide are striving to both lower the cost of care whilst improving the quality of care given. Therefore, better clinical and administrative decision making is needed to improve these issues. Anticipating outcomes such as number of hospitalization days could contribute to addressing this problem. In this paper, a method was developed, using large-scale health insurance claims data, to predict the number of hospitalization days in a population. We utilized a regression decision tree algorithm, along with insurance claim data from 300,000 individuals over three years, to provide predictions of number of days in hospital in the third year, based on medical admissions and claims data from the first two years. Our method performs well in the general population. For the population aged 65 years and over, the predictive model significantly improves predictions over a baseline method (predicting a constant number of days for each patient), and achieved a specificity of 70.20% and sensitivity of 75.69% in classifying these subjects into two categories of 'no hospitalization' and 'at least one day in hospital'.
Regression to fuzziness method for estimation of remaining useful life in power plant components
Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.
2014-10-01
Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
DEFF Research Database (Denmark)
Schlechtingen, Meik; Santos, Ilmar
2011-01-01
This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal...
Wulandari, S. P.; Salamah, M.; Rositawati, A. F. D.
2018-04-01
Food security is the condition where the food fulfilment is managed well for the country till the individual. Indonesia is one of the country which has the commitment to create the food security becomes main priority. However, the food necessity becomes common thing means that it doesn’t care about nutrient standard and the health condition of family member, so in the fulfilment of food necessity also has to consider the disease suffered by the family member, one of them is pulmonary tuberculosa. From that reasons, this research is conducted to know the factors which influence on household food security status which suffered from pulmonary tuberculosis in the coastal area of Surabaya by using binary logistic regression method. The analysis result by using binary logistic regression shows that the variables wife latest education, house density and spacious house ventilation significantly affect on household food security status which suffered from pulmonary tuberculosis in the coastal area of Surabaya, where the wife education level is University/equivalent, the house density is eligible or 8 m2/person and spacious house ventilation 10% of the floor area has the opportunity to become food secure households amounted to 0.911089. While the chance of becoming food insecure households amounted to 0.088911. The model household food security status which suffered from pulmonary tuberculosis in the coastal area of Surabaya has been conformable, and the overall percentages of those classifications are at 71.8%.
International Nuclear Information System (INIS)
Gupta, N
2008-01-01
3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures
A neutron spectrum unfolding code based on generalized regression artificial neural networks
International Nuclear Information System (INIS)
Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R.
2015-10-01
The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)
Energy Technology Data Exchange (ETDEWEB)
Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné [Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Armitage, Paul [The Academic Unit of Radiology, The University of Sheffield, Sheffield S10 2JF (United Kingdom); Whitby, Elspeth [The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield S10 2SF (United Kingdom); King, David [The Academic Unit of Child Health, The University of Sheffield, Sheffield S10 2TH (United Kingdom); Dimitri, Paul [The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield S10 2RX (United Kingdom); Frangi, Alejandro F. [Center for Computational Imaging and Simulation Technologies in Biomedicine, The University of Sheffield, Sheffield S1 3JD (United Kingdom)
2016-06-15
Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by using a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.
A neutron spectrum unfolding code based on generalized regression artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)
2015-10-15
The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a {sup 6}LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
Statistical learning method in regression analysis of simulated positron spectral data
International Nuclear Information System (INIS)
Avdic, S. Dz.
2005-01-01
Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)
The crux of the method: assumptions in ordinary least squares and logistic regression.
Long, Rebecca G
2008-10-01
Logistic regression has increasingly become the tool of choice when analyzing data with a binary dependent variable. While resources relating to the technique are widely available, clear discussions of why logistic regression should be used in place of ordinary least squares regression are difficult to find. The current paper compares and contrasts the assumptions of ordinary least squares with those of logistic regression and explains why logistic regression's looser assumptions make it adept at handling violations of the more important assumptions in ordinary least squares.
Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru
2010-08-01
The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. Copyright © 2010 John Wiley & Sons, Ltd.
Advanced signal processing based on support vector regression for lidar applications
Gelfusa, M.; Murari, A.; Malizia, A.; Lungaroni, M.; Peluso, E.; Parracino, S.; Talebzadeh, S.; Vega, J.; Gaudio, P.
2015-10-01
The LIDAR technique has recently found many applications in atmospheric physics and remote sensing. One of the main issues, in the deployment of systems based on LIDAR, is the filtering of the backscattered signal to alleviate the problems generated by noise. Improvement in the signal to noise ratio is typically achieved by averaging a quite large number (of the order of hundreds) of successive laser pulses. This approach can be effective but presents significant limitations. First of all, it implies a great stress on the laser source, particularly in the case of systems for automatic monitoring of large areas for long periods. Secondly, this solution can become difficult to implement in applications characterised by rapid variations of the atmosphere, for example in the case of pollutant emissions, or by abrupt changes in the noise. In this contribution, a new method for the software filtering and denoising of LIDAR signals is presented. The technique is based on support vector regression. The proposed new method is insensitive to the statistics of the noise and is therefore fully general and quite robust. The developed numerical tool has been systematically compared with the most powerful techniques available, using both synthetic and experimental data. Its performances have been tested for various statistical distributions of the noise and also for other disturbances of the acquired signal such as outliers. The competitive advantages of the proposed method are fully documented. The potential of the proposed approach to widen the capability of the LIDAR technique, particularly in the detection of widespread smoke, is discussed in detail.
International Nuclear Information System (INIS)
Tsushima, Motoo; Fujii, Shigeki; Yutani, Chikao; Yamamoto, Akira; Naitoh, Hiroaki.
1990-01-01
We evaluated the wall thickening and stenosis rate (ASI), the calcification rate (ACI), and the wall thickening and calcification stenosis rate (SCI) of the lower abdominal aorta calculated by the 12 sector method from simple or enhanced computed tomography. The intra-observer variation of the calculation of ASI was 5.7% and that of ACI was 2.4%. In 9 patients who underwent an autopsy examination, ACI was significantly correlated with the rate of the calcification dimension to the whole objective area of the abdominal aorta (r=0.856, p<0.01). However, there were no correlations between ASI and the surface involvement or the atherosclerotic index obtained by the point-counting method of the autopsy materials. In the analysis of 40 patients with atherosclerotic vascular diseases, ASI and ACI were also highly correlated with the percentage volume of the arterial wall in relation to the whole volume of the observed artery (r=0.852, p<0.0001) and also the percentage calcification volume (r=0.913, p<0.0001) calculated by the computed method, respectively. The percentage of atherosclerotic vascular diseases increased in the group of both high ASI (over 10%) and high ACI (over 20%). We used SCI as a reliable index when the progression and regression of atherosclerosis was considered. Among patients of hypercholesterolemia consisting of 15 with familial hypercholesterolemia (FH) and 6 non-FH patients, the change of SCI (d-SCI) was significantly correlated with the change of total cholesterol concentration (d-TC) after the treatment (r=0.466, p<0.05) and the change of the right Achilles' tendon thickening (d-ATT) was also correlated with d-TC (r=0.634, p<0.005). However, no correlation between d-SCI and d-ATT was observed. In conclusion, CT indices of atherosclerosis were useful as a noninvasive quantitative diagnostic method and we were able to use them to assess the progression and regression of atherosclerosis. (author)
The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression
Directory of Open Access Journals (Sweden)
Chunxiao Zhang
2012-01-01
Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.
Directory of Open Access Journals (Sweden)
Xian-Xia Zhang
2013-01-01
Full Text Available This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR learning. The concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF, which enhance the capability of the 3D FLC to cope with more kinds of MFs. The nonlinear mathematical expression of the reference function based 3D FLC is derived, and spatial fuzzy basis functions are defined. Via relating spatial fuzzy basis functions of a 3D FLC to kernel functions of an SVR, an equivalence relationship between a 3D FLC and an SVR is established. Therefore, a 3D FLC can be constructed using the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation results have verified its effectiveness.
Liu, Fang; Eugenio, Evercita C
2018-04-01
Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.
Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard
2016-10-01
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
Sample size calculation to externally validate scoring systems based on logistic regression models.
Directory of Open Access Journals (Sweden)
Antonio Palazón-Bru
Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.
Reflexion on linear regression trip production modelling method for ensuring good model quality
Suprayitno, Hitapriya; Ratnasari, Vita
2017-11-01
Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.
2017-12-01
Fig. 2 Simulation method; the process for one iteration of the simulation . It was repeated 250 times per combination of HR and FAR. Analysis was...distribution is unlimited. 8 Fig. 2 Simulation method; the process for one iteration of the simulation . It was repeated 250 times per combination of HR...stimuli. Simulations show that this regression method results in an unbiased and accurate estimate of target detection performance. The regression
Isa, Zakiah Mohd; Tawfiq, Omar Farouq; Noor, Norliza Mohd; Shamsudheen, Mohd Iqbal; Rijal, Omar Mohd
2010-03-01
In rehabilitating edentulous patients, selecting appropriately sized teeth in the absence of preextraction records is problematic. The purpose of this study was to investigate the relationships between some facial dimensions and widths of the maxillary anterior teeth to potentially provide a guide for tooth selection. Sixty full dentate Malaysian adults (18-36 years) representing 2 ethnic groups (Malay and Chinese), with well aligned maxillary anterior teeth and minimal attrition, participated in this study. Standardized digital images of the face, viewed frontally, were recorded. Using image analyzing software, the images were used to determine the interpupillary distance (IPD), inner canthal distance (ICD), and interalar width (IA). Widths of the 6 maxillary anterior teeth were measured directly from casts of the subjects using digital calipers. Regression analyses were conducted to measure the strength of the associations between the variables (alpha=.10). The means (standard deviations) of IPD, IA, and ICD of the subjects were 62.28 (2.47), 39.36 (3.12), and 34.36 (2.15) mm, respectively. The mesiodistal diameters of the maxillary central incisors, lateral incisors, and canines were 8.54 (0.50), 7.09 (0.48), and 7.94 (0.40) mm, respectively. The width of the central incisors was highly correlated to the IPD (r=0.99), while the widths of the lateral incisors and canines were highly correlated to a combination of IPD and IA (r=0.99 and 0.94, respectively). Using regression methods, the widths of the anterior teeth within the population tested may be predicted by a combination of the facial dimensions studied. (c) 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Inverse estimation of multiple muscle activations based on linear logistic regression.
Sekiya, Masashi; Tsuji, Toshiaki
2017-07-01
This study deals with a technology to estimate the muscle activity from the movement data using a statistical model. A linear regression (LR) model and artificial neural networks (ANN) have been known as statistical models for such use. Although ANN has a high estimation capability, it is often in the clinical application that the lack of data amount leads to performance deterioration. On the other hand, the LR model has a limitation in generalization performance. We therefore propose a muscle activity estimation method to improve the generalization performance through the use of linear logistic regression model. The proposed method was compared with the LR model and ANN in the verification experiment with 7 participants. As a result, the proposed method showed better generalization performance than the conventional methods in various tasks.
Modeling Personalized Email Prioritization: Classification-based and Regression-based Approaches
Energy Technology Data Exchange (ETDEWEB)
Yoo S.; Yang, Y.; Carbonell, J.
2011-10-24
Email overload, even after spam filtering, presents a serious productivity challenge for busy professionals and executives. One solution is automated prioritization of incoming emails to ensure the most important are read and processed quickly, while others are processed later as/if time permits in declining priority levels. This paper presents a study of machine learning approaches to email prioritization into discrete levels, comparing ordinal regression versus classier cascades. Given the ordinal nature of discrete email priority levels, SVM ordinal regression would be expected to perform well, but surprisingly a cascade of SVM classifiers significantly outperforms ordinal regression for email prioritization. In contrast, SVM regression performs well -- better than classifiers -- on selected UCI data sets. This unexpected performance inversion is analyzed and results are presented, providing core functionality for email prioritization systems.
Forecast daily indices of solar activity, F10.7, using support vector regression method
International Nuclear Information System (INIS)
Huang Cong; Liu Dandan; Wang Jingsong
2009-01-01
The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network. (research paper)
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Whole-genome regression and prediction methods applied to plant and animal breeding
Los Campos, De G.; Hickey, J.M.; Pong-Wong, R.; Daetwyler, H.D.; Calus, M.P.L.
2013-01-01
Genomic-enabled prediction is becoming increasingly important in animal and plant breeding, and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of
Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method
Prahutama, Alan; Sudarno
2018-05-01
The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9).
Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E
2018-03-01
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.
Temporelli, Karina L; Viego, Valentina N
2016-08-01
Objective To measure the effect of socioeconomic variables on the prevalence of obesity. Factors such as income level, urbanization, incorporation of women into the labor market and access to unhealthy foods are considered in this paper. Method Econometric estimates of the proportion of obese men and women by country were calculated using models based on panel data and quantile regressions, with data from 192 countries for the period 2002-2005.Levels of per capita income, urbanization, income/big mac ratio price and labor indicators for female population were considered as explanatory variables. Results Factors that have influence over obesity in adults differ between men and women; accessibility to fast food is related to male obesity, while the employment mode causes higher rates in women. The underlying socioeconomic factors for obesity are also different depending on the magnitude of this problem in each country; in countries with low prevalence, a greater level of income favor the transition to obesogenic habits, while a higher income level mitigates the problem in those countries with high rates of obesity. Discussion Identifying the socio-economic causes of the significant increase in the prevalence of obesity is essential for the implementation of effective strategies for prevention, since this condition not only affects the quality of life of those who suffer from it but also puts pressure on health systems due to the treatment costs of associated diseases.
Groundwater level prediction of landslide based on classification and regression tree
Directory of Open Access Journals (Sweden)
Yannan Zhao
2016-09-01
Full Text Available According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree (CART model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15% respectively. To compare the support vector machine (SVM model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides.
Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.
2017-01-01
Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564
Directory of Open Access Journals (Sweden)
Stefanos Georganos
2018-02-01
Full Text Available In object-based image analysis (OBIA, the appropriate parametrization of segmentation algorithms is crucial for obtaining satisfactory image classification results. One of the ways this can be done is by unsupervised segmentation parameter optimization (USPO. A popular USPO method does this through the optimization of a “global score” (GS, which minimizes intrasegment heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this approach has not been investigated in detail. In the context of a remote sensing very-high-resolution urban application, we show the limitations of the fixed threshold approach, both in a theoretical and applied manner, and instead propose a novel solution to identify the range of candidate segmentations using local regression trend analysis. We found that the proposed approach showed significant improvements over the use of fixed minimum/maximum values, is less subjective than user-defined threshold values and, thus, can be of merit for a fully automated procedure and big data applications.
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
Kaskhedikar, Apoorva Prakash
According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI
A neutron spectrum unfolding code based on generalized regression artificial neural networks
International Nuclear Information System (INIS)
Rosario Martinez-Blanco, Ma. del
2016-01-01
The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a "6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. - Highlights: • Main drawback of neutron spectrometry with BPNN is network topology optimization. • Compared to BPNN, it’s usually much faster to train a (GRNN). • GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest. • This computational code, automates the pre-processing, training
Fatekurohman, Mohamat; Nurmala, Nita; Anggraeni, Dian
2018-04-01
Lungs are the most important organ, in the case of respiratory system. Problems related to disorder of the lungs are various, i.e. pneumonia, emphysema, tuberculosis and lung cancer. Comparing all those problems, lung cancer is the most harmful. Considering about that, the aim of this research applies survival analysis and factors affecting the endurance of the lung cancer patient using comparison of exact, Efron and Breslow parameter approach method on hazard ratio and stratified cox regression model. The data applied are based on the medical records of lung cancer patients in Jember Paru-paru hospital on 2016, east java, Indonesia. The factors affecting the endurance of the lung cancer patients can be classified into several criteria, i.e. sex, age, hemoglobin, leukocytes, erythrocytes, sedimentation rate of blood, therapy status, general condition, body weight. The result shows that exact method of stratified cox regression model is better than other. On the other hand, the endurance of the patients is affected by their age and the general conditions.
Yu, Wenbao; Park, Taesung
2014-01-01
It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.
Directory of Open Access Journals (Sweden)
Tamer Khatib
2014-01-01
Full Text Available In this research an improved approach for sizing standalone PV system (SAPV is presented. This work is an improved work developed previously by the authors. The previous work is based on the analytical method which faced some concerns regarding the difficulty of finding the model’s coefficients. Therefore, the proposed approach in this research is based on a combination of an analytical method and a machine learning approach for a generalized artificial neural network (GRNN. The GRNN assists to predict the optimal size of a PV system using the geographical coordinates of the targeted site instead of using mathematical formulas. Employing the GRNN facilitates the use of a previously developed method by the authors and avoids some of its drawbacks. The approach has been tested using data from five Malaysian sites. According to the results, the proposed method can be efficiently used for SAPV sizing whereas the proposed GRNN based model predicts the sizing curves of the PV system accurately with a prediction error of 0.6%. Moreover, hourly meteorological and load demand data are used in this research in order to consider the uncertainty of the solar energy and the load demand.
Linear and support vector regressions based on geometrical correlation of data
Directory of Open Access Journals (Sweden)
Kaijun Wang
2007-10-01
Full Text Available Linear regression (LR and support vector regression (SVR are widely used in data analysis. Geometrical correlation learning (GcLearn was proposed recently to improve the predictive ability of LR and SVR through mining and using correlations between data of a variable (inner correlation. This paper theoretically analyzes prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. This gives the applicable condition of GcLearn method.
[Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].
Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao
2016-03-01
Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.
Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression
Directory of Open Access Journals (Sweden)
Li Jian
2017-01-01
Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.
International Nuclear Information System (INIS)
Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.
2013-01-01
Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability
International Nuclear Information System (INIS)
Halepoto, I.A.; Uqaili, M.A.
2014-01-01
Nowadays, due to power crisis, electricity demand forecasting is deemed an important area for socioeconomic development and proper anticipation of the load forecasting is considered essential step towards efficient power system operation, scheduling and planning. In this paper, we present STLF (Short Term Load Forecasting) using multiple regression techniques (i.e. linear, multiple linear, quadratic and exponential) by considering hour by hour load model based on specific targeted day approach with temperature variant parameter. The proposed work forecasts the future load demand correlation with linear and non-linear parameters (i.e. considering temperature in our case) through different regression approaches. The overall load forecasting error is 2.98% which is very much acceptable. From proposed regression techniques, Quadratic Regression technique performs better compared to than other techniques because it can optimally fit broad range of functions and data sets. The work proposed in this paper, will pave a path to effectively forecast the specific day load with multiple variance factors in a way that optimal accuracy can be maintained. (author)
Liou, Jyun-you; Smith, Elliot H.; Bateman, Lisa M.; McKhann, Guy M., II; Goodman, Robert R.; Greger, Bradley; Davis, Tyler S.; Kellis, Spencer S.; House, Paul A.; Schevon, Catherine A.
2017-08-01
Objective. Epileptiform discharges, an electrophysiological hallmark of seizures, can propagate across cortical tissue in a manner similar to traveling waves. Recent work has focused attention on the origination and propagation patterns of these discharges, yielding important clues to their source location and mechanism of travel. However, systematic studies of methods for measuring propagation are lacking. Approach. We analyzed epileptiform discharges in microelectrode array recordings of human seizures. The array records multiunit activity and local field potentials at 400 micron spatial resolution, from a small cortical site free of obstructions. We evaluated several computationally efficient statistical methods for calculating traveling wave velocity, benchmarking them to analyses of associated neuronal burst firing. Main results. Over 90% of discharges met statistical criteria for propagation across the sampled cortical territory. Detection rate, direction and speed estimates derived from a multiunit estimator were compared to four field potential-based estimators: negative peak, maximum descent, high gamma power, and cross-correlation. Interestingly, the methods that were computationally simplest and most efficient (negative peak and maximal descent) offer non-inferior results in predicting neuronal traveling wave velocities compared to the other two, more complex methods. Moreover, the negative peak and maximal descent methods proved to be more robust against reduced spatial sampling challenges. Using least absolute deviation in place of least squares error minimized the impact of outliers, and reduced the discrepancies between local field potential-based and multiunit estimators. Significance. Our findings suggest that ictal epileptiform discharges typically take the form of exceptionally strong, rapidly traveling waves, with propagation detectable across millimeter distances. The sequential activation of neurons in space can be inferred from clinically
Akbari, Somaye; Zebardast, Tannaz; Zarghi, Afshin; Hajimahdi, Zahra
2017-01-01
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R 2 ) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one-out (LOO) cross validation (LOO correlation coefficient (Q 2 ) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.
Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
Xu, Kelin; Jin, Li; Xiong, Momiao
2017-05-18
Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction
Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa
2008-01-01
This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-05-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Wan, Jian; Chen, Yi-Chieh; Morris, A Julian; Thennadil, Suresh N
2017-07-01
Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample preparation. The successful application of NIR spectroscopy relies on three main aspects: pre-processing of spectral data to eliminate nonlinear variations due to temperature, light scattering effects and many others, selection of those wavelengths that contribute useful information, and identification of suitable calibration models using linear/nonlinear regression . Several methods have been developed for each of these three aspects and many comparative studies of different methods exist for an individual aspect or some combinations. However, there is still a lack of comparative studies for the interactions among these three aspects, which can shed light on what role each aspect plays in the calibration and how to combine various methods of each aspect together to obtain the best calibration model. This paper aims to provide such a comparative study based on four benchmark data sets using three typical pre-processing methods, namely, orthogonal signal correction (OSC), extended multiplicative signal correction (EMSC) and optical path-length estimation and correction (OPLEC); two existing wavelength selection methods, namely, stepwise forward selection (SFS) and genetic algorithm optimization combined with partial least squares regression for spectral data (GAPLSSP); four popular regression methods, namely, partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), least squares support vector machine (LS-SVM), and Gaussian process regression (GPR). The comparative study indicates that, in general, pre-processing of spectral data can play a significant
Regression-based model of skin diffuse reflectance for skin color analysis
Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi
2008-11-01
A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.
Dynamic Optimization for IPS2 Resource Allocation Based on Improved Fuzzy Multiple Linear Regression
Directory of Open Access Journals (Sweden)
Maokuan Zheng
2017-01-01
Full Text Available The study mainly focuses on resource allocation optimization for industrial product-service systems (IPS2. The development of IPS2 leads to sustainable economy by introducing cooperative mechanisms apart from commodity transaction. The randomness and fluctuation of service requests from customers lead to the volatility of IPS2 resource utilization ratio. Three basic rules for resource allocation optimization are put forward to improve system operation efficiency and cut unnecessary costs. An approach based on fuzzy multiple linear regression (FMLR is developed, which integrates the strength and concision of multiple linear regression in data fitting and factor analysis and the merit of fuzzy theory in dealing with uncertain or vague problems, which helps reduce those costs caused by unnecessary resource transfer. The iteration mechanism is introduced in the FMLR algorithm to improve forecasting accuracy. A case study of human resource allocation optimization in construction machinery industry is implemented to test and verify the proposed model.
Directory of Open Access Journals (Sweden)
Pełka Paweł
2017-01-01
Full Text Available Electricity demand forecasting is of important role in power system planning and operation. In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. The forecasting model was based on the pre-processed energy consumption time series, where input and output variables were defined as patterns representing unified fragments of the time series. Relationships between inputs and outputs, which were simplified due to patterns, were modelled using nonparametric regression with weighting function defined as a fuzzy membership of learning points to the neighbourhood of a query point. In an experimental part of the work the model was evaluated using real-world data. The results are encouraging and show high performances of the model and its competitiveness compared to other forecasting models.
A Spline-Based Lack-Of-Fit Test for Independent Variable Effect in Poisson Regression.
Li, Chin-Shang; Tu, Wanzhu
2007-05-01
In regression analysis of count data, independent variables are often modeled by their linear effects under the assumption of log-linearity. In reality, the validity of such an assumption is rarely tested, and its use is at times unjustifiable. A lack-of-fit test is proposed for the adequacy of a postulated functional form of an independent variable within the framework of semiparametric Poisson regression models based on penalized splines. It offers added flexibility in accommodating the potentially non-loglinear effect of the independent variable. A likelihood ratio test is constructed for the adequacy of the postulated parametric form, for example log-linearity, of the independent variable effect. Simulations indicate that the proposed model performs well, and misspecified parametric model has much reduced power. An example is given.
International Nuclear Information System (INIS)
Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.
2008-01-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys
International Nuclear Information System (INIS)
Wang Weida; Xia Junding; Zhou Zhixin; Leung, P.L.
2001-01-01
Thermoluminescence (TL) dating using a regression method of saturating exponential in pre-dose technique was described. 23 porcelain samples from past dynasties of China were dated by this method. The results show that the TL ages are in reasonable agreement with archaeological dates within a standard deviation of 27%. Such error can be accepted in porcelain dating
The analysis of survival data in nephrology: basic concepts and methods of Cox regression
van Dijk, Paul C.; Jager, Kitty J.; Zwinderman, Aeilko H.; Zoccali, Carmine; Dekker, Friedo W.
2008-01-01
How much does the survival of one group differ from the survival of another group? How do differences in age in these two groups affect such a comparison? To obtain a quantity to compare the survival of different patient groups and to account for confounding effects, a multiple regression technique
Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara
2017-01-01
In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.
Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods
Directory of Open Access Journals (Sweden)
Dick Apronti
2016-12-01
Full Text Available Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost-effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.
High cycle fatigue test and regression methods of S-N curve
International Nuclear Information System (INIS)
Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.
2011-11-01
The fatigue design curve in the ASME Boiler and Pressure Vessel Code Section III are based on the assumption that fatigue life is infinite after 106 cycles. This is because standard fatigue testing equipment prior to the past decades was limited in speed to less than 200 cycles per second. Traditional servo-hydraulic machines work at frequency of 50 Hz. Servo-hydraulic machines working at 1000 Hz have been developed after 1997. This machines allow high frequency and displacement of up to ±0.1 mm and dynamic load of ±20 kN are guaranteed. The frequency of resonant fatigue test machine is 50-250 Hz. Various forced vibration-based system works at 500 Hz or 1.8 kHz. Rotating bending machines allow testing frequency at 0.1-200 Hz. The main advantage of ultrasonic fatigue testing at 20 kHz is performing Although S-N curve is determined by experiment, the fatigue strength corresponding to a given fatigue life should be determined by statistical method considering the scatter of fatigue properties. In this report, the statistical methods for evaluation of fatigue test data is investigated
A computer program for uncertainty analysis integrating regression and Bayesian methods
Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary
2014-01-01
This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.
Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network
International Nuclear Information System (INIS)
Li Peng; Song Lijun; Han Chao; Zheng Yi; Cao Baofeng; Li Xiaoqiang; Zhang Xueqin; Liang Rui
2010-01-01
Auto-regression (AR) model, one power spectrum estimation method of stationary random signals, and artificial neutral network were adopted to recognize nuclear and lightning electromagnetic pulses. Self-correlation function and Burg algorithms were used to acquire the AR model coefficients as eigenvalues, and BP artificial neural network was introduced as the classifier with different numbers of hidden layers and hidden layer nodes. The results show that AR model is effective in those signals, feature extraction, and the Burg algorithm is more effective than the self-correlation function algorithm. (authors)
Directory of Open Access Journals (Sweden)
Zhigao Zeng
2016-01-01
Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.
Energy Technology Data Exchange (ETDEWEB)
Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)
2010-07-01
Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.
Variable selection methods in PLS regression - a comparison study on metabolomics data
DEFF Research Database (Denmark)
Karaman, İbrahim; Hedemann, Mette Skou; Knudsen, Knud Erik Bach
. The aim of the metabolomics study was to investigate the metabolic profile in pigs fed various cereal fractions with special attention to the metabolism of lignans using LC-MS based metabolomic approach. References 1. Lê Cao KA, Rossouw D, Robert-Granié C, Besse P: A Sparse PLS for Variable Selection when...... integrated approach. Due to the high number of variables in data sets (both raw data and after peak picking) the selection of important variables in an explorative analysis is difficult, especially when different data sets of metabolomics data need to be related. Variable selection (or removal of irrelevant...... different strategies for variable selection on PLSR method were considered and compared with respect to selected subset of variables and the possibility for biological validation. Sparse PLSR [1] as well as PLSR with Jack-knifing [2] was applied to data in order to achieve variable selection prior...
Time series regression-based pairs trading in the Korean equities market
Kim, Saejoon; Heo, Jun
2017-07-01
Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.
Ordinal Regression Based Subpixel Shift Estimation for Video Super-Resolution
Directory of Open Access Journals (Sweden)
Petrovic Nemanja
2007-01-01
Full Text Available We present a supervised learning-based approach for subpixel motion estimation which is then used to perform video super-resolution. The novelty of this work is the formulation of the problem of subpixel motion estimation in a ranking framework. The ranking formulation is a variant of classification and regression formulation, in which the ordering present in class labels namely, the shift between patches is explicitly taken into account. Finally, we demonstrate the applicability of our approach on superresolving synthetically generated images with global subpixel shifts and enhancing real video frames by accounting for both local integer and subpixel shifts.
An Application to the Prediction of LOD Change Based on General Regression Neural Network
Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.
2011-07-01
Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.
International Nuclear Information System (INIS)
Sambou, Soussou
2004-01-01
In flood forecasting modelling, large basins are often considered as hydrological systems with multiple inputs and one output. Inputs are hydrological variables such rainfall, runoff and physical characteristics of basin; output is runoff. Relating inputs to output can be achieved using deterministic, conceptual, or stochastic models. Rainfall runoff models generally lack of accuracy. Physical hydrological processes based models, either deterministic or conceptual are highly data requirement demanding and by the way very complex. Stochastic multiple input-output models, using only historical chronicles of hydrological variables particularly runoff are by the way very popular among the hydrologists for large river basin flood forecasting. Application is made on the Senegal River upstream of Bakel, where the River is formed by the main branch, Bafing, and two tributaries, Bakoye and Faleme; Bafing being regulated by Manantaly Dam. A three inputs and one output model has been used for flood forecasting on Bakel. Influence of the lead forecasting, and of the three inputs taken separately, then associated two by two, and altogether has been verified using a dimensionless variance as criterion of quality. Inadequacies occur generally between model output and observations; to put model in better compliance with current observations, we have compared four parameter updating procedure, recursive least squares, Kalman filtering, stochastic gradient method, iterative method, and an AR errors forecasting model. A combination of these model updating have been used in real time flood forecasting.(Author)
Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran
2018-03-01
This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).
International Nuclear Information System (INIS)
Chen, Kuilin; Yu, Jie
2014-01-01
Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional
Lusiana, Evellin Dewi
2017-12-01
The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.
GIS-based rare events logistic regression for mineral prospectivity mapping
Xiong, Yihui; Zuo, Renguang
2018-02-01
Mineralization is a special type of singularity event, and can be considered as a rare event, because within a specific study area the number of prospective locations (1s) are considerably fewer than the number of non-prospective locations (0s). In this study, GIS-based rare events logistic regression (RELR) was used to map the mineral prospectivity in the southwestern Fujian Province, China. An odds ratio was used to measure the relative importance of the evidence variables with respect to mineralization. The results suggest that formations, granites, and skarn alterations, followed by faults and aeromagnetic anomaly are the most important indicators for the formation of Fe-related mineralization in the study area. The prediction rate and the area under the curve (AUC) values show that areas with higher probability have a strong spatial relationship with the known mineral deposits. Comparing the results with original logistic regression (OLR) demonstrates that the GIS-based RELR performs better than OLR. The prospectivity map obtained in this study benefits the search for skarn Fe-related mineralization in the study area.
Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey
2014-04-15
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.
Eekhout, I.; Wiel, M.A. van de; Heymans, M.W.
2017-01-01
Background. Multiple imputation is a recommended method to handle missing data. For significance testing after multiple imputation, Rubin’s Rules (RR) are easily applied to pool parameter estimates. In a logistic regression model, to consider whether a categorical covariate with more than two levels
Determination of benzo(apyrene content in PM10 using regression methods
Directory of Open Access Journals (Sweden)
Jacek Gębicki
2015-12-01
Full Text Available The paper presents an attempt of application of multidimensional linear regression to estimation of an empirical model describing the factors influencing on B(aP content in suspended dust PM10 in Olsztyn and Elbląg city regions between 2010 and 2013. During this period annual average concentration of B(aP in PM10 exceeded the admissible level 1.5-3 times. Conducted investigations confirm that the reasons of B(aP concentration increase are low-efficiency individual home heat stations or low-temperature heat sources, which are responsible for so-called low emission during heating period. Dependences between the following quantities were analysed: concentration of PM10 dust in air, air temperature, wind velocity, air humidity. A measure of model fitting to actual B(aP concentration in PM10 was the coefficient of determination of the model. Application of multidimensional linear regression yielded the equations characterized by high values of the coefficient of determination of the model, especially during heating season. This parameter ranged from 0.54 to 0.80 during the analyzed period.
Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.
2015-05-01
The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels
hMuLab: A Biomedical Hybrid MUlti-LABel Classifier Based on Multiple Linear Regression.
Wang, Pu; Ge, Ruiquan; Xiao, Xuan; Zhou, Manli; Zhou, Fengfeng
2017-01-01
Many biomedical classification problems are multi-label by nature, e.g., a gene involved in a variety of functions and a patient with multiple diseases. The majority of existing classification algorithms assumes each sample with only one class label, and the multi-label classification problem remains to be a challenge for biomedical researchers. This study proposes a novel multi-label learning algorithm, hMuLab, by integrating both feature-based and neighbor-based similarity scores. The multiple linear regression modeling techniques make hMuLab capable of producing multiple label assignments for a query sample. The comparison results over six commonly-used multi-label performance measurements suggest that hMuLab performs accurately and stably for the biomedical datasets, and may serve as a complement to the existing literature.
Computational neural network regression model for Host based Intrusion Detection System
Directory of Open Access Journals (Sweden)
Sunil Kumar Gautam
2016-09-01
Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.
International Nuclear Information System (INIS)
Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien
2015-01-01
Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables
Kolasa-Wiecek, Alicja
2015-04-01
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.
Efectivity of Additive Spline for Partial Least Square Method in Regression Model Estimation
Directory of Open Access Journals (Sweden)
Ahmad Bilfarsah
2005-04-01
Full Text Available Additive Spline of Partial Least Square method (ASPL as one generalization of Partial Least Square (PLS method. ASPLS method can be acommodation to non linear and multicollinearity case of predictor variables. As a principle, The ASPLS method approach is cahracterized by two idea. The first is to used parametric transformations of predictors by spline function; the second is to make ASPLS components mutually uncorrelated, to preserve properties of the linear PLS components. The performance of ASPLS compared with other PLS method is illustrated with the fisher economic application especially the tuna fish production.
Screening for ketosis using multiple logistic regression based on milk yield and composition.
Kayano, Mitsunori; Kataoka, Tomoko
2015-11-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (Pketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (Pketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively.
Measurement error in epidemiologic studies of air pollution based on land-use regression models.
Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino
2013-10-15
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
Spady, Richard; Stouli, Sami
2012-01-01
We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
International Nuclear Information System (INIS)
Sun Zhong-Hua; Jiang Fan
2010-01-01
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method. (rapid communication)
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Dae; Lohumi, Santosh; Cho, Byoung Kwan [Dept. of Biosystems Machinery Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Moon Sung [United States Department of Agriculture Agricultural Research Service, Washington (United States); Lee, Soo Hee [Life and Technology Co.,Ltd., Hwasung (Korea, Republic of)
2014-08-15
This study was conducted to develop a non-destructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression(PLSR). Garlic and ginger powder, which are used as natural seasoning and in health supplement foods, were selected for this experiment. Samples were adulterated with corn starch in concentrations of 5-35%. PLSR models for adulterated garlic and ginger powders were developed and their performances evaluated using cross validation. The R{sup 2}{sub c} and SEC of an optimal PLSR model were 0.99 and 2.16 for the garlic powder samples, and 0.99 and 0.84 for the ginger samples, respectively. The variable importance in projection (VIP) score is a useful and simple tool for the evaluation of the importance of each variable in a PLSR model. After the VIP scores were taken pre-selection, the Raman spectrum data was reduced by one third. New PLSR models, based on a reduced number of wavelengths selected by the VIP scores technique, gave good predictions for the adulterated garlic and ginger powder samples.
International Nuclear Information System (INIS)
Lee, Sang Dae; Lohumi, Santosh; Cho, Byoung Kwan; Kim, Moon Sung; Lee, Soo Hee
2014-01-01
This study was conducted to develop a non-destructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression(PLSR). Garlic and ginger powder, which are used as natural seasoning and in health supplement foods, were selected for this experiment. Samples were adulterated with corn starch in concentrations of 5-35%. PLSR models for adulterated garlic and ginger powders were developed and their performances evaluated using cross validation. The R 2 c and SEC of an optimal PLSR model were 0.99 and 2.16 for the garlic powder samples, and 0.99 and 0.84 for the ginger samples, respectively. The variable importance in projection (VIP) score is a useful and simple tool for the evaluation of the importance of each variable in a PLSR model. After the VIP scores were taken pre-selection, the Raman spectrum data was reduced by one third. New PLSR models, based on a reduced number of wavelengths selected by the VIP scores technique, gave good predictions for the adulterated garlic and ginger powder samples.
Focused information criterion and model averaging based on weighted composite quantile regression
Xu, Ganggang
2013-08-13
We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non-parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR-estimator of a focused parameter is a non-linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non-normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure. © 2013 Board of the Foundation of the Scandinavian Journal of Statistics..
Forecasting systems reliability based on support vector regression with genetic algorithms
International Nuclear Information System (INIS)
Chen, K.-Y.
2007-01-01
This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error
Gilstrap, Donald L.
2013-01-01
In addition to qualitative methods presented in chaos and complexity theories in educational research, this article addresses quantitative methods that may show potential for future research studies. Although much in the social and behavioral sciences literature has focused on computer simulations, this article explores current chaos and…
International Nuclear Information System (INIS)
Jiang, B.T.; Zhao, F.Y.
2013-01-01
Highlights: ► CHF data are collected from the published literature. ► Less training data are used to train the LSSVR model. ► PSO is adopted to optimize the key parameters to improve the model precision. ► The reliability of LSSVR is proved through parametric trends analysis. - Abstract: In view of practical importance of critical heat flux (CHF) for design and safety of nuclear reactors, accurate prediction of CHF is of utmost significance. This paper presents a novel approach using least squares support vector regression (LSSVR) and particle swarm optimization (PSO) to predict CHF. Two available published datasets are used to train and test the proposed algorithm, in which PSO is employed to search for the best parameters involved in LSSVR model. The CHF values obtained by the LSSVR model are compared with the corresponding experimental values and those of a previous method, adaptive neuro fuzzy inference system (ANFIS). This comparison is also carried out in the investigation of parametric trends of CHF. It is found that the proposed method can achieve the desired performance and yields a more satisfactory fit with experimental results than ANFIS. Therefore, LSSVR method is likely to be suitable for other parameters processing such as CHF
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Directory of Open Access Journals (Sweden)
Sara Mortaz Hejri
2013-01-01
Full Text Available Background: One of the methods used for standard setting is the borderline regression method (BRM. This study aims to assess the reliability of BRM when the pass-fail standard in an objective structured clinical examination (OSCE was calculated by averaging the BRM standards obtained for each station separately. Materials and Methods: In nine stations of the OSCE with direct observation the examiners gave each student a checklist score and a global score. Using a linear regression model for each station, we calculated the checklist score cut-off on the regression equation for the global scale cut-off set at 2. The OSCE pass-fail standard was defined as the average of all station′s standard. To determine the reliability, the root mean square error (RMSE was calculated. The R2 coefficient and the inter-grade discrimination were calculated to assess the quality of OSCE. Results: The mean total test score was 60.78. The OSCE pass-fail standard and its RMSE were 47.37 and 0.55, respectively. The R2 coefficients ranged from 0.44 to 0.79. The inter-grade discrimination score varied greatly among stations. Conclusion: The RMSE of the standard was very small indicating that BRM is a reliable method of setting standard for OSCE, which has the advantage of providing data for quality assurance.
International Nuclear Information System (INIS)
Ballini, J.-P.; Cazes, P.; Turpin, P.-Y.
1976-01-01
Analysing the histogram of anode pulse amplitudes allows a discussion of the hypothesis that has been proposed to account for the statistical processes of secondary multiplication in a photomultiplier. In an earlier work, good agreement was obtained between experimental and reconstructed spectra, assuming a first dynode distribution including two Poisson distributions of distinct mean values. This first approximation led to a search for a method which could give the weights of several Poisson distributions of distinct mean values. Three methods have been briefly exposed: classical linear regression, constraint regression (d'Esopo's method), and regression on variables subject to error. The use of these methods gives an approach of the frequency function which represents the dispersion of the punctual mean gain around the whole first dynode mean gain value. Comparison between this function and the one employed in Polya distribution allows the statement that the latter is inadequate to describe the statistical process of secondary multiplication. Numerous spectra obtained with two kinds of photomultiplier working under different physical conditions have been analysed. Then two points are discussed: - Does the frequency function represent the dynode structure and the interdynode collection process. - Is the model (the multiplication process of all dynodes but the first one, is Poissonian) valid whatever the photomultiplier and the utilization conditions. (Auth.)
Borodachev, S. M.
2016-06-01
The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.
Huang, Lei
2015-01-01
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409
Burggraaff, Jessica; Knol, Dirk L; Uitdehaag, Bernard M J
2017-01-01
Appropriate and timely screening instruments that sensitively capture the cognitive functioning of multiple sclerosis (MS) patients are the need of the hour. We evaluated newly derived regression-based norms for the Symbol Digit Modalities Test (SDMT) in a Dutch-speaking sample, as an indicator of the cognitive state of MS patients. Regression-based norms for the SDMT were created from a healthy control sample (n = 96) and used to convert MS patients' (n = 157) raw scores to demographically adjusted Z-scores, correcting for the effects of age, age2, gender, and education. Conventional and regression-based norms were compared on their impairment-classification rates and related to other neuropsychological measures. The regression analyses revealed that age was the only significantly influencing demographic in our healthy sample. Regression-based norms for the SDMT more readily detected impairment in MS patients than conventional normalization methods (32 patients instead of 15). Patients changing from an SDMT-preserved to -impaired status (n = 17) were also impaired on other cognitive domains (p < 0.05), except for visuospatial memory (p = 0.34). Regression-based norms for the SDMT more readily detect abnormal performance in MS patients than conventional norms, identifying those patients at highest risk for cognitive impairment, which was supported by a worse performance on other neuropsychological measures. © 2017 S. Karger AG, Basel.
Wang, Guo-xiang; Wang, Hai-yan; Wang, Hu; Zhang, Zheng-yong; Liu, Jun
2016-03-01
It is an important and difficult research point to recognize the age of Chinese liquor rapidly and exactly in the field of liquor analyzing, which is also of great significance to the healthy development of the liquor industry and protection of the legitimate rights and interests of consumers. Spectroscopy together with the pattern recognition technology is a preferred method of achieving rapid identification of wine quality, in which the Raman Spectroscopy is promising because of its little affection of water and little or free of sample pretreatment. So, in this paper, Raman spectra and support vector regression (SVR) are used to recognize different ages and different storing time of the liquor of the same age. The innovation of this paper is mainly reflected in the following three aspects. First, the application of Raman in the area of liquor analysis is rarely reported till now. Second, the concentration of studying the recognition of wine age, while most studies focus on studying specific components of liquor and studies together with the pattern recognition method focus more on the identification of brands or different types of base wine. The third one is the application of regression analysis framework, which cannot be only used to identify different years of liquor, but also can be used to analyze different storing time, which has theoretical and practical significance to the research and quality control of liquor. Three kinds of experiments are conducted in this paper. Firstly, SVR is used to recognize different ages of 5, 8, 16 and 26 years of the Gujing Liquor; secondly, SVR is also used to classify the storing time of the 8-years liquor; thirdly, certain group of train data is deleted form the train set and put into the test set to simulate the actual situation of liquor age recognition. Results show that the SVR model has good train and predict performance in these experiments, and it has better performance than other non-liner regression method such
A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform
Directory of Open Access Journals (Sweden)
Zhengmin Duan
2018-02-01
Full Text Available Using a generalized linear model to determine the claim frequency of auto insurance is a key ingredient in non-life insurance research. Among auto insurance rate-making models, there are very few considering auto types. Therefore, in this paper we are proposing a model that takes auto types into account by making an innovative use of the auto burden index. Based on this model and data from a Chinese insurance company, we built a clustering model that classifies auto insurance rates into three risk levels. The claim frequency and the claim costs are fitted to select a better loss distribution. Then the Logistic Regression model is employed to fit the claim frequency, with the auto burden index considered. Three key findings can be concluded from our study. First, more than 80% of the autos with an auto burden index of 20 or higher belong to the highest risk level. Secondly, the claim frequency is better fitted using the Poisson distribution, however the claim cost is better fitted using the Gamma distribution. Lastly, based on the AIC criterion, the claim frequency is more adequately represented by models that consider the auto burden index than those do not. It is believed that insurance policy recommendations that are based on Generalized linear models (GLM can benefit from our findings.
Rodríguez-Álvarez, María Xosé; Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G
2018-03-01
Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation of its diagnostic accuracy is essential. The receiver-operating characteristic curve is the measure of accuracy most widely used for continuous diagnostic tests. However, the possible impact of extra information about the patient (or even the environment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on an estimator for the covariate-specific receiver-operating characteristic curve based on direct regression modelling and nonparametric smoothing techniques. This approach defines the class of generalised additive models for the receiver-operating characteristic curve. The main aim of the paper is to offer new inferential procedures for testing the effect of covariates on the conditional receiver-operating characteristic curve within the above-mentioned class. Specifically, two different bootstrap-based tests are suggested to check (a) the possible effect of continuous covariates on the receiver-operating characteristic curve and (b) the presence of factor-by-curve interaction terms. The validity of the proposed bootstrap-based procedures is supported by simulations. To facilitate the application of these new procedures in practice, an R-package, known as npROCRegression, is provided and briefly described. Finally, data derived from a computer-aided diagnostic system for the automatic detection of tumour masses in breast cancer is analysed.
Hu, Yong; Jin, Richu; Li, Guangsheng; Luk, Keith Dk; Wu, Ed X
2018-04-16
Physiological noise reduction plays a critical role in spinal cord (SC) resting-state fMRI (rsfMRI). To reduce physiological noise and increase the robustness of SC rsfMRI by using an independent component analysis (ICA)-based nuisance regression (ICANR) method. Retrospective. Ten healthy subjects (female/male = 4/6, age = 27 ± 3 years, range 24-34 years). 3T/gradient-echo echo planar imaging (EPI). We used three alternative methods (no regression [Nil], conventional region of interest [ROI]-based noise reduction method without ICA [ROI-based], and correction of structured noise using spatial independent component analysis [CORSICA]) to compare with the performance of ICANR. Reduction of the influence of physiological noise on the SC and the reproducibility of rsfMRI analysis after noise reduction were examined. The correlation coefficient (CC) was calculated to assess the influence of physiological noise. Reproducibility was calculated by intraclass correlation (ICC). Results from different methods were compared by one-way analysis of variance (ANOVA) with post-hoc analysis. No significant difference in cerebrospinal fluid (CSF) pulsation influence or tissue motion influence were found (P = 0.223 in CSF, P = 0.2461 in tissue motion) in the ROI-based (CSF: 0.122 ± 0.020; tissue motion: 0.112 ± 0.015), and Nil (CSF: 0.134 ± 0.026; tissue motion: 0.124 ± 0.019). CORSICA showed a significantly stronger influence of CSF pulsation and tissue motion (CSF: 0.166 ± 0.045, P = 0.048; tissue motion: 0.160 ± 0.032, P = 0.048) than Nil. ICANR showed a significantly weaker influence of CSF pulsation and tissue motion (CSF: 0.076 ± 0.007, P = 0.0003; tissue motion: 0.081 ± 0.014, P = 0.0182) than Nil. The ICC values in the Nil, ROI-based, CORSICA, and ICANR were 0.669, 0.645, 0.561, and 0.766, respectively. ICANR more effectively reduced physiological noise from both tissue motion and CSF pulsation than three alternative methods. ICANR increases the robustness of SC rsf
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Bolarinwa, O A; Adeola, O
2012-12-01
Digestible and metabolizable energy contents of feed ingredients for pigs can be determined by direct or indirect methods. There are situations when only the indirect approach is suitable and the regression method is a robust indirect approach. This study was conducted to compare the direct and regression methods for determining the energy value of wheat for pigs. Twenty-four barrows with an average initial BW of 31 kg were assigned to 4 diets in a randomized complete block design. The 4 diets consisted of 969 g wheat/kg plus minerals and vitamins (sole wheat) for the direct method, corn (Zea mays)-soybean (Glycine max) meal reference diet (RD), RD + 300 g wheat/kg, and RD + 600 g wheat/kg. The 3 corn-soybean meal diets were used for the regression method and wheat replaced the energy-yielding ingredients, corn and soybean meal, so that the same ratio of corn and soybean meal across the experimental diets was maintained. The wheat used was analyzed to contain 883 g DM, 15.2 g N, and 3.94 Mcal GE/kg. Each diet was fed to 6 barrows in individual metabolism crates for a 5-d acclimation followed by a 5-d total but separate collection of feces and urine. The DE and ME for the sole wheat diet were 3.83 and 3.77 Mcal/kg DM, respectively. Because the sole wheat diet contained 969 g wheat/kg, these translate to 3.95 Mcal DE/kg DM and 3.89 Mcal ME/kg DM. The RD used for the regression approach yielded 4.00 Mcal DE and 3.91 Mcal ME/kg DM diet. Increasing levels of wheat in the RD linearly reduced (P direct method (3.95 and 3.89 Mcal/kg DM) did not differ (0.78 < P < 0.89) from those obtained using the regression method (3.96 and 3.88 Mcal/kg DM).
Energy Technology Data Exchange (ETDEWEB)
Boucher, Thomas F., E-mail: boucher@cs.umass.edu [School of Computer Science, University of Massachusetts Amherst, 140 Governor' s Drive, Amherst, MA 01003, United States. (United States); Ozanne, Marie V. [Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 (United States); Carmosino, Marco L. [School of Computer Science, University of Massachusetts Amherst, 140 Governor' s Drive, Amherst, MA 01003, United States. (United States); Dyar, M. Darby [Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 (United States); Mahadevan, Sridhar [School of Computer Science, University of Massachusetts Amherst, 140 Governor' s Drive, Amherst, MA 01003, United States. (United States); Breves, Elly A.; Lepore, Kate H. [Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075 (United States); Clegg, Samuel M. [Los Alamos National Laboratory, P.O. Box 1663, MS J565, Los Alamos, NM 87545 (United States)
2015-05-01
The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO{sub 2}, Fe{sub 2}O{sub 3}, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na{sub 2}O, K{sub 2}O, TiO{sub 2}, and P{sub 2}O{sub 5}, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high
International Nuclear Information System (INIS)
Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.
2015-01-01
The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO 2 , Fe 2 O 3 , CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na 2 O, K 2 O, TiO 2 , and P 2 O 5 , the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144
Comparison of Sparse and Jack-knife partial least squares regression methods for variable selection
DEFF Research Database (Denmark)
Karaman, Ibrahim; Qannari, El Mostafa; Martens, Harald
2013-01-01
The objective of this study was to compare two different techniques of variable selection, Sparse PLSR and Jack-knife PLSR, with respect to their predictive ability and their ability to identify relevant variables. Sparse PLSR is a method that is frequently used in genomics, whereas Jack-knife PL...
Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating
He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei
2013-01-01
Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…
Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Mulder, J.A.
2012-01-01
The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization task, which is hard to accomplish. Recently, an
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz
2012-01-01
From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Predictive based monitoring of nuclear plant component degradation using support vector regression
International Nuclear Information System (INIS)
Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.
2015-01-01
Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.
Model-free prediction and regression a transformation-based approach to inference
Politis, Dimitris N
2015-01-01
The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...
Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio
2016-10-01
We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
An Ionospheric Index Model based on Linear Regression and Neural Network Approaches
Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John
2017-04-01
The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.
Thomas P. Holmes; Wiktor L. Adamowicz
2003-01-01
Stated preference methods of environmental valuation have been used by economists for decades where behavioral data have limitations. The contingent valuation method (Chapter 5) is the oldest stated preference approach, and hundreds of contingent valuation studies have been conducted. More recently, and especially over the last decade, a class of stated preference...
Directory of Open Access Journals (Sweden)
Hukharnsusatrue, A.
2005-11-01
Full Text Available The objective of this research is to compare multiple regression coefficients estimating methods with existence of multicollinearity among independent variables. The estimation methods are Ordinary Least Squares method (OLS, Restricted Least Squares method (RLS, Restricted Ridge Regression method (RRR and Restricted Liu method (RL when restrictions are true and restrictions are not true. The study used the Monte Carlo Simulation method. The experiment was repeated 1,000 times under each situation. The analyzed results of the data are demonstrated as follows. CASE 1: The restrictions are true. In all cases, RRR and RL methods have a smaller Average Mean Square Error (AMSE than OLS and RLS method, respectively. RRR method provides the smallest AMSE when the level of correlations is high and also provides the smallest AMSE for all level of correlations and all sample sizes when standard deviation is equal to 5. However, RL method provides the smallest AMSE when the level of correlations is low and middle, except in the case of standard deviation equal to 3, small sample sizes, RRR method provides the smallest AMSE.The AMSE varies with, most to least, respectively, level of correlations, standard deviation and number of independent variables but inversely with to sample size.CASE 2: The restrictions are not true.In all cases, RRR method provides the smallest AMSE, except in the case of standard deviation equal to 1 and error of restrictions equal to 5%, OLS method provides the smallest AMSE when the level of correlations is low or median and there is a large sample size, but the small sample sizes, RL method provides the smallest AMSE. In addition, when error of restrictions is increased, OLS method provides the smallest AMSE for all level, of correlations and all sample sizes, except when the level of correlations is high and sample sizes small. Moreover, the case OLS method provides the smallest AMSE, the most RLS method has a smaller AMSE than
CSIR Research Space (South Africa)
Gregor, Luke
2017-12-01
Full Text Available understanding with spatially integrated air–sea flux estimates (Fay and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanis- tic understanding, but fail to represent the seasonality of CO2 fluxes in the Southern Ocean... of including coordinate variables as proxies of 1pCO2 in the empirical methods. In the inter- comparison study by Rödenbeck et al. (2015) proxies typi- cally include, but are not limited to, sea surface temperature (SST), chlorophyll a (Chl a), mixed layer...
An Analysis of Bank Service Satisfaction Based on Quantile Regression and Grey Relational Analysis
Directory of Open Access Journals (Sweden)
Wen-Tsao Pan
2016-01-01
Full Text Available Bank service satisfaction is vital to the success of a bank. In this paper, we propose to use the grey relational analysis to gauge the levels of service satisfaction of the banks. With the grey relational analysis, we compared the effects of different variables on service satisfaction. We gave ranks to the banks according to their levels of service satisfaction. We further used the quantile regression model to find the variables that affected the satisfaction of a customer at a specific quantile of satisfaction level. The result of the quantile regression analysis provided a bank manager with information to formulate policies to further promote satisfaction of the customers at different quantiles of satisfaction level. We also compared the prediction accuracies of the regression models at different quantiles. The experiment result showed that, among the seven quantile regression models, the median regression model has the best performance in terms of RMSE, RTIC, and CE performance measures.
Balabin, Roman M; Lomakina, Ekaterina I
2011-04-21
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
Directory of Open Access Journals (Sweden)
Daniel Vasiliu
Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.
Choi, Giehae; Bell, Michelle L.; Lee, Jong-Tae
2017-04-01
The land-use regression (LUR) approach to estimate the levels of ambient air pollutants is becoming popular due to its high validity in predicting small-area variations. However, only a few studies have been conducted in Asian countries, and much less research has been conducted on comparing the performances and applied estimates of different exposure assessments including LUR. The main objectives of the current study were to conduct nitrogen dioxide (NO2) exposure assessment with four methods including LUR in the Republic of Korea, to compare the model performances, and to estimate the empirical NO2 exposures of a cohort. The study population was defined as the year 2010 participants of a government-supported cohort established for bio-monitoring in Ulsan, Republic of Korea. The annual ambient NO2 exposures of the 969 study participants were estimated with LUR, nearest station, inverse distance weighting, and ordinary kriging. Modeling was based on the annual NO2 average, traffic-related data, land-use data, and altitude of the 13 regularly monitored stations. The final LUR model indicated that area of transportation, distance to residential area, and area of wetland were important predictors of NO2. The LUR model explained 85.8% of the variation observed in the 13 monitoring stations of the year 2009. The LUR model outperformed the others based on leave-one out cross-validation comparing the correlations and root-mean square error. All NO2 estimates ranged from 11.3-18.0 ppb, with that of LUR having the widest range. The NO2 exposure levels of the residents differed by demographics. However, the average was below the national annual guidelines of the Republic of Korea (30 ppb). The LUR models showed high performances in an industrial city in the Republic of Korea, despite the small sample size and limited data. Our findings suggest that the LUR method may be useful in similar settings in Asian countries where the target region is small and availability of data is
Dai, Huanping; Micheyl, Christophe
2012-11-01
Psychophysical "reverse-correlation" methods allow researchers to gain insight into the perceptual representations and decision weighting strategies of individual subjects in perceptual tasks. Although these methods have gained momentum, until recently their development was limited to experiments involving only two response categories. Recently, two approaches for estimating decision weights in m-alternative experiments have been put forward. One approach extends the two-category correlation method to m > 2 alternatives; the second uses multinomial logistic regression (MLR). In this article, the relative merits of the two methods are discussed, and the issues of convergence and statistical efficiency of the methods are evaluated quantitatively using Monte Carlo simulations. The results indicate that, for a range of values of the number of trials, the estimated weighting patterns are closer to their asymptotic values for the correlation method than for the MLR method. Moreover, for the MLR method, weight estimates for different stimulus components can exhibit strong correlations, making the analysis and interpretation of measured weighting patterns less straightforward than for the correlation method. These and other advantages of the correlation method, which include computational simplicity and a close relationship to other well-established psychophysical reverse-correlation methods, make it an attractive tool to uncover decision strategies in m-alternative experiments.
International Nuclear Information System (INIS)
Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C.
2015-01-01
We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g −1 to 3631 ng g −1 during the period of 1978–2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development. - Highlights: • Introduced a mass balance model for soil PAHs accumulation with urbanization. • Reconstructed the historical data of PAH accumulation in soil of Beijing, China. • The soil PAH concentrations would be doubled in the following 40 years. • The composition of PAH emissions were shifting to light PAH species. - Introduced a regression modeling approach to predict the changes of PAH concentrations in urban soil
Improved regression models for ventilation estimation based on chest and abdomen movements
International Nuclear Information System (INIS)
Liu, Shaopeng; Gao, Robert; He, Qingbo; Staudenmayer, John; Freedson, Patty
2012-01-01
Non-invasive estimation of minute ventilation is important for quantifying the intensity of physical activity of individuals. In this paper, several improved regression models are presented, based on the measurement of chest and abdomen movements from sensor belts worn by subjects (n = 50) engaged in 14 types of physical activity. Five linear models involving a combination of 11 features were developed, and the effects of different model training approaches and window sizes for computing the features were investigated. The performance of the models was evaluated using experimental data collected during the physical activity protocol. The predicted minute ventilation was compared to the criterion ventilation measured using a bidirectional digital volume transducer housed in a respiratory gas exchange system. The results indicate that the inclusion of breathing frequency and the use of percentile points instead of interdecile ranges over a 60 s window size reduced error by about 43%, when applied to the classical two-degrees-of-freedom model. The mean percentage error of the minute ventilation estimated for all the activities was below 7.5%, verifying reasonably good performance of the models and the applicability of the wearable sensing system for minute ventilation estimation during physical activity. (paper)
Correction of TRMM 3B42V7 Based on Linear Regression Models over China
Directory of Open Access Journals (Sweden)
Shaohua Liu
2016-01-01
Full Text Available High temporal-spatial precipitation is necessary for hydrological simulation and water resource management, and remotely sensed precipitation products (RSPPs play a key role in supporting high temporal-spatial precipitation, especially in sparse gauge regions. TRMM 3B42V7 data (TRMM precipitation is an essential RSPP outperforming other RSPPs. Yet the utilization of TRMM precipitation is still limited by the inaccuracy and low spatial resolution at regional scale. In this paper, linear regression models (LRMs have been constructed to correct and downscale the TRMM precipitation based on the gauge precipitation at 2257 stations over China from 1998 to 2013. Then, the corrected TRMM precipitation was validated by gauge precipitation at 839 out of 2257 stations in 2014 at station and grid scales. The results show that both monthly and annual LRMs have obviously improved the accuracy of corrected TRMM precipitation with acceptable error, and monthly LRM performs slightly better than annual LRM in Mideastern China. Although the performance of corrected TRMM precipitation from the LRMs has been increased in Northwest China and Tibetan plateau, the error of corrected TRMM precipitation is still significant due to the large deviation between TRMM precipitation and low-density gauge precipitation.
Directory of Open Access Journals (Sweden)
Kehinde Anthony Mogaji
2016-07-01
Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.
Greensmith, David J
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui
2016-01-01
Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365
Greensmith, David J.
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908
Barrett, C. A.
1985-01-01
Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.
Directory of Open Access Journals (Sweden)
Liyang Wang
2016-01-01
Full Text Available Time-varying external disturbances cause instability of humanoid robots or even tip robots over. In this work, a trapezoidal fuzzy least squares support vector regression- (TF-LSSVR- based control system is proposed to learn the external disturbances and increase the zero-moment-point (ZMP stability margin of humanoid robots. First, the humanoid states and the corresponding control torques of the joints for training the controller are collected by implementing simulation experiments. Secondly, a TF-LSSVR with a time-related trapezoidal fuzzy membership function (TFMF is proposed to train the controller using the simulated data. Thirdly, the parameters of the proposed TF-LSSVR are updated using a cubature Kalman filter (CKF. Simulation results are provided. The proposed method is shown to be effective in learning and adapting occasional external disturbances and ensuring the stability margin of the robot.
Nakamura, Ryo; Nakano, Kumiko; Tamura, Hiroyasu; Mizunuma, Masaki; Fushiki, Tohru; Hirata, Dai
2017-08-01
Many factors contribute to palatability. In order to evaluate the palatability of Japanese alcohol sake paired with certain dishes by integrating multiple factors, here we applied an evaluation method previously reported for palatability of cheese by multiple regression analysis based on 3 subdomain factors (rewarding, cultural, and informational). We asked 94 Japanese participants/subjects to evaluate the palatability of sake (1st evaluation/E1 for the first cup, 2nd/E2 and 3rd/E3 for the palatability with aftertaste/afterglow of certain dishes) and to respond to a questionnaire related to 3 subdomains. In E1, 3 factors were extracted by a factor analysis, and the subsequent multiple regression analyses indicated that the palatability of sake was interpreted by mainly the rewarding. Further, the results of attribution-dissections in E1 indicated that 2 factors (rewarding and informational) contributed to the palatability. Finally, our results indicated that the palatability of sake was influenced by the dish eaten just before drinking.
Energy Technology Data Exchange (ETDEWEB)
Jorjani, E.; Poorali, H.A.; Sam, A.; Chelgani, S.C.; Mesroghli, S.; Shayestehfar, M.R. [Islam Azad University, Tehran (Iran). Dept. of Mining Engineering
2009-10-15
In this paper, the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate were predicted by regression and artificial neural network based on proximate and group macerals analysis. The regression method shows that the relationships between (a) in (ash), volatile matter and moisture (b) in (ash), in (liptinite), fusinite and vitrinite with combustible value can achieve the correlation coefficients (R{sup 2}) of 0.8 and 0.79, respectively. In addition, the input sets of (c) ash, volatile matter and moisture (d) ash, liptinite and fusinite can predict the combustible recovery with the correlation coefficients of 0.84 and 0.63, respectively. Feed-forward artificial neural network with 6-8-12-11-2-1 arrangement for moisture, ash and volatile matter input set was capable to estimate both combustible value and combustible recovery with correlation of 0.95. It was shown that the proposed neural network model could accurately reproduce all the effects of proximate and group macerals analysis on coal flotation system.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Coskuntuncel, Orkun
2013-01-01
The purpose of this study is two-fold; the first aim being to show the effect of outliers on the widely used least squares regression estimator in social sciences. The second aim is to compare the classical method of least squares with the robust M-estimator using the "determination of coefficient" (R[superscript 2]). For this purpose,…
Focused information criterion and model averaging based on weighted composite quantile regression
Xu, Ganggang; Wang, Suojin; Huang, Jianhua Z.
2013-01-01
We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non
Education-Based Gaps in eHealth: A Weighted Logistic Regression Approach.
Amo, Laura
2016-10-12
Persons with a college degree are more likely to engage in eHealth behaviors than persons without a college degree, compounding the health disadvantages of undereducated groups in the United States. However, the extent to which quality of recent eHealth experience reduces the education-based eHealth gap is unexplored. The goal of this study was to examine how eHealth information search experience moderates the relationship between college education and eHealth behaviors. Based on a nationally representative sample of adults who reported using the Internet to conduct the most recent health information search (n=1458), I evaluated eHealth search experience in relation to the likelihood of engaging in different eHealth behaviors. I examined whether Internet health information search experience reduces the eHealth behavior gaps among college-educated and noncollege-educated adults. Weighted logistic regression models were used to estimate the probability of different eHealth behaviors. College education was significantly positively related to the likelihood of 4 eHealth behaviors. In general, eHealth search experience was negatively associated with health care behaviors, health information-seeking behaviors, and user-generated or content sharing behaviors after accounting for other covariates. Whereas Internet health information search experience has narrowed the education gap in terms of likelihood of using email or Internet to communicate with a doctor or health care provider and likelihood of using a website to manage diet, weight, or health, it has widened the education gap in the instances of searching for health information for oneself, searching for health information for someone else, and downloading health information on a mobile device. The relationship between college education and eHealth behaviors is moderated by Internet health information search experience in different ways depending on the type of eHealth behavior. After controlling for college
Hu, Qinghua; Zhang, Shiguang; Xie, Zongxia; Mi, Jusheng; Wan, Jie
2014-09-01
Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden in sample data. Most existing regression techniques take the assumption that the error distribution is Gaussian. However, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy Gaussian distribution, but a beta distribution, Laplacian distribution, or other models. In these cases the current regression techniques are not optimal. According to the Bayesian approach, we derive a general loss function and develop a technique of the uniform model of ν-support vector regression for the general noise model (N-SVR). The Augmented Lagrange Multiplier method is introduced to solve N-SVR. Numerical experiments on artificial data sets, UCI data and short-term wind speed prediction are conducted. The results show the effectiveness of the proposed technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Gentile Antonio
2012-09-01
Full Text Available Abstract Background HPV infection is a worldwide problem strictly linked to the development of cervical cancer. Persistence of the infection is one of the main factors responsible for the invasive progression and women diagnosed with intraepithelial squamous lesions are referred for further assessment and surgical treatments which are prone to complications. Despite this, there are several reports on the spontaneous regression of the infection. This study was carried out to evaluate the effectiveness of a long term polyhexamethylene biguanide (PHMB-based local treatment in improving the viral clearance, reducing the time exposure to the infection and avoiding the complications associated with the invasive treatments currently available. Method 100 women diagnosed with HPV infection were randomly assigned to receive six months of treatment with a PHMB-based gynecological solution (Monogin®, Lo.Li. Pharma, Rome - Italy or to remain untreated for the same period of time. Results A greater number of patients, who received the treatment were cleared of the infection at the two time points of the study (three and six months compared to that of the control group. A significant difference in the regression rate (90% Monogin group vs 70% control group was observed at the end of the study highlighting the time-dependent ability of PHMB to interact with the infection progression. Conclusions The topic treatment with PHMB is a preliminary safe and promising approach for patients with detected HPV infection increasing the chance of clearance and avoiding the use of invasive treatments when not strictly necessary. Trial registration ClinicalTrials.gov Identifier NCT01571141
Time-adaptive quantile regression
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik
2008-01-01
and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....
DEFF Research Database (Denmark)
Kosek, Anna Magdalena; Gehrke, Oliver
2016-01-01
The shift from centralised large production to distributed energy production has several consequences for current power system operation. The replacement of large power plants by growing numbers of distributed energy resources (DERs) increases the dependency of the power system on small scale......, distributed production. Many of these DERs can be accessed and controlled remotely, posing a cybersecurity risk. This paper investigates an intrusion detection system which evaluates the DER operation in order to discover unauthorized control actions. The proposed anomaly detection method is based...
Directory of Open Access Journals (Sweden)
Mohd Faris Dziauddin
2017-07-01
Full Text Available This study estimates the effect of locational attributes on residential property values in Kuala Lumpur, Malaysia. Geographically weighted regression (GWR enables the use of the local parameter rather than the global parameter to be estimated, with the results presented in map form. The results of this study reveal that residential property values are mainly determined by the property’s physical (structural attributes, but proximity to locational attributes also contributes marginally. The use of GWR in this study is considered a better approach than other methods to examine the effect of locational attributes on residential property values. GWR has the capability to produce meaningful results in which different locational attributes have differential spatial effects across a geographical area on residential property values. This method has the ability to determine the factors on which premiums depend, and in turn it can assist the government in taxation matters.
Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items
Lu, Irene R. R.; Thomas, D. Roland
2008-01-01
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model
DEFF Research Database (Denmark)
Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas
2013-01-01
regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.
2017-01-01
Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...
Chen, Qingxia; Ibrahim, Joseph G
2014-07-01
Multiple Imputation, Maximum Likelihood and Fully Bayesian methods are the three most commonly used model-based approaches in missing data problems. Although it is easy to show that when the responses are missing at random (MAR), the complete case analysis is unbiased and efficient, the aforementioned methods are still commonly used in practice for this setting. To examine the performance of and relationships between these three methods in this setting, we derive and investigate small sample and asymptotic expressions of the estimates and standard errors, and fully examine how these estimates are related for the three approaches in the linear regression model when the responses are MAR. We show that when the responses are MAR in the linear model, the estimates of the regression coefficients using these three methods are asymptotically equivalent to the complete case estimates under general conditions. One simulation and a real data set from a liver cancer clinical trial are given to compare the properties of these methods when the responses are MAR.
GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa
Yang, X.; Jin, W.
2010-01-01
Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.
Zhang, L; Liu, X J
2016-06-03
With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.
Directory of Open Access Journals (Sweden)
Ying-Hsin Chang
2013-01-01
Full Text Available Human estrogen receptor (ER isoforms, ERα and ERβ, have long been an important focus in the field of biology. To better understand the structural features associated with the binding of ERα ligands to ERα and modulate their function, several QSAR models, including CoMFA, CoMSIA, SVR, and LR methods, have been employed to predict the inhibitory activity of 68 raloxifene derivatives. In the SVR and LR modeling, 11 descriptors were selected through feature ranking and sequential feature addition/deletion to generate equations to predict the inhibitory activity toward ERα. Among four descriptors that constantly appear in various generated equations, two agree with CoMFA and CoMSIA steric fields and another two can be correlated to a calculated electrostatic potential of ERα.
Methods in Logic Based Control
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
1999-01-01
Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...
Directory of Open Access Journals (Sweden)
Zhao Hongbo
2009-09-01
Full Text Available Abstract Background It is quite common that the genetic architecture of complex traits involves many genes and their interactions. Therefore, dealing with multiple unlinked genomic regions simultaneously is desirable. Results In this paper we develop a regression-based approach to assess the interactions of haplotypes that belong to different unlinked regions, and we use score statistics to test the null hypothesis of non-genetic association. Additionally, multiple marker combinations at each unlinked region are considered. The multiple tests are settled via the minP approach. The P value of the "best" multi-region multi-marker configuration is corrected via Monte-Carlo simulations. Through simulation studies, we assess the performance of the proposed approach and demonstrate its validity and power in testing for haplotype interaction association. Conclusion Our simulations showed that, for binary trait without covariates, our proposed methods prove to be equal and even more powerful than htr and hapcc which are part of the FAMHAP program. Additionally, our model can be applied to a wider variety of traits and allow adjustment for other covariates. To test the validity, our methods are applied to analyze the association between four unlinked candidate genes and pig meat quality.
Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J
2018-03-29
Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.
Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei
2018-03-01
A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.
Liu, Hongjie; Li, Tianhao; Zhan, Sha; Pan, Meilan; Ma, Zhiguo; Li, Chenghua
2016-01-01
Aims. To establish a logistic regression (LR) prediction model for hepatotoxicity of Chinese herbal medicines (HMs) based on traditional Chinese medicine (TCM) theory and to provide a statistical basis for predicting hepatotoxicity of HMs. Methods. The correlations of hepatotoxic and nonhepatotoxic Chinese HMs with four properties, five flavors, and channel tropism were analyzed with chi-square test for two-way unordered categorical data. LR prediction model was established and the accuracy of the prediction by this model was evaluated. Results. The hepatotoxic and nonhepatotoxic Chinese HMs were related with four properties (p 0.05). There were totally 12 variables from four properties and five flavors for the LR. Four variables, warm and neutral of the four properties and pungent and salty of five flavors, were selected to establish the LR prediction model, with the cutoff value being 0.204. Conclusions. Warm and neutral of the four properties and pungent and salty of five flavors were the variables to affect the hepatotoxicity. Based on such results, the established LR prediction model had some predictive power for hepatotoxicity of Chinese HMs. PMID:27656240
Activity based costing (ABC Method
Directory of Open Access Journals (Sweden)
Prof. Ph.D. Saveta Tudorache
2008-05-01
Full Text Available In the present paper the need and advantages are presented of using the Activity BasedCosting method, need arising from the need of solving the information pertinence issue. This issue has occurreddue to the limitation of classic methods in this field, limitation also reflected by the disadvantages ofsuch classic methods in establishing complete costs.
A case study to estimate costs using Neural Networks and regression based models
Directory of Open Access Journals (Sweden)
Nadia Bhuiyan
2012-07-01
Full Text Available Bombardier Aerospace’s high performance aircrafts and services set the utmost standard for the Aerospace industry. A case study in collaboration with Bombardier Aerospace is conducted in order to estimate the target cost of a landing gear. More precisely, the study uses both parametric model and neural network models to estimate the cost of main landing gears, a major aircraft commodity. A comparative analysis between the parametric based model and those upon neural networks model will be considered in order to determine the most accurate method to predict the cost of a main landing gear. Several trials are presented for the design and use of the neural network model. The analysis for the case under study shows the flexibility in the design of the neural network model. Furthermore, the performance of the neural network model is deemed superior to the parametric models for this case study.
Gaussian process regression based optimal design of combustion systems using flame images
International Nuclear Information System (INIS)
Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng
2013-01-01
Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process
Directory of Open Access Journals (Sweden)
W. Yao
2016-06-01
Full Text Available The recent success of deep convolutional neural networks (CNN on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN’s texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.
Yao, W.; Poleswki, P.; Krzystek, P.
2016-06-01
The recent success of deep convolutional neural networks (CNN) on a large number of applications can be attributed to large amounts of available training data and increasing computing power. In this paper, a semantic pixel labelling scheme for urban areas using multi-resolution CNN and hand-crafted spatial-spectral features of airborne remotely sensed data is presented. Both CNN and hand-crafted features are applied to image/DSM patches to produce per-pixel class probabilities with a L1-norm regularized logistical regression classifier. The evidence theory infers a degree of belief for pixel labelling from different sources to smooth regions by handling the conflicts present in the both classifiers while reducing the uncertainty. The aerial data used in this study were provided by ISPRS as benchmark datasets for 2D semantic labelling tasks in urban areas, which consists of two data sources from LiDAR and color infrared camera. The test sites are parts of a city in Germany which is assumed to consist of typical object classes including impervious surfaces, trees, buildings, low vegetation, vehicles and clutter. The evaluation is based on the computation of pixel-based confusion matrices by random sampling. The performance of the strategy with respect to scene characteristics and method combination strategies is analyzed and discussed. The competitive classification accuracy could be not only explained by the nature of input data sources: e.g. the above-ground height of nDSM highlight the vertical dimension of houses, trees even cars and the nearinfrared spectrum indicates vegetation, but also attributed to decision-level fusion of CNN's texture-based approach with multichannel spatial-spectral hand-crafted features based on the evidence combination theory.
Donnelly, Aoife; Misstear, Bruce; Broderick, Brian
2011-02-15
Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
Blood glucose level prediction based on support vector regression using mobile platforms.
Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M
2016-08-01
The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.
Boniface Ngah Epo; Francis Menjo Baye; Nadine Teme Angele Manga
2011-01-01
This study applies the regression-based inequality decomposition technique to explain poverty and inequality trends in Cameroon. We also identify gender related factors which explain income disparities and discrimination based on the 2001 and 2007 Cameroon household consumption surveys. The results show that education, health, employment in the formal sector, age cohorts, household size, gender, ownership of farmland and urban versus rural residence explain household economic wellbeing; dispa...
1981-09-01
corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John
Directory of Open Access Journals (Sweden)
Anne-Laure Boulesteix
2017-01-01
Full Text Available As modern biotechnologies advance, it has become increasingly frequent that different modalities of high-dimensional molecular data (termed “omics” data in this paper, such as gene expression, methylation, and copy number, are collected from the same patient cohort to predict the clinical outcome. While prediction based on omics data has been widely studied in the last fifteen years, little has been done in the statistical literature on the integration of multiple omics modalities to select a subset of variables for prediction, which is a critical task in personalized medicine. In this paper, we propose a simple penalized regression method to address this problem by assigning different penalty factors to different data modalities for feature selection and prediction. The penalty factors can be chosen in a fully data-driven fashion by cross-validation or by taking practical considerations into account. In simulation studies, we compare the prediction performance of our approach, called IPF-LASSO (Integrative LASSO with Penalty Factors and implemented in the R package ipflasso, with the standard LASSO and sparse group LASSO. The use of IPF-LASSO is also illustrated through applications to two real-life cancer datasets. All data and codes are available on the companion website to ensure reproducibility.
Mao, Hui-Fen; Chang, Ling-Hui; Tsai, Athena Yi-Jung; Huang, Wen-Ni; Wang, Jye
2016-01-01
Because resources for long-term care services are limited, timely and appropriate referral for rehabilitation services is critical for optimizing clients' functions and successfully integrating them into the community. We investigated which client characteristics are most relevant in predicting Taiwan's community-based occupational therapy (OT) service referral based on experts' beliefs. Data were collected in face-to-face interviews using the Multidimensional Assessment Instrument (MDAI). Community-dwelling participants (n = 221) ≥ 18 years old who reported disabilities in the previous National Survey of Long-term Care Needs in Taiwan were enrolled. The standard for referral was the judgment and agreement of two experienced occupational therapists who reviewed the results of the MDAI. Logistic regressions and Generalized Additive Models were used for analysis. Two predictive models were proposed, one using basic activities of daily living (BADLs) and one using instrumental ADLs (IADLs). Dementia, psychiatric disorders, cognitive impairment, joint range-of-motion limitations, fear of falling, behavioral or emotional problems, expressive deficits (in the BADL-based model), and limitations in IADLs or BADLs were significantly correlated with the need for referral. Both models showed high area under the curve (AUC) values on receiver operating curve testing (AUC = 0.977 and 0.972, respectively). The probability of being referred for community OT services was calculated using the referral algorithm. The referral protocol facilitated communication between healthcare professionals to make appropriate decisions for OT referrals. The methods and findings should be useful for developing referral protocols for other long-term care services.
Sevelius, Jae M.
2017-01-01
Background. Transgender individuals have a gender identity that differs from the sex they were assigned at birth. The population size of transgender individuals in the United States is not well-known, in part because official records, including the US Census, do not include data on gender identity. Population surveys today more often collect transgender-inclusive gender-identity data, and secular trends in culture and the media have created a somewhat more favorable environment for transgender people. Objectives. To estimate the current population size of transgender individuals in the United States and evaluate any trend over time. Search methods. In June and July 2016, we searched PubMed, Cumulative Index to Nursing and Allied Health Literature, and Web of Science for national surveys, as well as “gray” literature, through an Internet search. We limited the search to 2006 through 2016. Selection criteria. We selected population-based surveys that used probability sampling and included self-reported transgender-identity data. Data collection and analysis. We used random-effects meta-analysis to pool eligible surveys and used meta-regression to address our hypothesis that the transgender population size estimate would increase over time. We used subsample and leave-one-out analysis to assess for bias. Main results. Our meta-regression model, based on 12 surveys covering 2007 to 2015, explained 62.5% of model heterogeneity, with a significant effect for each unit increase in survey year (F = 17.122; df = 1,10; b = 0.026%; P = .002). Extrapolating these results to 2016 suggested a current US population size of 390 adults per 100 000, or almost 1 million adults nationally. This estimate may be more indicative for younger adults, who represented more than 50% of the respondents in our analysis. Authors’ conclusions. Future national surveys are likely to observe higher numbers of transgender people. The large variety in questions used to ask
International Nuclear Information System (INIS)
Arsenault, Louis-François; Millis, Andrew J; Neuberg, Richard; Hannah, Lauren A
2017-01-01
We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved. (paper)
Hayes, Andrew F; Rockwood, Nicholas J
2017-11-01
There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Meta-Heuristic Regression-Based Feature Selection for Predictive Analytics
Directory of Open Access Journals (Sweden)
Bharat Singh
2014-11-01
Full Text Available A high-dimensional feature selection having a very large number of features with an optimal feature subset is an NP-complete problem. Because conventional optimization techniques are unable to tackle large-scale feature selection problems, meta-heuristic algorithms are widely used. In this paper, we propose a particle swarm optimization technique while utilizing regression techniques for feature selection. We then use the selected features to classify the data. Classification accuracy is used as a criterion to evaluate classifier performance, and classification is accomplished through the use of k-nearest neighbour (KNN and Bayesian techniques. Various high dimensional data sets are used to evaluate the usefulness of the proposed approach. Results show that our approach gives better results when compared with other conventional feature selection algorithms.
Ozdemir, Adnan
2011-07-01
SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model
Francq, Bernard G; Govaerts, Bernadette
2016-06-30
Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Golusin, Mirjana [Educons University, Vojvode Putnika st. bb, 21013 Sremska Kamnica (RS); Ivanovic, Olja Munitlak [Faculty of Business in Services, Vojvode Putnik st. bb, 21013 Sremska Kamenica (RS); Teodorovic, Natasa [Faculty of Entrepreneurial Management, Modene st. 5, 21000 Novi Sad (RS)
2011-01-15
The need for preservation and adequate management of the quality of environment requires the development of new methods and techniques by which the achieved degree of sustainable development can be defined as well as the laws regarding the relationship among its subsystems. Main objective of research is to point to a strong contradiction between the development of ecological and economic subsystems. In order to improve previous research, this study suggests the use of linear evaluation, by which it is possible to determine the exact degree of contradiction between these two subsystems and to define the regularities as well as the deviations. Authors present the essential steps that were used. Conducted by the method of linear regression this research shows a significant negative correlation between ecological and economic subsystem indicators, whereas its value R{sup 2} 0.58 proves the expected contradiction that exists between the two previously mentioned subsystems. By observing the sustainable development as a two-dimensional system that includes ecological and economic indicators, the authors suggest the methodology to modelling the relationship between economic and ecological development as an orthogonal distance between the degree of the current state measured by the relation between economic and ecological indicators of sustainable development and the degree which was obtained in a traditional way. The method used in this research proved to be extremely suitable for modelling the relationship between ecological and economic subsystems of sustainable development. This research was conducted on a repeated sample of countries of South East Europe by including the data for France and Germany, being two countries on the highest level of development in the European Union. (author)
International Nuclear Information System (INIS)
Althuwaynee, Omar F; Pradhan, Biswajeet; Ahmad, Noordin
2014-01-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies
Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin
2014-06-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.
Rossi, M.; Apuani, T.; Felletti, F.
2009-04-01
The aim of this paper is to compare the results of two statistical methods for landslide susceptibility analysis: 1) univariate probabilistic method based on landslide susceptibility index, 2) multivariate method (logistic regression). The study area is the Febbraro valley, located in the central Italian Alps, where different types of metamorphic rocks croup out. On the eastern part of the studied basin a quaternary cover represented by colluvial and secondarily, by glacial deposits, is dominant. In this study 110 earth flows, mainly located toward NE portion of the catchment, were analyzed. They involve only the colluvial deposits and their extension mainly ranges from 36 to 3173 m2. Both statistical methods require to establish a spatial database, in which each landslide is described by several parameters that can be assigned using a main scarp central point of landslide. The spatial database is constructed using a Geographical Information System (GIS). Each landslide is described by several parameters corresponding to the value of main scarp central point of the landslide. Based on bibliographic review a total of 15 predisposing factors were utilized. The width of the intervals, in which the maps of the predisposing factors have to be reclassified, has been defined assuming constant intervals to: elevation (100 m), slope (5 °), solar radiation (0.1 MJ/cm2/year), profile curvature (1.2 1/m), tangential curvature (2.2 1/m), drainage density (0.5), lineament density (0.00126). For the other parameters have been used the results of the probability-probability plots analysis and the statistical indexes of landslides site. In particular slope length (0 ÷ 2, 2 ÷ 5, 5 ÷ 10, 10 ÷ 20, 20 ÷ 35, 35 ÷ 260), accumulation flow (0 ÷ 1, 1 ÷ 2, 2 ÷ 5, 5 ÷ 12, 12 ÷ 60, 60 ÷27265), Topographic Wetness Index 0 ÷ 0.74, 0.74 ÷ 1.94, 1.94 ÷ 2.62, 2.62 ÷ 3.48, 3.48 ÷ 6,00, 6.00 ÷ 9.44), Stream Power Index (0 ÷ 0.64, 0.64 ÷ 1.28, 1.28 ÷ 1.81, 1.81 ÷ 4.20, 4.20 ÷ 9
Busch, Robyn M; Lineweaver, Tara T; Ferguson, Lisa; Haut, Jennifer S
2015-06-01
Reliable change indices (RCIs) and standardized regression-based (SRB) change score norms permit evaluation of meaningful changes in test scores following treatment interventions, like epilepsy surgery, while accounting for test-retest reliability, practice effects, score fluctuations due to error, and relevant clinical and demographic factors. Although these methods are frequently used to assess cognitive change after epilepsy surgery in adults, they have not been widely applied to examine cognitive change in children with epilepsy. The goal of the current study was to develop RCIs and SRB change score norms for use in children with epilepsy. Sixty-three children with epilepsy (age range: 6-16; M=10.19, SD=2.58) underwent comprehensive neuropsychological evaluations at two time points an average of 12 months apart. Practice effect-adjusted RCIs and SRB change score norms were calculated for all cognitive measures in the battery. Practice effects were quite variable across the neuropsychological measures, with the greatest differences observed among older children, particularly on the Children's Memory Scale and Wisconsin Card Sorting Test. There was also notable variability in test-retest reliabilities across measures in the battery, with coefficients ranging from 0.14 to 0.92. Reliable change indices and SRB change score norms for use in assessing meaningful cognitive change in children following epilepsy surgery are provided for measures with reliability coefficients above 0.50. This is the first study to provide RCIs and SRB change score norms for a comprehensive neuropsychological battery based on a large sample of children with epilepsy. Tables to aid in evaluating cognitive changes in children who have undergone epilepsy surgery are provided for clinical use. An Excel sheet to perform all relevant calculations is also available to interested clinicians or researchers. Copyright © 2015 Elsevier Inc. All rights reserved.
Busch, Robyn M.; Lineweaver, Tara T.; Ferguson, Lisa; Haut, Jennifer S.
2015-01-01
Reliable change index scores (RCIs) and standardized regression-based change score norms (SRBs) permit evaluation of meaningful changes in test scores following treatment interventions, like epilepsy surgery, while accounting for test-retest reliability, practice effects, score fluctuations due to error, and relevant clinical and demographic factors. Although these methods are frequently used to assess cognitive change after epilepsy surgery in adults, they have not been widely applied to examine cognitive change in children with epilepsy. The goal of the current study was to develop RCIs and SRBs for use in children with epilepsy. Sixty-three children with epilepsy (age range 6–16; M=10.19, SD=2.58) underwent comprehensive neuropsychological evaluations at two time points an average of 12 months apart. Practice adjusted RCIs and SRBs were calculated for all cognitive measures in the battery. Practice effects were quite variable across the neuropsychological measures, with the greatest differences observed among older children, particularly on the Children’s Memory Scale and Wisconsin Card Sorting Test. There was also notable variability in test-retest reliabilities across measures in the battery, with coefficients ranging from 0.14 to 0.92. RCIs and SRBs for use in assessing meaningful cognitive change in children following epilepsy surgery are provided for measures with reliability coefficients above 0.50. This is the first study to provide RCIs and SRBs for a comprehensive neuropsychological battery based on a large sample of children with epilepsy. Tables to aid in evaluating cognitive changes in children who have undergone epilepsy surgery are provided for clinical use. An excel sheet to perform all relevant calculations is also available to interested clinicians or researchers. PMID:26043163
Directory of Open Access Journals (Sweden)
M. E. Gorbunov
2018-01-01
Full Text Available A new reference occultation processing system (rOPS will include a Global Navigation Satellite System (GNSS radio occultation (RO retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA retrieval in the lower troposphere and introduce (1 an empirically estimated boundary layer bias (BLB model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2 the estimation of (residual systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors, where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and
Directory of Open Access Journals (Sweden)
Ozgun Akcay
2015-10-01
Full Text Available Unmanned Aerial Systems (UAS are now capable of gathering high-resolution data, therefore, landslides can be explored in detail at larger scales. In this research, 132 aerial photographs were captured, and 85,456 features were detected and matched automatically using UAS photogrammetry. The root mean square (RMS values of the image coordinates of the Ground Control Points (GPCs varied from 0.521 to 2.293 pixels, whereas maximum RMS values of automatically matched features was calculated as 2.921 pixels. Using the 3D point cloud, which was acquired by aerial photogrammetry, the raster datasets of the aspect, slope, and maximally stable extremal regions (MSER detecting visual uniformity, were defined as three variables, in order to reason fissure structures on the landslide surface. In this research, an Adaptive Neuro Fuzzy Inference System (ANFIS and a Logistic Regression (LR were implemented using training datasets to infer fissure data appropriately. The accuracy of the predictive models was evaluated by drawing receiver operating characteristic (ROC curves and by calculating the area under the ROC curve (AUC. The experiments exposed that high-resolution imagery is an indispensable data source to model and validate landslide fissures appropriately.
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based
International Nuclear Information System (INIS)
Li, Yanting; He, Yong; Su, Yan; Shu, Lianjie
2016-01-01
Highlights: • Suggests a nonparametric model based on MARS for output power prediction. • Compare the MARS model with a wide variety of prediction models. • Show that the MARS model is able to provide an overall good performance in both the training and testing stages. - Abstract: Both linear and nonlinear models have been proposed for forecasting the power output of photovoltaic systems. Linear models are simple to implement but less flexible. Due to the stochastic nature of the power output of PV systems, nonlinear models tend to provide better forecast than linear models. Motivated by this, this paper suggests a fairly simple nonlinear regression model known as multivariate adaptive regression splines (MARS), as an alternative to forecasting of solar power output. The MARS model is a data-driven modeling approach without any assumption about the relationship between the power output and predictors. It maintains simplicity of the classical multiple linear regression (MLR) model while possessing the capability of handling nonlinearity. It is simpler in format than other nonlinear models such as ANN, k-nearest neighbors (KNN), classification and regression tree (CART), and support vector machine (SVM). The MARS model was applied on the daily output of a grid-connected 2.1 kW PV system to provide the 1-day-ahead mean daily forecast of the power output. The comparisons with a wide variety of forecast models show that the MARS model is able to provide reliable forecast performance.
Siciliano, Mattia; Trojano, Luigi; Trojsi, Francesca; Greco, Roberta; Santoro, Manuela; Basile, Giuseppe; Piscopo, Fausta; D'Iorio, Alfonsina; Patrone, Manila; Femiano, Cinzia; Monsurrò, Mariarosaria; Tedeschi, Gioacchino; Santangelo, Gabriella
2017-06-01
Cognitive assessment for individuals with Amyotrophic Lateral Sclerosis (ALS) can be difficult because of frequent occurrence of difficulties with speech, writing, and drawing. The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) is a recent multi-domain neuropsychological screening tool specifically devised for this purpose, and it assesses the following domains: executive functions, social cognition, verbal fluency and language (ALS-specific), but also memory and visuospatial abilities (Non-ALS specific). ECAS total score ranges from 0 (worst performance) to 136 (best performance). Moreover, a brief caregiver interview provides an assessment of behaviour changes and psychotic symptoms usually associated with ALS patients. The aim of the present study was to provide normative values for ECAS total score and sub-scores in a sample of Italian healthy subjects. Two hundred and seventy-seven Italian healthy subjects (151 women and 126 men; age range 30-79 years; educational level from primary school to university) underwent ECAS and Montreal Cognitive Assessment (MoCA). Multiple linear regression analysis revealed that age and education significantly influenced performance on ECAS total score and sub-scale scores. From the derived linear equation, a correction grid for raw scores was built. Inferential cut-off scores were estimated using a non-parametric technique and equivalent scores (ES) were computed. Correlation analysis showed a good significant correlation between adjusted ECAS total scores with adjusted MoCA total scores (r rho = 0.669, p < 0.0001). The present study provided normative data for the ECAS in an Italian population useful for both clinical and research purposes.
An adaptive functional regression-based prognostic model for applications with missing data
International Nuclear Information System (INIS)
Fang, Xiaolei; Zhou, Rensheng; Gebraeel, Nagi
2015-01-01
Most prognostic degradation models rely on a relatively accurate and comprehensive database of historical degradation signals. Typically, these signals are used to identify suitable degradation trends that are useful for predicting lifetime. In many real-world applications, these degradation signals are usually incomplete, i.e., contain missing observations. Often the amount of missing data compromises the ability to identify a suitable parametric degradation model. This paper addresses this problem by developing a semi-parametric approach that can be used to predict the remaining lifetime of partially degraded systems. First, key signal features are identified by applying Functional Principal Components Analysis (FPCA) to the available historical data. Next, an adaptive functional regression model is used to model the extracted signal features and the corresponding times-to-failure. The model is then used to predict remaining lifetimes and to update these predictions using real-time signals observed from fielded components. Results show that the proposed approach is relatively robust to significant levels of missing data. The performance of the model is evaluated and shown to provide significantly accurate predictions of residual lifetime using two case studies. - Highlights: • We model degradation signals with missing data with the goal of predicting remaining lifetime. • We examine two types of signal characteristics, fragmented and sparse. • We provide framework that updates remaining life predictions by incorporating real-time signal observations. • For the missing data, we show that the proposed model outperforms other benchmark models. • For the complete data, we show that the proposed model performs at least as good as a benchmark model
Tian, Ye; Xu, Yue-Ping; Wang, Guoqing
2018-05-01
Drought can have a substantial impact on the ecosystem and agriculture of the affected region and does harm to local economy. This study aims to analyze the relation between soil moisture and drought and predict agricultural drought in Xiangjiang River basin. The agriculture droughts are presented with the Precipitation-Evapotranspiration Index (SPEI). The Support Vector Regression (SVR) model incorporating climate indices is developed to predict the agricultural droughts. Analysis of climate forcing including El Niño Southern Oscillation and western Pacific subtropical high (WPSH) are carried out to select climate indices. The results show that SPEI of six months time scales (SPEI-6) represents the soil moisture better than that of three and one month time scale on drought duration, severity and peaks. The key factor that influences the agriculture drought is the Ridge Point of WPSH, which mainly controls regional temperature. The SVR model incorporating climate indices, especially ridge point of WPSH, could improve the prediction accuracy compared to that solely using drought index by 4.4% in training and 5.1% in testing measured by Nash Sutcliffe efficiency coefficient (NSE) for three month lead time. The improvement is more significant for the prediction with one month lead (15.8% in training and 27.0% in testing) than that with three months lead time. However, it needs to be cautious in selection of the input parameters, since adding redundant information could have a counter effect in attaining a better prediction. Copyright © 2017 Elsevier B.V. All rights reserved.
Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald
2011-06-01
Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for
Directory of Open Access Journals (Sweden)
Omholt Stig W
2011-06-01
Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback
Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing
Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.
2006-01-01
The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval
Ozdemir, Adnan; Altural, Tolga
2013-03-01
This study evaluated and compared landslide susceptibility maps produced with three different methods, frequency ratio, weights of evidence, and logistic regression, by using validation datasets. The field surveys performed as part of this investigation mapped the locations of 90 landslides that had been identified in the Sultan Mountains of south-western Turkey. The landslide influence parameters used for this study are geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transportation capacity index, distance to drainage, distance to fault, drainage density, fault density, and spring density maps. The relationships between landslide distributions and these parameters were analysed using the three methods, and the results of these methods were then used to calculate the landslide susceptibility of the entire study area. The accuracy of the final landslide susceptibility maps was evaluated based on the landslides observed during the fieldwork, and the accuracy of the models was evaluated by calculating each model's relative operating characteristic curve. The predictive capability of each model was determined from the area under the relative operating characteristic curve and the areas under the curves obtained using the frequency ratio, logistic regression, and weights of evidence methods are 0.976, 0.952, and 0.937, respectively. These results indicate that the frequency ratio and weights of evidence models are relatively good estimators of landslide susceptibility in the study area. Specifically, the results of the correlation analysis show a high correlation between the frequency ratio and weights of evidence results, and the frequency ratio and logistic regression methods exhibit correlation coefficients of 0.771 and 0.727, respectively. The frequency ratio model is simple, and its input, calculation and output processes are
Gómez-Valent, Adrià; Amendola, Luca
2018-04-01
In this paper we present new constraints on the Hubble parameter H0 using: (i) the available data on H(z) obtained from cosmic chronometers (CCH); (ii) the Hubble rate data points extracted from the supernovae of Type Ia (SnIa) of the Pantheon compilation and the Hubble Space Telescope (HST) CANDELS and CLASH Multy-Cycle Treasury (MCT) programs; and (iii) the local HST measurement of H0 provided by Riess et al. (2018), H0HST=(73.45±1.66) km/s/Mpc. Various determinations of H0 using the Gaussian processes (GPs) method and the most updated list of CCH data have been recently provided by Yu, Ratra & Wang (2018). Using the Gaussian kernel they find H0=(67.42± 4.75) km/s/Mpc. Here we extend their analysis to also include the most released and complete set of SnIa data, which allows us to reduce the uncertainty by a factor ~ 3 with respect to the result found by only considering the CCH information. We obtain H0=(67.06± 1.68) km/s/Mpc, which favors again the lower range of values for H0 and is in tension with H0HST. The tension reaches the 2.71σ level. We round off the GPs determination too by taking also into account the error propagation of the kernel hyperparameters when the CCH with and without H0HST are used in the analysis. In addition, we present a novel method to reconstruct functions from data, which consists in a weighted sum of polynomial regressions (WPR). We apply it from a cosmographic perspective to reconstruct H(z) and estimate H0 from CCH and SnIa measurements. The result obtained with this method, H0=(68.90± 1.96) km/s/Mpc, is fully compatible with the GPs ones. Finally, a more conservative GPs+WPR value is also provided, H0=(68.45± 2.00) km/s/Mpc, which is still almost 2σ away from H0HST.
Entropy-based benchmarking methods
Temurshoev, Umed
2012-01-01
We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
Cao, M H; Adeola, O
2016-02-01
The energy values of poultry byproduct meal (PBM) and animal-vegetable oil blend (A-V blend) were determined in 2 experiments with 288 broiler chickens from d 19 to 25 post hatching. The birds were fed a starter diet from d 0 to 19 post hatching. In each experiment, 144 birds were grouped by weight into 8 replicates of cages with 6 birds per cage. There were 3 diets in each experiment consisting of one reference diet (RD) and 2 test diets (TD). The TD contained 2 levels of PBM (Exp. 1) or A-V blend (Exp. 2) that replaced the energy sources in the RD at 50 or 100 g/kg (Exp. 1) or 40 or 80 g/kg (Exp. 2) in such a way that the same ratio were maintained for energy ingredients across experimental diets. The ileal digestible energy (IDE), ME, and MEn of PBM and A-V blend were determined by the regression method. Dry matter of PBM and A-V blend were 984 and 999 g/kg; the gross energies were 5,284 and 9,604 kcal/kg of DM, respectively. Addition of PBM to the RD in Exp. 1 linearly decreased (P blend to the RD linearly increased (P blend as follows: IDE = 10,616x + 7.350, r(2) = 0.96; ME = 10,121x + 0.447, r(2) = 0.99; MEn = 10,124x + 2.425, r(2) = 0.99. These data indicate the respective IDE, ME, MEn values (kcal/kg of DM) of PBM evaluated to be 3,537, 3,805, and 3,278, and A-V blend evaluated to be 10,616, 10,121, and 10,124. © 2015 Poultry Science Association Inc.
An illustration of harmonic regression based on the results of the fast Fourier transformation
Directory of Open Access Journals (Sweden)
Bertfai Imre
2002-01-01
Full Text Available The well-known methodology of the Fourier analysis is put against the background in the 2nd half of the century parallel to the development of the time-domain approach in the analysis of mainly economical time series. However, from the author's point of view, the former possesses some hidden analytical advantages which deserve to be re-introduced to the toolbox of analysts. This paper, through several case studies, reports research results for computer algorithm providing a harmonic model for time series. The starting point of the particular method is a harmonic analysis (Fourier-analysis or Lomb-periodogram. The results are optimized in a multifold manner resulting in a model which is easy to handle and able to forecast the underlying data. The results provided are particularly free from limitations characteristic for that methods. Furthermore, the calculated results are easy to interpret and use for further decisions. Nevertheless, the author intends to enhance the procedure in several ways. The method shown seems to be very effective and useful in modeling time series consisting of periodic terms. An additional advantage is the easy interpretation of the obtained parameters.
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Institute of Scientific and Technical Information of China (English)
Yang Shao[1
2016-01-01
In this paper, we conduct innovation strategy research of the Yunnan image in the modern entertainment channels based on regression and inheritance of culture. The concept of culture and complicated contents as simply includes material culture and spiritual culture. Cultural inheritance is the process of acculturation a nation it not only is the transmission of national culture, the inheritance and development that also can be refl ected by many indexes. Multicultural education theory formed in the American civil rights movement in the 1960s. Multicultural education theory is that, when the mainstream national culture and the minority subculture in contact, every culture shall be entitled to retain their own cultural traits. Our research integrate the regression and inheritance of culture to then propose the innovation strategy research of the Yunnan image that will promote further development of the corresponding and related industry.
Directory of Open Access Journals (Sweden)
Naradasu Kumar Ravi
2013-01-01
Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.
Education-Based Gaps in eHealth: A Weighted Logistic Regression Approach
Amo, Laura
2016-01-01
Background Persons with a college degree are more likely to engage in eHealth behaviors than persons without a college degree, compounding the health disadvantages of undereducated groups in the United States. However, the extent to which quality of recent eHealth experience reduces the education-based eHealth gap is unexplored. Objective The goal of this study was to examine how eHealth information search experience moderates the relationship between college education and eHealth behaviors. ...
Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P
2010-10-22
A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.
Weisz, Elisabeth; Smith, William L.; Smith, Nadia
2013-06-01
The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.
Hilbe, Joseph M
2009-01-01
This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...
Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu
2018-02-01
A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.
Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
International Nuclear Information System (INIS)
Ait Maatallah, Othman; Achuthan, Ajit; Janoyan, Kerop; Marzocca, Pier
2015-01-01
Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling
Bolarinwa, O A; Adeola, O
2016-02-01
Direct or indirect methods can be used to determine the DE and ME of feed ingredients for pigs. In situations when only the indirect approach is suitable, the regression method presents a robust indirect approach. Three experiments were conducted to compare the direct and regression methods for determining the DE and ME values of barley, sorghum, and wheat for pigs. In each experiment, 24 barrows with an average initial BW of 31, 32, and 33 kg were assigned to 4 diets in a randomized complete block design. The 4 diets consisted of 969 g barley, sorghum, or wheat/kg plus minerals and vitamins for the direct method; a corn-soybean meal reference diet (RD); the RD + 300 g barley, sorghum, or wheat/kg; and the RD + 600 g barley, sorghum, or wheat/kg. The 3 corn-soybean meal diets were used for the regression method. Each diet was fed to 6 barrows in individual metabolism crates for a 5-d acclimation followed by a 5-d period of total but separate collection of feces and urine in each experiment. Graded substitution of barley or wheat, but not sorghum, into the RD linearly reduced ( direct method-derived DE and ME for barley were 3,669 and 3,593 kcal/kg DM, respectively. The regressions of barley contribution to DE and ME in kilocalories against the quantity of barley DMI in kilograms generated 3,746 kcal DE/kg DM and 3,647 kcal ME/kg DM. The DE and ME for sorghum by the direct method were 4,097 and 4,042 kcal/kg DM, respectively; the corresponding regression-derived estimates were 4,145 and 4,066 kcal/kg DM. Using the direct method, energy values for wheat were 3,953 kcal DE/kg DM and 3,889 kcal ME/kg DM. The regressions of wheat contribution to DE and ME in kilocalories against the quantity of wheat DMI in kilograms generated 3,960 kcal DE/kg DM and 3,874 kcal ME/kg DM. The DE and ME of barley using the direct method were not different (0.3 direct method-derived DE and ME of sorghum were not different (0.5 direct method- and regression method-derived DE (3,953 and 3
Regression models of reactor diagnostic signals
International Nuclear Information System (INIS)
Vavrin, J.
1989-01-01
The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)
Silva, João Paulo Santos; Mônaco, Luciana da Mata; Paschoal, André Monteiro; Oliveira, Ícaro Agenor Ferreira de; Leoni, Renata Ferranti
2018-05-16
Arterial spin labeling (ASL) is an established magnetic resonance imaging (MRI) technique that is finding broader applications in functional studies of the healthy and diseased brain. To promote improvement in cerebral blood flow (CBF) signal specificity, many algorithms and imaging procedures, such as subtraction methods, were proposed to eliminate or, at least, minimize noise sources. Therefore, this study addressed the main considerations of how CBF functional connectivity (FC) is changed, regarding resting brain network (RBN) identification and correlations between regions of interest (ROI), by different subtraction methods and removal of residual motion artifacts and global signal fluctuations (RMAGSF). Twenty young healthy participants (13 M/7F, mean age = 25 ± 3 years) underwent an MRI protocol with a pseudo-continuous ASL (pCASL) sequence. Perfusion-based images were obtained using simple, sinc and running subtraction. RMAGSF removal was applied to all CBF time series. Independent Component Analysis (ICA) was used for RBN identification, while Pearson' correlation was performed for ROI-based FC analysis. Temporal signal-to-noise ratio (tSNR) was higher in CBF maps obtained by sinc subtraction, although RMAGSF removal had a significant effect on maps obtained with simple and running subtractions. Neither the subtraction method nor the RMAGSF removal directly affected the identification of RBNs. However, the number of correlated and anti-correlated voxels varied for different subtraction and filtering methods. In an ROI-to-ROI level, changes were prominent in FC values and their statistical significance. Our study showed that both RMAGSF filtering and subtraction method might influence resting-state FC results, especially in an ROI level, consequently affecting FC analysis and its interpretation. Taking our results and the whole discussion together, we understand that for an exploratory assessment of the brain, one could avoid removing RMAGSF to
Glass, Edmund R; Dozmorov, Mikhail G
2016-10-06
The goal of many human disease-oriented studies is to detect molecular mechanisms different between healthy controls and patients. Yet, commonly used gene expression measurements from blood samples suffer from variability of cell composition. This variability hinders the detection of differentially expressed genes and is often ignored. Combined with cell counts, heterogeneous gene expression may provide deeper insights into the gene expression differences on the cell type-specific level. Published computational methods use linear regression to estimate cell type-specific differential expression, and a global cutoff to judge significance, such as False Discovery Rate (FDR). Yet, they do not consider many artifacts hidden in high-dimensional gene expression data that may negatively affect linear regression. In this paper we quantify the parameter space affecting the performance of linear regression (sensitivity of cell type-specific differential expression detection) on a per-gene basis. We evaluated the effect of sample sizes, cell type-specific proportion variability, and mean squared error on sensitivity of cell type-specific differential expression detection using linear regression. Each parameter affected variability of cell type-specific expression estimates and, subsequently, the sensitivity of differential expression detection. We provide the R package, LRCDE, which performs linear regression-based cell type-specific differential expression (deconvolution) detection on a gene-by-gene basis. Accounting for variability around cell type-specific gene expression estimates, it computes per-gene t-statistics of differential detection, p-values, t-statistic-based sensitivity, group-specific mean squared error, and several gene-specific diagnostic metrics. The sensitivity of linear regression-based cell type-specific differential expression detection differed for each gene as a function of mean squared error, per group sample sizes, and variability of the proportions
Activity based costing method
Directory of Open Access Journals (Sweden)
Èuchranová Katarína
2001-06-01
Full Text Available Activity based costing is a method of identifying and tracking the operating costs directly associated with processing items. It is the practice of focusing on some unit of output, such as a purchase order or an assembled automobile and attempting to determine its total as precisely as poccible based on the fixed and variable costs of the inputs.You use ABC to identify, quantify and analyze the various cost drivers (such as labor, materials, administrative overhead, rework. and to determine which ones are candidates for reduction.A processes any activity that accepts inputs, adds value to these inputs for customers and produces outputs for these customers. The customer may be either internal or external to the organization. Every activity within an organization comprimes one or more processes. Inputs, controls and resources are all supplied to the process.A process owner is the person responsible for performing and or controlling the activity.The direction of cost through their contact to partial activity and processes is a new modern theme today. Beginning of this method is connected with very important changes in the firm processes.ABC method is a instrument , that bring a competitive advantages for the firm.
Ali, M Sanni; Groenwold, Rolf H H; Belitser, Svetlana V; Souverein, Patrick C; Martín, Elisa; Gatto, Nicolle M; Huerta, Consuelo; Gardarsdottir, Helga; Roes, Kit C B; Hoes, Arno W; de Boer, Antonius; Klungel, Olaf H
2016-03-01
Observational studies including time-varying treatments are prone to confounding. We compared time-varying Cox regression analysis, propensity score (PS) methods, and marginal structural models (MSMs) in a study of antidepressant [selective serotonin reuptake inhibitors (SSRIs)] use and the risk of hip fracture. A cohort of patients with a first prescription for antidepressants (SSRI or tricyclic antidepressants) was extracted from the Dutch Mondriaan and Spanish Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP) general practice databases for the period 2001-2009. The net (total) effect of SSRI versus no SSRI on the risk of hip fracture was estimated using time-varying Cox regression, stratification and covariate adjustment using the PS, and MSM. In MSM, censoring was accounted for by inverse probability of censoring weights. The crude hazard ratio (HR) of SSRI use versus no SSRI use on hip fracture was 1.75 (95%CI: 1.12, 2.72) in Mondriaan and 2.09 (1.89, 2.32) in BIFAP. After confounding adjustment using time-varying Cox regression, stratification, and covariate adjustment using the PS, HRs increased in Mondriaan [2.59 (1.63, 4.12), 2.64 (1.63, 4.25), and 2.82 (1.63, 4.25), respectively] and decreased in BIFAP [1.56 (1.40, 1.73), 1.54 (1.39, 1.71), and 1.61 (1.45, 1.78), respectively]. MSMs with stabilized weights yielded HR 2.15 (1.30, 3.55) in Mondriaan and 1.63 (1.28, 2.07) in BIFAP when accounting for censoring and 2.13 (1.32, 3.45) in Mondriaan and 1.66 (1.30, 2.12) in BIFAP without accounting for censoring. In this empirical study, differences between the different methods to control for time-dependent confounding were small. The observed differences in treatment effect estimates between the databases are likely attributable to different confounding information in the datasets, illustrating that adequate information on (time-varying) confounding is crucial to prevent bias. Copyright © 2016 John Wiley & Sons, Ltd.
Payande, Abolfazl; Tabesh, Hamed; Shakeri, Mohammad Taghi; Saki, Azadeh; Safarian, Mohammad
2013-01-14
Growth charts are widely used to assess children's growth status and can provide a trajectory of growth during early important months of life. The objectives of this study are going to construct growth charts and normal values of weight-for-age for children aged 0 to 5 years using a powerful and applicable methodology. The results compare with the World Health Organization (WHO) references and semi-parametric LMS method of Cole and Green. A total of 70737 apparently healthy boys and girls aged 0 to 5 years were recruited in July 2004 for 20 days from those attending community clinics for routine health checks as a part of a national survey. Anthropometric measurements were done by trained health staff using WHO methodology. The nonparametric quantile regression method obtained by local constant kernel estimation of conditional quantiles curves using for estimation of curves and normal values. The weight-for-age growth curves for boys and girls aged from 0 to 5 years were derived utilizing a population of children living in the northeast of Iran. The results were similar to the ones obtained by the semi-parametric LMS method in the same data. Among all age groups from 0 to 5 years, the median values of children's weight living in the northeast of Iran were lower than the corresponding values in WHO reference data. The weight curves of boys were higher than those of girls in all age groups. The differences between growth patterns of children living in the northeast of Iran versus international ones necessitate using local and regional growth charts. International normal values may not properly recognize the populations at risk for growth problems in Iranian children. Quantile regression (QR) as a flexible method which doesn't require restricted assumptions, proposed for estimation reference curves and normal values.
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
Directory of Open Access Journals (Sweden)
Xuedong Yan
2012-01-01
Full Text Available In this study, the traffic crash rate, total crash frequency, and injury and fatal crash frequency were taken into consideration for distinguishing between rural and urban road segment safety. The GIS-based crash data during four and half years in Pikes Peak Area, US were applied for the analyses. The comparative statistical results show that the crash rates in rural segments are consistently lower than urban segments. Further, the regression results based on Zero-Inflated Negative Binomial (ZINB regression models indicate that the urban areas have a higher crash risk in terms of both total crash frequency and injury and fatal crash frequency, compared to rural areas. Additionally, it is found that crash frequencies increase as traffic volume and segment length increase, though the higher traffic volume lower the likelihood of severe crash occurrence; compared to 2-lane roads, the 4-lane roads have lower crash frequencies but have a higher probability of severe crash occurrence; and better road facilities with higher free flow speed can benefit from high standard design feature thus resulting in a lower total crash frequency, but they cannot mitigate the severe crash risk.
Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L
2018-02-01
A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Energy Technology Data Exchange (ETDEWEB)
Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)
2016-06-15
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately
International Nuclear Information System (INIS)
Wei, J; Chao, M
2016-01-01
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately
Directory of Open Access Journals (Sweden)
Üstün Bedirhan T
2006-07-01
Full Text Available Abstract Background The International Classification of Functioning, Disability and Health (ICF is the framework developed by WHO to describe functioning and disability at both the individual and population levels. While condition-specific ICF Core Sets are useful, a Generic ICF Core Set is needed to describe and compare problems in functioning across health conditions. Methods The aims of the multi-centre, cross-sectional study presented here were: a to propose a method to select ICF categories when a large amount of ICF-based data have to be handled, and b to identify candidate ICF categories for a Generic ICF Core Set by examining their explanatory power in relation to item one of the SF-36. The data were collected from 1039 patients using the ICF checklist, the SF-36 and a Comorbidity Questionnaire. ICF categories to be entered in an initial regression model were selected following systematic steps in accordance with the ICF structure. Based on an initial regression model, additional models were designed by systematically substituting the ICF categories included in it with ICF categories with which they were highly correlated. Results Fourteen different regression models were performed. The variance the performed models account for ranged from 22.27% to 24.0%. The ICF category that explained the highest amount of variance in all the models was sensation of pain. In total, thirteen candidate ICF categories for a Generic ICF Core Set were proposed. Conclusion The selection strategy based on the ICF structure and the examination of the best possible alternative models does not provide a final answer about which ICF categories must be considered, but leads to a selection of suitable candidates which needs further consideration and comparison with the results of other selection strategies in developing a Generic ICF Core Set.
Nose, Takashi; Kobayashi, Takao
In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.
Forecasting exchange rates: a robust regression approach
Preminger, Arie; Franck, Raphael
2005-01-01
The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...
Directory of Open Access Journals (Sweden)
Yubo Wang
2017-06-01
Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.
Wang, Yubo; Veluvolu, Kalyana C
2017-06-14
It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.
Koh, T S; Wu, X Y; Cheong, L H; Lim, C C T
2004-12-01
The assessment of tissue perfusion by dynamic contrast-enhanced (DCE) imaging involves a deconvolution process. For analysis of DCE imaging data, we implemented a regression approach to select appropriate regularization parameters for deconvolution using the standard and generalized singular value decomposition methods. Monte Carlo simulation experiments were carried out to study the performance and to compare with other existing methods used for deconvolution analysis of DCE imaging data. The present approach is found to be robust and reliable at the levels of noise commonly encountered in DCE imaging, and for different models of the underlying tissue vasculature. The advantages of the present method, as compared with previous methods, include its efficiency of computation, ability to achieve adequate regularization to reproduce less noisy solutions, and that it does not require prior knowledge of the noise condition. The proposed method is applied on actual patient study cases with brain tumors and ischemic stroke, to illustrate its applicability as a clinical tool for diagnosis and assessment of treatment response.
Najaf, Pooya; Duddu, Venkata R; Pulugurtha, Srinivas S
2018-03-01
Machine learning (ML) techniques have higher prediction accuracy compared to conventional statistical methods for crash frequency modelling. However, their black-box nature limits the interpretability. The objective of this research is to combine both ML and statistical methods to develop hybrid link-level crash frequency models with high predictability and interpretability. For this purpose, M5' model trees method (M5') is introduced and applied to classify the crash data and then calibrate a model for each homogenous class. The data for 1134 and 345 randomly selected links on urban arterials in the city of Charlotte, North Carolina was used to develop and validate models, respectively. The outputs from the hybrid approach are compared with the outputs from cluster-based negative binomial regression (NBR) and general NBR models. Findings indicate that M5' has high predictability and is very reliable to interpret the role of different attributes on crash frequency compared to other developed models.
Hofer, Marlis; Nemec, Johanna
2016-04-01
This study presents first steps towards verifying the hypothesis that uncertainty in global and regional glacier mass simulations can be reduced considerably by reducing the uncertainty in the high-resolution atmospheric input data. To this aim, we systematically explore the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in geo-environmentally and climatologically very distinct settings, all within highly complex topography and in the close proximity to mountain glaciers: (1) the Vernagtbach station in the Northern European Alps (VERNAGT), (2) the Artesonraju measuring site in the tropical South American Andes (ARTESON), and (3) the Brewster measuring site in the Southern Alps of New Zealand (BREWSTER). As the large-scale predictors, ERA interim reanalysis data are used. In the applied downscaling model training and evaluation procedures, particular emphasis is put on appropriately accounting for the pitfalls of limited and/or patchy observation records that are usually the only (if at all) available data from the glacierized mountain sites. Generalized linear models and beta regression are investigated as alternatives to ordinary least squares regression for the non-Gaussian target variables. By analyzing results for the three different sites, five predictands and for different times of the year, we look for systematic improvements in the downscaling models' skill specifically obtained by (i) using predictor data at the optimum scale rather than the minimum scale of the reanalysis data, (ii) identifying the optimum predictor allocation in the vertical, and (iii) considering multiple (variable, level and/or grid point) predictor options combined with state
Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry
2018-03-29
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
Directory of Open Access Journals (Sweden)
Mohammadmehdi Saberioon
2018-03-01
Full Text Available The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss were fed either a fish-meal based diet (80 fish or a 100% plant-based diet (80 fish and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF, Support vector machine (SVM, Logistic regression (LR and k-Nearest neighbours (k-NN. The SVM with radial based kernel provided the best classifier with correct classification rate (CCR of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40% classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin.
Bry, X; Verron, T; Cazes, P
2009-05-29
In this work, we consider chemical and physical variable groups describing a common set of observations (cigarettes). One of the groups, minor smoke compounds (minSC), is assumed to depend on the others (minSC predictors). PLS regression (PLSR) of m inSC on the set of all predictors appears not to lead to a satisfactory analytic model, because it does not take into account the expert's knowledge. PLS path modeling (PLSPM) does not use the multidimensional structure of predictor groups. Indeed, the expert needs to separate the influence of several pre-designed predictor groups on minSC, in order to see what dimensions this influence involves. To meet these needs, we consider a multi-group component-regression model, and propose a method to extract from each group several strong uncorrelated components that fit the model. Estimation is based on a global multiple covariance criterion, used in combination with an appropriate nesting approach. Compared to PLSR and PLSPM, the structural equation exploratory regression (SEER) we propose fully uses predictor group complementarity, both conceptually and statistically, to predict the dependent group.
Regression filter for signal resolution
International Nuclear Information System (INIS)
Matthes, W.
1975-01-01
The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Antropov, K M; Varaksin, A N
2013-01-01
This paper provides the description of Land Use Regression (LUR) modeling and the result of its application in the study of nitrogen dioxide air pollution in Ekaterinburg. The paper describes the difficulties of the modeling for air pollution caused by motor vehicles exhaust, and the ways to address these challenges. To create LUR model of the NO2 air pollution in Ekaterinburg, concentrations of NO2 were measured, data on factors affecting air pollution were collected, a statistical analysis of the data were held. A statistical model of NO2 air pollution (coefficient of determination R2 = 0.70) and a map of pollution were created.
Ali, M Sanni; Groenwold, Rolf H H; Belitser, Svetlana V; Souverein, Patrick C; Martín, Elisa; Gatto, Nicolle M; Huerta, Consuelo; Gardarsdottir, Helga; Roes, Kit C B; Hoes, Arno W; de Boer, Antonius; Klungel, Olaf H
2016-01-01
BACKGROUND: Observational studies including time-varying treatments are prone to confounding. We compared time-varying Cox regression analysis, propensity score (PS) methods, and marginal structural models (MSMs) in a study of antidepressant [selective serotonin reuptake inhibitors (SSRIs)] use and
Freund, Rudolf J; Sa, Ping
2006-01-01
The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design
Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.
2012-06-01
In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).
DEFF Research Database (Denmark)
D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar
2012-01-01
and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...... flexors. Results: Males were signifantly stronger than females across all age groups. Elbow peak torque (EPT) was better preserved from 60s to 70s whereas knee peak torque (KPT) reduced significantly (PGender, thigh mass and age best...... predicted KPT (R2=0.60). Gender, forearm mass and age best predicted EPT (R2=0.75). Good crossvalidation was established for both elbow and knee models. Conclusion: This cross-sectional study of muscle strength created and validated strength scaled equations of EPT and KPT using only gender, segment mass...
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2015-03-15
Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.
Hoogerheide, L.F.; Kaashoek, J.F.; van Dijk, H.K.
2007-01-01
Likelihoods and posteriors of instrumental variable (IV) regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating posterior
L.F. Hoogerheide (Lennart); J.F. Kaashoek (Johan); H.K. van Dijk (Herman)
2005-01-01
textabstractLikelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours
Directory of Open Access Journals (Sweden)
Moysés Nascimento
2010-01-01
Full Text Available O objetivo deste trabalho foi avaliar uma metodologia de análise de adaptabilidade e estabilidade fenotípica de genótipos de café baseada em regressão não paramétrica. A técnica utilizada difere das demais, pois reduz a influência na estimação do parâmetro de adaptabilidade de algum ponto extremo, ocasionado pela presença de genótipos com respostas demasiadamente diferenciadas a determinado ambiente. Foram utilizados dados provenientes de um experimento sobre produtividade média de grãos de 40 genótipos de café (Coffea canephora, com delineamento em blocos ao acaso, com seis repetições. Os genótipos foram avaliados em cinco anos (1996, 1998, 1999, 2000 e 2001, em dois locais (Sooretama e Marilândia, ES no total de dez ambientes. A metodologia proposta demonstrou ser adequada e eficiente, pois extingue os efeitos impróprios induzidos pela presença de pontos extremos e evita a recomendação incorreta de genótipos quanto à adaptabilidade.The objective of this work was to evaluate a methodology of phenotypic adaptability and stability analyses of coffee genotypes based on nonparametric regression. The technique used differs from other techniques because it reduces the influence of extreme points resulting from the presence of genotypes whose answers to a certain environment are too different on the estimation of the adaptability parameter. Data from an experiment studying the average yield of 40 coffee (Coffea canephora genotypes in a randomized block design with six replicates were used to evaluate the method. The genotypes were evaluated along five years (1996, 1998, 1999, 2000 and 2001 in two locations (Sooretama and Marilândia, ES, Brazil, in a total of ten environments. The methodology proposed proved adequate and efficient, since it eliminates the disproportionate effects induced by the presence of extreme points and avoids misleading recommendations of genotypes in terms of adaptability.
Lee, Mi Hee; Lee, Soo Bong; Eo, Yang Dam; Kim, Sun Woong; Woo, Jung-Hun; Han, Soo Hee
2017-07-01
Landsat optical images have enough spatial and spectral resolution to analyze vegetation growth characteristics. But, the clouds and water vapor degrade the image quality quite often, which limits the availability of usable images for the time series vegetation vitality measurement. To overcome this shortcoming, simulated images are used as an alternative. In this study, weighted average method, spatial and temporal adaptive reflectance fusion model (STARFM) method, and multilinear regression analysis method have been tested to produce simulated Landsat normalized difference vegetation index (NDVI) images of the Korean Peninsula. The test results showed that the weighted average method produced the images most similar to the actual images, provided that the images were available within 1 month before and after the target date. The STARFM method gives good results when the input image date is close to the target date. Careful regional and seasonal consideration is required in selecting input images. During summer season, due to clouds, it is very difficult to get the images close enough to the target date. Multilinear regression analysis gives meaningful results even when the input image date is not so close to the target date. Average R 2 values for weighted average method, STARFM, and multilinear regression analysis were 0.741, 0.70, and 0.61, respectively.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yan-Feng; Dai, Shu-Gui [College of Environmental Science and Engineering, Nankai University, Key Laboratory for Pollution Process and Environmental Criteria of Ministry of Education, Tianjin (China); Ma, Yi [College of Chemistry, Nankai University, Institute of Elemento-Organic Chemistry, Tianjin (China); Gao, Zhi-Xian [Institute of Hygiene and Environmental Medicine, Tianjin (China)
2010-07-15
Immunoassays have been regarded as a possible alternative or supplement for measuring polycyclic aromatic hydrocarbons (PAHs) in the environment. Since there are too many potential cross-reactants for PAH immunoassays, it is difficult to determine all the cross-reactivities (CRs) by experimental tests. The relationship between CR and the physical-chemical properties of PAHs and related compounds was investigated using the CR data from a commercial enzyme-linked immunosorbent assay (ELISA) kit test. Two quantitative structure-activity relationship (QSAR) techniques, regression analysis and comparative molecular field analysis (CoMFA), were applied for predicting the CR of PAHs in this ELISA kit. Parabolic regression indicates that the CRs are significantly correlated with the logarithm of the partition coefficient for the octanol-water system (log K{sub ow}) (r{sup 2}=0.643, n=23, P<0.0001), suggesting that hydrophobic interactions play an important role in the antigen-antibody binding and the cross-reactions in this ELISA test. The CoMFA model obtained shows that the CRs of the PAHs are correlated with the 3D structure of the molecules (r{sub cv}{sup 2}=0.663, r{sup 2}=0.873, F{sub 4,32}=55.086). The contributions of the steric and electrostatic fields to CR were 40.4 and 59.6%, respectively. Both of the QSAR models satisfactorily predict the CR in this PAH immunoassay kit, and help in understanding the mechanisms of antigen-antibody interaction. (orig.)
Directory of Open Access Journals (Sweden)
Mehmet Das
2018-01-01
Full Text Available In this study, an air heated solar collector (AHSC dryer was designed to determine the drying characteristics of the pear. Flat pear slices of 10 mm thickness were used in the experiments. The pears were dried both in the AHSC dryer and under the sun. Panel glass temperature, panel floor temperature, panel inlet temperature, panel outlet temperature, drying cabinet inlet temperature, drying cabinet outlet temperature, drying cabinet temperature, drying cabinet moisture, solar radiation, pear internal temperature, air velocity and mass loss of pear were measured at 30 min intervals. Experiments were carried out during the periods of June 2017 in Elazig, Turkey. The experiments started at 8:00 a.m. and continued till 18:00. The experiments were continued until the weight changes in the pear slices stopped. Wet basis moisture content (MCw, dry basis moisture content (MCd, adjustable moisture ratio (MR, drying rate (DR, and convective heat transfer coefficient (hc were calculated with both in the AHSC dryer and the open sun drying experiment data. It was found that the values of hc in both drying systems with a range 12.4 and 20.8 W/m2 °C. Three different kernel models were used in the support vector machine (SVM regression to construct the predictive model of the calculated hc values for both systems. The mean absolute error (MAE, root mean squared error (RMSE, relative absolute error (RAE and root relative absolute error (RRAE analysis were performed to indicate the predictive model’s accuracy. As a result, the rate of drying of the pear was examined for both systems and it was observed that the pear had dried earlier in the AHSC drying system. A predictive model was obtained using the SVM regression for the calculated hc values for the pear in the AHSC drying system. The normalized polynomial kernel was determined as the best kernel model in SVM for estimating the hc values.
Gross, Samuel M; Tibshirani, Robert
2015-04-01
We consider the scenario where one observes an outcome variable and sets of features from multiple assays, all measured on the same set of samples. One approach that has been proposed for dealing with these type of data is "sparse multiple canonical correlation analysis" (sparse mCCA). All of the current sparse mCCA techniques are biconvex and thus have no guarantees about reaching a global optimum. We propose a method for performing sparse supervised canonical correlation analysis (sparse sCCA), a specific case of sparse mCCA when one of the datasets is a vector. Our proposal for sparse sCCA is convex and thus does not face the same difficulties as the other methods. We derive efficient algorithms for this problem that can be implemented with off the shelf solvers, and illustrate their use on simulated and real data. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru
2017-09-01
Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Regression of environmental noise in LIGO data
International Nuclear Information System (INIS)
Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G
2015-01-01
We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)
Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy
2016-07-01
Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.
Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena
2013-01-01
The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Denli, H. H.; Durmus, B.
2016-12-01
The purpose of this study is to examine the factors which may affect the apartment prices with multiple linear regression analysis models and visualize the results by value maps. The study is focused on a county of Istanbul - Turkey. Totally 390 apartments around the county Umraniye are evaluated due to their physical and locational conditions. The identification of factors affecting the price of apartments in the county with a population of approximately 600k is expected to provide a significant contribution to the apartment market.Physical factors are selected as the age, number of rooms, size, floor numbers of the building and the floor that the apartment is positioned in. Positional factors are selected as the distances to the nearest hospital, school, park and police station. Totally ten physical and locational parameters are examined by regression analysis.After the regression analysis has been performed, value maps are composed from the parameters age, price and price per square meters. The most significant of the composed maps is the price per square meters map. Results show that the location of the apartment has the most influence to the square meter price information of the apartment. A different practice is developed from the composed maps by searching the ability of using price per square meters map in urban transformation practices. By marking the buildings older than 15 years in the price per square meters map, a different and new interpretation has been made to determine the buildings, to which should be given priority during an urban transformation in the county.This county is very close to the North Anatolian Fault zone and is under the threat of earthquakes. By marking the apartments older than 15 years on the price per square meters map, both older and expensive square meters apartments list can be gathered. By the help of this list, the priority could be given to the selected higher valued old apartments to support the economy of the country
Ma, Jing; Yu, Jiong; Hao, Guangshu; Wang, Dan; Sun, Yanni; Lu, Jianxin; Cao, Hongcui; Lin, Feiyan
2017-02-20
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
Shrivastava, Prashant Kumar; Pandey, Arun Kumar
2018-03-01
The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.
Vasat, Radim; Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos
2014-05-01
Visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) provides a rapid and inexpensive tool for simultaneous prediction of a variety of soil properties. Usually, some sophisticated multivariate mathematical or statistical methods are employed in order to extract the required information from the raw spectra measurement. For this purpose especially the Partial least squares regression (PLSR) and Support vector machines (SVM) are the most frequently used. These methods generally benefit from the complexity with which the soil spectra are treated. But it is interesting that also techniques that focus only on a single spectral feature, such as a simple linear regression with selected continuum-removed spectra (CRS) characteristic (e.g. peak depth), can often provide competitive results. Therefore, we decided to enhance the potential of CRS taking into account all possible CRS peak parameters (area, width and depth) and develop a comprehensive methodology based on multiple linear regression approach. The eight considered soil properties were oxidizable carbon content (Cox), exchangeable (pHex) and active soil pH (pHa), particle and bulk density, CaCO3 content, crystalline and amorphous (Fed) and amorphous Fe (Feox) forms. In four cases (pHa, bulk density, Fed and Feox), of which two (Fed and Feox) were predicted reliably accurately (0.50 interestingly, in the case of particle density, the presented approach outperformed the PLSR and SVM dramatically offering a fairly accurate prediction (R2cv = 0.827) against two failures (R2cv = 0.034 and 0.121 for PLSR and SVM, resp.). In last two cases (Cox and CaCO3) a slightly worse results were achieved then with PLSR and SVM with overall fairly accurate prediction (R2cv > 0.80). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319).
Jović, Ozren; Smrečki, Neven; Popović, Zora
2016-04-01
A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for poil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEPoil (R(2)>0.99). Copyright © 2015 Elsevier B.V. All rights reserved.
Guermoui, Mawloud; Gairaa, Kacem; Rabehi, Abdelaziz; Djafer, Djelloul; Benkaciali, Said
2018-06-01
Accurate estimation of solar radiation is the major concern in renewable energy applications. Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology. A case study of Ghardaïa region (Algeria) has been used in order to validate the above methodology. In fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration, minimum air temperature and relative humidity gives the best results in term of mean absolute bias error (MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient ( r) . The obtained values of these indicators are 0.67 MJ/m2, 1.15 MJ/m2, 5.2%, and 98.42%, respectively.
Directory of Open Access Journals (Sweden)
S. Saravanan
2012-07-01
Full Text Available Power System planning starts with Electric load (demand forecasting. Accurate electricity load forecasting is one of the most important challenges in managing supply and demand of the electricity, since the electricity demand is volatile in nature; it cannot be stored and has to be consumed instantly. The aim of this study deals with electricity consumption in India, to forecast future projection of demand for a period of 19 years from 2012 to 2030. The eleven input variables used are Amount of CO2 emission, Population, Per capita GDP, Per capita gross national income, Gross Domestic savings, Industry, Consumer price index, Wholesale price index, Imports, Exports and Per capita power consumption. A new methodology based on Artificial Neural Networks (ANNs using principal components is also used. Data of 29 years used for training and data of 10 years used for testing the ANNs. Comparison made with multiple linear regression (based on original data and the principal components and ANNs with original data as input variables. The results show that the use of ANNs with principal components (PC is more effective.
Directory of Open Access Journals (Sweden)
Guanghao Sun
2016-11-01
Full Text Available Background and Objectives: Heart rate variability (HRV has been intensively studied as a promising biological marker of major depressive disorder (MDD. Our previous study confirmed that autonomic activity and reactivity in depression revealed by HRV during rest and mental task (MT conditions can be used as diagnostic measures and in clinical evaluation. In this study, logistic regression analysis (LRA was utilized for the classification and prediction of MDD based on HRV data obtained in an MT paradigm.Methods: Power spectral analysis of HRV on R-R intervals before, during, and after an MT (random number generation was performed in 44 drug-naïve patients with MDD and 47 healthy control subjects at Department of Psychiatry in Shizuoka Saiseikai General Hospital. Logit scores of LRA determined by HRV indices and heart rates discriminated patients with MDD from healthy subjects. The high frequency (HF component of HRV and the ratio of the low frequency (LF component to the HF component (LF/HF correspond to parasympathetic and sympathovagal balance, respectively.Results: The LRA achieved a sensitivity and specificity of 80.0% and 79.0%, respectively, at an optimum cutoff logit score (0.28. Misclassifications occurred only when the logit score was close to the cutoff score. Logit scores also correlated significantly with subjective self-rating depression scale scores (p < 0.05.Conclusion: HRV indices recorded during a mental task may be an objective tool for screening patients with MDD in psychiatric practice. The proposed method appears promising for not only objective and rapid MDD screening, but also evaluation of its severity.
Yulia, M.; Suhandy, D.
2018-03-01
NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.
Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David
2016-04-01
The estimation of Snow Water Equivalent (SWE) is essential for an appropriate assessment of the available water resources in Alpine catchment. The hydrologic regime in these areas is dominated by the storage of water in the snowpack, which is discharged to rivers throughout the melt season. An accurate estimation of the resources will be necessary for an appropriate analysis of the system operation alternatives using basin scale management models. In order to obtain an appropriate estimation of the SWE we need to know the spatial distribution snowpack and snow density within the Snow Cover Area (SCA). Data for these snow variables can be extracted from in-situ point measurements and air-borne/space-borne remote sensing observations. Different interpolation and simulation techniques have been employed for the estimation of the cited variables. In this paper we propose to estimate snowpack from a reduced number of ground-truth data (1 or 2 campaigns per year with 23 observation point from 2000-2014) and MODIS satellite-based observations in the Sierra Nevada Mountain (Southern Spain). Regression based methodologies has been used to study snowpack distribution using different kind of explicative variables: geographic, topographic, climatic. 40 explicative variables were considered: the longitude, latitude, altitude, slope, eastness, northness, radiation, maximum upwind slope and some mathematical transformation of each of them [Ln(v), (v)^-1; (v)^2; (v)^0.5). Eight different structure of regression models have been tested (combining 1, 2, 3 or 4 explicative variables). Y=B0+B1Xi (1); Y=B0+B1XiXj (2); Y=B0+B1Xi+B2Xj (3); Y=B0+B1Xi+B2XjXl (4); Y=B0+B1XiXk+B2XjXl (5); Y=B0+B1Xi+B2Xj+B3Xl (6); Y=B0+B1Xi+B2Xj+B3XlXk (7); Y=B0+B1Xi+B2Xj+B3Xl+B4Xk (8). Where: Y is the snow depth; (Xi, Xj, Xl, Xk) are the prediction variables (any of the 40 variables); (B0, B1, B2, B3) are the coefficients to be estimated. The ground data are employed to calibrate the multiple regressions. In
Directory of Open Access Journals (Sweden)
ZHANG Long
2015-09-01
Full Text Available Near infrared reflectance spectroscopy (NIRS, a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA to discriminate the transgenic (TCTP and mi166 and wild type (Zhonghua 11 rice. Furthermore, rice lines transformed with protein gene (OsTCTP and regulation gene (Osmi166 were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000–8 000 cm-1 and 4 000–10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000–10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000–10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.
Alavi, Seyyed Salman; Mohammadi, Mohammad Reza; Souri, Hamid; Mohammadi Kalhori, Soroush; Jannatifard, Fereshteh; Sepahbodi, Ghazal
2017-01-01
Background: The aim of this study was to evaluate the effect of variables such as personality traits, driving behavior and mental illness on road traffic accidents among the drivers with accidents and those without road crash. Methods: In this cohort study, 800 bus and truck drivers were recruited. Participants were selected among drivers who referred to Imam Sajjad Hospital (Tehran, Iran) during 2013-2015. The Manchester driving behavior questionnaire (MDBQ), big five personality test (NEO personality inventory) and semi-structured interview (schizophrenia and affective disorders scale) were used. After two years, we surveyed all accidents due to human factors that involved the recruited drivers. The data were analyzed using the SPSS software by performing the descriptive statistics, t-test, and multiple logistic regression analysis methods. P values less than 0.05 were considered statistically significant. Results: In terms of controlling the effective and demographic variables, the findings revealed significant differences between the two groups of drivers that were and were not involved in road accidents. In addition, it was found that depression and anxiety could increase the odds ratio (OR) of road accidents by 2.4- and 2.7-folds, respectively (P=0.04, P=0.004). It is noteworthy to mention that neuroticism alone can increase the odds of road accidents by 1.1-fold (P=0.009), but other personality factors did not have a significant effect on the equation. Conclusion: The results revealed that some mental disorders affect the incidence of road collisions. Considering the importance and sensitivity of driving behavior, it is necessary to evaluate multiple psychological factors influencing drivers before and after receiving or renewing their driver’s license. PMID:28293047
Georga, Eleni I; Protopappas, Vasilios C; Ardigò, Diego; Polyzos, Demosthenes; Fotiadis, Dimitrios I
2013-08-01
The prevention of hypoglycemic events is of paramount importance in the daily management of insulin-treated diabetes. The use of short-term prediction algorithms of the subcutaneous (s.c.) glucose concentration may contribute significantly toward this direction. The literature suggests that, although the recent glucose profile is a prominent predictor of hypoglycemia, the overall patient's context greatly impacts its accurate estimation. The objective of this study is to evaluate the performance of a support vector for regression (SVR) s.c. glucose method on hypoglycemia prediction. We extend our SVR model to predict separately the nocturnal events during sleep and the non-nocturnal (i.e., diurnal) ones over 30-min and 60-min horizons using information on recent glucose profile, meals, insulin intake, and physical activities for a hypoglycemic threshold of 70 mg/dL. We also introduce herein additional variables accounting for recurrent nocturnal hypoglycemia due to antecedent hypoglycemia, exercise, and sleep. SVR predictions are compared with those from two other machine learning techniques. The method is assessed on a dataset of 15 patients with type 1 diabetes under free-living conditions. Nocturnal hypoglycemic events are predicted with 94% sensitivity for both horizons and with time lags of 5.43 min and 4.57 min, respectively. As concerns the diurnal events, when physical activities are not considered, the sensitivity is 92% and 96% for a 30-min and 60-min horizon, respectively, with both time lags being less than 5 min. However, when such information is introduced, the diurnal sensitivity decreases by 8% and 3%, respectively. Both nocturnal and diurnal predictions show a high (>90%) precision. Results suggest that hypoglycemia prediction using SVR can be accurate and performs better in most diurnal and nocturnal cases compared with other techniques. It is advised that the problem of hypoglycemia prediction should be handled differently for nocturnal
Non-contact video-based vital sign monitoring using ambient light and auto-regressive models
International Nuclear Information System (INIS)
Tarassenko, L; Villarroel, M; Guazzi, A; Jorge, J; Clifton, D A; Pugh, C
2014-01-01
Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient’s face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter. (paper)
Directory of Open Access Journals (Sweden)
Seyyed Salman Alavi
2017-01-01
Full Text Available Background: The aim of this study was to evaluate the effect of variables such as personality traits, driving behavior and mental illness on road traffic accidents among the drivers with accidents and those without road crash. Methods: In this cohort study, 800 bus and truck drivers were recruited. Participants were selected among drivers who referred to Imam Sajjad Hospital (Tehran, Iran during 2013-2015. The Manchester driving behavior questionnaire (MDBQ, big five personality test (NEO personality inventory and semi-structured interview (SADS were used. After two years, we surveyed all accidents due to human factors that involved the recruited drivers. The data were analyzed using the SPSS software by performing the descriptive statistics, t-test, and multiple logistic regression analysis methods. P values less than 0.05 were considered statistically significant. Results: In terms of controlling the effective and demographic variables, the findings revealed significant differences between the two groups of drivers that were and were not involved in road accidents. In addition, it was found that depression and anxiety could increase the odds ratio (OR of road accidents by 2.4- and 2.7-folds, respectively (P=0.04, P=0.004. It is noteworthy to mention that neuroticism alone can increase the odds of road accidents by 1.1-fold (P=0.009, but other personality factors did not have a significant effect on the equation. Conclusion: The results revealed that some mental disorders affect the incidence of road collisions. Considering the importance and sensitivity of driving behavior, it is necessary to evaluate multiple psychological factors influencing drivers before and after receiving or renewing their driver’s license.
DEFF Research Database (Denmark)
Shirali, Mahmoud; Nielsen, Vivi Hunnicke; Møller, Steen Henrik
2014-01-01
days of age for 2139 male mink and the same number of females. Cumulative feed intake was calculated six times with three weeks interval based on daily feed consumption between weighing’s from 105 to 210 days of age. Heritability estimates for RFI increased by age from 0.18 (0.03, standard deviation...
A nodal method based on matrix-response method
International Nuclear Information System (INIS)
Rocamora Junior, F.D.; Menezes, A.
1982-01-01
A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt
Kerckhoffs, Jules; Hoek, Gerard; Vlaanderen, Jelle; van Nunen, Erik; Messier, Kyle; Brunekreef, Bert; Gulliver, John; Vermeulen, Roel
2017-11-01
Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas have been developed using short-term stationary monitoring or mobile platforms in order to capture the high variability of these pollutants. However, little is known about the comparability of predictions of mobile and short-term stationary models and especially the validity of these models for assessing residential exposures and the robustness of model predictions developed in different campaigns. We used an electric car to collect mobile measurements (n = 5236 unique road segments) and short-term stationary measurements (3 × 30min, n = 240) of UFP and BC in three Dutch cities (Amsterdam, Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model predictions based on short-term stationary measurements at 1500 random addresses in the three cities, (iii) externally obtained home outdoor measurements (3 × 24h samples; n = 42) and (iv) predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, Rotterdam). Despite the poor model R 2 of 15%, the ability of mobile UFP models to predict measurements with longer averaging time increased substantially from 36% for short-term stationary measurements to 57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP concentrations at 1500 randomly selected addresses in the three Dutch cities (R 2 = 0.64). We found higher UFP predictions (of about 30%) based on mobile models opposed to short-term model predictions and home outdoor measurements with no clear geospatial patterns. The mobile model for UFP was stable over different settings as
Li, L.; Yang, C.
2017-12-01
Climate extremes often manifest as rare events in terms of surface air temperature and precipitation with an annual reoccurrence period. In order to represent the manifold characteristics of climate extremes for monitoring and analysis, the Expert Team on Climate Change Detection and Indices (ETCCDI) had worked out a set of 27 core indices based on daily temperature and precipitation data, describing extreme weather and climate events on an annual basis. The CLIMDEX project (http://www.climdex.org) had produced public domain datasets of such indices for data from a variety of sources, including output from global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the 27 ETCCDI indices, there are six percentile-based temperature extremes indices that may fall into two groups: exceedance rates (ER) (TN10p, TN90p, TX10p and TX90p) and durations (CSDI and WSDI). Percentiles must be estimated prior to the calculation of the indices, and could more or less be biased by the adopted algorithm. Such biases will in turn be propagated to the final results of indices. The CLIMDEX used an empirical quantile estimator combined with a bootstrap resampling procedure to reduce the inhomogeneity in the annual series of the ER indices. However, there are still some problems remained in the CLIMDEX datasets, namely the overestimated climate variability due to unaccounted autocorrelation in the daily temperature data, seasonally varying biases and inconsistency between algorithms applied to the ER indices and to the duration indices. We now present new results of the six indices through a semiparametric quantile regression approach for the CMIP5 model output. By using the base-period data as a whole and taking seasonality and autocorrelation into account, this approach successfully addressed the aforementioned issues and came out with consistent results. The new datasets cover the historical and three projected (RCP2.6, RCP4.5 and RCP
Al-Harrasi, Ahmed; Rehman, Najeeb Ur; Mabood, Fazal; Albroumi, Muhammaed; Ali, Liaqat; Hussain, Javid; Hussain, Hidayat; Csuk, René; Khan, Abdul Latif; Alam, Tanveer; Alameri, Saif
2017-09-01
In the present study, for the first time, NIR spectroscopy coupled with PLS regression as a rapid and alternative method was developed to quantify the amount of Keto-β-Boswellic Acid (KBA) in different plant parts of Boswellia sacra and the resin exudates of the trunk. NIR spectroscopy was used for the measurement of KBA standards and B. sacra samples in absorption mode in the wavelength range from 700-2500 nm. PLS regression model was built from the obtained spectral data using 70% of KBA standards (training set) in the range from 0.1 ppm to 100 ppm. The PLS regression model obtained was having R-square value of 98% with 0.99 corelationship value and having good prediction with RMSEP value 3.2 and correlation of 0.99. It was then used to quantify the amount of KBA in the samples of B. sacra. The results indicated that the MeOH extract of resin has the highest concentration of KBA (0.6%) followed by essential oil (0.1%). However, no KBA was found in the aqueous extract. The MeOH extract of the resin was subjected to column chromatography to get various sub-fractions at different polarity of organic solvents. The sub-fractio