WorldWideScience

Sample records for regression equation derived

  1. Testing the transferability of regression equations derived from small sub-catchments to a large area in central Sweden

    Directory of Open Access Journals (Sweden)

    C. Xu

    2003-01-01

    Full Text Available There is an ever increasing need to apply hydrological models to catchments where streamflow data are unavailable or to large geographical regions where calibration is not feasible. Estimation of model parameters from spatial physical data is the key issue in the development and application of hydrological models at various scales. To investigate the suitability of transferring the regression equations relating model parameters to physical characteristics developed from small sub-catchments to a large region for estimating model parameters, a conceptual snow and water balance model was optimised on all the sub-catchments in the region. A multiple regression analysis related model parameters to physical data for the catchments and the regression equations derived from the small sub-catchments were used to calculate regional parameter values for the large basin using spatially aggregated physical data. For the model tested, the results support the suitability of transferring the regression equations to the larger region. Keywords: water balance modelling,large scale, multiple regression, regionalisation

  2. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    Science.gov (United States)

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  3. Multiple regression and beyond an introduction to multiple regression and structural equation modeling

    CERN Document Server

    Keith, Timothy Z

    2014-01-01

    Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.

  4. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  5. Regression Equations for Birth Weight Estimation using ...

    African Journals Online (AJOL)

    In this study, Birth Weight has been estimated from anthropometric measurements of hand and foot. Linear regression equations were formed from each of the measured variables. These simple equations can be used to estimate Birth Weight of new born babies, in order to identify those with low birth weight and referred to ...

  6. A regression approach for Zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to Zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor Zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) When there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets. (2) Regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections. Multiple regression analysis performed on a set of carefully selected Zircaloy-2 in-reactor creep data leads to a model which provides excellent correlations for the data. (Auth.)

  7. Choosing of mode and calculation of multiple regression equation parameters in X-ray radiometric analysis

    International Nuclear Information System (INIS)

    Mamikonyan, S.V.; Berezkin, V.V.; Lyubimova, S.V.; Svetajlo, Yu.N.; Shchekin, K.I.

    1978-01-01

    A method to derive multiple regression equations for X-ray radiometric analysis is described. Te method is realized in the form of the REGRA program in an algorithmic language. The subprograms included in the program are describe. In analyzing cement for Mg, Al, Si, Ca and Fe contents as an example, the obtainment of working equations in the course of calculations by the program is shown to simpliy the realization of computing devices in instruments for X-ray radiometric analysis

  8. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...

  9. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    Science.gov (United States)

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  10. A regression approach for zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. From data analysis and model development point of views, both the assumption of independence and prior committment to specific model forms are unacceptable. One would desire means which can not only estimate the required parameters directly from data but also provide basis for model selections, viz., one model against others. Basic understanding of the physics of deformation is important in choosing the forms of starting physical model equations, but the justifications must rely on their abilities in correlating the overall data. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) when there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets, (2) regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections

  11. A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.

    Science.gov (United States)

    Bersabé, Rosa; Rivas, Teresa

    2010-05-01

    The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.

  12. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  13. Quantum derivatives and the Schroedinger equation

    International Nuclear Information System (INIS)

    Ben Adda, Faycal; Cresson, Jacky

    2004-01-01

    We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take into account non-differentiability and the existence of a minimal resolution for mean representation. This justify heuristic computations made by Nottale in scale-relativity. In particular, the Schroedinger equation is derived via the scale-relativity principle and Newton's fundamental equation of dynamics

  14. Retro-regression--another important multivariate regression improvement.

    Science.gov (United States)

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  15. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  16. Derivation of new 3D discrete ordinate equations

    International Nuclear Information System (INIS)

    Ahrens, C. D.

    2012-01-01

    The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)

  17. Variational problems with fractional derivatives: Euler-Lagrange equations

    International Nuclear Information System (INIS)

    Atanackovic, T M; Konjik, S; Pilipovic, S

    2008-01-01

    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

  18. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    Science.gov (United States)

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

  19. Eulerian derivations of non-inertial Navier-Stokes equations

    CSIR Research Space (South Africa)

    Combrinck, MA

    2014-09-01

    Full Text Available The paper presents an Eulerian derivation of the non-inertial Navier-Stokes equations as an alternative to the Lagrangian fluid parcel approach. This work expands on the work of Kageyama and Hyodo [1] who derived the incompressible momentum equation...

  20. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    International Nuclear Information System (INIS)

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    Science.gov (United States)

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  2. Equilibrium approach in the derivation of differential equations for ...

    African Journals Online (AJOL)

    In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, homogenous linear elastic materials. Equilibrium method was adopted in the derivation.

  3. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    Science.gov (United States)

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  4. Deriving average soliton equations with a perturbative method

    International Nuclear Information System (INIS)

    Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.

    1995-01-01

    The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically

  5. Two derivations of the master equation of quantum Brownian motion

    International Nuclear Information System (INIS)

    Halliwell, J J

    2007-01-01

    Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. The aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many-body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the 'preferred basis' for decoherence in this model

  6. Two derivations of the master equation of quantum Brownian motion

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, J J [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2007-03-23

    Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. The aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many-body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the 'preferred basis' for decoherence in this model.

  7. BHR equations re-derived with immiscible particle effects

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzkopf, John Dennis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Horwitz, Jeremy A. [Stanford Univ., CA (United States)

    2015-05-01

    Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied to the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.

  8. Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions

    International Nuclear Information System (INIS)

    Geng Xianguo; Su Ting

    2007-01-01

    A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived

  9. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

    Science.gov (United States)

    Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

    2018-04-01

    In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

  10. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  11. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  12. Proposition of Regression Equations to Determine Outdoor Thermal Comfort in Tropical and Humid Environment

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2012-05-01

    Full Text Available This study is about field experimentation in order to construct regression equations of perception of thermalcomfort for outdoor activities under hot and humid environment. Relationships between thermal-comfort perceptions, micro climate variables (temperatures and humidity and body parameters (activity, clothing, body measure have been observed and analyzed. 180 adults, men, and women participated as samples/respondents. This study is limited for situation where wind velocity is about 1 m/s, which touch the body of the respondents/samples. From questionnaires and field measurements, three regression equations have been developed, each for activity of normal walking, brisk walking, and sitting.

  13. Deriving the bond pricing equation

    Directory of Open Access Journals (Sweden)

    Kožul Nataša

    2014-01-01

    Full Text Available Given the recent focus on Eurozone debt crisis and the credit rating downgrade not only of US debt, but that of other countries and many UK major banking institutions, this paper aims to explain the concept of bond yield, its different measures and bond pricing equation. Yields on capital market instruments are rarely quoted on the same basis, which makes direct comparison between different as investment choices impossible. Some debt instruments are quoted on discount basis, whilst coupon-bearing ones accrue interest differently, offer different compounding opportunities, have different coupon payment frequencies, and manage non-business day maturity dates differently. Moreover, rules governing debt vary across countries, markets and currencies, making yield calculation and comparison a rather complex issue. Thus, some fundamental concepts applicable to debt instrument yield measurement, with focus on bond equation, are presented here. In addition, bond equation expressed in annuity form and used to apply Newton-Raphson algorithm to derive true bond yield is also shown.

  14. A microscopic derivation of stochastic differential equations

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1996-01-01

    With the help of the formulation of Non-Equilibrium Thermo Field Dynamics, a unified canonical operator formalism is constructed for the quantum stochastic differential equations. In the course of its construction, it is found that there are at least two formulations, i.e. one is non-hermitian and the other is hermitian. Having settled which framework should be satisfied by the quantum stochastic differential equations, a microscopic derivation is performed for these stochastic differential equations by extending the projector methods. This investigation may open a new field for quantum systems in order to understand the deeper meaning of dissipation

  15. Direct coordinate-free derivation of the compatibility equation for finite strains

    Science.gov (United States)

    Ryzhak, E. I.

    2014-07-01

    The compatibility equation for the Cauchy-Green tensor field (squared tensor of pure extensionwith respect to the reference configuration) is directly derived from the well-known relation expressing this tensor via the vector field determining the mapping (transformation) of the reference configuration into the actual one. The derivation is based on the use of the apparatus of coordinatefree tensor calculus and does not apply any notions and relations of Riemannian geometry at all. The method is illustrated by deriving the well-known compatibility equation for small strains. It is shown that when the obtained compatibility equation for finite strains is linearized, it becomes the compatibility equation for small strains which indirectly confirms its correctness.

  16. A derivation of the beam equation

    International Nuclear Information System (INIS)

    Duque, Daniel

    2016-01-01

    The Euler–Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained. (paper)

  17. A derivation of the beam equation

    Science.gov (United States)

    Duque, Daniel

    2016-01-01

    The Euler-Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained.

  18. Statistically derived conservation equations for fluid particle flows

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.

    1989-01-01

    The behavior of water droplets in a heated nuclear fuel channel is of significant interest to nuclear reactor safety studies pertaining to loss-of-coolant accidents. This paper presents the derivation of the mass, momentum, and energy conservation equations for a distribution of fluid particles (bubbles or droplets) transported by a continuous fluid medium. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior

  19. Incompressible spectral-element method: Derivation of equations

    Science.gov (United States)

    Deanna, Russell G.

    1993-01-01

    A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.

  20. Data-driven discovery of partial differential equations.

    Science.gov (United States)

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  1. Computation of the stability derivatives via CFD and the sensitivity equations

    Science.gov (United States)

    Lei, Guo-Dong; Ren, Yu-Xin

    2011-04-01

    The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.

  2. Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez Aguilar

    2014-01-01

    Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.

  3. Estimating Dbh of Trees Employing Multiple Linear Regression of the best Lidar-Derived Parameter Combination Automated in Python in a Natural Broadleaf Forest in the Philippines

    Science.gov (United States)

    Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.

    2016-06-01

    Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).

  4. BCS @ 50: derivation of gap equations in different lattice geometries

    International Nuclear Information System (INIS)

    Saurabh Basu

    2007-07-01

    We rigorously derive BCS gap equations for a square, triangular and a honeycomb lattice using a two-dimensional t-J model. The gap equations in all the three lattice geometries look usual, with band indices appearing and a minor modification in the separable pair potential for the (two band) honeycomb lattice. In each case, the gap equation is solved (self consistently with the number equation) at low densities assuming singlet pairing. (author)

  5. Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.

    Science.gov (United States)

    Li, Haifeng; Shao, Jiushu; Wang, Shikuan

    2011-11-01

    A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.

  6. Covariant Derivatives and the Renormalization Group Equation

    Science.gov (United States)

    Dolan, Brian P.

    The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.

  7. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    Science.gov (United States)

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  8. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  9. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  10. Phenomenological Derivation of the Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Ogiba F.

    2011-10-01

    Full Text Available The Schrödinger equation is derived classically assuming that particles present local random spatial fluctuations compatible with the presence of the zero-point field. With- out specifying the forces arising from this permanent matter-field interaction but ex- ploring its fundamental properties (homogeneity, isotropy and random aspect to justify the emergence of the continuity equation in one-particle context, these fluctuations are described in terms of the probability density. Specifically, the starting point is the as- sumption that the local activities, which turn the path followed by the particle totally unpredictable, must be associated with an energy proportional to @ P =@ t . The polar form of the wave function, which connects the obtained classical equations with the corre- sponding quantum equation, emerges as a by-product of the approach.

  11. THE NEW SOLUTION OF TIME FRACTIONAL WAVE EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE DEFINITION

    OpenAIRE

    Çenesiz, Yücel; Kurt, Ali

    2015-01-01

    – In this paper, we used new fractional derivative definition, the conformable fractional derivative, for solving two and three dimensional time fractional wave equation. This definition is simple and very effective in the solution procedures of the fractional differential equations that have complicated solutions with classical fractional derivative definitions like Caputo, Riemann-Liouville and etc. The results show that conformable fractional derivative definition is usable and convenient ...

  12. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  13. On derivation and interpretation of Kuo-Eliassen equation

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Yano

    2011-05-01

    Full Text Available The Kuo–Eliassen equation provides a balance condition for both tropical–cyclone like vortex systems as well as zonally–symmetric meridional circulations. This condition is examined with the former application more in mind. The condition is derived more ped- agogically based on the bounded derivative method. Some physical interpretations as well as basic mathematical remarks on this condition are provided. Analogy with quasi–geostrophic system is also remarked.

  14. Generalized fractional Schroedinger equation with space-time fractional derivatives

    International Nuclear Information System (INIS)

    Wang Shaowei; Xu Mingyu

    2007-01-01

    In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum

  15. Deriving the equations of motion of porous isotropic media

    International Nuclear Information System (INIS)

    Pride, S.R.; Gangi, A.F.; Morgan, F.D.

    1992-01-01

    The equations of motion and stress/strain relations for the linear dynamics of a two-phase, fluid/solid, isotropic, porous material have been derived by a direct volume averaging of the equations of motion and stress-strain relations known to apply in each phase. The equations thus obtained are shown to be consistent with Biot's equations of motion and stress/strain relations; however, the effective fluid density in the equation of relative flow has an unambiguous definition in terms of the tractions acting on the pore walls. The stress/strain relations of the theory correspond to 'quasistatic' stressing (i.e., inertial effects are ignored). It is demonstrated that using such quasistatic stress/strain relations in the equations of motion is justified whenever the wavelengths are greater than a length characteristic of the averaging volume size. 37 refs., 2 figs

  16. Variational method for the derivative nonlinear Schroedinger equation with computational applications

    Energy Technology Data Exchange (ETDEWEB)

    Helal, M A [Mathematics Department, Faculty of Science, Cairo University (Egypt); Seadawy, A R [Mathematics Department, Faculty of Science, Beni-Suef University (Egypt)], E-mail: mahelal@yahoo.com, E-mail: aly742001@yahoo.com

    2009-09-15

    The derivative nonlinear Schroedinger equation (DNLSE) arises as a physical model for ultra-short pulse propagation. In this paper, the existence of a Lagrangian and the invariant variational principle (i.e. in the sense of the inverse problem of calculus of variations through deriving the functional integral corresponding to a given coupled nonlinear partial differential equations) for two-coupled equations describing the nonlinear evolution of the Alfven wave with magnetosonic waves at a much larger scale are given and the functional integral corresponding to those equations is derived. We found the solutions of DNLSE by choice of a trial function in a region of a rectangular box in two cases, and using this trial function, we find the functional integral and the Lagrangian of the system without loss. Solution of the general case for the two-box potential can be obtained on the basis of a different ansatz where we approximate the Jost function using polynomials of order n instead of the piecewise linear function. An example for the third order is given for illustrating the general case.

  17. Investigation of the Dirac Equation by Using the Conformable Fractional Derivative

    Science.gov (United States)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper,the Dirac equation is constructed using the conformable fractional derivative so that in its limit for the fractional parameter, the normal version is recovered. Then, the Cornell potential is considered as the interaction of the system. In this case, the wave function and the energy eigenvalue equation are derived with the aim of the bi-confluent Heun functions. use of the conformable fractional derivative is proven to lead to a branching treatment for the energy of the system. Such a treatment is obvious for small values of the fractional parameter, and a united value as the fractional parameter approaches unity.

  18. General solution of the Bagley-Torvik equation with fractional-order derivative

    Science.gov (United States)

    Wang, Z. H.; Wang, X.

    2010-05-01

    This paper investigates the general solution of the Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative. This fractional-order differential equation is changed into a sequential fractional-order differential equation (SFDE) with constant coefficients. Then the general solution of the SFDE is expressed as the linear combination of fundamental solutions that are in terms of α-exponential functions, a kind of functions that play the same role of the classical exponential function. Because the number of fundamental solutions of the SFDE is greater than 2, the general solution of the SFDE depends on more than two free (independent) constants. This paper shows that the general solution of the Bagley-Torvik equation involves actually two free constants only, and it can be determined fully by the initial displacement and initial velocity.

  19. Derivation of equation of quasipotential type using the method of Fock-- Podolsky

    Energy Technology Data Exchange (ETDEWEB)

    Blokhintsev, D I; Rizov, V A; Todorov, I T

    1975-12-31

    A quasipotential equation is derived for the relativistic Coulomb problem from the equations of motion of quantum electrodynamics using the method of Fock-- Podolsky (Tamm-Dancoff). Relation with an inhomogeneous equation for the 4-point retarded function is exhibited. (auth)

  20. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...

  1. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    Science.gov (United States)

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynamics with infinitely many derivatives: variable coefficient equations

    International Nuclear Information System (INIS)

    Barnaby, Neil; Kamran, Niky

    2008-01-01

    Infinite order differential equations have come to play an increasingly significant role in theoretical physics. Field theories with infinitely many derivatives are ubiquitous in string field theory and have attracted interest recently also from cosmologists. Crucial to any application is a firm understanding of the mathematical structure of infinite order partial differential equations. In our previous work we developed a formalism to study the initial value problem for linear infinite order equations with constant coefficients. Our approach relied on the use of a contour integral representation for the functions under consideration. In many applications, including the study of cosmological perturbations in nonlocal inflation, one must solve linearized partial differential equations about some time-dependent background. This typically leads to variable coefficient equations, in which case the contour integral methods employed previously become inappropriate. In this paper we develop the theory of a particular class of linear infinite order partial differential equations with variable coefficients. Our formalism is particularly well suited to the types of equations that arise in nonlocal cosmological perturbation theory. As an example to illustrate our formalism we compute the leading corrections to the scalar field perturbations in p-adic inflation and show explicitly that these are small on large scales.

  3. Regression equations to predict 6-minute walk distance in Chinese adults aged 55–85 years

    OpenAIRE

    Shirley P.C. Ngai, PhD; Alice Y.M. Jones, PhD; Sue C. Jenkins, PhD

    2014-01-01

    The 6-minute walk distance (6MWD) is used as a measure of functional exercise capacity in clinical populations and research. Reference equations to predict 6MWD in different populations have been established, however, available equations for Chinese population are scarce. This study aimed to develop regression equations to predict the 6MWD for a Hong Kong Chinese population. Fifty-three healthy individuals (25 men, 28 women; mean age = 69.3 ± 6.5 years) participated in this cross-sectional st...

  4. New derivation of quantum equations from classical stochastic arguments

    OpenAIRE

    Bergeron, H.

    2003-01-01

    In a previous article [H. Bergeron, J. Math. Phys. 42, 3983 (2001)], we presented a method to obtain a continuous transition from classical to quantum mechanics starting from the usual phase space formulation of classical mechanics. This procedure was based on a Koopman-von Neumann approach where classical equations are reformulated into a quantumlike form. In this article, we develop a different derivation of quantum equations, based on purely classical stochastic arguments, taking some elem...

  5. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    Science.gov (United States)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  6. A local equation for differential diagnosis of β-thalassemia trait and iron deficiency anemia by logistic regression analysis in Southeast Iran.

    Science.gov (United States)

    Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim

    2014-01-01

    The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.

  7. Nonlinear regression analysis for evaluating tracer binding parameters using the programmable K1003 desk computer

    International Nuclear Information System (INIS)

    Sarrach, D.; Strohner, P.

    1986-01-01

    The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated

  8. Dose-response regressions for algal growth and similar continuous endpoints: Calculation of effective concentrations

    DEFF Research Database (Denmark)

    Christensen, Erik R.; Kusk, Kresten Ole; Nyholm, Niels

    2009-01-01

    We derive equations for the effective concentration giving 10% inhibition (EC10) with 95% confidence limits for probit (log-normal), Weibull, and logistic dose -responsemodels on the basis of experimentally derived median effective concentrations (EC50s) and the curve slope at the central point (50......% inhibition). For illustration, data from closed, freshwater algal assays are analyzed using the green alga Pseudokirchneriella subcapitata with growth rate as the response parameter. Dose-response regressions for four test chemicals (tetraethylammonium bromide, musculamine, benzonitrile, and 4...... regression program with variance weighting and proper inverse estimation. The Weibull model provides the best fit to the data for all four chemicals. Predicted EC10s (95% confidence limits) from our derived equations are quite accurate; for example, with 4-4-(trifluoromethyl)phenoxy-phenol and the probit...

  9. Analysis and application of diffusion equations involving a new fractional derivative without singular kernel

    Directory of Open Access Journals (Sweden)

    Lihong Zhang

    2017-11-01

    Full Text Available In this article, a family of nonlinear diffusion equations involving multi-term Caputo-Fabrizio time fractional derivative is investigated. Some maximum principles are obtained. We also demonstrate the application of the obtained results by deriving some estimation for solution to reaction-diffusion equations.

  10. Thermodynamic derivation of Saha's equation for a multi-temperature plasma

    International Nuclear Information System (INIS)

    Morro, Angelo; Romeo, Maurizio

    1988-01-01

    The ionization equilibrium between the constituents of a multi-temperature plasma is investigated within the thermodynamics of fluid mixtures. As a result, a law of mass action is derived that, in the approximation of ideal gases for the constituents, leads to a direct generalization of Saha's equation. The main properties of this generalization are discussed, and contrasted with those of other equations which have appeared in the literature. (author)

  11. Doses-effect regression equations for some growth indicators of rice plantules from CO60 irradiated seeds

    International Nuclear Information System (INIS)

    Lopez, R.C.; Gonzalez, L.M.; Garcia, D.

    1993-01-01

    In the present work, dose-effect regression equations for energy and percentage germination, size, root length and dry mass of plantules from which values of DL-50 middle lethal dose were calculated and likely or unlikely equivalencies among them were established

  12. Derivation of the Gross-Pitaevskii equation for condensed bosons from the Bogoliubov-de Gennes equations for superfluid fermions

    International Nuclear Information System (INIS)

    Pieri, P.; Strinati, G.C.

    2003-01-01

    We derive the time-independent Gross-Pitaevskii equation at zero temperature for condensed bosons, which form as bound-fermion pairs when the mutual fermionic attractive interaction is sufficiently strong, from the strong-coupling limit of the Bogoliubov-de Gennes equations that describe superfluid fermions in the presence of an external potential. Three-body corrections to the Gross-Pitaevskii equation are also obtained by our approach. Our results are relevant to the recent advances with ultracold fermionic atoms in a trap

  13. Deriving Langevin equations in curved spacetime

    International Nuclear Information System (INIS)

    Ramos, Rudnei O.; Tavares, Romulo F.

    2013-01-01

    Full text: Warm inflation is an inflationary scenario where the interactions between the inflaton and other degrees of freedom are considered. The effective equation of motion for the inflaton is in general of the form of a Langevin equation, that includes both quantum and thermal effects and where these effects manifest in the form of dissipation and stochastic noise terms, which are related by a generalized fluctuation-dissipation relation. The dissipation term is related to the interactions of the inflaton with other degrees of freedom of the thermal bath that can be obtained from the appropriate Feynman propagators. As the inflaton evolves into an expanding metric, these effects have to be taken into account when calculating the Green functions and consequently the Feynman propagators. In this work we present the considerations that must be made to calculate the Green functions in curved space (expanding metric) and in the presence of radiation in order to proper derive the effective evolution of the inflaton in the warm-inflation scenario. (author)

  14. Determining Balıkesir’s Energy Potential Using a Regression Analysis Computer Program

    Directory of Open Access Journals (Sweden)

    Bedri Yüksel

    2014-01-01

    Full Text Available Solar power and wind energy are used concurrently during specific periods, while at other times only the more efficient is used, and hybrid systems make this possible. When establishing a hybrid system, the extent to which these two energy sources support each other needs to be taken into account. This paper is a study of the effects of wind speed, insolation levels, and the meteorological parameters of temperature and humidity on the energy potential in Balıkesir, in the Marmara region of Turkey. The relationship between the parameters was studied using a multiple linear regression method. Using a designed-for-purpose computer program, two different regression equations were derived, with wind speed being the dependent variable in the first and insolation levels in the second. The regression equations yielded accurate results. The computer program allowed for the rapid calculation of different acceptance rates. The results of the statistical analysis proved the reliability of the equations. An estimate of identified meteorological parameters and unknown parameters could be produced with a specified precision by using the regression analysis method. The regression equations also worked for the evaluation of energy potential.

  15. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    International Nuclear Information System (INIS)

    Zabadal, J.; Vilhena, M.T.; Segatto, C.F.; Pazos, R.P.Ruben Panta.

    2002-01-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations

  16. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, J. E-mail: jorge.zabadal@ufrgs.br; Vilhena, M.T. E-mail: vilhena@mat.ufrgs.br; Segatto, C.F. E-mail: cynthia@mat.ufrgs.br; Pazos, R.P.Ruben Panta. E-mail: rpp@mat.pucrgs.br

    2002-07-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations.

  17. Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.

    Science.gov (United States)

    Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T

    2018-05-03

    Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.

  18. Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

    OpenAIRE

    Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe

    2011-01-01

    We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...

  19. Exact solutions to the time-fractional differential equations via local fractional derivatives

    Science.gov (United States)

    Guner, Ozkan; Bekir, Ahmet

    2018-01-01

    This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.

  20. Experimentally testing the dependence of momentum transport on second derivatives using Gaussian process regression

    Science.gov (United States)

    Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.

    2017-12-01

    It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.

  1. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    Science.gov (United States)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  2. Novel Exponentially Fitted Two-Derivative Runge-Kutta Methods with Equation-Dependent Coefficients for First-Order Differential Equations

    Directory of Open Access Journals (Sweden)

    Yanping Yang

    2016-01-01

    Full Text Available The construction of exponentially fitted two-derivative Runge-Kutta (EFTDRK methods for the numerical solution of first-order differential equations is investigated. The revised EFTDRK methods proposed, with equation-dependent coefficients, take into consideration the errors produced in the internal stages to the update. The local truncation errors and stability of the new methods are analyzed. The numerical results are reported to show the accuracy of the new methods.

  3. Soliton Resolution for the Derivative Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine

    2018-05-01

    We study the derivative nonlinear Schrödinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. At leading order and in space-time cones, the solution has the form of a multi-soliton whose parameters are slightly modified from their initial values by soliton-soliton and soliton-radiation interactions. Our analysis provides an explicit expression for the correction dispersive term. We use the nonlinear steepest descent method of Deift and Zhou (Commun Pure Appl Math 56:1029-1077, 2003) revisited by the {\\overline{partial}} -analysis of McLaughlin and Miller (IMRP Int Math Res Pap 48673:1-77, 2006) and Dieng and McLaughlin (Long-time asymptotics for the NLS equation via dbar methods. Preprint, arXiv:0805.2807, 2008), and complemented by the recent work of Borghese et al. (Ann Inst Henri Poincaré Anal Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.08.006, 2017) on soliton resolution for the focusing nonlinear Schrödinger equation. Our results imply that N-soliton solutions of the derivative nonlinear Schrödinger equation are asymptotically stable.

  4. On a quantum version of conservation laws for derivative nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Sen, S.; Chowdhury, A.R.

    1988-01-01

    The authors derived the quantum mechanical versions of infinite number of conservation laws associated with Derivative Nonlinear Schrodinger equation with the help of a methodology used in string theory. The renormalised version of the conserved quantities are obtained with explicit forms of the counter terms

  5. Kinetic theory of flocking: derivation of hydrodynamic equations.

    Science.gov (United States)

    Ihle, Thomas

    2011-03-01

    It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek model for self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-type kinetic theory. Expressions for all transport coefficients are given. The transition from a disordered to a flocking state, which at large particle speeds appears to be a fluctuation-induced first-order phase transition, is studied numerically and analytically.

  6. Fractional diffusion equation with distributed-order material derivative. Stochastic foundations

    International Nuclear Information System (INIS)

    Magdziarz, M; Teuerle, M

    2017-01-01

    In this paper, we present the stochastic foundations of fractional dynamics driven by the fractional material derivative of distributed-order type. Before stating our main result, we present the stochastic scenario which underlies the dynamics given by the fractional material derivative. Then we introduce the Lévy walk process of distributed-order type to establish our main result, which is the scaling limit of the considered process. It appears that the probability density function of the scaling limit process fulfills, in a weak sense, the fractional diffusion equation with the material derivative of distributed-order type. (paper)

  7. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    Science.gov (United States)

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  8. Derivation of equations for high-Tc by means of slave boson technique

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Ha Vinh Tan; Nguyen Toan Thang

    1988-07-01

    The ''slave boson'' technique is applied for studying the superconductivity of the system of strongly correlated electrons with the Hubbard Hamiltonian. On the basis of the equations of the Green functions for the new boson and fermion operators we derive the dynamical equations determining the order parameters of the given RVB model. (author). 4 refs

  9. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media

    KAUST Repository

    El-Amin, Mohamed; Radwan, Ahmed G.; Sun, Shuyu

    2017-01-01

    In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.

  10. Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.

  11. Method for the determination of the dominant eigenvalue of the neutron transport equation in a slab using fractional derivative

    International Nuclear Information System (INIS)

    Sperotto, Fabiola Aiub; Segatto, Cynthia Feijo; Zabadal, Jorge

    2002-01-01

    In this work, we determine the dominant eigenvalue of the one-dimensional neutron transport equation in a slab constructing an integral form for the neutron transport equation which is the expressed in terms of fractional derivative of the angular flux. Equating the fractional derivative of the angular flux to the integrate equation, we determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of Riemann-Liouville definition of fractional derivative. Once known the angular flux the dominant eigenvalue is calculated solving a transcendental equation resulting from the application of the boundary conditions. We report the methodology applied, for comparison with available results in literature. (author)

  12. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Malomed, Boris A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Huang, Tingwen [Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of a transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.

  13. Deriving the Quadratic Regression Equation Using Algebra

    Science.gov (United States)

    Gordon, Sheldon P.; Gordon, Florence S.

    2004-01-01

    In discussions with leading educators from many different fields, MAA's CRAFTY (Curriculum Renewal Across the First Two Years) committee found that one of the most common mathematical themes in those other disciplines is the idea of fitting a function to a set of data in the least squares sense. The representatives of those partner disciplines…

  14. Higher derivative discontinuous solutions to linear ordinary differential equations: a new route to complexity?

    International Nuclear Information System (INIS)

    Datta, Dhurjati Prasad; Bose, Manoj Kumar

    2004-01-01

    We present a new one parameter family of second derivative discontinuous solutions to the simplest scale invariant linear ordinary differential equation. We also point out how the construction could be extended to generate families of higher derivative discontinuous solutions as well. The discontinuity can occur only for a subset of even order derivatives, viz., 2nd, 4th, 8th, 16th,.... The solutions are shown to break the discrete parity (reflection) symmetry of the underlying equation. These results are expected to gain significance in the contemporary search of a new dynamical principle for understanding complex phenomena in nature

  15. Biomass estimates of freshwater zooplankton from length-carbon regression equations

    Directory of Open Access Journals (Sweden)

    Patrizia COMOLI

    2000-02-01

    Full Text Available We present length/carbon regression equations of zooplankton species collected from Lake Maggiore (N. Italy during 1992. The results are discussed in terms of the environmental factors, e.g. food availability, predation, controlling biomass production of particle- feeders and predators in the pelagic system of lakes. The marked seasonality in the length-standardized carbon content of Daphnia, and its time-specific trend suggest that from spring onward food availability for Daphnia population may be regarded as a simple decay function. Seasonality does not affect the carbon content/unit length of the two predator Cladocera Leptodora kindtii and Bythotrephes longimanus. Predation is probably the most important regulating factor for the seasonal dynamics of their carbon biomass. The existence of a constant factor to convert the diameter of Conochilus colonies into carbon seems reasonable for an organism whose population comes on quickly and just as quickly disappears.

  16. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  17. Liouville equation with boundary conditions derived from classical strings

    International Nuclear Information System (INIS)

    Marnelius, R.

    1983-01-01

    It is shown in terms of the classical string theory that a breaking of the Weyl invariance necessarily requires the Liouville equation for the variable phi=1n rho, where rho is the variable that appears in the conformal gauge gsub(α#betta#)=rhoetasub(α#betta#). Appropriate boundary conditions on phi for open and closed strings are then derived. (orig.)

  18. The G′G-expansion method using modified Riemann–Liouville derivative for some space-time fractional differential equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-09-01

    Full Text Available In this paper, the fractional partial differential equations are defined by modified Riemann–Liouville fractional derivative. With the help of fractional derivative and traveling wave transformation, these equations can be converted into the nonlinear nonfractional ordinary differential equations. Then G′G-expansion method is applied to obtain exact solutions of the space-time fractional Burgers equation, the space-time fractional KdV-Burgers equation and the space-time fractional coupled Burgers’ equations. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. These results reveal that the proposed method is very effective and simple in performing a solution to the fractional partial differential equation.

  19. Derivation of a macroscale formulation for a class of nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Pantelis, G.

    1995-05-01

    A macroscale formulation is constructed from a system of partial differential equations which govern the microscale dependent variables. The construction is based upon the requirement that the solutions of the macroscale partial differential equations satisfy, in some approximate sense, the system of partial differential equations associated with the microscale. These results are restricted to the class of nonlinear partial differential equations which can be expressed as polynomials of the dependent variables and their partial derivatives up to second order. A linear approximation of transformations of second order contact manifolds is employed. 6 refs

  20. Estimating Gestational Age With Sonography: Regression-Derived Formula Versus the Fetal Biometric Average.

    Science.gov (United States)

    Cawyer, Chase R; Anderson, Sarah B; Szychowski, Jeff M; Neely, Cherry; Owen, John

    2018-03-01

    To compare the accuracy of a new regression-derived formula developed from the National Fetal Growth Studies data to the common alternative method that uses the average of the gestational ages (GAs) calculated for each fetal biometric measurement (biparietal diameter, head circumference, abdominal circumference, and femur length). This retrospective cross-sectional study identified nonanomalous singleton pregnancies that had a crown-rump length plus at least 1 additional sonographic examination with complete fetal biometric measurements. With the use of the crown-rump length to establish the referent estimated date of delivery, each method's (National Institute of Child Health and Human Development regression versus Hadlock average [Radiology 1984; 152:497-501]), error at every examination was computed. Error, defined as the difference between the crown-rump length-derived GA and each method's predicted GA (weeks), was compared in 3 GA intervals: 1 (14 weeks-20 weeks 6 days), 2 (21 weeks-28 weeks 6 days), and 3 (≥29 weeks). In addition, the proportion of each method's examinations that had errors outside prespecified (±) day ranges was computed by using odds ratios. A total of 16,904 sonograms were identified. The overall and prespecified GA range subset mean errors were significantly smaller for the regression compared to the average (P < .01), and the regression had significantly lower odds of observing examinations outside the specified range of error in GA intervals 2 (odds ratio, 1.15; 95% confidence interval, 1.01-1.31) and 3 (odds ratio, 1.24; 95% confidence interval, 1.17-1.32) than the average method. In a contemporary unselected population of women dated by a crown-rump length-derived GA, the National Institute of Child Health and Human Development regression formula produced fewer estimates outside a prespecified margin of error than the commonly used Hadlock average; the differences were most pronounced for GA estimates at 29 weeks and later.

  1. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    OpenAIRE

    Erkinjon Karimov; Sardor Pirnafasov

    2017-01-01

    In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  2. Magnetostatic fields computed using an integral equation derived from Green's theorems

    International Nuclear Information System (INIS)

    Simkin, J.; Trowbridge, C.W.

    1976-04-01

    A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)

  3. Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

    KAUST Repository

    Destrade, M.

    2010-12-08

    We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.

  4. Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

    KAUST Repository

    Destrade, M.; Goriely, A.; Saccomandi, G.

    2010-01-01

    We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.

  5. Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative

    Directory of Open Access Journals (Sweden)

    Erkinjon Karimov

    2017-10-01

    Full Text Available In this work we discuss higher order multi-term partial differential equation (PDE with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  6. Growth of Logarithmic Derivatives and Their Applications in Complex Differential Equations

    Directory of Open Access Journals (Sweden)

    Zinelâabidine Latreuch

    2014-01-01

    of their logarithmic derivatives. We also give an estimate of the growth of the quotient of two differential polynomials generated by solutions of the equation f″+A(zf′+B(zf=0, where A(z and B(z are entire functions.

  7. A constrained Hartree-Fock-Bogoliubov equation derived from the double variational method

    International Nuclear Information System (INIS)

    Onishi, Naoki; Horibata, Takatoshi.

    1980-01-01

    The double variational method is applied to the intrinsic state of the generalized BCS wave function. A constrained Hartree-Fock-Bogoliubov equation is derived explicitly in the form of an eigenvalue equation. A method of obtaining approximate overlap and energy overlap integrals is proposed. This will help development of numerical calculations of the angular momentum projection method, especially for general intrinsic wave functions without any symmetry restrictions. (author)

  8. Derivation of governing equation for predicting thermal conductivity of composites with spherical inclusions and its applications

    International Nuclear Information System (INIS)

    Lee, Jae-Kon; Kim, Jin-Gon

    2011-01-01

    A governing differential equation for predicting the effective thermal conductivity of composites with spherical inclusions is shown to be simply derived by using the result of the generalized self-consistent model. By applying the equation to composites including spherical inclusions such as graded spherical inclusions, microballoons, mutiply-coated spheres, and spherical inclusions with an interphase, their effective thermal conductivities are easily predicted. The results are compared with those in the literatures to be consistent. It can be stated from the investigations that the effective thermal conductivity of composites with spherical inclusions can be estimated as long as their conductivities are expressed as a function of their radius. -- Highlights: → We derive equation for predicting the effective thermal conductivity of composites. → The equation is derived using the results of the generalized self-consistent model. → The inclusions are graded sphere, microballoons, and mutiply-coated spheres.

  9. Rigorous derivation of porous-media phase-field equations

    Science.gov (United States)

    Schmuck, Markus; Kalliadasis, Serafim

    2017-11-01

    The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.

  10. Derivation of a Fokker-Planck equation for bunched beams

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This report investigates the derivation of the Fokker-Planck equation which is commonly used to evaluate the evolution with time of an ensemble of particles under the effect of external rf forces, cooling and forces of stochastic nature like intrabeam scattering. The conventional approach based on the classical work by Chandrasekhar is first exposed, where the phase delay and the momentum error of the particle are used. The method is then extended to the case the distribution function is expressed in terms of the amplitude of motion instead of the original rectilinear variables. The new Fokker-Planck equation is obtained with an averaging process over the phase distribution instead of the time-averaging as it was usually performed earlier, to avoid the appearance of a singularity behavior. The solution of the Fokker-Planck equation is chosen in the proper form which makes easier the evaluation of the beam lifetime in the presence of the separatrix of the rf buckets. Finally the numerical applications apply the Relativistic Heavy Ion Collider (RHIC)

  11. On a higher order multi-term time-fractional partial differential equation involving Caputo-Fabrizio derivative

    OpenAIRE

    Pirnapasov, Sardor; Karimov, Erkinjon

    2017-01-01

    In the present work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. We investigate a boundary value problem for fractional heat equation involving higher order Caputo-Fabrizio derivatives in time-variable. Using method of separation of variables and integration by parts, we reduce fractional order PDE to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.

  12. On a system of differential equations with fractional derivatives arising in rod theory

    International Nuclear Information System (INIS)

    Atanackovic, Teodor M; Stankovic, Bogoljub

    2004-01-01

    We study a system of equations with fractional derivatives, that arises in the analysis of the lateral motion of an elastic column fixed at one end and loaded by a concentrated follower force at the other end. We assume that the column is positioned on a viscoelastic foundation described by a constitutive equation of fractional derivative type. The stability boundary is determined. It is shown that as in the case of an elastic (Winkler) type of foundation the stability boundary remains the same as for the column without a foundation! Thus, with the solution analysed here, the column exhibits the so-called Hermann-Smith paradox

  13. Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Baleanu, Dumitru [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara 06530 (Turkey); Trujillo, Juan J [Departamento de Analisis Matematico, University of La Laguna, 38271 La Laguna, Tenerife (Spain)], E-mail: dumitru@cankaya.edu.tr, E-mail: JTrujill@ullmat.es, E-mail: baleanu@venus.nipne.ro

    2009-11-15

    The fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.

  14. Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

    International Nuclear Information System (INIS)

    Utama, Briandhika; Purqon, Acep

    2016-01-01

    Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods. (paper)

  15. Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative

    Directory of Open Access Journals (Sweden)

    Fatima G. Khushtova

    2016-03-01

    Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.

  16. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    Science.gov (United States)

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  17. Discrete variational derivative method a structure-preserving numerical method for partial differential equations

    CERN Document Server

    Furihata, Daisuke

    2010-01-01

    Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of ""structure-preserving numerical equations"" which improves the qualitative behaviour of the PDE solutions and allows for stable computing. The authors have also taken care to present their methods in an accessible manner, which means that the book will be useful to engineer

  18. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    Science.gov (United States)

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  19. A didactically novel derivation of the telegraph equation to describe sound propagation in rigid tubes

    International Nuclear Information System (INIS)

    Till, Bernie C; Driessen, Peter F

    2014-01-01

    Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature. (paper)

  20. Can the Tafel equation be derived from first principles?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2005-01-01

    A century ago, Tafel disapproved the attempts to derive the empirical equation named after him by thermodynamic methods. He noted that his observations referred to irreversible electrochemical reactions, where thermodynamics is inapplicable. This statement seems to remain valid until today. Indeed, it is impossible as yet to predict the kinetic parameters for chemical processes by determining rate constants and reaction orders from 'first principles', unless strictly specialized and, to a great extent, artificial models are developed. Nevertheless, in this paper an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Tafel's time

  1. A simple derivation of Kepler's laws without solving differential equations

    International Nuclear Information System (INIS)

    Provost, J-P; Bracco, C

    2009-01-01

    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple reconsideration of Newton's figure naturally leads to an explicit expression of the velocity and to the equation of the trajectory. This derivation, which can be fully apprehended by undergraduates or by secondary school teachers (who might use it with their pupils), can be considered as a first application of mechanical concepts to a physical problem of great historical and pedagogical interest

  2. Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    Chen Yue

    Full Text Available The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60

  3. On Einstein's kinematics and his derivation of Lorentz transformation equations

    International Nuclear Information System (INIS)

    Gulati, Shobha; Gulati, S.P.

    1981-01-01

    Recently the present authors have claimed that Einstein's historic derivation of 1905 of Lorentz transformation equations is a 'howler' - a correct result achieved through some incorrect steps. In the present contribution, this howler is fully resolved. Incidently, Einstein's kinematical considerations are found to be void of any new definitional elements or conventionality as unjustifiably claimed by Einstein and some other scientists. (author)

  4. REGRES: A FORTRAN-77 program to calculate nonparametric and ``structural'' parametric solutions to bivariate regression equations

    Science.gov (United States)

    Rock, N. M. S.; Duffy, T. R.

    REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.

  5. Derivation of gyrotron's reduced equations and its application on the analysis of resonant cavities

    International Nuclear Information System (INIS)

    Correa, R.A.; Barroso, J.J.; Montes, A.

    1988-05-01

    In this paper, it is presented a derivation of a reduced set of equations for the electron motion, based upon Lorentz equation, where the applicability conditions and approximations employed are clearly indicated. As an example of practical interest, scaling relations are discussed in the analysis of cavities appropriate for high efficiency operation. (author)

  6. A Direct Derivation of the Equations of Motion for 3D-Flexible Mechanical Systems

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Mads Leergaard

    1998-01-01

    equations for flexible mechanical systems are derived using the principle of virtual work, which introduces inertia in a straightforward manner, because this principle treats inertia as a force. The flexible formulation is exemplified by the use of circular beam elements and some basic matrices are derived...

  7. Some Evolution Hierarchies Derived from Self-dual Yang-Mills Equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Hon, Y.C.

    2011-01-01

    We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra Ē of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (GJ) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simpler construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra g N . As an application, we apply the loop algebra E-tilde of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters α and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R 3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations. (general)

  8. Derivation of the Schroedinger equation from stochastic mechanics

    International Nuclear Information System (INIS)

    Wallstrom, T.C.

    1988-01-01

    The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schroedinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time-integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p t (x,y) > cp(y), and this result is applied to show that the set of spin-1/2 diffusions is uniformly ergodic. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp-Haag-Dankel diffusions onto IR 3 converge to a Markovian limit process. This conjecture is proved for the spin-1/2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schroedinger equation

  9. Derivation of a reduced kinetic equation using Lie-transform techniques

    International Nuclear Information System (INIS)

    Brizard, A.

    1991-01-01

    The asymptotic elimination of fast time scales from a general kinetic equation, of the form: ∂ t f+z·∂ x f = C[f], facilitates the study of the long time behavior of its solution f(z,t). Here z describe the single-particle Hamiltonian dynamics and the operator C, which may possess nonlinear functional dependence on f, describes processes (such as discrete-particle effects, resonant wave-particle effects, or effects due to external sources) which cause changes in f as it is convectively transported along a Hamiltonian phase-space trajectory. When a fast time scale is associated with z through the dependence on a fast angle θ (whose frequency θ = Ω satisfies ε ≡ 1/Ωτ much-lt 1, where τ is a slow time scale of interest), a near-identity phase-space transformation T ε :z→Z (carried out with Lie-transform techniques) yields reduced Hamiltonian dynamical equations Z ε which are θ-independent. The corresponding transformed kinetic equation is derived. Averaging this equation over the fast angle θ yields a kinetic equation for left-angle F right-angle, the θ-averaged part of F. In general, the θ-dependence of C ε couples the kinetic equations for left-angle F right-angle and F, the θ-dependent part of F. One solves for the Fourier coefficient F l (associated with e ilθ ) as a functional of left-angle F right-angle. One obtains a reduced kinetic equation for left-angle F right-angle: d R left-angle F right-angle/dt = C R [left-angle F right-angle]. General expressions for C R are given, as well as expressions for the guiding-center and oscillation-center phase-space transformations of a linear Fokker-Planck operator. A discussion of the relationship with Mynick's work is presented

  10. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    Science.gov (United States)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  11. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  12. A Matlab program for stepwise regression

    Directory of Open Access Journals (Sweden)

    Yanhong Qi

    2016-03-01

    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  13. The Boltzmann-Langevin Equation derived from the real-time path formalism

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    We derive the Boltzmann-Langevin equation using Green's functions techniques in the real-time path formalism. We start from the Martin-Schwinger hierarchy and close it approximately at the two-body level. A careful discussion of the initial conditions for the free two-body Green's function provides the flexibility to recover the discarded correlations as fluctuations leading to the Langevin force. The derivation is generalized to the T-matrix approach which allows to prove that one can use the same effective interaction in the mean-field as well as in the collision term and Langevin force

  14. Derivation of the Wenzel and Cassie Equations from a Phase Field Model for Two Phase Flow on Rough Surface

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2010-01-01

    In this paper, the equilibrium behavior of an immiscible two phase fluid on a rough surface is studied from a phase field equation derived from minimizing the total free energy of the system. When the size of the roughness becomes small, we derive the effective boundary condition for the equation by the multiple scale expansion homogenization technique. The Wenzel and Cassie equations for the apparent contact angles on the rough surfaces are then derived from the effective boundary condition. The homogenization results are proved rigorously by the F-convergence theory. © 2010 Society for Industrial and Applied Mathematics.

  15. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  16. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  17. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  18. Introducing time-dependent molecular fields: a new derivation of the wave equations

    Science.gov (United States)

    Baer, Michael

    2018-02-01

    This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.

  19. Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land

    Science.gov (United States)

    Xinhua Zhou; Michele M. Schoeneberger; James R. Brandle; Tala N. Awada; Jianmin Chu; Derrel L. Martin; Jihong Li; Yuqiang Li; Carl W. Mize

    2014-01-01

    Quantifying carbon in agroforestry trees requires biomass equations that capture the growth differences (e.g., tree specific gravity and architecture) created in the more open canopies of agroforestry plantings compared with those generally encountered in forests. Whereas forest-derived equations are available, equations for open-grown trees are not. Data from...

  20. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  1. FMTLxLyLz DIMENSIONAL EQUAT DIMENSIONAL EQUATION ...

    African Journals Online (AJOL)

    eobe

    plant made of 12mm thick steel plate was used in de steel plate ... water treatment plant. ... ameters affecting filtration processes were used to derive an equation usin ..... system. However, in deriving the equation onl terms are incorporated.

  2. Estimation of Stature from Footprint Anthropometry Using Regression Analysis: A Study on the Bidayuh Population of East Malaysia

    Directory of Open Access Journals (Sweden)

    T. Nataraja Moorthy

    2015-05-01

    Full Text Available The human foot has been studied for a variety of reasons, i.e., for forensic as well as non-forensic purposes by anatomists, forensic scientists, anthropologists, physicians, podiatrists, and numerous other groups. An aspect of human identification that has received scant attention from forensic anthropologists is the study of human feet and the footprints made by the feet. The present study, conducted during 2013-2014, aimed to derive population specific regression equations to estimate stature from the footprint anthropometry of indigenous adult Bidayuhs in the east of Malaysia. The study sample consisted of 480 bilateral footprints collected using a footprint kit from 240 Bidayuhs (120 males and 120 females, who consented to taking part in the study. Their ages ranged from 18 to 70 years. Stature was measured using a portable body meter device (SECA model 206. The data were analyzed using PASW Statistics version 20. In this investigation, better results were obtained in terms of correlation coefficient (R between stature and various footprint measurements and regression analysis in estimating the stature. The (R values showed a positive and statistically significant (p < 0.001 relationship between the two parameters. The correlation coefficients in the pooled sample (0.861–0.882 were comparatively higher than those of an individual male (0.762-0.795 and female (0.722-0.765. This study provided regression equations to estimate stature from footprints in the Bidayuh population. The result showed that the regression equations without sex indicators performed significantly better than models with gender indications. The regression equations derived for a pooled sample can be used to estimate stature, even when the sex of the footprint is unknown, as in real crime scenes.

  3. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  4. Intermediate modeling between kinetic equations and hydrodynamic limits: derivation, analysis and simulations

    International Nuclear Information System (INIS)

    Parisot, M.

    2011-01-01

    This work is dedicated study of a problem resulting from plasma physics: the thermal transfer of electrons in a plasma close to equilibrium Maxwellian. Firstly, a dimensional study of the Vlasov-Fokker-Planck-Maxwell system is performed, allowing one hand to identify a physically relevant parameter of scale and also to define mathematically the contours of validity domain. The asymptotic regime called Spitzer-Harm is studied for a relatively general class of collision operator. The following part of this work is devoted to the derivation and study of the hydrodynamic limit of the system of Vlasov-Maxwell-Landau outside the strictly asymptotic. A model proposed by Schurtz and Nicolais located in this context and analyzed. The particularity of this model lies in the application of a delocalization operation in the heat flux. The link with non-local models of Luciani and Mora is established as well as mathematics properties as the principle of maximum and entropy dissipation. Then a formal derivation from the Vlasov equations with a simplified collision operator, is proposed. The derivation, inspired by the recent work of D. Levermore, involves decomposition methods according to the spherical harmonics and methods of closing called diffusion methods. A hierarchy of intermediate models between the kinetic equations and the hydrodynamic limit is described. In particular a new hydrodynamic system integro-differential by nature, is proposed. The Schurtz and Nicolai model appears as a simplification of the system resulting from the derivation, assuming a steady flow of heat. The above results are then generalized to account for the internal energy dependence which appears naturally in the equation establishment. The existence and uniqueness of the solution of the nonstationary system are established in a simplified framework. The last part is devoted was the implementation of a specific numerical scheme to solve these models. We propose a finite volume approach can be

  5. Derivation of a volume-averaged neutron diffusion equation; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, R.; Espinosa P, G. [UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico D.F. 09340 (Mexico); Morales S, Jaime B. [UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: rvr@xanum.uam.mx

    2008-07-01

    This paper presents a general theoretical analysis of the problem of neutron motion in a nuclear reactor, where large variations on neutron cross sections normally preclude the use of the classical neutron diffusion equation. A volume-averaged neutron diffusion equation is derived which includes correction terms to diffusion and nuclear reaction effects. A method is presented to determine closure-relationships for the volume-averaged neutron diffusion equation (e.g., effective neutron diffusivity). In order to describe the distribution of neutrons in a highly heterogeneous configuration, it was necessary to extend the classical neutron diffusion equation. Thus, the volume averaged diffusion equation include two corrections factor: the first correction is related with the absorption process of the neutron and the second correction is a contribution to the neutron diffusion, both parameters are related to neutron effects on the interface of a heterogeneous configuration. (Author)

  6. Theoretical derivation of a simplified form of the OTOR/GOT differential equation

    International Nuclear Information System (INIS)

    Lovedy Singh, L.; Gartia, R.K.

    2013-01-01

    A simplified form of the OTOR/GOT differential equation has been derived, which may be employed in the evaluation of TL curves for saturated (N = n o ) and non-saturated cases (N > n o ). The present eqn. is found to be theoretically correct and physically sound in comparison with empirical general order kinetics. It has been found that the TL curve evaluated using the present eqn. matches the TL curves evaluated using differential eqn. formalism, and spans the region from α = n o /(100N) to α = 0.999 (where α is the ratio of the retrapping probability to the recombination probability). The simulated curve resembles a first order kinetics curve when α = n o /(100N) and a second order kinetics curve when α = 0.999. However, comparison with general order kinetics for the intermediate range is not possible as a one- to-one correspondence between α and b cannot be made. Also, calculation in the saturated case is made simpler since only three unknown parameters (E, s and α) are required. -- Highlights: • Theoretically and physically sound general order equation has been derived. • Can be employed in the calculation of saturated and non-saturated cases. • It is found to match with those evaluated using differential equation formalism. • Calculation in the saturated case requires only three unknown parameter

  7. Alien derivatives of the WKB solutions of the Gauss hypergeometric differential equation with a large parameter

    Directory of Open Access Journals (Sweden)

    Mika Tanda

    2015-01-01

    Full Text Available We compute alien derivatives of the WKB solutions of the Gauss hypergeometric differential equation with a large parameter and discuss the singularity structures of the Borel transforms of the WKB solution expressed in terms of its alien derivatives.

  8. Evaluation of peak power prediction equations in male basketball players.

    Science.gov (United States)

    Duncan, Michael J; Lyons, Mark; Nevill, Alan M

    2008-07-01

    This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.

  9. Derivation of the neutron diffusion equation

    International Nuclear Information System (INIS)

    Mika, J.R.; Banasiak, J.

    1994-01-01

    We discuss the diffusion equation as an asymptotic limit of the neutron transport equation for large scattering cross sections. We show that the classical asymptotic expansion procedure does not lead to the diffusion equation and present two modified approaches to overcome this difficulty. The effect of the initial layer is also discussed. (authors). 9 refs

  10. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    Science.gov (United States)

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

  11. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T

    Science.gov (United States)

    Pankow, James F.

    Confidence intervals are placed around the log Kp vs 1/ T correlation equations obtained using simple linear regressions (SLR) with the gas-particle partitioning data set of Yamasaki et al. [(1982) Env. Sci. Technol.16, 189-194]. The compounds and groups of compounds studied include the polycylic aromatic hydrocarbons phenanthrene + anthracene, me-phenanthrene + me-anthracene, fluoranthene, pyrene, benzo[ a]fluorene + benzo[ b]fluorene, chrysene + benz[ a]anthracene + triphenylene, benzo[ b]fluoranthene + benzo[ k]fluoranthene, and benzo[ a]pyrene + benzo[ e]pyrene (note: me = methyl). For any given compound, at equilibrium, the partition coefficient Kp equals ( F/ TSP)/ A where F is the particulate-matter associated concentration (ng m -3), A is the gas-phase concentration (ng m -3), and TSP is the concentration of particulate matter (μg m -3). At temperatures more than 10°C from the mean sampling temperature of 17°C, the confidence intervals are quite wide. Since theory predicts that similar compounds sorbing on the same particulate matter should possess very similar y-intercepts, the data set was also fitted using a special common y-intercept regression (CYIR). For most of the compounds, the CYIR equations fell inside of the SLR 95% confidence intervals. The CYIR y-intercept value is -18.48, and is reasonably close to the type of value that can be predicted for PAH compounds. The set of CYIR regression equations is probably more reliable than the set of SLR equations. For example, the CYIR-derived desorption enthalpies are much more highly correlated with vaporization enthalpies than are the SLR-derived desorption enthalpies. It is recommended that the CYIR approach be considered whenever analysing temperature-dependent gas-particle partitioning data.

  12. Formal derivation of a 6 equation macro scale model for two-phase flows - link with the 4 equation macro scale model implemented in Flica 4; Etablissement formel d'un modele diphasique macroscopique a 6 equations - lien avec le modele macroscopique a 4 equations flica 4

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, O

    2008-07-01

    In order to simulate nuclear reactor cores, we presently use the 4 equation model implemented within FLICA4 code. This model is complemented with 2 algebraic closures for thermal disequilibrium and relative velocity between phases. Using such closures, means an 'a priori' knowledge of flows calculated in order to ensure that modelling assumptions apply. In order to improve the degree of universality to our macroscopic modelling, we propose in the report to derive a more general 6 equation model (balance equations for mass, momentum and enthalpy for each phase) for 2-phase flows. We apply the up-scaling procedure (Whitaker, 1999) classically used in porous media analysis to the statistically averaged equations (Aniel-Buchheit et al., 2003). By doing this, we apply the double-averaging procedure (Pedras and De Lemos, 2001 and Pinson et al. 2006): statistical and spatial averages. Then, using weighted averages (analogous to Favre's average) we extend the spatial averaging concept to variable density and 2-phase flows. This approach allows the global recovering of the structure of the systems of equations implemented in industrial codes. Supplementary contributions, such as dispersion, are also highlighted. Mechanical and thermal exchanges between solids and fluid are formally derived. Then, thanks to realistic simplifying assumptions, we show how it is possible to derive the original 4 equation model from the full 6 equation model. (author)

  13. Derivation of the physical equations solved in the inertial confinement stability code DOC. Informal report

    International Nuclear Information System (INIS)

    Scannapieco, A.J.; Cranfill, C.W.

    1978-11-01

    There now exists an inertial confinement stability code called DOC, which runs as a postprocessor. DOC (a code that has evolved from a previous code, PANSY) is a spherical harmonic linear stability code that integrates, in time, a set of Lagrangian perturbation equations. Effects due to real equations of state, asymmetric energy deposition, thermal conduction, shock propagation, and a time-dependent zeroth-order state are handled in the code. We present here a detailed derivation of the physical equations that are solved in the code

  14. Derivation of the physical equations solved in the inertial confinement stability code DOC. Informal report

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, A.J.; Cranfill, C.W.

    1978-11-01

    There now exists an inertial confinement stability code called DOC, which runs as a postprocessor. DOC (a code that has evolved from a previous code, PANSY) is a spherical harmonic linear stability code that integrates, in time, a set of Lagrangian perturbation equations. Effects due to real equations of state, asymmetric energy deposition, thermal conduction, shock propagation, and a time-dependent zeroth-order state are handled in the code. We present here a detailed derivation of the physical equations that are solved in the code.

  15. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  16. Variational derivation of the simplified P2 equations with boundary and interface conditions

    International Nuclear Information System (INIS)

    Tomasevic, D.I.; Larsen, E.W.

    1995-01-01

    The Simplified P 2 (SP 2 ) approximation to the transport equation is derived using a variational principle. The variational analysis yields the SP 2 equations, together with interface and Marshak-like boundary conditions. Numerical calculations show that for problems in which the P 1 solution is a reasonably accurate approximation to the transport solution, the corresponding SP 2 Solution is generally more accurate than the P 1 solution, for calculating integral quantities and detailed flux distributions, except in the close vicinity of material interfaces, where the SP 2 solution is discontinuous

  17. Logical inference approach to relativistic quantum mechanics: Derivation of the Klein–Gordon equation

    International Nuclear Information System (INIS)

    Donker, H.C.; Katsnelson, M.I.; De Raedt, H.; Michielsen, K.

    2016-01-01

    The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein–Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space–time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds. - Highlights: • Logical inference applied to relativistic, massive, charged, and spinless particle experiments leads to the Klein–Gordon equation. • The relativistic Hamilton–Jacobi is scrutinized by employing a field description for the four-velocity. • Logical inference allows analysis of experiments with uncertainty in detection events and experimental conditions.

  18. Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The classical Darcy law is generalized by regarding the water flow as a function of a noninteger order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Two methods including Frobenius and Adomian decomposition method are used to obtain an asymptotic analytical solution to the generalized groundwater flow equation. The solution obtained via Frobenius method is valid in the vicinity of the borehole. This solution is in perfect agreement with the data observed from the pumping test performed by the institute for groundwater study on one of their boreholes settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes. Numerical solutions obtained via Adomian method are compared with the Barker generalized radial flow model for which a fractal dimension for the flow is assumed. Proposition for uncertainties in groundwater studies was given.

  19. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions

    Science.gov (United States)

    Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad

    2017-01-01

    In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.

  20. X-ray Laue diffraction with allowance for second derivatives of amplitudes in dynamical diffraction equations

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2014-01-01

    Asymmetrical Laue diffraction in a perfect crystal with a plane entrance surface is considered. The second derivatives of amplitudes in the direction, perpendicular to diffraction plane in the dynamical diffraction equations are taken into account. Using the corresponding Green function a general form for the amplitude of diffracted wave in the crystal is derived. The sizes of the source in both directions as well as the source of crystal distance and non-monochromaticity of the radiation incident on the crystal are taken into account. On the basis of obtained expression the coherent properties of the field depending on the sizes of the source and on the width of the spectrum of the incident radiation are analyzed. Taking into account the second derivatives of amplitudes with respect to the direction, perpendicular to the diffraction plane, the time dependent propagation equations for an X-ray pulse in a perfect crystal are given

  1. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  2. Derivation of simplified basic equations of gas-liquid two-phase dispersed flow based on two-fluid model

    International Nuclear Information System (INIS)

    Kataoka, Isao; Tomiyama, Akio

    2004-01-01

    The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill

  3. Analysis of the cable equation with non-local and non-singular kernel fractional derivative

    Science.gov (United States)

    Karaagac, Berat

    2018-02-01

    Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.

  4. A Posteriori Finite Element Bounds for Sensitivity Derivatives of Partial-Differential-Equation Outputs. Revised

    Science.gov (United States)

    Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume

    1998-01-01

    We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.

  5. A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows.

    Science.gov (United States)

    Daivis, Peter J; Todd, B D

    2006-05-21

    We present a simple and direct derivation of the SLLOD equations of motion for molecular simulations of general homogeneous flows. We show that these equations of motion (1) generate the correct particle trajectories, (2) conserve the total thermal momentum without requiring the center of mass to be located at the origin, and (3) exactly generate the required energy dissipation. These equations of motion are compared with the g-SLLOD and p-SLLOD equations of motion, which are found to be deficient. Claims that the SLLOD equations of motion are incorrect for elongational flows are critically examined and found to be invalid. It is confirmed that the SLLOD equations are, in general, non-Hamiltonian. We derive a Hamiltonian from which they can be obtained in the special case of a symmetric velocity gradient tensor. In this case, it is possible to perform a canonical transformation that results in the well-known DOLLS tensor Hamiltonian.

  6. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  7. Positive solutions of fractional differential equations with derivative terms

    Directory of Open Access Journals (Sweden)

    Cuiping Cheng

    2012-11-01

    Full Text Available In this article, we are concerned with the existence of positive solutions for nonlinear fractional differential equation whose nonlinearity contains the first-order derivative, $$displaylines{ D_{0^+}^{alpha}u(t+f(t,u(t,u'(t=0,quad tin (0,1,; n-14 $ $(ninmathbb{N}$, $D_{0^+}^{alpha}$ is the standard Riemann-Liouville fractional derivative of order $alpha$ and $f(t,u,u':[0,1] imes [0,inftyimes(-infty,+infty o [0,infty$ satisfies the Caratheodory type condition. Sufficient conditions are obtained for the existence of at least one or two positive solutions by using the nonlinear alternative of the Leray-Schauder type and Krasnosel'skii's fixed point theorem. In addition, several other sufficient conditions are established for the existence of at least triple, n or 2n-1 positive solutions. Two examples are given to illustrate our theoretical results.

  8. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    Science.gov (United States)

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various

  9. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    Science.gov (United States)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  10. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  11. Classification of kink type solutions to the extended derivative nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Wyller, J.; Fla, T.; Juul Rasmussen, J.

    1998-01-01

    The Raman Extended Derivative Non Linear Schrodinger (R-EDNLS) equation which models single mode propagation in optical fibers, is shown to possess travelling and stationary kink envelope solutions of monotonic and oscillatory type. These structures have been called optical shocks in analogy...

  12. Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 1. Digestibility of fiber, fat, protein, and nonfiber carbohydrate.

    Science.gov (United States)

    White, R R; Roman-Garcia, Y; Firkins, J L; VandeHaar, M J; Armentano, L E; Weiss, W P; McGill, T; Garnett, R; Hanigan, M D

    2017-05-01

    Evaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirements series is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%. All NRC (2001) estimates had notable mean and slope biases and large root mean squared prediction error (RMSPE), and concordance (CCC) ranged from poor to good. Predicting NDF digestibility with independent equations for legumes, corn silage, other forages, and nonforage feeds improved CCC (0.85 vs. 0.76) compared with the re-derived NRC (2001) equation form (NRC equation with parameter estimates re-derived against this data set). Separate FA digestion coefficients were derived for different fat supplements (animal fats, oils, and other fat types) and for the basal diet. This equation returned improved (from 0.76 to 0.94) CCC compared with the re-derived NRC (2001) equation form. Unique CP digestibility equations were derived for forages, animal protein feeds, plant protein feeds, and other feeds, which improved CCC compared with the re-derived NRC (2001) equation form (0.74 to 0.85). New NFC digestibility coefficients were derived for grain-specific starch digestibilities, with residual organic matter assumed to be 98% digestible. A Monte Carlo cross-validation was performed to evaluate repeatability of model fit. In this procedure, data were randomly subsetted 500 times into derivation (60%) and evaluation (40%) data sets, and equations were derived using the derivation data and then evaluated against the independent evaluation data. Models

  13. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  14. arXiv GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations

    CERN Document Server

    Ghiglieri, J.

    2017-05-23

    Starting from operator equations of motion and making arguments based on a separation of time scales, a set of equations is derived which govern the non-equilibrium time evolution of a GeV-scale sterile neutrino density matrix and active lepton number densities at temperatures T > 130 GeV. The density matrix possesses generation and helicity indices; we demonstrate how helicity permits for a classification of various sources for leptogenesis. The coefficients parametrizing the equations are determined to leading order in Standard Model couplings, accounting for the LPM resummation of 1+n 2+n scatterings and for all 2 2 scatterings. The regime in which sphaleron processes gradually decouple so that baryon plus lepton number becomes a separate non-equilibrium variable is also considered.

  15. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  16. Global well-posedness for Schrödinger equation with derivative in H(R)

    Science.gov (United States)

    Miao, Changxing; Wu, Yifei; Xu, Guixiang

    In this paper, we consider the Cauchy problem of the cubic nonlinear Schrödinger equation with derivative in H(R). This equation was known to be the local well-posedness for s⩾1/2 > (Takaoka, 1999 [27]), ill-posedness for s (Biagioni and Linares, 2001 [1], etc.) and global well-posedness for s>1/2 > (I-team, 2002 [10]). In this paper, we show that it is global well-posedness in the endpoint space H(R), which remained open previously. The main approach is the third generation I-method combined with a new resonant decomposition technique. The resonant decomposition is applied to control the singularity coming from the resonant interaction.

  17. Partitioning of late gestation energy expenditure in ewes using indirect calorimetry and a linear regression approach

    DEFF Research Database (Denmark)

    Kiani, Alishir; Chwalibog, André; Nielsen, Mette O

    2007-01-01

    Late gestation energy expenditure (EE(gest)) originates from energy expenditure (EE) of development of conceptus (EE(conceptus)) and EE of homeorhetic adaptation of metabolism (EE(homeorhetic)). Even though EE(gest) is relatively easy to quantify, its partitioning is problematic. In the present...... study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...

  18. Derivation of Pal-Bell equations for two-point reactors, and its application to correlation measurements at KUCA

    International Nuclear Information System (INIS)

    Murata, Naoyuki; Yamane, Yoshihiro; Nishina, Kojiro; Shiroya, Seiji; Kanda, Keiji.

    1980-01-01

    A probability is defined for an event in which m neutrons exist at time t sub(f) in core I of a coupled-core system, originating from a neutron injected into the core I at an earlier time t; we call it P sub(I,I,m)(t sub(f)/t). Similarly, P sub(I,II,m)(t sub(f)/t) is defined as the probability for m neutrons to exist in core II of the system at time t sub(f), originating from a neutron injected into the core I at time t. Then a system of coupled equations are derived for the generating functions G sub(Ij)(z, t sub(f)/t) = μP sub(Ijm)(t sub(f)/t).z sup(m), where j = I, II. By similar procedures equations are derived for the generating functions associated with joint probability of the following events: a given combination of numbers of neutrons are detected during given series of detection time intervals by a detector inserted in one of the cores. The above two kinds of systems of equations can be regarded as a two-point version of Pal-Bell's equations. As the application of these formulations, analyzing formula for correlation measurements, namely (1) Feynman-alpha experiment and (2) Rossi-alpha experiment of Orndoff-type, are derived, and their feasibility is verified by experiments carried out at KUCA. (author)

  19. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  20. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  1. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  2. Lagrangian derivation of the two coupled field equations in the Janus cosmological model

    Science.gov (United States)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-05-01

    After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.

  3. Derivation of the Finslerian gauge field equations

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1984-01-01

    As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor, whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather then the Riemann curvature tensor enters the equations. (author)

  4. Body Size Regression Formulae, Proximate Composition and Energy Density of Eastern Bering Sea Mesopelagic Fish and Squid.

    Science.gov (United States)

    Sinclair, Elizabeth H; Walker, William A; Thomason, James R

    2015-01-01

    The ecological significance of fish and squid of the mesopelagic zone (200 m-1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models.

  5. Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Ya-Juan Hao

    2013-01-01

    Full Text Available The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional differential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making use of the Cantorian and Cantor-type cylindrical coordinates.

  6. Oblique derivative problems for generalized Rassias equations of mixed type with several characteristic boundaries

    Directory of Open Access Journals (Sweden)

    Guo Chun Wen

    2009-05-01

    Full Text Available This article concerns the oblique derivative problems for second-order quasilinear degenerate equations of mixed type with several characteristic boundaries, which include the Tricomi problem as a special case. First we formulate the problem and obtain estimates of its solutions, then we show the existence of solutions by the successive iterations and the Leray-Schauder theorem. We use a complex analytic method: elliptic complex functions are used in the elliptic domain, and hyperbolic complex functions in the hyperbolic domain, such that second-order equations of mixed type with degenerate curve are reduced to the first order mixed complex equations with singular coefficients. An application of the complex analytic method, solves (1.1 below with $m=n=1$, $a=b=0$, which was posed as an open problem by Rassias.

  7. Central moments of ion implantation distributions derived by the backward Boltzmann transport equation compared with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Bowyer, M.D.J.; Ashworth, D.G.; Oven, R.

    1992-01-01

    In this paper we study solutions to the backward Boltzmann transport equation (BBTE) specialized to equations governing moments of the distribution of ions implanted into amorphous targets. A central moment integral equation set has been derived starting from the classical plane source BBTE for non-central moments. A full generator equation is provided to allow construction of equation sets of an arbitrary size, thus allowing computation of moments of arbitrary order. A BBTE solver program has been written that uses the residual correction technique proposed by Winterbon. A simple means is presented to allow direct incorporation of Biersack's two-parameter ''magic formula'' into a BBTE solver program. Results for non-central and central moment integral equation sets are compared with Monte Carlo simulations, using three different formulae for the mean free flight path between collisions. Comparisons are performed for the ions B and As, implanted into the target a-Si, over the energy range 1 keV-1 MeV. The central moment integral equation set is found to have superior convergence properties to the non-central moment equation set. For As ions implanted into a-Si, at energies below ∼ 30 keV, significant differences are observed, for third- and fourth-order moments, when using alternative versions for the mean free flight path. Third- and fourth-order moments derived using one- and two-parameter scattering mechanisms also show significant differences over the same energy range. (Author)

  8. Direct phase derivative estimation using difference equation modeling in holographic interferometry

    International Nuclear Information System (INIS)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2014-01-01

    A new method is proposed for the direct phase derivative estimation from a single spatial frequency modulated carrier fringe pattern in holographic interferometry. The fringe intensity in a given row/column is modeled as a difference equation of intensity with spatially varying coefficients. These coefficients carry the information on the phase derivative. Consequently, the accurate estimation of the coefficients is obtained by approximating the coefficients as a linear combination of the predefined linearly independent basis functions. Unlike Fourier transform based fringe analysis, the method does not call for performing the filtering of the Fourier spectrum of fringe intensity. Moreover, the estimation of the carrier frequency is performed by applying the proposed method to a reference interferogram. The performance of the proposed method is insensitive to the fringe amplitude modulation and is validated with the simulation results. (paper)

  9. Monge-Ampere equations and tensorial functors

    International Nuclear Information System (INIS)

    Tunitsky, Dmitry V

    2009-01-01

    We consider differential-geometric structures associated with Monge-Ampere equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge-Ampere equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge-Ampere equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge-Ampere equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge-Ampere equation. These functors enable us to establish effectively verifiable criteria for a Monge-Ampere equation to belong to the subcategories listed above.

  10. Spectral Approach to Derive the Representation Formulae for Solutions of the Wave Equation

    Directory of Open Access Journals (Sweden)

    Gusein Sh. Guseinov

    2012-01-01

    Full Text Available Using spectral properties of the Laplace operator and some structural formula for rapidly decreasing functions of the Laplace operator, we offer a novel method to derive explicit formulae for solutions to the Cauchy problem for classical wave equation in arbitrary dimensions. Among them are the well-known d'Alembert, Poisson, and Kirchhoff representation formulae in low space dimensions.

  11. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.

    Science.gov (United States)

    Verschaeve, Joris C G

    2011-06-13

    By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.

  12. The plasma transport equations derived by multiple time-scale expansions and turbulent transport. I. General theory

    International Nuclear Information System (INIS)

    Edenstrasser, J.W.

    1995-01-01

    A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics

  13. Global solutions to the initial-boundary value problem for the quasilinear viscoelastic equation with a derivative nonlinearity

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Nakao

    2014-01-01

    Full Text Available We prove the existence and uniqueness of a global decaying solution to the initial boundary value problem for the quasilinear wave equation with Kelvin-Voigt dissipation and a derivative nonlinearity. To derive the required estimates of the solutions we employ a 'loan' method and use a difference inequality on the energy.

  14. Advanced statistics: linear regression, part I: simple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  15. Exploring a physico-chemical multi-array explanatory model with a new multiple covariance-based technique: structural equation exploratory regression.

    Science.gov (United States)

    Bry, X; Verron, T; Cazes, P

    2009-05-29

    In this work, we consider chemical and physical variable groups describing a common set of observations (cigarettes). One of the groups, minor smoke compounds (minSC), is assumed to depend on the others (minSC predictors). PLS regression (PLSR) of m inSC on the set of all predictors appears not to lead to a satisfactory analytic model, because it does not take into account the expert's knowledge. PLS path modeling (PLSPM) does not use the multidimensional structure of predictor groups. Indeed, the expert needs to separate the influence of several pre-designed predictor groups on minSC, in order to see what dimensions this influence involves. To meet these needs, we consider a multi-group component-regression model, and propose a method to extract from each group several strong uncorrelated components that fit the model. Estimation is based on a global multiple covariance criterion, used in combination with an appropriate nesting approach. Compared to PLSR and PLSPM, the structural equation exploratory regression (SEER) we propose fully uses predictor group complementarity, both conceptually and statistically, to predict the dependent group.

  16. Estimation of Stature from Foot Dimensions and Stature among South Indian Medical Students Using Regression Models

    Directory of Open Access Journals (Sweden)

    Rajesh D. R

    2015-01-01

    Full Text Available Background: At times fragments of soft tissues are found disposed off in the open, in ditches at the crime scene and the same are brought to forensic experts for the purpose of identification and such type of cases pose a real challenge. Objectives: This study was aimed at developing a methodology which could help in personal identification by studying the relation between foot dimensions and stature among south subjects using regression models. Material and Methods: Stature and foot length of 100 subjects (age range 18-22 years were measured. Linear regression equations for stature estimation were calculated. Result: The correlation coefficients between stature and foot lengths were found to be positive and statistically significant. Height = 98.159 + 3.746 × FLRT (r = 0.821 and Height = 91.242 + 3.284 × FLRT (r = 0.837 are the regression formulas from foot lengths for males and females respectively. Conclusion: The regression equation derived in the study can be used reliably for estimation of stature in a diverse population group thus would be of immense value in the field of personal identification especially from mutilated bodies or fragmentary remains.

  17. Derivation of equations for scalar and fermion fields using properties of dispersion-codispersion operators

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R; Hanitriarivo, R.; Harison, V.

    2014-01-01

    We establish equations for scalar and fermion fields using results obtained from a study on a phase space representation of quantum theory that we have performed in a previous work. Our approaches are similar to the historical ones to obtain Klein-Gordon and Dirac equations but the main difference is that ours are based on the use of properties of operators called dispersion-codispersion operators. We begin with a brief recall about the dispersion-codispersion operators. Then, introducing a mass operator with its canonical conjugate coordinate and applying rules of quantization, based on the use of dispersion - codispersion operators , we deduce a second order differential operator relation from the relativistic expression relying energy, momentum and mass. Using Dirac matrices, we derive from this second order differential operator relation a first order one. The application of the second order differential operator relation on a scalar function gives the equation for the scalar field and the use of the first order differential operator relation leads to the equation for fermion field.

  18. The analysis of the derivation principles of kinetic equations based on exactly solvable models of the bulk reaction A + B → Product

    International Nuclear Information System (INIS)

    Kipriyanov, A.A.; Doktorov, A.B.

    2005-01-01

    We have considered two many-particle models of the irreversible reaction A + B → Product for which closed kinetic equations for the mean concentration N A (t) of A species can be exactly obtained. These equations are identically recast into a unified form of integro-differential equation of general kinetic theory. It is shown that the memory functions for both models under consideration can be represented as a sum of the Markovian and non-Markovian parts. It is essential that the Markovian part of the Laplace transform of any kernel can be obtained using the Laplace transform of the kernel itself, and is the root of the non-Markovian part of the Laplace transform of the kernel. The properties established allowed us to perform correct approximation of the memory functions at small concentrations [B] of B species and derive the binary non-Markovian integro-differential equation. Within the binary theory accuracy this equation has been rewritten in a regular frame of a familiar rate equation satisfying general principles of binary kinetic equations. Thus using particular exactly solvable many-particle models, we have reproduced the most essential steps of the known general way for the derivation of the binary kinetic equation avoiding the sophisticated many-particle technique and the corresponding approximations. Besides, the results obtained can serve as an additional evidence of the approximations made in a general many-particle approach to the derivation of the binary kinetic equation

  19. An approach to derive some simple empirical equations to calibrate nuclear and acoustic well logging tools.

    Science.gov (United States)

    Mohammad Al Alfy, Ibrahim

    2018-01-01

    A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system

    International Nuclear Information System (INIS)

    Wang, C.

    1992-01-01

    The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories

  1. Deriving the Regression Line with Algebra

    Science.gov (United States)

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  2. Regression equations for calculation of z scores for echocardiographic measurements of right heart structures in healthy Han Chinese children.

    Science.gov (United States)

    Wang, Shan-Shan; Zhang, Yu-Qi; Chen, Shu-Bao; Huang, Guo-Ying; Zhang, Hong-Yan; Zhang, Zhi-Fang; Wu, Lan-Ping; Hong, Wen-Jing; Shen, Rong; Liu, Yi-Qing; Zhu, Jun-Xue

    2017-06-01

    Clinical decision making in children with congenital and acquired heart disease relies on measurements of cardiac structures using two-dimensional echocardiography. We aimed to establish z-score regression equations for right heart structures in healthy Chinese Han children. Two-dimensional and M-mode echocardiography was performed in 515 patients. We measured the dimensions of the pulmonary valve annulus (PVA), main pulmonary artery (MPA), left pulmonary artery (LPA), right pulmonary artery (RPA), right ventricular outflow tract at end-diastole (RVOTd) and at end-systole (RVOTs), tricuspid valve annulus (TVA), right ventricular inflow tract at end-diastole (RVIDd) and at end-systole (RVIDs), and right atrium (RA). Regression analyses were conducted to relate the measurements of right heart structures to 4body surface area (BSA). Right ventricular outflow-tract fractional shortening (RVOTFS) was also calculated. Several models were used, and the best model was chosen to establish a z-score calculator. PVA, MPA, LPA, RPA, RVOTd, RVOTs, TVA, RVIDd, RVIDs, and RA (R 2  = 0.786, 0.705, 0.728, 0.701, 0.706, 0.824, 0.804, 0.663, 0.626, and 0.793, respectively) had a cubic polynomial relationship with BSA; specifically, measurement (M) = β0 + β1 × BSA + β2 × BSA 2  + β3 × BSA. 3 RVOTFS (0.28 ± 0.02) fell within a narrow range (0.12-0.51). Our results provide reference values for z scores and regression equations for right heart structures in Han Chinese children. These data may help interpreting the routine clinical measurement of right heart structures in children with congenital or acquired heart disease. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:293-303, 2017. © 2017 Wiley Periodicals, Inc.

  3. On the derivation of quasi-classical equations for superconductors or 3He

    International Nuclear Information System (INIS)

    Shelankov, A.L.

    1984-11-01

    We present a method for the derivation of the quasi-classical equations for Keldysh Green function of a superconductor or superfluid 3 He. It is shown that Green functions on the classical trajectories g(Y 1 ,Y 2 ) which depend on two trajectory coordinates y 1 and y 2 , give the full description of the system within quasi-classical accuracy. The equation of motion for g(y 1 ,y 2 ) is obtained. it is shown that g(y)=g(y+0,y)+g(y-0,y) is equal to the Green function in momentum space integrated with respect to xi=vsub(F)(p-psub(F)). The normalization condition (g(y)) 2 =1 is proved in a direct manner using the properties of g(y 1 ,y 2 ) with y 1 not=Y 2 . The different methods of introducing the distribution function are discussed. (orig.)

  4. Constructing general partial differential equations using polynomial and neural networks.

    Science.gov (United States)

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Dirac equation for accountants

    International Nuclear Information System (INIS)

    Ord, G.N.

    2006-01-01

    In the context of relativistic quantum mechanics, derivations of the Dirac equation usually take the form of plausibility arguments based on experience with the Schroedinger equation. The primary reason for this is that we do not know what wavefunctions physically represent, so derivations have to rely on formal arguments. There is however a context in which the Dirac equation in one dimension is directly related to a classical generating function. In that context, the derivation of the Dirac equation is an exercise in counting. We provide this derivation here and discuss its relationship to quantum mechanics

  6. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  7. Derivation of the phase field equations from the thermodynamic extremal principle

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; McDowell, D.L.

    2012-01-01

    Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.

  8. On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media

    OpenAIRE

    Rozanova-Pierrat, Anna

    2009-01-01

    We consider the derivation of the Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation from the nonlinear isentropic Navier-Stokes and Euler systems. The KZK equation is a mathematical model that describes the nonlinear propagation of a finite-amplitude sound pulse in a thermo-viscous medium. The derivation of the KZK equation has to date been based on the paraxial approximation of small perturbations around a given state of the Navier-Stokes system. However, this method does not ...

  9. A Classical Based Derivation of Time Dilation Providing First Order Accuracy to Schwarzschild's Solution of Einstein's Field Equations

    Science.gov (United States)

    Austin, Rickey W.

    In Einstein's theory of Special Relativity (SR), one method to derive relativistic kinetic energy is via applying the classical work-energy theorem to relativistic momentum. This approach starts with a classical based work-energy theorem and applies SR's momentum to the derivation. One outcome of this derivation is relativistic kinetic energy. From this derivation, it is rather straight forward to form a kinetic energy based time dilation function. In the derivation of General Relativity a common approach is to bypass classical laws as a starting point. Instead a rigorous development of differential geometry and Riemannian space is constructed, from which classical based laws are derived. This is in contrast to SR's approach of starting with classical laws and applying the consequences of the universal speed of light by all observers. A possible method to derive time dilation due to Newtonian gravitational potential energy (NGPE) is to apply SR's approach to deriving relativistic kinetic energy. It will be shown this method gives a first order accuracy compared to Schwarzschild's metric. The SR's kinetic energy and the newly derived NGPE derivation are combined to form a Riemannian metric based on these two energies. A geodesic is derived and calculations compared to Schwarzschild's geodesic for an orbiting test mass about a central, non-rotating, non-charged massive body. The new metric results in high accuracy calculations when compared to Einsteins General Relativity's prediction. The new method provides a candidate approach for starting with classical laws and deriving General Relativity effects. This approach mimics SR's method of starting with classical mechanics when deriving relativistic equations. As a compliment to introducing General Relativity, it provides a plausible scaffolding method from classical physics when teaching introductory General Relativity. A straight forward path from classical laws to General Relativity will be derived. This derivation

  10. Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua

    2009-01-01

    The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.

  11. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  12. Comparison of Classical Linear Regression and Orthogonal Regression According to the Sum of Squares Perpendicular Distances

    OpenAIRE

    KELEŞ, Taliha; ALTUN, Murat

    2016-01-01

    Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...

  13. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study

    NARCIS (Netherlands)

    Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I. A.; Snijder, M. B.; Mocking, R. J. T.; Derks, E. M.; Schene, A. H.; Nicolaou, M.

    2017-01-01

    BACKGROUND/OBJECTIVES: To investigate the association of dietary patterns derived by reduced rank regression (RRR) with depressive symptoms in a multi-ethnic population. SUBJECTS/METHODS: Cross-sectional data from the HELIUS study were used. In total, 4967 men and women (18-70 years) of Dutch,

  14. Dietary pattern derived by reduced rank regression and depressive symptoms in a multi-ethnic population: the HELIUS study

    NARCIS (Netherlands)

    Vermeulen, E.; Stronks, K.; Visser, M.; Brouwer, I. A.; Snijder, M. B.; Mocking, R. J.T.; Derks, E. M.; Schene, A. H.; Nicolaou, M.

    BACKGROUND/OBJECTIVES: To investigate the association of dietary patterns derived by reduced rank regression (RRR) with depressive symptoms in a multi-ethnic population. SUBJECTS/METHODS: Cross-sectional data from the HELIUS study were used. In total, 4967 men and women (18-70 years) of Dutch,

  15. A Fast Implicit Finite Difference Method for Fractional Advection-Dispersion Equations with Fractional Derivative Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Taohua Liu

    2017-01-01

    Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(Klog⁡K. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.

  16. Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass

    DEFF Research Database (Denmark)

    D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar

    2012-01-01

    and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...... flexors. Results: Males were signifantly stronger than females across all age groups. Elbow peak torque (EPT) was better preserved from 60s to 70s whereas knee peak torque (KPT) reduced significantly (PGender, thigh mass and age best...... predicted KPT (R2=0.60). Gender, forearm mass and age best predicted EPT (R2=0.75). Good crossvalidation was established for both elbow and knee models. Conclusion: This cross-sectional study of muscle strength created and validated strength scaled equations of EPT and KPT using only gender, segment mass...

  17. Laser radiation in active amplifying media treated as a transport problem - Transfer equation derived and exactly solved

    Science.gov (United States)

    Gupta, S. R. D.; Gupta, Santanu D.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  18. Asymptotic integration of some nonlinear differential equations with fractional time derivative

    International Nuclear Information System (INIS)

    Baleanu, Dumitru; Agarwal, Ravi P; Mustafa, Octavian G; Cosulschi, Mirel

    2011-01-01

    We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + α)-order fractional differential equation 0 D α t (x') + f(t, x) = 0, t > 0, has a solution x element of C([0,+∞),R) intersection C 1 ((0,+∞),R), with lim t→0 [t 1-α x'(t)] element of R, which can be expanded asymptotically as a + bt α + O(t α-1 ) when t → +∞ for given real numbers a, b. Our arguments are based on fixed point theory. Here, 0 D α t designates the Riemann-Liouville derivative of order α in (0, 1).

  19. Equations of motion derived from a generalization of Einstein's equation for the gravitational field

    International Nuclear Information System (INIS)

    Mociutchi, C.

    1980-01-01

    The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)

  20. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  1. Validation of equations and proposed reference values to estimate fat mass in Chilean university students.

    Science.gov (United States)

    Gómez Campos, Rossana; Pacheco Carrillo, Jaime; Almonacid Fierro, Alejandro; Urra Albornoz, Camilo; Cossío-Bolaños, Marco

    2018-03-01

    (i) To propose regression equations based on anthropometric measures to estimate fat mass (FM) using dual energy X-ray absorptiometry (DXA) as reference method, and (ii)to establish population reference standards for equation-derived FM. A cross-sectional study on 6,713 university students (3,354 males and 3,359 females) from Chile aged 17.0 to 27.0years. Anthropometric measures (weight, height, waist circumference) were taken in all participants. Whole body DXA was performed in 683 subjects. A total of 478 subjects were selected to develop regression equations, and 205 for their cross-validation. Data from 6,030 participants were used to develop reference standards for FM. Equations were generated using stepwise multiple regression analysis. Percentiles were developed using the LMS method. Equations for men were: (i) FM=-35,997.486 +232.285 *Weight +432.216 *CC (R 2 =0.73, SEE=4.1); (ii)FM=-37,671.303 +309.539 *Weight +66,028.109 *ICE (R2=0.76, SEE=3.8), while equations for women were: (iii)FM=-13,216.917 +461,302 *Weight+91.898 *CC (R 2 =0.70, SEE=4.6), and (iv) FM=-14,144.220 +464.061 *Weight +16,189.297 *ICE (R 2 =0.70, SEE=4.6). Percentiles proposed included p10, p50, p85, and p95. The developed equations provide valid and accurate estimation of FM in both sexes. The values obtained using the equations may be analyzed from percentiles that allow for categorizing body fat levels by age and sex. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Fungible weights in logistic regression.

    Science.gov (United States)

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  4. Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations

    Science.gov (United States)

    Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.

    2018-03-01

    Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.

  5. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho; Pyeon, Cheol Ho

    2015-01-01

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r g , E g , t g ) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the neutron sources

  6. How to obtain the covariant form of Maxwell's equations from the continuity equation

    International Nuclear Information System (INIS)

    Heras, Jose A

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations

  7. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    Science.gov (United States)

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  8. Discrete q-derivatives and symmetries of q-difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D [Dipartimento di Fisica, Universita Roma Tre and INFN-Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Negro, J [Departamento de FIsica Teorica, Universidad de Valladolid, E-47011, Valladolid (Spain); Olmo, M A del [Departamento de FIsica Teorica, Universidad de Valladolid, E-47011, Valladolid (Spain)

    2004-03-12

    In this paper we extend the umbral calculus, developed to deal with difference equations on uniform lattices, to q-difference equations. We show that many properties considered for shift invariant difference operators satisfying the umbral calculus can be implemented to the case of the q-difference operators. This q-umbral calculus can be used to provide solutions to linear q-difference equations and q-differential delay equations. To illustrate the method, we will apply the obtained results to the construction of symmetry solutions for the q-heat equation.

  9. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  10. Remarks on the derivation of the governing equations for the dynamics of a nonlinear beam to a non ideal shaft coupling

    Energy Technology Data Exchange (ETDEWEB)

    Fenili, André; Lopes Rebello da Fonseca Brasil, Reyolando Manoel [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo (Brazil); Balthazar, José M., E-mail: jmbaltha@gmail.com [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo, Brazil and Universidade Estadual Paulista, Faculdade de Engenharia Mec and #x00E (Brazil); Francisco, Cayo Prado Fernandes [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo, Brazil and Instituto de Aeronáutica e Espaço, Departamento de (Brazil)

    2014-12-10

    We derive nonlinear governing equations without assuming that the beam is inextensible. The derivation couples the equations that govern a weak electric motor, which is used to rotate the base of the beam, to those that govern the motion of the beam. The system is considered non-ideal in the sense that the response of the motor to an applied voltage and the motion of the beam must be obtained interactively. The moment that the motor exerts on the base of the beam cannot be determined without solving for the motion of the beam.

  11. Remarks on the derivation of the governing equations for the dynamics of a nonlinear beam to a non ideal shaft coupling

    International Nuclear Information System (INIS)

    Fenili, André; Lopes Rebello da Fonseca Brasil, Reyolando Manoel; Balthazar, José M.; Francisco, Cayo Prado Fernandes

    2014-01-01

    We derive nonlinear governing equations without assuming that the beam is inextensible. The derivation couples the equations that govern a weak electric motor, which is used to rotate the base of the beam, to those that govern the motion of the beam. The system is considered non-ideal in the sense that the response of the motor to an applied voltage and the motion of the beam must be obtained interactively. The moment that the motor exerts on the base of the beam cannot be determined without solving for the motion of the beam

  12. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    2017-05-15

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension of a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.

  13. Prediction equations of forced oscillation technique: the insidious role of collinearity.

    Science.gov (United States)

    Narchi, Hassib; AlBlooshi, Afaf

    2018-03-27

    Many studies have reported reference data for forced oscillation technique (FOT) in healthy children. The prediction equation of FOT parameters were derived from a multivariable regression model examining the effect of age, gender, weight and height on each parameter. As many of these variables are likely to be correlated, collinearity might have affected the accuracy of the model, potentially resulting in misleading, erroneous or difficult to interpret conclusions.The aim of this work was: To review all FOT publications in children since 2005 to analyze whether collinearity was considered in the construction of the published prediction equations. Then to compare these prediction equations with our own study. And to analyse, in our study, how collinearity between the explanatory variables might affect the predicted equations if it was not considered in the model. The results showed that none of the ten reviewed studies had stated whether collinearity was checked for. Half of the reports had also included in their equations variables which are physiologically correlated, such as age, weight and height. The predicted resistance varied by up to 28% amongst these studies. And in our study, multicollinearity was identified between the explanatory variables initially considered for the regression model (age, weight and height). Ignoring it would have resulted in inaccuracies in the coefficients of the equation, their signs (positive or negative), their 95% confidence intervals, their significance level and the model goodness of fit. In Conclusion with inaccurately constructed and improperly reported models, understanding the results and reproducing the models for future research might be compromised.

  14. Maxwell's equations, quantum physics and the quantum graviton

    International Nuclear Information System (INIS)

    Gersten, Alexander; Moalem, Amnon

    2011-01-01

    Quantum wave equations for massless particles and arbitrary spin are derived by factorizing the d'Alembertian operator. The procedure is extensively applied to the spin one photon equation which is related to Maxwell's equations via the proportionality of the photon wavefunction Ψ to the sum E + iB of the electric and magnetic fields. Thus Maxwell's equations can be considered as the first quantized one-photon equation. The photon wave equation is written in two forms, one with additional explicit subsidiary conditions and second with the subsidiary conditions implicitly included in the main equation. The second equation was obtained by factorizing the d'Alembertian with 4×4 matrix representation of 'relativistic quaternions'. Furthermore, scalar Lagrangian formalism, consistent with quantization requirements is developed using derived conserved current of probability and normalization condition for the wavefunction. Lessons learned from the derivation of the photon equation are used in the derivation of the spin two quantum equation, which we call the quantum graviton. Quantum wave equation with implicit subsidiary conditions, which factorizes the d'Alembertian with 8×8 matrix representation of relativistic quaternions, is derived. Scalar Lagrangian is formulated and conserved probability current and wavefunction normalization are found, both consistent with the definitions of quantum operators and their expectation values. We are showing that the derived equations are the first quantized equations of the photon and the graviton.

  15. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  16. How to derive biological information from the value of the normalization constant in allometric equations.

    Science.gov (United States)

    Kaitaniemi, Pekka

    2008-04-09

    Allometric equations are widely used in many branches of biological science. The potential information content of the normalization constant b in allometric equations of the form Y = bX(a) has, however, remained largely neglected. To demonstrate the potential for utilizing this information, I generated a large number of artificial datasets that resembled those that are frequently encountered in biological studies, i.e., relatively small samples including measurement error or uncontrolled variation. The value of X was allowed to vary randomly within the limits describing different data ranges, and a was set to a fixed theoretical value. The constant b was set to a range of values describing the effect of a continuous environmental variable. In addition, a normally distributed random error was added to the values of both X and Y. Two different approaches were then used to model the data. The traditional approach estimated both a and b using a regression model, whereas an alternative approach set the exponent a at its theoretical value and only estimated the value of b. Both approaches produced virtually the same model fit with less than 0.3% difference in the coefficient of determination. Only the alternative approach was able to precisely reproduce the effect of the environmental variable, which was largely lost among noise variation when using the traditional approach. The results show how the value of b can be used as a source of valuable biological information if an appropriate regression model is selected.

  17. Quantum theory as a description of robust experiments: Derivation of the Pauli equation

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, Hans [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Katsnelson, Mikhail I.; Donker, Hylke C. [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525AJ Nijmegen (Netherlands); Michielsen, Kristel, E-mail: k.michielsen@fz-juelich.de [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); RWTH Aachen University, D-52056 Aachen (Germany)

    2015-08-15

    It is shown that the Pauli equation and the concept of spin naturally emerge from logical inference applied to experiments on a charged particle under the conditions that (i) space is homogeneous (ii) the observed events are logically independent, and (iii) the observed frequency distributions are robust with respect to small changes in the conditions under which the experiment is carried out. The derivation does not take recourse to concepts of quantum theory and is based on the same principles which have already been shown to lead to e.g. the Schrödinger equation and the probability distributions of pairs of particles in the singlet or triplet state. Application to Stern–Gerlach experiments with chargeless, magnetic particles, provides additional support for the thesis that quantum theory follows from logical inference applied to a well-defined class of experiments. - Highlights: • The Pauli equation is obtained through logical inference applied to robust experiments on a charged particle. • The concept of spin appears as an inference resulting from the treatment of two-valued data. • The same reasoning yields the quantum theoretical description of neutral magnetic particles. • Logical inference provides a framework to establish a bridge between objective knowledge gathered through experiments and their description in terms of concepts.

  18. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    Science.gov (United States)

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  19. Derivation of Z-R equation using Mie approach for a 77 GHz radar

    Science.gov (United States)

    Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni

    2017-04-01

    The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A

  20. Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory kernel

    Science.gov (United States)

    Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-12-01

    Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.

  1. Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation

    OpenAIRE

    Li, Zhiyuan; Yamamoto, Masahiro

    2014-01-01

    This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.

  2. Manhattan equation for the operational amplifier

    OpenAIRE

    Mishonov, Todor M.; Danchev, Victor I.; Petkov, Emil G.; Gourev, Vassil N.; Dimitrova, Iglika M.; Varonov, Albert M.

    2018-01-01

    A differential equation relating the voltage at the output of an operational amplifier $U_0$ and the difference between the input voltages ($U_{+}$ and $U_{-}$) has been derived. The crossover frequency $f_0$ is a parameter in this operational amplifier master equation. The formulas derived as a consequence of this equation find applications in thousands of specifications for electronic devices but as far as we know, the equation has never been published. Actually, the master equation of oper...

  3. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Pyeon, Cheol Ho [Kyoto University, Osaka (Japan)

    2015-10-15

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r{sub g}, E{sub g}, t{sub g}) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the

  4. When Deriving the Spatial QRS-T Angle from the 12-lead ECG, which Transform is More Frank: Regression or Inverse Dower?

    Science.gov (United States)

    Schlegel, Todd T.; Cortez, Daniel

    2010-01-01

    Our primary objective was to ascertain which commonly used 12-to-Frank-lead transformation yields spatial QRS-T angle values closest to those obtained from simultaneously collected true Frank-lead recordings. Simultaneous 12-lead and Frank XYZ-lead recordings were analyzed for 100 post-myocardial infarction patients and 50 controls. Relative agreement, with true Frank-lead results, of 12-to-Frank-lead transformed results for the spatial QRS-T angle using Kors regression versus inverse Dower was assessed via ANOVA, Lin s concordance and Bland-Altman plots. Spatial QRS-T angles from the true Frank leads were not significantly different than those derived from the Kors regression-related transformation but were significantly smaller than those derived from the inverse Dower-related transformation (P less than 0.001). Independent of method, spatial mean QRS-T angles were also always significantly larger than spatial maximum (peaks) QRS-T angles. Spatial QRS-T angles are best approximated by regression-related transforms. Spatial mean and spatial peaks QRS-T angles should also not be used interchangeably.

  5. Some New Integrable Equations from the Self-Dual Yang-Mills Equations

    International Nuclear Information System (INIS)

    Ivanova, T.A.; Popov, A.D.

    1994-01-01

    Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs

  6. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations

    International Nuclear Information System (INIS)

    Lu, Bin

    2012-01-01

    In this Letter, the fractional derivatives in the sense of modified Riemann–Liouville derivative and the Bäcklund transformation of fractional Riccati equation are employed for constructing the exact solutions of nonlinear fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations. -- Highlights: ► Backlund transformation of fractional Riccati equation is presented. ► A new method for solving nonlinear fractional differential equations is proposed. ► Three important fractional differential equations are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained.

  7. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  8. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    Science.gov (United States)

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  9. General Nature of Multicollinearity in Multiple Regression Analysis.

    Science.gov (United States)

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  10. A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Waleed M. Abd-Elhameed

    2016-09-01

    Full Text Available Herein, two numerical algorithms for solving some linear and nonlinear fractional-order differential equations are presented and analyzed. For this purpose, a novel operational matrix of fractional-order derivatives of Fibonacci polynomials was constructed and employed along with the application of the tau and collocation spectral methods. The convergence and error analysis of the suggested Fibonacci expansion were carefully investigated. Some numerical examples with comparisons are presented to ensure the efficiency, applicability and high accuracy of the proposed algorithms. Two accurate semi-analytic polynomial solutions for linear and nonlinear fractional differential equations are the result.

  11. Applying additive logistic regression to data derived from sensors monitoring behavioral and physiological characteristics of dairy cows to detect lameness

    NARCIS (Netherlands)

    Kamphuis, C.; Frank, E.; Burke, J.; Verkerk, G.A.; Jago, J.

    2013-01-01

    The hypothesis was that sensors currently available on farm that monitor behavioral and physiological characteristics have potential for the detection of lameness in dairy cows. This was tested by applying additive logistic regression to variables derived from sensor data. Data were collected

  12. The calculated reference value of the tubular extraction rate in infants and children. An attempt to use a new regression equation

    International Nuclear Information System (INIS)

    Watanabe, Nami; Sugai Yukio; Komatani, Akio; Yamaguchi, Koichi; Takahashi, Kazuei

    1999-01-01

    This study was designed to investigate the empirical tubular extraction rate (TER) of the normal renal function in childhood and then propose a new equation to obtain TER theoretically. The empirical TER was calculated using Russell's method for determination of single-sample plasma clearance and 99m Tc-MAG 3 in 40 patients with renal disease younger than 10 years of age who were classified as having normal renal function using diagnostic criteria defined by the Paediatric Task Group of EANM. First, we investigated the relationships of the empirical value of absolute TER to age, body weight, body surface area (BSA) and distribution volume. Next we investigated the relationships of the empirical value of BSA corrected TER to age, body weight, BSA and distribution volume. Linear relationship was indicated between the absolute TER and each body dimensional factors, especially regarding to BSA, its correlation coefficient was 0.90 (p value). The BSA-corrected TER showed a logarithmic relationship with BSA, but linear regression did not show any significant correlation. Therefore, it was thought that the normal value of TER could be calculated theoretically using the body surface area, and here we proposed the following linear regression equation; Theoretical TER (ml/min/1.73 m 2 )=(-39.8+257.2 x BSA)/BSA/1.73. The theoretical TER could be one of the reference values of the renal function in the period of the renal maturation. (author)

  13. Derivation and solution of a time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter

    International Nuclear Information System (INIS)

    Esrick, M.A.

    1981-01-01

    A time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter is derived from the Gor'kov equations. Three types of traveling wave solutions of the equation are discussed. The phases and amplitudes of these solutions propagate at different speeds. The first type of solution has an amplitude that propagates as a soliton and it is suggested that this solution might correspond to the recently observed propagating collective modes of the order parameter. The amplitude of the second type of solution propagates as a periodic disturbance in space and time. It is suggested that this type of solution might explain the recently observed multiple values of the superconductor energy gap as well as the spatially inhomogenous superconducting state. The third type of solution, which is of a more general character, might provide some insight into non-periodic, inhomogeneous states occuring in superconductors. It is also proposed that quasiparticle injection and microwave irradiation might generate soliton-like disturbances in superconductors

  14. How to obtain the covariant form of Maxwell's equations from the continuity equation

    Energy Technology Data Exchange (ETDEWEB)

    Heras, Jose A [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, 02200, Mexico D. F. (Mexico); Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prolongacion Paseo de la Reforma 880, Mexico D. F. 01210 (Mexico)

    2009-07-15

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  15. Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results on their Fokker-Planck equations

    International Nuclear Information System (INIS)

    Jumarie, Guy

    2004-01-01

    There are presently two different models of fractional Brownian motions available in the literature: the Riemann-Liouville fractional derivative of white noise on the one hand, and the complex-valued Brownian motion of order n defined by using a random walk in the complex plane, on the other hand. The paper provides a comparison between these two approaches, and in addition, takes this opportunity to contribute some complements. These two models are more or less equivalent on the theoretical standpoint for fractional order between 0 and 1/2, but their practical significances are quite different. Otherwise, for order larger than 1/2, the fractional derivative model has no counterpart in the complex plane. These differences are illustrated by an example drawn from mathematical finance. Taylor expansion of fractional order provides the expression of fractional difference in terms of finite difference, and this allows us to improve the derivation of Fokker-Planck equation and Kramers-Moyal expansion, and to get more insight in their relation with stochastic differential equations of fractional order. In the case of multi-fractal systems, the Fokker-Planck equation can be solved by using path integrals, and the fractional dynamic equations of the state moments of the stochastic system can be easily obtained. By combining fractional derivative and complex white noise of order n, one obtains a family of complex-valued fractional Brownian motions which exhibits long-range dependence. The conclusion outlines suggestions for further research, mainly regarding Lorentz transformation of fractional noises

  16. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  17. On the Mo-Papas equation

    Science.gov (United States)

    Aguirregabiria, J. M.; Chamorro, A.; Valle, M. A.

    1982-05-01

    A new heuristic derivation of the Mo-Papas equation for charged particles is given. It is shown that this equation cannot be derived for a point particle by closely following Dirac's classical treatment of the problem. The Mo-Papas theory and the Bonnor-Rowe-Marx variable mass dynamics are not compatible.

  18. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    Science.gov (United States)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  19. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    Science.gov (United States)

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical

  20. Discretization of convection-diffusion equations with finite-difference scheme derived from simplified analytical solutions

    International Nuclear Information System (INIS)

    Kriventsev, Vladimir

    2000-09-01

    Most of thermal hydraulic processes in nuclear engineering can be described by general convection-diffusion equations that are often can be simulated numerically with finite-difference method (FDM). An effective scheme for finite-difference discretization of such equations is presented in this report. The derivation of this scheme is based on analytical solutions of a simplified one-dimensional equation written for every control volume of the finite-difference mesh. These analytical solutions are constructed using linearized representations of both diffusion coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it possible to significantly improve the accuracy of numerical method even using mesh systems with fewer grid nodes that, in turn, allows to speed-up numerical simulation. EFD has been carefully verified on the series of sample problems for which either analytical or very precise numerical solutions can be found. EFD has been compared with other popular FDM schemes including novel, accurate (as well as sophisticated) methods. Among the methods compared were well-known central difference scheme, upwind scheme, exponential differencing and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the the quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (LOAD) scheme of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the latest LENS discretization of Sakai have been compared. Detailed results of this comparison are given in this report. These tests have shown a high efficiency of the EFD scheme. For most of sample problems considered EFD has demonstrated the numerical error that appeared to be in orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has predicted numerical solution with the same given numerical error but using much fewer grid nodes. In this report, the detailed

  1. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  2. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    Science.gov (United States)

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  3. Derivation of the Crick-Wyman equation for allosteric proteins defining the difference between the number of binding sites and the Hill coefficient.

    Science.gov (United States)

    Poitevin, Frédéric; Edelstein, Stuart J

    2013-05-13

    In response to a 100-word footnote in the 1965 article by Monod, Wyman, and Changeux, a detailed manuscript signed by Francis Crick and Jeffries Wyman with 6000 words and 30 equations entitled "A Footnote on Allostery" circulated in 1965 among a limited group of scientists interested in allosteric interactions. This interesting and provocative document is published in this special issue for the first time. An intriguing equation in their text relates the difference between n (the number of ligand binding sites) and n' (the Hill coefficient) to the ratio of the saturation functions Y¯, for oligomers with n-1 and n binding sites. A compact derivation of this equation was not provided by Crick and Wyman, but one is presented here based on a definition of Y¯ involving the binding polynomial and its first derivative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. There is No Quantum Regression Theorem

    International Nuclear Information System (INIS)

    Ford, G.W.; OConnell, R.F.

    1996-01-01

    The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society

  5. Derivation of basic equations for rigorous dynamic simulation of cryogenic distillation column for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    The basic equations are derived for rigorous dynamic simulation of cryogenic distillation columns for hydrogen isotope separation. The model accounts for such factors as differences in latent heat of vaporization among the six isotopic species of molecular hydrogen, decay heat of tritium, heat transfer through the column wall and nonideality of the solutions. Provision is also made for simulation of columns with multiple feeds and multiple sidestreams. (author)

  6. Loop equations in the theory of gravitation

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Voronov, N.A.

    1981-01-01

    Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru

  7. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  8. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  9. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  10. Covariant Conformal Decomposition of Einstein Equations

    Science.gov (United States)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  11. Calculation of Quantitative Structure-Activity Relationship Descriptors of Artemisinin Derivatives

    Directory of Open Access Journals (Sweden)

    Jambalsuren Bayarmaa

    2008-06-01

    Full Text Available Quantitative structure-activity relationships are based on the construction of predictive models using a set of known molecules and associated activity value. This accurate methodology, developed with adequate mathematical and computational tools, leads to a faster, cheaper and more comprehensive design of new products, reducing the experimental synthesis and testing on animals. Preparation of the QSAR models of artemisinin derivatives was carried out by the genetic function algorithm (GFA method for 91 molecules. The results show some relationships to the observed antimalarial activities of the artemisinin derivatives. The most statistically signi fi cant regression equation obtained from the fi nal GFA relates to two molecular descriptors.

  12. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  13. The Bland-Altman Method Should Not Be Used in Regression Cross-Validation Studies

    Science.gov (United States)

    O'Connor, Daniel P.; Mahar, Matthew T.; Laughlin, Mitzi S.; Jackson, Andrew S.

    2011-01-01

    The purpose of this study was to demonstrate the bias in the Bland-Altman (BA) limits of agreement method when it is used to validate regression models. Data from 1,158 men were used to develop three regression equations to estimate maximum oxygen uptake (R[superscript 2] = 0.40, 0.61, and 0.82, respectively). The equations were evaluated in a…

  14. Modulation equations for spatially periodic systems: derivation and solutions

    NARCIS (Netherlands)

    Schielen, R.; Doelman, A.

    1996-01-01

    We study a class of partial dierential equations in one spatial dimension, which can be seen as model equations for the analysis of pattern formation in physical systems dened on unbounded, weakly oscillating domains. We perform a linear and weakly nonlinear stability analysis for solutions that

  15. Comparison of ν-support vector regression and logistic equation for ...

    African Journals Online (AJOL)

    Due to the complexity and high non-linearity of bioprocess, most simple mathematical models fail to describe the exact behavior of biochemistry systems. As a novel type of learning method, support vector regression (SVR) owns the powerful capability to characterize problems via small sample, nonlinearity, high dimension ...

  16. Field Equations for Lovelock Gravity: An Alternative Route

    Directory of Open Access Journals (Sweden)

    Sumanta Chakraborty

    2018-01-01

    Full Text Available We present an alternative derivation of the gravitational field equations for Lovelock gravity starting from Newton’s law, which is closer in spirit to the thermodynamic description of gravity. As a warm up exercise, we have explicitly demonstrated that, projecting the Riemann curvature tensor appropriately and taking a cue from Poisson’s equation, Einstein’s equations immediately follow. The above derivation naturally generalizes to Lovelock gravity theories where an appropriate curvature tensor satisfying the symmetries as well as the Bianchi derivative properties of the Riemann tensor has to be used. Interestingly, in the above derivation, the thermodynamic route to gravitational field equations, suited for null hypersurfaces, emerges quiet naturally.

  17. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  18. Equations for the stochastic cumulative multiplying chain

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, J D [Cambridge Univ. (UK). Dept. of Engineering

    1980-01-01

    The forward and backward equations for the conditional probability of the neutron multiplying chain are derived in a new generalization accounting for the chain length and admitting time dependent properties. These Kolmogorov equations form the basis of a variational and hence complete description of the 'lumped' multiplying system. The equations reduce to the marginal distribution, summed over all chain lengths, and to the simpler equations previously derived for that problem. The method of derivation, direct and in the probability space with the minimum of mathematical manipulations, is perhaps the chief attraction: the equations are also displayed in conventional generating function form. As such, they appear to apply to number of problems in areas of social anthropology, polymer chemistry, genetics and cell biology as well as neutron reactor theory and radiation damage.

  19. Equations for the stochastic cumulative multiplying chain

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1980-01-01

    The forward and backward equations for the conditional probability of the neutron multiplying chain are derived in a new generalization accounting for the chain length and admitting time dependent properties. These Kolmogorov equations form the basis of a variational and hence complete description of the 'lumped' multiplying system. The equations reduce to the marginal distribution, summed over all chain lengths, and to the simpler equations previously derived for that problem. The method of derivation, direct and in the probability space with the minimum of mathematical manipulations, is perhaps the chief attraction: the equations are also displayed in conventional generating function form. As such, they appear to apply to number of problems in areas of social anthropology, polymer chemistry, genetics and cell biology as well as neutron reactor theory and radiation damage. (author)

  20. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  1. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  2. Quantum-statistical kinetic equations

    International Nuclear Information System (INIS)

    Loss, D.; Schoeller, H.

    1989-01-01

    Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived

  3. Exact solutions for modified Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Sarma, Jnanjyoti

    2009-01-01

    Using the simple wave or traveling wave solution technique, many different types of solutions are derived for modified Korteweg-de Vries (KdV) equation. The solutions are obtained from the set of nonlinear algebraic equations, which can be derived from the modified Korteweg-de Vries (KdV) equation by using the hyperbolic transformation method. The method can be applicable for similar nonlinear wave equations.

  4. Didactic derivation of the special theory of relativity from the Klein–Gordon equation

    International Nuclear Information System (INIS)

    Arodź, H

    2014-01-01

    We present a didactic derivation of the special theory of relativity in which Lorentz transformations are ‘discovered’ as symmetry transformations of the Klein–Gordon equation. The interpretation of Lorentz boosts as transformations to moving inertial reference frames is not assumed at the start, but it naturally appears at a later stage. The relative velocity v of two inertial reference frames is defined in terms of the elements of the pertinent Lorentz matrix, and the bound |v|< c is presented as a simple theorem that follows from the structure of the Lorentz group. The polar decomposition of Lorentz matrices is used to explain noncommutativity and nonassociativity of the relativistic composition (‘addition’) of velocities. (paper)

  5. Fractional hydrodynamic equations for fractal media

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2005-01-01

    We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered

  6. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  7. Second order guiding-center Vlasov–Maxwell equations

    DEFF Research Database (Denmark)

    Madsen, Jens

    2010-01-01

    Second order gyrogauge invariant guiding-center coordinates with strong E×B-flow are derived using the Lie transformation method. The corresponding Poisson bracket structure and equations of motion are obtained. From a variational principle the explicit Vlasov–Maxwell equations are derived...

  8. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  9. Vector regression introduced

    Directory of Open Access Journals (Sweden)

    Mok Tik

    2014-06-01

    Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

  10. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Directory of Open Access Journals (Sweden)

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  11. Graphical analyses of connected-kernel scattering equations

    International Nuclear Information System (INIS)

    Picklesimer, A.

    1983-01-01

    Simple graphical techniques are employed to obtain a new (simultaneous) derivation of a large class of connected-kernel scattering equations. This class includes the Rosenberg, Bencze-Redish-Sloan, and connected-kernel multiple scattering equations as well as a host of generalizations of these and other equations. The basic result is the application of graphical methods to the derivation of interaction-set equations. This yields a new, simplified form for some members of the class and elucidates the general structural features of the entire class

  12. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  13. A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations

    International Nuclear Information System (INIS)

    Feng Qing-Hua

    2014-01-01

    In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained. (general)

  14. Solving (2 + 1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method

    International Nuclear Information System (INIS)

    Ka-Lin, Su; Yuan-Xi, Xie

    2010-01-01

    By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. (general)

  15. Semianalytic Solution of Space-Time Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Elsaid

    2016-01-01

    Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.

  16. Generalized Fokker-Planck equations for coloured, multiplicative Gaussian noise

    International Nuclear Information System (INIS)

    Cetto, A.M.; Pena, L. de la; Velasco, R.M.

    1984-01-01

    With the help of Novikov's theorem, it is possible to derive a master equation for a coloured, multiplicative, Gaussian random process; the coefficients of this master equation satisfy a complicated auxiliary integro-differential equation. For small values of the Kubo number, the master equation reduces to an approximate generalized Fokker-Planck equation. The diffusion coefficient is explicitly written in terms of correlation functions. Finally, a straightforward and elementary second order perturbative treatment is proposed to derive the same approximate Fokker-Planck equation. (author)

  17. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  18. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  19. Stellar atmospheric parameter estimation using Gaussian process regression

    Science.gov (United States)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  20. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  1. Regression relation for pure quantum states and its implications for efficient computing.

    Science.gov (United States)

    Elsayed, Tarek A; Fine, Boris V

    2013-02-15

    We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.

  2. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  3. Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation

    International Nuclear Information System (INIS)

    Angilella, G.G.N.; Pucci, R.; March, N.H.

    2004-01-01

    We give here the derivation of a Gross-Pitaevskii-type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91, 030401 (2003)]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided

  4. dimensional Nizhnik–Novikov–Veselov equations

    Indian Academy of Sciences (India)

    2017-03-22

    Mar 22, 2017 ... order differential equations with modified Riemann–Liouville derivatives into integer-order differential equations, ... tered in a variety of scientific and engineering fields ... devoted to the advanced calculus can be easily applied.

  5. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    Science.gov (United States)

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  6. On Solution of a Fractional Diffusion Equation by Homotopy Transform Method

    International Nuclear Information System (INIS)

    Salah, A.; Hassan, S.S.A.

    2012-01-01

    The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.

  7. Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams

    Science.gov (United States)

    Larson, Steven J.; Crawford, Charles G.; Gilliom, Robert J.

    2004-01-01

    Regression models were developed for predicting atrazine concentration distributions in rivers and streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were developed for two specific periods of the year--the high season, when the highest atrazine concentrations are expected in streams, and the low season, when concentrations are expected to be low or undetectable. Various nationally available watershed parameters were used as explanatory variables, including atrazine use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and agricultural management practices. Concentration data from 112 river and stream stations sampled as part of the U.S. Geological Survey's National Water-Quality Assessment and National Stream Quality Accounting Network Programs were used for computing the concentration percentiles and mean concentrations used as the response variables in regression models. Tobit regression methods, using maximum likelihood estimation, were used for developing the models because some of the concentration values used for the response variables were censored (reported as less than a detection threshold). Data from 26 stations not used for model development were used for model validation. The annual models accounted for 62 to 77 percent of the variability in concentrations among the 112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed divided by watershed area) was the most important explanatory variable in all models, but additional watershed parameters significantly increased the amount of variability explained by the models. Predicted concentrations from all 10 models were within a factor of 10 of the observed concentrations at most

  8. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  9. Dimensional analysis to transform the differential equations in partial derivates in the theory of heat transmission into ordinary ones

    International Nuclear Information System (INIS)

    Diaz Sanchidrian, C.

    1989-01-01

    The present paper applies dimensional analysis with spatial discrimination to transform the differential equations in partial derivatives developed in the theory of heat transmission into ordinary ones. The effectivity of the method is comparable to that methods based in transformations of uni or multiparametric groups, with the advantage of being more direct and simple. (Author)

  10. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  11. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  12. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  13. Quantile driven identification of structural derivatives

    OpenAIRE

    Andrew Chesher

    2001-01-01

    Conditions are derived under which there is local nonparametric identification of derivatives of structural equations in nonlinear triangular simultaneous equations systems. The attack on this problem is via conditional quantile functions and exploits local quantile independence conditions. The identification conditions include local analogues of the order and rank conditions familiar in the analysis of linear simultaneous equations models. The objects whose identification is sought are deriv...

  14. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  15. The Collinearity Free and Bias Reduced Regression Estimation Project: The Theory of Normalization Ridge Regression. Report No. 2.

    Science.gov (United States)

    Bulcock, J. W.; And Others

    Multicollinearity refers to the presence of highly intercorrelated independent variables in structural equation models, that is, models estimated by using techniques such as least squares regression and maximum likelihood. There is a problem of multicollinearity in both the natural and social sciences where theory formulation and estimation is in…

  16. Calibration methods for the Hargreaves-Samani equation

    Directory of Open Access Journals (Sweden)

    Lucas Borges Ferreira

    Full Text Available ABSTRACT The estimation of the reference evapotranspiration is an important factor for hydrological studies, design and management of irrigation systems, among others. The Penman Monteith equation presents high precision and accuracy in the estimation of this variable. However, its use becomes limited due to the large number of required meteorological data. In this context, the Hargreaves-Samani equation could be used as alternative, although, for a better performance a local calibration is required. Thus, the aim was to compare the calibration process of the Hargreaves-Samani equation by linear regression, by adjustment of the coefficients (A and B and exponent (C of the equation and by combinations of the two previous alternatives. Daily data from 6 weather stations, located in the state of Minas Gerais, from the period 1997 to 2016 were used. The calibration of the Hargreaves-Samani equation was performed in five ways: calibration by linear regression, adjustment of parameter “A”, adjustment of parameters “A” and “C”, adjustment of parameters “A”, “B” and “C” and adjustment of parameters “A”, “B” and “C” followed by calibration by linear regression. The performances of the models were evaluated based on the statistical indicators mean absolute error, mean bias error, Willmott’s index of agreement, correlation coefficient and performance index. All the studied methodologies promoted better estimations of reference evapotranspiration. The simultaneous adjustment of the empirical parameters “A”, “B” and “C” was the best alternative for calibration of the Hargreaves-Samani equation.

  17. Approximate analytical solution of diffusion equation with fractional time derivative using optimal homotopy analysis method

    Directory of Open Access Journals (Sweden)

    S. Das

    2013-12-01

    Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.

  18. INFLUENCE OF THE HIGHER ORDER DERIVATIVES ON THE PLANET PERIHELION PRECESSION IN THE EINSTEIN FIELD EQUATIONS FOR VACUUM CONDITION

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2011-04-01

    Full Text Available This paper studies the effect of higher order derivative tensor in the Einstein field equations for vacuum condition on the planet perihelion precession. This tensor was initially proposed as the space-time curvature tensor by Deser and Tekin on discussions about the energy effects caused by this tensor. However, they include this tensor to Einstein field equations as a new model in general relativity theory. This is very interesting since there are some questions in cosmology and astrophysics that have no answers. Thus, they hoped this model could solve those problems by finding analytical or perturbative solution and interpreting it. In this case, the perturbative solution was used to find the Schwarzschild solution and it was also applied to consider the planetary motion in the solar gravitational field. Furthermore, it was proven that the tensor is divergence-free in order to keep the Einstein field equations remain valid.

  19. Painleve test and discrete Boltzmann equations

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  20. Bayesian logistic regression analysis

    NARCIS (Netherlands)

    Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

    2012-01-01

    In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

  1. A comparison of the performances of an artificial neural network and a regression model for GFR estimation.

    Science.gov (United States)

    Liu, Xun; Li, Ning-shan; Lv, Lin-sheng; Huang, Jian-hua; Tang, Hua; Chen, Jin-xia; Ma, Hui-juan; Wu, Xiao-ming; Lou, Tan-qi

    2013-12-01

    Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. A study of diagnostic test accuracy. 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n=581), internal validation cohort (n=278), and external validation cohort (n=371). Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Measured GFR (mGFR). GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. In the external validation cohort, mean mGFR was 49±27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and -0.5 mL/min/1.73 m2, respectively (P30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (Psource of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Derivation of Stochastic Equations for Computational Uncertainties ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investment, Harvard Business Review, 42, No.1, p. 95-106. Freedman, R., Ausburn, B.E. (1985). “The Waxman-. Smits Equation for Shaly Sands: Simple Methods of Solution, Error Analysis'': The Log Analyst,. March-April, pp11-24. Hook, J. R, (1983). “The Precision of Core Analysis. Data and Some Implication for Reservoir.

  3. Green's function method for perturbed Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Cai Hao; Huang Nianning

    2003-01-01

    The x-derivatives of squared Jost solution are the eigenfunctions with the zero eigenvalue of the linearized equation derived from the perturbed Korteweg-de Vries equation. A method similar to Green's function formalism is introduced to show the completeness of the squared Jost solutions in multi-soliton cases. It is not related to Lax equations directly, and thus it is beneficial to deal with the nonlinear equations with complicated Lax pair

  4. Brownian motion of classical spins: Anomalous dissipation and generalized Langevin equation

    Science.gov (United States)

    Bandyopadhyay, Malay; Jayannavar, A. M.

    2017-10-01

    In this work, we derive the Langevin equation (LE) of a classical spin interacting with a heat bath through momentum variables, starting from the fully dynamical Hamiltonian description. The derived LE with anomalous dissipation is analyzed in detail. The obtained LE is non-Markovian with multiplicative noise terms. The concomitant dissipative terms obey the fluctuation-dissipation theorem. The Markovian limit correctly produces the Kubo and Hashitsume equation. The perturbative treatment of our equations produces the Landau-Lifshitz equation and the Seshadri-Lindenberg equation. Then we derive the Fokker-Planck equation corresponding to LE and the concept of equilibrium probability distribution is analyzed.

  5. Gauge-invariant flow equation

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  6. On integrability of a noncommutative q-difference two-dimensional Toda lattice equation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.X., E-mail: trisha_li2001@163.com [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Nimmo, J.J.C., E-mail: jonathan.nimmo@glasgow.ac.uk [School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW (United Kingdom); Shen, Shoufeng, E-mail: mathssf@zjut.edu.cn [Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023 (China)

    2015-12-18

    In our previous work (C.X. Li and J.J.C. Nimmo, 2009 [18]), we presented a generalized type of Darboux transformations in terms of a twisted derivation in a unified form. The twisted derivation includes ordinary derivatives, forward difference operators, super derivatives and q-difference operators as its special cases. This result not only enables one to recover the known Darboux transformations and quasideterminant solutions to the noncommutative KP equation, the non-Abelian two-dimensional Toda lattice equation, the non-Abelian Hirota–Miwa equation and the super KdV equation, but also inspires us to investigate quasideterminant solutions to q-difference soliton equations. In this paper, we first construct the bilinear Bäcklund transformations for the known bilinear q-difference two-dimensional Toda lattice equation (q-2DTL) and then derive a Lax pair whose compatibility gives a formally different nonlinear q-2DTL equation and finally obtain its quasideterminant solutions by iterating its Darboux transformations. - Highlights: • Examples are given to illustrate the extensive applications of twisted derivations. • Bilinear Bäcklund transformation is constructed for the known q-2DTL equation. • Lax pair is obtained for an equivalent q-2DTL equation. • Quasideterminant solutions are found for the nc q-2DTL equation.

  7. Differential equations extended to superspace

    International Nuclear Information System (INIS)

    Torres, J.; Rosu, H.C.

    2003-01-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  8. Differential equations extended to superspace

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, Leon, Guanajuato (Mexico); Rosu, H.C. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.P. 3-74, Tangamanga, San Luis Potosi (Mexico)

    2003-07-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  9. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  10. Extreme compression behaviour of equations of state

    International Nuclear Information System (INIS)

    Shanker, J.; Dulari, P.; Singh, P.K.

    2009-01-01

    The extreme compression (P→∞) behaviour of various equations of state with K' ∞ >0 yields (P/K) ∞ =1/K' ∞ , an algebraic identity found by Stacey. Here P is the pressure, K the bulk modulus, K ' =dK/dP, and K' ∞ , the value of K ' at P→∞. We use this result to demonstrate further that there exists an algebraic identity also between the higher pressure derivatives of bulk modulus which is satisfied at extreme compression by different types of equations of state such as the Birch-Murnaghan equation, Poirier-Tarantola logarithmic equation, generalized Rydberg equation, Keane's equation and the Stacey reciprocal K-primed equation. The identity has been used to find a relationship between λ ∞ , the third-order Grueneisen parameter at P→∞, and pressure derivatives of bulk modulus with the help of the free-volume formulation without assuming any specific form of equation of state.

  11. Variâncias do ponto crítico de equações de regressão quadrática Variances of the critical point of a quadratic regression equation

    Directory of Open Access Journals (Sweden)

    Ceile Cristina Ferreira Nunes

    2004-04-01

    ítico calculada usando-se a expressão que leva em consideração a covariância entre  e  apresenta resultados mais satisfatórios e que não segue uma distribuição normal, pois apresenta uma distribuição de freqüência com assimetria positiva e formato leptocúrtico.The aim of this paper is determine variances for the analysis of the critical point of a second-degree regression equation in experimental situations with different variances through Monte Carlo simulation. In many theoretical or applied studies, one finds situations involving ratios of random variables and more frequently normal variables. Examples are provided by variables, which appear in economic dose research of nutrients in fertilization experiments, as well as in other problems in which there are interests in the random variable, estimator of the critic point in the regression . Data of five hundred thirty six trials in cotton yield were utilized to study the distribution of the critical point of a quadratic regression equation by adjusting a quadratic model. The parameters were evaluated using a least square method. From the estimations a MATLAB routine was implemented to simulate two sets with five thousands random errors with normal distribution and zero mean, relative to each of the theoretical variances: or = 0.1; 0.5; 1; 5; 10; 15; 20 and 50. The estimation of the variance of the critical point was obtained by three methods: (a usual formula for the variance; (b formula obtained by differentiation of the critical point estimator and (c formula for the computation of the variance of a quotient by taking into consideration the covariance between  and . The results obtained for the  statistic  average  for  the  regression between  e , as well as its respective variances in terms of the several theoretical residual variances ( adopted show that those theoretical values are close to real ones. Moreover, there is a trend of increasing  and  with increase of the theoretical variance. It may

  12. Macroscopic balance equations for two-phase flow models

    International Nuclear Information System (INIS)

    Hughes, E.D.

    1979-01-01

    The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)

  13. Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation

    Science.gov (United States)

    Wang, D.

    2017-12-01

    The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.

  14. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  15. A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations

    International Nuclear Information System (INIS)

    Yan Zhenya

    2005-01-01

    A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer-Chree (PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations

  16. Algorithmic Verification of Linearizability for Ordinary Differential Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-07-19

    For a nonlinear ordinary differential equation solved with respect to the highest order derivative and rational in the other derivatives and in the independent variable, we devise two algorithms to check if the equation can be reduced to a linear one by a point transformation of the dependent and independent variables. The first algorithm is based on a construction of the Lie point symmetry algebra and on the computation of its derived algebra. The second algorithm exploits the differential Thomas decomposition and allows not only to test the linearizability, but also to generate a system of nonlinear partial differential equations that determines the point transformation and the coefficients of the linearized equation. The implementation of both algorithms is discussed and their application is illustrated using several examples.

  17. Discrete Painlevé equations: an integrability paradigm

    International Nuclear Information System (INIS)

    Grammaticos, B; Ramani, A

    2014-01-01

    In this paper we present a review of results on discrete Painlevé equations. We begin with an introduction which serves as a refresher on the continuous Painlevé equations. Next, in the first, main part of the paper, we introduce the discrete Painlevé equations, the various methods for their derivation, and their properties as well as their classification scheme. Along the way we present a brief summary of the two major discrete integrability detectors and of Quispel–Roberts–Thompson mapping, which plays a primordial role in the derivation of discrete Painlevé equations. The second part of the paper is more technical and focuses on the presentation of new results on what are called asymmetric discrete Painlevé equations. (comment)

  18. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    . The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  19. On the Derivation of Highest-Order Compact Finite Difference Schemes for the One- and Two-Dimensional Poisson Equation with Dirichlet Boundary Conditions

    KAUST Repository

    Settle, Sean O.; Douglas, Craig C.; Kim, Imbunm; Sheen, Dongwoo

    2013-01-01

    - and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make

  20. A medium-independent variational macroscopic theory of two-phase porous media – Part I: Derivation of governing equations and stress partitioning laws

    OpenAIRE

    Serpieri , Roberto; Travascio , Francesco

    2016-01-01

    A macroscopic continuum theory of two-phase saturated porous media is derived by a purely variational deduction based on the least Action principle. The proposed theory proceeds from the consideration of a minimal set of kinematic descriptors and keeps a specific focus on the derivation of most general medium-independent governing equations, which have a form independent from the particular constitutive relations and thermodynamic constraints characterizing a specific medium. The kinematics o...

  1. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  2. Prediction Equations for Spirometry for Children from Northern India.

    Science.gov (United States)

    Chhabra, Sunil K; Kumar, Rajeev; Mittal, Vikas

    2016-09-08

    To develop prediction equations for spirometry for children from northern India using current international guidelines for standardization. Re-analysis of cross-sectional data from a single school. 670 normal children (age 6-17 y; 365 boys) of northern Indian parentage. After screening for normal health, we carried out spirometry with recommended quality assurance according to current guidelines. We developed linear and nonlinear prediction equations using multiple regression analysis. We selected the final models on the basis of the highest coefficient of multiple determination (R2) and statistical validity. Spirometry parameters: FVC, FEV1, PEFR, FEF50, FEF75 and FEF25-75. The equations for the main parameters were as follows: Boys, Ln FVC = -1.687+0.016*height +0.022*age; Ln FEV1 = -1.748+0.015*height+0.031*age. Girls, Ln FVC = -9.989 +(2.018*Ln(height)) + (0.324*Ln(age)); Ln FEV1 = -10.055 +(1.990*Ln(height))+(0.358*Ln(age)). Nonlinear regression yielded substantially greater R2 values compared to linear models except for FEF50 for girls. Height and age were found to be the significant explanatory variables for all parameters on multiple regression with weight making no significant contribution. We developed prediction equations for spirometry for children from northern India. Nonlinear equations were superior to linear equations.

  3. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  4. Symmetry properties of fractional diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru

    2009-10-15

    In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.

  5. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    Science.gov (United States)

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    A new Web-based application, titled “Application of Flood Regressions and Climate Change Scenarios To Explore Estimates of Future Peak Flows”, has been developed by the U.S. Geological Survey, in cooperation with the New York State Department of Transportation, that allows a user to apply a set of regression equations to estimate the magnitude of future floods for any stream or river in New York State (exclusive of Long Island) and the Lake Champlain Basin in Vermont. The regression equations that are the basis of the current application were developed in previous investigations by the U.S. Geological Survey (USGS) and are described at the USGS StreamStats Web sites for New York (http://water.usgs.gov/osw/streamstats/new_york.html) and Vermont (http://water.usgs.gov/osw/streamstats/Vermont.html). These regression equations include several fixed landscape metrics that quantify aspects of watershed geomorphology, basin size, and land cover as well as a climate variable—either annual precipitation or annual runoff.

  6. General solution of Bateman equations for nuclear transmutations

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2006-01-01

    The paper concerns the linear chain method of solving Bateman equations for nuclear transmutation in derivation of the general solution for linear chain with repeated transitions and thus elimination of existing numerical problems. In addition, applications of derived equations for transmutation trajectory analysis method is presented

  7. Hamilton's equations for a fluid membrane

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations

  8. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population

    Energy Technology Data Exchange (ETDEWEB)

    Verochana, Karune; Prapayasatok, Sangsom; Janhom, Apirum; Mahasantipiya, Phattaranant May; Korwanich, Narumanas [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2016-03-15

    This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age.

  9. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population

    International Nuclear Information System (INIS)

    Verochana, Karune; Prapayasatok, Sangsom; Janhom, Apirum; Mahasantipiya, Phattaranant May; Korwanich, Narumanas

    2016-01-01

    This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age

  10. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population.

    Science.gov (United States)

    Verochana, Karune; Prapayasatok, Sangsom; Janhom, Apirum; Mahasantipiya, Phattaranant May; Korwanich, Narumanas

    2016-03-01

    This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age.

  11. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data

    NARCIS (Netherlands)

    de Hoogh, Kees; Gulliver, John; Donkelaar, Aaron van; Martin, Randall V; Marshall, Julian D; Bechle, Matthew J; Cesaroni, Giulia; Pradas, Marta Cirach; Dedele, Audrius; Eeftens, Marloes|info:eu-repo/dai/nl/315028300; Forsberg, Bertil; Galassi, Claudia; Heinrich, Joachim; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Korek, Michal; Künzli, Nino; Lindley, Sarah J; Lepeule, Johanna; Meleux, Frederik; de Nazelle, Audrey; Nieuwenhuijsen, Mark; Nystad, Wenche; Raaschou-Nielsen, Ole; Peters, Annette; Peuch, Vincent-Henri; Rouil, Laurence; Udvardy, Orsolya; Slama, Rémy; Stempfelet, Morgane; Stephanou, Euripides G; Tsai, Ming Y; Yli-Tuomi, Tarja; Weinmayr, Gudrun; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Vienneau, Danielle; Hoek, Gerard|info:eu-repo/dai/nl/069553475

    2016-01-01

    Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models,

  12. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  13. The generalized Airy diffusion equation

    Directory of Open Access Journals (Sweden)

    Frank M. Cholewinski

    2003-08-01

    Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.

  14. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  15. Validation of the mortality prediction equation for damage control ...

    African Journals Online (AJOL)

    , preoperative lowest pH and lowest core body temperature to derive an equation for the purpose of predicting mortality in damage control surgery. It was shown to reliably predict death despite damage control surgery. The equation derivation ...

  16. Dynamical TAP equations for non-equilibrium Ising spin glasses

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....

  17. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  18. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  19. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  20. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-05-13

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.

  1. A novel method to solve functional differential equations

    International Nuclear Information System (INIS)

    Tapia, V.

    1990-01-01

    A method to solve differential equations containing the variational operator as the derivation operation is presented. They are called variational differential equations (VDE). The solution to a VDE should be a function containing the derivatives, with respect to the base space coordinates, of the fields up to a generic order s: a s-th-order function. The variational operator doubles the order of the function on which it acts. Therefore, in order to make compatible the orders of the different terms appearing in a VDE, the solution should be a function containing the derivatives of the fields at all orders. But this takes us again back to the functional methods. In order to avoid this, one must restrict the considerations, in the case of second-order VDEs, to the space of s-th-order functions on which the variational operator acts transitively. These functions have been characterized for a one-dimensional base space for the first- and second-order cases. These functions turn out to be polynomial in the highest-order derivatives of the fields with functions of the lower-order derivatives as coefficients. Then VDEs reduce to a system of coupled partial differential equations for the coefficients above mentioned. The importance of the method lies on the fact that the solutions to VDEs are in a one-to-one correspondence with the solutions of functional differential equations. The previous method finds direct applications in quantum field theory, where the Schroedinger equation plays a central role. Since the Schroedinger equation is reduced to a system of coupled partial differential equations, this provides a nonperturbative scheme for quantum field theory. As an example, the massless scalar field is considered

  2. The Laplace transformation of adjoint transport equations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1985-01-01

    A clarification is given of the difference between the equation adjoint to the Laplace-transformed time-dependent transport equation and the Laplace-transformed time-dependent adjoint transport equation. Proper procedures are derived to obtain the Laplace transform of the instantaneous detector response. (author)

  3. The APT model as reduced-rank regression

    NARCIS (Netherlands)

    Bekker, P.A.; Dobbelstein, P.; Wansbeek, T.J.

    Integrating the two steps of an arbitrage pricing theory (APT) model leads to a reduced-rank regression (RRR) model. So the results on RRR can be used to estimate APT models, making estimation very simple. We give a succinct derivation of estimation of RRR, derive the asymptotic variance of RRR

  4. Arithmetic differential equations on $GL_n$, I: differential cocycles

    OpenAIRE

    Buium, Alexandru; Dupuy, Taylor

    2013-01-01

    The theory of differential equations has an arithmetic analogue in which derivatives are replaced by Fermat quotients. One can then ask what is the arithmetic analogue of a linear differential equation. The study of usual linear differential equations is the same as the study of the differential cocycle from $GL_n$ into its Lie algebra given by the logarithmic derivative. However we prove here that there are no such cocycles in the context of arithmetic differential equations. In sequels of t...

  5. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  6. Extraction of dynamical equations from chaotic data

    International Nuclear Information System (INIS)

    Rowlands, G.; Sprott, J.C.

    1991-02-01

    A method is described for extracting from a chaotic time series a system of equations whose solution reproduces the general features of the original data even when these are contaminated with noise. The equations facilitate calculation of fractal dimension, Lyapunov exponents and short-term predictions. The method is applied to data derived from numerical solutions of the Logistic equation, the Henon equations, the Lorenz equations and the Roessler equations. 10 refs., 5 figs

  7. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    Science.gov (United States)

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  8. The Enskog Equation for Confined Elastic Hard Spheres

    Science.gov (United States)

    Maynar, P.; García de Soria, M. I.; Brey, J. Javier

    2018-03-01

    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.

  9. Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium

    Science.gov (United States)

    Yurkin, Maxim A.; Mishchenko, Michael I.

    2018-04-01

    We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.

  10. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    Science.gov (United States)

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  11. The action principle for a system of differential equations

    International Nuclear Information System (INIS)

    Gitman, D M; Kupriyanov, V G

    2007-01-01

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples

  12. The action principle for a system of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo (Brazil); Kupriyanov, V G [Instituto de FIsica, Universidade de Sao Paulo (Brazil)

    2007-08-17

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples.

  13. A rotor optimization using regression analysis

    Science.gov (United States)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  14. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  15. Difference equations theory, applications and advanced topics

    CERN Document Server

    Mickens, Ronald E

    2015-01-01

    THE DIFFERENCE CALCULUS GENESIS OF DIFFERENCE EQUATIONS DEFINITIONS DERIVATION OF DIFFERENCE EQUATIONS EXISTENCE AND UNIQUENESS THEOREM OPERATORS ∆ AND E ELEMENTARY DIFFERENCE OPERATORS FACTORIAL POLYNOMIALS OPERATOR ∆−1 AND THE SUM CALCULUS FIRST-ORDER DIFFERENCE EQUATIONS INTRODUCTION GENERAL LINEAR EQUATION CONTINUED FRACTIONS A GENERAL FIRST-ORDER EQUATION: GEOMETRICAL METHODS A GENERAL FIRST-ORDER EQUATION: EXPANSION TECHNIQUES LINEAR DIFFERENCE EQUATIONSINTRODUCTION LINEARLY INDEPENDENT FUNCTIONS FUNDAMENTAL THEOREMS FOR HOMOGENEOUS EQUATIONSINHOMOGENEOUS EQUATIONS SECOND-ORDER EQUATIONS STURM-LIOUVILLE DIFFERENCE EQUATIONS LINEAR DIFFERENCE EQUATIONS INTRODUCTION HOMOGENEOUS EQUATIONS CONSTRUCTION OF A DIFFERENCE EQUATION HAVING SPECIFIED SOLUTIONS RELATIONSHIP BETWEEN LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS INHOMOGENEOUS EQUATIONS: METHOD OF UNDETERMINED COEFFICIENTS INHOMOGENEOUS EQUATIONS: OPERATOR METHODS z-TRANSFORM METHOD SYSTEMS OF DIFFERENCE EQUATIONS LINEAR PARTIAL DIFFERENCE EQUATI...

  16. Contact Geometry of Hyperbolic Equations of Generic Type

    Directory of Open Access Journals (Sweden)

    Dennis The

    2008-08-01

    Full Text Available We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge-Ampère (class 6-6, Goursat (class 6-7 and generic (class 7-7 hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional generic hyperbolic structures is also given.

  17. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  18. QSAR Modeling of COX -2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method.

    Science.gov (United States)

    Akbari, Somaye; Zebardast, Tannaz; Zarghi, Afshin; Hajimahdi, Zahra

    2017-01-01

    COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R 2 ) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one-out (LOO) cross validation (LOO correlation coefficient (Q 2 ) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.

  19. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Science.gov (United States)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  20. Guiding Center Equations in Toroidal Equilibria

    International Nuclear Information System (INIS)

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  1. An evaluation of regression methods to estimate nutritional condition of canvasbacks and other water birds

    Science.gov (United States)

    Sparling, D.W.; Barzen, J.A.; Lovvorn, J.R.; Serie, J.R.

    1992-01-01

    Regression equations that use mensural data to estimate body condition have been developed for several water birds. These equations often have been based on data that represent different sexes, age classes, or seasons, without being adequately tested for intergroup differences. We used proximate carcass analysis of 538 adult and juvenile canvasbacks (Aythya valisineria ) collected during fall migration, winter, and spring migrations in 1975-76 and 1982-85 to test regression methods for estimating body condition.

  2. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  3. Invariant imbedding equations for linear scattering problems

    International Nuclear Information System (INIS)

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  4. Equations of motion in phase space

    International Nuclear Information System (INIS)

    Broucke, R.

    1979-01-01

    The article gives a general review of methods of constructing equations of motion of a classical dynamical system. The emphasis is however on the linear Lagrangian in phase space and the corresponding form of Pfaff's equations of motion. A detailed examination of the problem of changes of variables in phase space is first given. It is shown that the Linear Lagrangian theory falls very naturally out of the classical quadratic Lagrangian theory; we do this with the use of the well-known Lagrange multiplier method. Another important result is obtained very naturally as a by-product of this analysis. If the most general set of 2n variables (coordinates in phase space) is used, the coefficients of the equations of motion are the Poisson Brackets of these variables. This is therefore the natural way of introducing not only Poisson Brackets in Dynamics formulations but also the associated Lie Algebras and their important properties and consequences. We give then several examples to illustrate the first-order equations of motion and their simplicity in relation to general changes of variables. The first few examples are elementary (the harmonic Oscillator) while the last one concerns the motion of a rigid body about a fixed point. In the next three sections we treat the first-order equations of motion as derived from a Linear differential form, sometimes called Birkhoff's equations. We insist on the generality of the equations and especially on the unity of the space-time concept: the time t and the coordinates are here completely identical variables, without any privilege to t. We give a brief review of Cartan's 2-form and the corresponding equations of motion. As an illustration the standard equations of aircraft flight in a vertical plane are derived from Cartan's exterior differential 2-form. Finally we mention in the last section the differential forms that were proposed by Gallissot for the derivation of equations of motion

  5. Canonical form of Euler-Lagrange equations and gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2003-06-13

    The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.

  6. Solutions of hyperbolic equations with the CIP-BS method

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Koga, James; Yamagiwa, Mitsuru; Yabe, Takashi; Aoki, Takayuki

    2004-01-01

    In this paper, we show that a new numerical method, the Constrained Interpolation Profile - Basis Set (CIP-BS) method, can solve general hyperbolic equations efficiently. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution owing to the constraints from the spatial derivatives of the master equations. Then, introducing scalar products, the linear and nonlinear partial differential equations are uniquely reduced to the ordinary differential equations for values and spatial derivatives at the grid points. The method gives stable, less diffusive, and accurate results. It is successfully applied to the continuity equation, the Burgers equation, the Korteweg-de Vries equation, and one-dimensional shock tube problems. (author)

  7. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  8. Molecular-state close-coupling theory including continuum states. I. Derivation of close-coupled equations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Bandarage, G.

    1988-01-01

    We formulate a close-coupling theory of slow ion-atom collisions based on molecular (adiabatic) electronic states, and including the electronic continuum. The continuum is represented by packet states spanning it locally and constructed explicitly from exact continuum states. Particular attention is given to two fundamental questions: (1) Unbound electrons can escape from the local region spanned by the packet states. We derive close-coupled integral equations correctly including the escape effects; the ''propagator'' generated by these integral equations does not conserve probability within the close-coupled basis. Previous molecular-state formulations including the continuum give no account of escape effects. (2) Nonadiabatic couplings of adiabatic continuum states with the same energy are singular, reflecting the fact that an adiabatic description of continuum behavior is not valid outside a local region. We treat these singularities explicitly and show that an accurate representation of nonadiabatic couplings within the local region spanned by a set of packet states is well behaved. Hence an adiabatic basis-set description can be used to describe close coupling to the continuum in a local ''interaction region,'' provided the effects of escape are included. In principle, the formulation developed here can be extended to a large class of model problems involving many-electron systems and including models for Penning ionization and collisional detachment processes

  9. Kinetic equations with pairing correlations

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-12-01

    The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)

  10. Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space

    International Nuclear Information System (INIS)

    Rodriguez D, R.

    2007-01-01

    In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)

  11. New solutions of Heun's general equation

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2003-01-01

    We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)

  12. Simple functional-differential equations for the bound-state wave-function components

    International Nuclear Information System (INIS)

    Kamuntavicius, G.P.

    1986-01-01

    The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)

  13. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces

    International Nuclear Information System (INIS)

    Zhao Shan; Wei, G.W.

    2004-01-01

    This paper introduces a series of novel hierarchical implicit derivative matching methods to restore the accuracy of high-order finite-difference time-domain (FDTD) schemes of computational electromagnetics (CEM) with material interfaces in one (1D) and two spatial dimensions (2D). By making use of fictitious points, systematic approaches are proposed to locally enforce the physical jump conditions at material interfaces in a preprocessing stage, to arbitrarily high orders of accuracy in principle. While often limited by numerical instability, orders up to 16 and 12 are achieved, respectively, in 1D and 2D. Detailed stability analyses are presented for the present approach to examine the upper limit in constructing embedded FDTD methods. As natural generalizations of the high-order FDTD schemes, the proposed derivative matching methods automatically reduce to the standard FDTD schemes when the material interfaces are absent. An interesting feature of the present approach is that it encompasses a variety of schemes of different orders in a single code. Another feature of the present approach is that it can be robustly implemented with other high accuracy time-domain approaches, such as the multiresolution time-domain method and the local spectral time-domain method, to cope with material interfaces. Numerical experiments on both 1D and 2D problems are carried out to test the convergence, examine the stability, access the efficiency, and explore the limitation of the proposed methods. It is found that operating at their best capacity, the proposed high-order schemes could be over 2000 times more efficient than their fourth-order versions in 2D. In conclusion, the present work indicates that the proposed hierarchical derivative matching methods might lead to practical high-order schemes for numerical solution of time-domain Maxwell's equations with material interfaces

  14. Separate P‐ and SV‐wave equations for VTI media

    KAUST Repository

    Pestana, Reynam C.; Ursin, Bjø rn; Stoffa, Paul L.

    2011-01-01

    In isotropic media we use the scalar acoustic wave equation to perform reverse time migration RTM of the recorded pressure wavefleld data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic VTI media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where ε - δ is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method REM to propagate the waveflelds in time. © 2011 Society of Exploration Geophysicists.

  15. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or

  16. Characterization of vegetative and grain filling periods of winter wheat by stepwise regression procedure. II. Grain filling period

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2011-01-01

    Full Text Available In wheat, rate and duration of dry matter accumulation and remobilization depend on genotype and growing conditions. The objective of this study was to determine the most appropriate polynomial regression of stepwise regression procedure for describing grain filling period in three winter wheat cultivars. The stepwise regression procedure showed that grain filling is a complex biological process and that it is difficult to offer a simple and appropriate polynomial equation that fits the pattern of changes in dry matter accumulation during the grain filling period, i.e., from anthesis to maximum grain weight, in winter wheat. If grain filling is to be represented with a high power polynomial, quartic and quintic equations showed to be most appropriate. In spite of certain disadvantages, a cubic equation of stepwise regression could be used for describing the pattern of winter wheat grain filling.

  17. Relativistic wave equations and compton scattering

    International Nuclear Information System (INIS)

    Sutanto, S.H.; Robson, B.A.

    1998-01-01

    Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula

  18. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.

    Science.gov (United States)

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M

    2017-07-24

    Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.

  19. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  20. Establishment of regression dependences. Linear and nonlinear dependences

    International Nuclear Information System (INIS)

    Onishchenko, A.M.

    1994-01-01

    The main problems of determination of linear and 19 types of nonlinear regression dependences are completely discussed. It is taken into consideration that total dispersions are the sum of measurement dispersions and parameter variation dispersions themselves. Approaches to all dispersions determination are described. It is shown that the least square fit gives inconsistent estimation for industrial objects and processes. The correction methods by taking into account comparable measurement errors for both variable give an opportunity to obtain consistent estimation for the regression equation parameters. The condition of the correction technique application expediency is given. The technique for determination of nonlinear regression dependences taking into account the dependence form and comparable errors of both variables is described. 6 refs., 1 tab

  1. On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave

    Directory of Open Access Journals (Sweden)

    Arbab A. I.

    2009-04-01

    Full Text Available We have formulated the basic laws of electromagnetic theory in quaternion form. The formalism shows that Maxwell equations and Lorentz force are derivable from just one quaternion equation that only requires the Lorentz gauge. We proposed a quaternion form of the continuity equation from which we have derived the ordinary continuity equation. We introduce new transformations that produces a scalar wave and generalize the continuity equation to a set of three equations. These equations imply that both current and density are waves. Moreover, we have shown that the current can not cir- culate around a point emanating from it. Maxwell equations are invariant under these transformations. An electroscalar wave propagating with speed of light is derived upon requiring the invariance of the energy conservation equation under the new transforma- tions. The electroscalar wave function is found to be proportional to the electric field component along the charged particle motion. This scalar wave exists with or without considering the Lorentz gauge. We have shown that the electromagnetic fields travel with speed of light in the presence or absence of free charges.

  2. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  3. The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.

    Science.gov (United States)

    Lehtonen, Jussi

    2018-01-01

    A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.

  4. Numerical solutions of the Vlasov equation

    International Nuclear Information System (INIS)

    Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi

    1985-01-01

    A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)

  5. Brownian motion of spins; generalized spin Langevin equation

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1990-03-01

    We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concomitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature. (author). 16 refs

  6. The differential equation of an arbitrary reflecting surface

    Science.gov (United States)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  7. On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection

    International Nuclear Information System (INIS)

    Rogers, C.; Huang, Yehui

    2012-01-01

    The integrable affinsphären equation originally arose in a geometric context but has an interesting gasdynamic connection. Here, an integrable deformed version of the affinsphären equation is derived in a novel manner via the action of reciprocal transformations on a related anisentropic gasdynamics system. A linear representation for the deformed affinsphären equation is constructed by means of the reciprocal transformations. The latter are then employed to derive a class of exact solutions in parametric form. -- Highlights: ► A deformed affinsphären equation is derived via a reciprocal transformation. ► A linear representation for the deformed affinsphären equation is constructed. ► A class of exact solutions of the deformed affinsphären equation is presented.

  8. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  9. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  10. Derivation of a new kinetic equation. Application to the determination of viscosity coefficients

    International Nuclear Information System (INIS)

    Frey, Jean-Jacques

    1970-01-01

    By introducing a new hypothesis concerning the closure in the B.B.G.K.Y. equation system, an approximate expression for f 12 is obtained. By inserting this expression in the first B.B.G.K.Y. equation, a new kinetic equation results. It is verified that this equation does in fact give the fluid mechanics equations, and new expressions for the shear and expansion viscosity coefficients are obtained. The numerical calculations which have been carried out show that very satisfactory agreement exists with experimental results. (author) [fr

  11. Biostatistics Series Module 6: Correlation and Linear Regression.

    Science.gov (United States)

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  12. Sparse dynamics for partial differential equations.

    Science.gov (United States)

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  13. Langevin equations with multiplicative noise: application to domain growth

    International Nuclear Information System (INIS)

    Sancho, J.M.; Hernandez-Machado, A.; Ramirez-Piscina, L.; Lacasta, A.M.

    1993-01-01

    Langevin equations of Ginzburg-Landau form with multiplicative noise, are proposed to study the effects of fluctuations in domain growth. These equations are derived from a coarse-grained methodology. The Cahn-Hilliard-Cook linear stability analysis predicts some effects in the transitory regime. We also derive numerical algorithms for the computer simulation of these equations. The numerical results corroborate the analytical productions of the linear analysis. We also present simulation results for spinodal decomposition at large times. (author). 28 refs, 2 figs

  14. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  15. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    Science.gov (United States)

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  16. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  17. Einstein-Cartan Theory of Gravitation: Kinematical Parameters and Maxwell Equations

    Science.gov (United States)

    Katkar, L. N.

    2015-03-01

    In the space-time manifold of Einstein-Cartan Theory (ECT) of gravitation, the expressions for the time-like kinematical parameters are derived and the propagation equation for expansion is obtained.It has been observed that when the spin tensor is u-orthogonal the spin of the gravitating matter has no influence on the propagation equation of expansion while it has influence when it is not u-orthogonal. The usual formula for the curl of gradient of a scalar function is not zero in ECT. So is the case with the divergence of the curl of a vector.Their expressions on the space-time manifold of ECT are derived. A new derivative operator d ∗ is introduced to develop the calculus on space-time manifold of ECT. It is obtained by taking the covariant derivative of an associated tensor of a form with respect to an asymmetric connections. We have used this differential operator to obtain the form of the Maxwell's equations in the ECT of gravitation. Cartan's equations of structure are also derived through the new derivative operator. It has been shown that unlike the consequences of exterior derivative in Einstein space-time, the repetition of d ∗ on a form of any degree is not zero.

  18. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations.

    Science.gov (United States)

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2015-12-01

    The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.

  19. A note on modeling of tumor regression for estimation of radiobiological parameters

    International Nuclear Information System (INIS)

    Zhong, Hualiang; Chetty, Indrin

    2014-01-01

    Purpose: Accurate calculation of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on derived parameters. In this study, the authors have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for estimation of radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time T d , half-life of dead cells T r , and cell survival fraction SF D under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models: Chvetsov's model (C-model) and Lim's model (L-model). The C-model and L-model were optimized with the parameter T d fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43 ± 0.08, and the half-life of dead cells averaged over the six patients is 17.5 ± 3.2 days. The parameters T r and SF D optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the T d -fixed C-model, and by 32.1% and 112.3% from those optimized with the T d -fixed L-model, respectively. Conclusions: The Z-model was analytically constructed from the differential equations of cell populations that describe changes in the number of different tumor cells during the course of radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The generated model and its optimization method may help develop high-quality treatment regimens for individual patients

  20. Implicit collinearity effect in linear regression: Application to basal ...

    African Journals Online (AJOL)

    Collinearity of predictor variables is a severe problem in the least square regression analysis. It contributes to the instability of regression coefficients and leads to a wrong prediction accuracy. Despite these problems, studies are conducted with a large number of observed and derived variables linked with a response ...

  1. Energy master equation

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1995-01-01

    energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk model—the energy master equation...... (EME)—is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...

  2. Superstability of Generalized Derivations

    Directory of Open Access Journals (Sweden)

    Ansari-Piri Esmaeil

    2010-01-01

    Full Text Available We investigate the superstability of the functional equation , where and are the mappings on Banach algebra . We have also proved the superstability of generalized derivations associated to the linear functional equation , where .

  3. Ermakov-Pinney equation in scalar field cosmologies

    International Nuclear Information System (INIS)

    Hawkins, Rachael M.; Lidsey, James E.

    2002-01-01

    It is shown that the dynamics of cosmologies sourced by a mixture of perfect fluids and self-interacting scalar fields are described by the nonlinear, Ermakov-Pinney equation. The general solution of this equation can be expressed in terms of particular solutions to a related, linear differential equation. This characteristic is employed to derive exact cosmologies in the inflationary and quintessential scenarios. The relevance of the Ermakov-Pinney equation to the braneworld scenario is discussed

  4. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  5. Robust mislabel logistic regression without modeling mislabel probabilities.

    Science.gov (United States)

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  6. On the singular perturbations for fractional differential equation.

    Science.gov (United States)

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  7. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  8. Influence of regression model and incremental test protocol on the relationship between lactate threshold using the maximal-deviation method and performance in female runners.

    Science.gov (United States)

    Machado, Fabiana Andrade; Nakamura, Fábio Yuzo; Moraes, Solange Marta Franzói De

    2012-01-01

    This study examined the influence of the regression model and initial intensity of an incremental test on the relationship between the lactate threshold estimated by the maximal-deviation method and the endurance performance. Sixteen non-competitive, recreational female runners performed a discontinuous incremental treadmill test. The initial speed was set at 7 km · h⁻¹, and increased every 3 min by 1 km · h⁻¹ with a 30-s rest between the stages used for earlobe capillary blood sample collection. Lactate-speed data were fitted by an exponential-plus-constant and a third-order polynomial equation. The lactate threshold was determined for both regression equations, using all the coordinates, excluding the first and excluding the first and second initial points. Mean speed of a 10-km road race was the performance index (3.04 ± 0.22 m · s⁻¹). The exponentially-derived lactate threshold had a higher correlation (0.98 ≤ r ≤ 0.99) and smaller standard error of estimate (SEE) (0.04 ≤ SEE ≤ 0.05 m · s⁻¹) with performance than the polynomially-derived equivalent (0.83 ≤ r ≤ 0.89; 0.10 ≤ SEE ≤ 0.13 m · s⁻¹). The exponential lactate threshold was greater than the polynomial equivalent (P performance index that is independent of the initial intensity of the incremental test and better than the polynomial equivalent.

  9. Developing a generalized allometric equation for aboveground biomass estimation

    Science.gov (United States)

    Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.

    2015-12-01

    A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how

  10. Regression formulae for predicting hematologic and liver functions ...

    African Journals Online (AJOL)

    African Journal of Biomedical Research ... On the other hand platelet and white blood cell (WBC) counts in these workers correlated positively with years of service [r = 0.342 (P <0.001) and r = 0.130 (P<0.0001) ... The regression equation defining this relationship is: ALP concentration = 33.68 – 0.075 x years of service.

  11. Solution of heat equation with variable coefficient using derive

    CSIR Research Space (South Africa)

    Lebelo, RS

    2008-09-01

    Full Text Available In this paper, the method of approximating solutions of partial differential equations with variable coefficients is studied. This is done by considering heat flow through a one-dimensional model with variable cross-sections. Two cases...

  12. A rigorous derivation of the stationary compressible Reynolds equation via the Navier-Stokes equations

    Czech Academy of Sciences Publication Activity Database

    Ciuperca, I. S.; Feireisl, Eduard; Jai, M.; Petrov, A.

    2018-01-01

    Roč. 28, č. 4 (2018), s. 697-732 ISSN 0218-2025 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible fluids * stationary Navier-Stokes equations * thin films Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.860, year: 2016 https://www.worldscientific.com/doi/abs/10.1142/S0218202518500185

  13. Orbital stability of solitary waves for Kundu equation

    Science.gov (United States)

    Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling

    In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.

  14. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.

    Science.gov (United States)

    Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus

    2014-01-01

    Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.

  15. Structural equations for Killing tensors of order two. II

    International Nuclear Information System (INIS)

    Hauser, I.; Malhiot, R.J.

    1975-01-01

    In a preceding paper, a new form of the structural equations for any Killing tensor of order two have been derived; these equations constitute a system analogous to the Killing vector equations Nabla/sub alpha/ K/sub beta/ = ω/sub alpha beta/ = -ω/sub beta alpha/ and Nabla/sub gamma/ ω/sub alpha beta = R/sub alpha beta gamma delta/ K/sup delta/. The first integrability condition for the Killing tensor structural equations is now derived. The structural equations and the integrability condition have forms which can readily be expressed in terms of a null tetrad to furnish a Killing tensor parallel of the Newman--Penrose equations; this is briefly described. The integrability condition implies the new result, for any given space--time, that the dimension of the set of second-order Killing tensors attains its maximum possible value of 50 only if the space--time is of constant curvature. Potential applications of the structural equations are discussed

  16. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

    International Nuclear Information System (INIS)

    Yang, Xiao-Jun; Srivastava, H.M.; He, Ji-Huan; Baleanu, Dumitru

    2013-01-01

    In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.

  17. Kinetic equations for clean superconductors: Application to the flux flow hall effect

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1994-01-01

    The kinetic equations for clean superconductors (l>>ζ) are derived. expanding the equations for the time dependent Green functions in the quasiclassical parameter, the new contributions are found which contain the derivatives of the distribution functions with respect to the quasiparticle momentum. The transition from the ultra-clean case (no relaxation) to a relaxation-dominated behavior, for which the kinetic equations coincide with the usual quasiclassical approximation, occurs for the relaxation time of the order of ℎE F /Δ 2 . The kinetic equations can be used for various dynamic processes in superconductors including the flux-flow Hall effect. The derived equations, after necessary modifications for the p-wave pairing, are especially suitable for nonstationary problems in the theory of superfluidity of 3 He

  18. Best lung function equations for the very elderly selected by survival analysis

    DEFF Research Database (Denmark)

    Miller, Martin R; Thinggaard, Mikael; Christensen, Kaare

    2014-01-01

    We evaluated which equations best predicted the lung function of a cohort of nonagenarians based on which best accounted for subsequent survival.In 1998, we measured lung function, grip strength and dementia score (Mini Mental State Examination (MMSE)) in a population-based sample of 2262 Danes...... with a hazard ratio for death of 1, 1.16, 1.32 and 1.60 respectively, compared with equations derived with the inclusion of elderly subjects.We conclude that extrapolating from NHANES III equations to predict lung function in nonagenarians gave better survival predictions from spirometry than when employing...... equations derived using very elderly subjects with possible selection bias. These findings can help inform how future lung function equations for the elderly are derived....

  19. Generalized Callan-Symanzik equations and the Renormalization Group

    International Nuclear Information System (INIS)

    MacDowell, S.W.

    1975-01-01

    A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg

  20. On Fractional Order Hybrid Differential Equations

    Directory of Open Access Journals (Sweden)

    Mohamed A. E. Herzallah

    2014-01-01

    Full Text Available We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order 0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.

  1. Selfinteraction force in a theory of gravitation with higher derivatives

    International Nuclear Information System (INIS)

    Jankiewicz, C.

    1981-01-01

    Approximate equations of motion are derived from gravitational field equations with higher derivatives. The approximation takes into account the selfinteraction force. The selfinteraction force coincides with the analogous force resulting from the Einstein field equations. (author)

  2. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  3. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  4. One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift

    Science.gov (United States)

    Shapovalov, A. V.

    2018-04-01

    The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.

  5. Prediction equations for spirometry in four- to six-year-old children.

    Science.gov (United States)

    França, Danielle Corrêa; Camargos, Paulo Augusto Moreira; Jones, Marcus Herbert; Martins, Jocimar Avelar; Vieira, Bruna da Silva Pinto Pinheiro; Colosimo, Enrico Antônio; de Mendonça, Karla Morganna Pereira Pinto; Borja, Raíssa de Oliveira; Britto, Raquel Rodrigues; Parreira, Verônica Franco

    2016-01-01

    To generate prediction equations for spirometry in 4- to 6-year-old children. Forced vital capacity, forced expiratory volume in 0.5s, forced expiratory volume in one second, peak expiratory flow, and forced expiratory flow at 25-75% of the forced vital capacity were assessed in 195 healthy children residing in the town of Sete Lagoas, state of Minas Gerais, Southeastern Brazil. The least mean squares method was used to derive the prediction equations. The level of significance was established as p<0.05. Overall, 85% of the children succeeded in performing the spirometric maneuvers. In the prediction equation, height was the single predictor of the spirometric variables as follows: forced vital capacity=exponential [(-2.255)+(0.022×height)], forced expiratory volume in 0.5s=exponential [(-2.288)+(0.019×height)], forced expiratory volume in one second=exponential [(-2.767)+(0.026×height)], peak expiratory flow=exponential [(-2.908)+(0.019×height)], and forced expiratory flow at 25-75% of the forced vital capacity=exponential [(-1.404)+(0.016×height)]. Neither age nor weight influenced the regression equations. No significant differences in the predicted values for boys and girls were observed. The predicted values obtained in the present study are comparable to those reported for preschoolers from both Brazil and other countries. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  7. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  8. Classification and Recursion Operators of Dark Burgers' Equation

    Science.gov (United States)

    Chen, Mei-Dan; Li, Biao

    2018-01-01

    With the help of symbolic computation, two types of complete scalar classification for dark Burgers' equations are derived by requiring the existence of higher order differential polynomial symmetries. There are some free parameters for every class of dark Burgers' systems; so some special equations including symmetry equation and dual symmetry equation are obtained by selecting the free parameter. Furthermore, two kinds of recursion operators for these dark Burgers' equations are constructed by two direct assumption methods.

  9. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  10. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    International Nuclear Information System (INIS)

    Mrugalla, Florian; Kast, Stefan M

    2016-01-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute–solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute–solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems. (paper)

  11. Reference Values for Spirometry Derived Using Lambda, Mu, Sigma (LMS) Method in Korean Adults: in Comparison with Previous References.

    Science.gov (United States)

    Jo, Bum Seak; Myong, Jun Pyo; Rhee, Chin Kook; Yoon, Hyoung Kyu; Koo, Jung Wan; Kim, Hyoung Ryoul

    2018-01-15

    The present study aimed to update the prediction equations for spirometry and their lower limits of normal (LLN) by using the lambda, mu, sigma (LMS) method and to compare the outcomes with the values of previous spirometric reference equations. Spirometric data of 10,249 healthy non-smokers (8,776 females) were extracted from the fourth and fifth versions of the Korea National Health and Nutrition Examination Survey (KNHANES IV, 2007-2009; V, 2010-2012). Reference equations were derived using the LMS method which allows modeling skewness (lambda [L]), mean (mu [M]), and coefficient of variation (sigma [S]). The outcome equations were compared with previous reference values. Prediction equations were presented in the following form: predicted value = e{a + b × ln(height) + c × ln(age) + M - spline}. The new predicted values for spirometry and their LLN derived using the LMS method were shown to more accurately reflect transitions in pulmonary function in young adults than previous prediction equations derived using conventional regression analysis in 2013. There were partial discrepancies between the new reference values and the reference values from the Global Lung Function Initiative in 2012. The results should be interpreted with caution for young adults and elderly males, particularly in terms of the LLN for forced expiratory volume in one second/forced vital capacity in elderly males. Serial spirometry follow-up, together with correlations with other clinical findings, should be emphasized in evaluating the pulmonary function of individuals. Future studies are needed to improve the accuracy of reference data and to develop continuous reference values for spirometry across all ages. © 2018 The Korean Academy of Medical Sciences.

  12. Stochastic TDHF and the Boltzman-Langevin equation

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations

  13. On the Singular Perturbations for Fractional Differential Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  14. Study of the stochastic point reactor kinetic equation

    International Nuclear Information System (INIS)

    Gotoh, Yorio

    1980-01-01

    Diagrammatic technique is used to solve the stochastic point reactor kinetic equation. The method gives exact results which are derived from Fokker-Plank theory. A Green's function dressed with the clouds of noise is defined, which is a transfer function of point reactor with fluctuating reactivity. An integral equation for the correlation function of neutron power is derived using the following assumptions: 1) Green's funntion should be dressed with noise, 2) The ladder type diagrams only contributes to the correlation function. For a white noise and the one delayed neutron group approximation, the norm of the integral equation and the variance to mean-squared ratio are analytically obtained. (author)

  15. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  16. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    Science.gov (United States)

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory

  17. Effective electronic-only Kohn–Sham equations for the muonic molecules

    Science.gov (United States)

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the Nuclear-Electronic Orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing muon vibration, which are optimized during the solution of the EKS equations making muon KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a duality between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential maybe derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding muonium atom to ferrocene. In line with previous computational studies, from the six possible species the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  18. Effective electronic-only Kohn-Sham equations for the muonic molecules.

    Science.gov (United States)

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-03-28

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the nuclear-electronic orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing the muon's vibration, which are optimized during the solution of the EKS equations making the muon's KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a "duality" between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential may be derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding a muonium atom to ferrocene. In line with previous computational studies, from the six possible species, the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  19. Distributed order reaction-diffusion systems associated with Caputo derivatives

    Science.gov (United States)

    Saxena, R. K.; Mathai, A. M.; Haubold, H. J.

    2014-08-01

    This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation of distributed order associated with the Caputo derivatives as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the joint Laplace and Fourier transforms in compact and closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by other authors, notably by Mainardi et al. ["The fundamental solution of the space-time fractional diffusion equation," Fractional Calculus Appl. Anal. 4, 153-202 (2001); Mainardi et al. "Fox H-functions in fractional diffusion," J. Comput. Appl. Math. 178, 321-331 (2005)] for the fundamental solution of the space-time fractional equation, including Haubold et al. ["Solutions of reaction-diffusion equations in terms of the H-function," Bull. Astron. Soc. India 35, 681-689 (2007)] and Saxena et al. ["Fractional reaction-diffusion equations," Astrophys. Space Sci. 305, 289-296 (2006a)] for fractional reaction-diffusion equations. The advantage of using the Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation, containing this derivative, includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of fractional diffusion, space-time fraction diffusion, and time-fractional diffusion, see Schneider and Wyss ["Fractional diffusion and wave equations," J. Math. Phys. 30, 134-144 (1989)]. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-function in compact forms. The convergence conditions for the double series occurring in the solutions are investigated. It is interesting to observe that the double series comes out to be a special case of the Srivastava-Daoust hypergeometric function of two variables

  20. Exact Solutions of Generalized Modified Boussinesq, Kuramoto-Sivashinsky, and Camassa-Holm Equations via Double Reduction Theory

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ali

    2013-01-01

    Full Text Available We find exact solutions of the Generalized Modified Boussinesq (GMB equation, the Kuromoto-Sivashinsky (KS equation the and, Camassa-Holm (CH equation by utilizing the double reduction theory related to conserved vectors. The fourth order GMB equation involves the arbitrary function and mixed derivative terms in highest derivative. The partial Noether’s approach yields seven conserved vectors for GMB equation and one conserved for vector KS equation. Due to presence of mixed derivative term the conserved vectors for GMB equation derived by the Noether like theorem do not satisfy the divergence relationship. The extra terms that constitute the trivial part of conserved vectors are adjusted and the resulting conserved vectors satisfy the divergence property. The double reduction theory yields two independent solutions and one reduction for GMB equation and one solution for KS equation. For CH equation two independent solutions are obtained elsewhere by double reduction theory with the help of conserved Vectors.

  1. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  2. Derivation of finite element formulation for electrochemical governing equations of ionic polymer actuators

    International Nuclear Information System (INIS)

    Kang, Sung Soo

    2013-01-01

    Ionic polymer actuators have recently attracted a great deal of interest as electroactive materials with potentials as soft actuators, sensors, artificial muscles, robotics, and microelectromechanical systems because of their numerous advantages, including low voltage requirement, high compliance, lightness, and flexibility. The platinum-plated Nafion, a perfluorosulfonic acid membrane made by Dupont, is commonly used as a polyelectrolyte in actuator applications. The bending of the ionic polymer actuators in an electric field is dominated by the electro-osmosis of hydrated ions and slow diffusion of free water molecules. The changes in hydration cause a local volumetric strain resulting in bending deformation, such as expansion and contraction. In this study, a two-dimensional finite element (FE) formulation based on the Galerkin method is derived for the governing equations describing these electrochemical responses. In addition, a three-dimensional FE deformation analysis is conducted on the bending behaviors of the platinum-plated ionic polymer actuators. Several numerical studies for ionic polymer actuators, such as plates with various electrode arrangements and disk models in electric field, are performed to confirm the validity of the proposed formulation.

  3. The Dirichlet problem of a conformable advection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Avci Derya

    2017-01-01

    Full Text Available The fractional advection-diffusion equations are obtained from a fractional power law for the matter flux. Diffusion processes in special types of porous media which has fractal geometry can be modelled accurately by using these equations. However, the existing nonlocal fractional derivatives seem complicated and also lose some basic properties satisfied by usual derivatives. For these reasons, local fractional calculus has recently been emerged to simplify the complexities of fractional models defined by nonlocal fractional operators. In this work, the conformable, a local, well-behaved and limit-based definition, is used to obtain a local generalized form of advection-diffusion equation. In addition, this study is devoted to give a local generalized description to the combination of diffusive flux governed by Fick’s law and the advection flux associated with the velocity field. As a result, the constitutive conformable advection-diffusion equation can be easily achieved. A Dirichlet problem for conformable advection-diffusion equation is derived by applying fractional Laplace transform with respect to time t and finite sin-Fourier transform with respect to spatial coordinate x. Two illustrative examples are presented to show the behaviours of this new local generalized model. The dependence of the solution on the fractional order of conformable derivative and the changing values of problem parameters are validated using graphics held by MATLcodes.

  4. Functional Fourier transforms and the loop equation

    International Nuclear Information System (INIS)

    Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.

    1986-01-01

    The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables

  5. Nonlinear Poisson equation for heterogeneous media.

    Science.gov (United States)

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. [Multiple linear regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis].

    Science.gov (United States)

    Ma, Yu-Feng; Wang, Qing-Fu; Chen, Zhao-Jun; Du, Chun-Lin; Li, Jun-Hai; Huang, Hu; Shi, Zong-Ting; Yin, Yue-Shan; Zhang, Lei; A-Di, Li-Jiang; Dong, Shi-Yu; Wu, Ji

    2012-05-01

    To perform Multiple Linear Regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis, and to analyze their relationship with clinical and biomechanical concepts. From March 2011 to July 2011, 140 patients (250 knees) were reviewed, including 132 knees in the left and 118 knees in the right; ranging in age from 40 to 71 years, with an average of 54.68 years. The MB-RULER measurement software was applied to measure femoral angle, tibial angle, femorotibial angle, joint gap angle from antero-posterir and lateral position of X-rays. The WOMAC scores were also collected. Then multiple regression equations was applied for the linear regression analysis of correlation between the X-ray measurement and WOMAC scores. There was statistical significance in the regression equation of AP X-rays value and WOMAC scores (Pregression equation of lateral X-ray value and WOMAC scores (P>0.05). 1) X-ray measurement of knee joint can reflect the WOMAC scores to a certain extent. 2) It is necessary to measure the X-ray mechanical axis of knee, which is important for diagnosis and treatment of osteoarthritis. 3) The correlation between tibial angle,joint gap angle on antero-posterior X-ray and WOMAC scores is significant, which can be used to assess the functional recovery of patients before and after treatment.

  7. Nonadiabatic quantum Vlasov equation for Schwinger pair production

    International Nuclear Information System (INIS)

    Kim, Sang Pyo; Schubert, Christian

    2011-01-01

    Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.

  8. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  9. Picone-type inequalities for nonlinear elliptic equations and their applications

    Directory of Open Access Journals (Sweden)

    Takaŝi Kusano

    2001-01-01

    Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.

  10. Linear and nonlinear analogues of the Schroedinger equation in the contextual approach in quantum mechanics

    International Nuclear Information System (INIS)

    Khrennikov, A.Yu.

    2005-01-01

    One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru

  11. The Relation between Degree and Strength in the Complex Network Derived from an Individual Stock

    Directory of Open Access Journals (Sweden)

    Zelin Zhang

    2016-01-01

    Full Text Available A method based on coarse-graining to construct a directed weighted complex network which models the transformation of the trading data of an individual stock is introduced. The degree (strength distribution of derived network follows a power-law. A moderated regression equation with interaction effects of average return and out-degree (in-degree on out-strength (in-strength is established. Moreover, we found that the differences of nodes affect the network’s structure and average return level impacts nodes’ eigenvector centrality and pagerank, significantly.

  12. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  13. Adaptive testing with equated number-correct scoring

    NARCIS (Netherlands)

    van der Linden, Willem J.

    1999-01-01

    A constrained CAT algorithm is presented that automatically equates the number-correct scores on adaptive tests. The algorithm can be used to equate number-correct scores across different administrations of the same adaptive test as well as to an external reference test. The constraints are derived

  14. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives

    Science.gov (United States)

    Macías-Díaz, J. E.

    2017-12-01

    In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.

  15. Quantum Gross-Pitaevskii Equation

    Directory of Open Access Journals (Sweden)

    Jutho Haegeman, Damian Draxler, Vid Stojevic, J. Ignacio Cirac, Tobias J. Osborne, Frank Verstraete

    2017-07-01

    Full Text Available We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent variational principle to the variational manifold of continuous matrix product states. This allows for a full quantum description of many body system ---including entanglement and correlations--- and thus extends significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known to fail for (quasi one-dimensional systems. By linearizing around a stationary solution, we furthermore derive an associated generalization of the Bogoliubov -- de Gennes equations. This framework is applied to compute the steady state response amplitude to a periodic perturbation of the potential.

  16. Illness-death model: statistical perspective and differential equations.

    Science.gov (United States)

    Brinks, Ralph; Hoyer, Annika

    2018-01-27

    The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.

  17. Modeling a Predictive Energy Equation Specific for Maintenance Hemodialysis.

    Science.gov (United States)

    Byham-Gray, Laura D; Parrott, J Scott; Peters, Emily N; Fogerite, Susan Gould; Hand, Rosa K; Ahrens, Sean; Marcus, Andrea Fleisch; Fiutem, Justin J

    2017-03-01

    Hypermetabolism is theorized in patients diagnosed with chronic kidney disease who are receiving maintenance hemodialysis (MHD). We aimed to distinguish key disease-specific determinants of resting energy expenditure to create a predictive energy equation that more precisely establishes energy needs with the intent of preventing protein-energy wasting. For this 3-year multisite cross-sectional study (N = 116), eligible participants were diagnosed with chronic kidney disease and were receiving MHD for at least 3 months. Predictors for the model included weight, sex, age, C-reactive protein (CRP), glycosylated hemoglobin, and serum creatinine. The outcome variable was measured resting energy expenditure (mREE). Regression modeling was used to generate predictive formulas and Bland-Altman analyses to evaluate accuracy. The majority were male (60.3%), black (81.0%), and non-Hispanic (76.7%), and 23% were ≥65 years old. After screening for multicollinearity, the best predictive model of mREE ( R 2 = 0.67) included weight, age, sex, and CRP. Two alternative models with acceptable predictability ( R 2 = 0.66) were derived with glycosylated hemoglobin or serum creatinine. Based on Bland-Altman analyses, the maintenance hemodialysis equation that included CRP had the best precision, with the highest proportion of participants' predicted energy expenditure classified as accurate (61.2%) and with the lowest number of individuals with underestimation or overestimation. This study confirms disease-specific factors as key determinants of mREE in patients on MHD and provides a preliminary predictive energy equation. Further prospective research is necessary to test the reliability and validity of this equation across diverse populations of patients who are receiving MHD.

  18. Different microscopic interpretations of the reaction-telegrapher equation

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel; Mendez, Vicenc [Grup de Fisica EstadIstica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2009-02-20

    In this paper we provide some new insights into the microscopic interpretation of the telegrapher's and the reaction-telegrapher equations. We use the framework of continuous-time random walks to derive the telegrapher's equation from two different perspectives reported before: the kinetic derivation (KD) and the delayed random-walk derivation (DRWD). We analyze the similarities and the differences between both derivations, paying special attention to the case when a reaction process is also present in the system. As a result, we are able to show that the equivalence between the KD and the DRWD can break down when transport and reaction are coupled processes. Also, this analysis allows us to elaborate on the specific role of relaxation effects in reaction-diffusion processes.

  19. Prediction of spatial patterns of collapsed pipes in loess-derived soils in a temperate humid climate using logistic regression

    Science.gov (United States)

    Verachtert, E.; Den Eeckhaut, M. Van; Poesen, J.; Govers, G.; Deckers, J.

    2011-07-01

    Soil piping (tunnel erosion) has been recognised as an important erosion process in collapsible loess-derived soils of temperate humid climates, which can cause collapse of the topsoil and formation of discontinuous gullies. Information about the spatial patterns of collapsed pipes and regional models describing these patterns is still limited. Therefore, this study aims at better understanding the factors controlling the spatial distribution and predicting pipe collapse. A dataset with parcels suffering from collapsed pipes (n = 560) and parcels without collapsed pipes was obtained through a regional survey in a 236 km² study area in the Flemish Ardennes (Belgium). Logistic regression was applied to find the best model describing the relationship between the presence/absence of a collapsed pipe and a set of independent explanatory variables (i.e. slope gradient, drainage area, distance-to-thalweg, curvature, aspect, soil type and lithology). Special attention was paid to the selection procedure of the grid cells without collapsed pipes. Apart from the first piping susceptibility map created by logistic regression modelling, a second map was made based on topographical thresholds of slope gradient and upslope drainage area. The logistic regression model allowed identification of the most important factors controlling pipe collapse. Pipes are much more likely to occur when a topographical threshold depending on both slope gradient and upslope area is exceeded in zones with a sufficient water supply (due to topographical convergence and/or the presence of a clay-rich lithology). On the other hand, the use of slope-area thresholds only results in reasonable predictions of piping susceptibility, with minimum information.

  20. A spatial structural derivative model for ultraslow diffusion

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2017-01-01

    Full Text Available This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.

  1. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.

    Science.gov (United States)

    Vorobev, Anatoliy

    2010-11-01

    We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.

  2. Spatial-Temporal Variations of Turbidity and Ocean Current Velocity of the Ariake Sea Area, Kyushu, Japan Through Regression Analysis with Remote Sensing Satellite Data

    OpenAIRE

    Yuichi Sarusawa; Kohei Arai

    2013-01-01

    Regression analysis based method for turbidity and ocean current velocity estimation with remote sensing satellite data is proposed. Through regressive analysis with MODIS data and measured data of turbidity and ocean current velocity, regressive equation which allows estimation of turbidity and ocean current velocity is obtained. With the regressive equation as well as long term MODIS data, turbidity and ocean current velocity trends in Ariake Sea area are clarified. It is also confirmed tha...

  3. The gBL transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-05-01

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  4. Hamilton's equations for a fluid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-10-14

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations.

  5. A generalised groundwater flow equation using the concept of non ...

    African Journals Online (AJOL)

    The classical Darcy law is generalised by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalised law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Numerical solutions of this equation for various fractional orders of ...

  6. Creatinine index as a surrogate of lean body mass derived from urea Kt/V, pre-dialysis serum levels and anthropometric characteristics of haemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Bernard Canaud

    Full Text Available BACKGROUND AND OBJECTIVES: Protein-energy wasting is common in long-term haemodialysis (HD patients with chronic kidney disease and is associated with increased morbidity and mortality. The creatinine index (CI is a simple and useful nutritional parameter reflecting the dietary skeletal muscle protein intake and skeletal muscle mass of the patient. Because of the complexity of creatinine kinetic modeling (CKM to derive CI, we developed a more simplified formula to estimate CI in HD patients. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS: A large database of 549 HD patients followed over more than 20 years including monthly CKM-derived CI values was used to develop a simple equation based on patient demographics, predialysis serum creatinine values and dialysis dose (spKt/V using mixed regression models. RESULTS: The equation to estimate CI was developed based on age, gender, pre-dialysis serum creatinine concentrations and spKt/V urea. The equation-derived CI correlated strongly with the measured CI using CKM (correlation coefficient  = 0.79, p-value <0.001. The mean error of CI prediction using the equation was 13.47%. Preliminary examples of few typical HD patients have been used to illustrate the clinical relevance and potential usefulness of CI. CONCLUSIONS: The elementary equation used to derive CI using demographic parameters, pre-dialysis serum creatinine concentrations and dialysis dose is a simple and accurate surrogate measure for muscle mass estimation. However, the predictive value of the simplified CI assessment method on mortality deserves further evaluation in large cohorts of HD patients.

  7. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  8. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    Directory of Open Access Journals (Sweden)

    Alizé Lacoste Jeanson

    2017-05-01

    Full Text Available Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT and lean tissue (LT in such material. An intra-class correlation coefficient (ICC was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS linear regressions and support vector machine regression (SVMR. Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5 and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77 than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08 for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  9. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    Science.gov (United States)

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  10. Boundary Shape Control of the Navier-Stokes Equations and Applications

    Institute of Scientific and Technical Information of China (English)

    Kaitai LI; Jian SU; Aixiang HUANG

    2010-01-01

    In this paper,the geometrical design for the blade's surface(s)in an impeller or for the profile of an aircraft,is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations.The objective function is the sum of a global dissipative function and the power of the fluid.The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations.The Euler-Lagrange equations of the optimal control problem are derived,which are an elliptic boundary value system of fourth order,coupled with the Navier-Stokes equations.The authors also prove the existence of the solution of the optimal control problem,the existence of the solution of the Navier-Stokes equations with mixed boundary conditions,the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade's surface and the existence of solutions of the equations for the G(a)teaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.

  11. Modeling the energy content of combustible ship-scrapping waste at Alang-Sosiya, India, using multiple regression analysis.

    Science.gov (United States)

    Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K

    2005-01-01

    Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.

  12. The two modes extension to the Berk-Breizman equation: Delayed differential equations and asymptotic solutions

    International Nuclear Information System (INIS)

    Marczynski, Slawomir

    2011-01-01

    The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.

  13. Reduced equations for finite beta tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Izzo, R.; Monticello, D.A.; DeLucia, J.; Park, W.; Ryu, C.M.

    1984-10-01

    The equations of resistive magnetohydrodynamics (MHD) are recast in a form that is useful for studying the evolution of those toroidal systems where the fast magnetosonic wave plays no important role. The equations are exact and have nabla vector.B vector = O satisfied explicitly. From this set of equations it is a simple matter to derive the equations of reduced MHD to any order in the inverse aspect ratio epsilon of the torus, and for β approx. epsilon or smaller. We demonstrate this by deriving a reduced set of MHD equations that are correct to 5th order in epsilon. These equations contain the exact equilibrium relation and as such can be used to find 3-D stellarator equilibria. In addition, if a subsidiary ordering in eta, the resistivity, is made, the equations of Glasser, Greene, and Johnson are recovered. This set of reduced equations has been coded by extending the initial value code, HILO. Results obtained, for both ideal and resistive linear stability, from the reduced equations are compared with those obtained by solving the full set of MHD equations in a cylinder. The agreement is shown to be excellent for both zero and finite beta calculations. Comparisons are also made with analytic theory illuminating the present limitations of the latter

  14. On the solution of reaction-diffusion equations with double diffusivity

    Directory of Open Access Journals (Sweden)

    B. D. Aggarwala

    1987-01-01

    Full Text Available In this paper, solution of a pair of Coupled Partial Differential equations is derived. These equations arise in the solution of problems of flow of homogeneous liquids in fissured rocks and heat conduction involving two temperatures. These equations have been considered by Hill and Aifantis, but the technique we use appears to be simpler and more direct, and some new results are derived. Also, discussion about the propagation of initial discontinuities is given and illustrated with graphs of some special cases.

  15. Darboux transformation for the NLS equation

    International Nuclear Information System (INIS)

    Aktosun, Tuncay; Mee, Cornelis van der

    2010-01-01

    We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.

  16. A new formulation of equations of compressible fluids by analogy with Maxwell's equations

    International Nuclear Information System (INIS)

    Kambe, Tsutomu

    2010-01-01

    A compressible ideal fluid is governed by Euler's equation of motion and equations of continuity, entropy and vorticity. This system can be reformulated in a form analogous to that of electromagnetism governed by Maxwell's equations with source terms. The vorticity plays the role of magnetic field, while the velocity field plays the part of a vector potential and the enthalpy (of isentropic flows) plays the part of a scalar potential in electromagnetism. The evolution of source terms of fluid Maxwell equations is determined by solving the equations of motion and continuity. The equation of sound waves can be derived from this formulation, where time evolution of the sound source is determined by the equation of motion. The theory of vortex sound of aeroacoustics is included in this formulation. It is remarkable that the forces acting on a point mass moving in a velocity field of an inviscid fluid are analogous in their form to the electric force and Lorentz force in electromagnetism. The significance of the reformulation is interpreted by examples taken from fluid mechanics. This formulation can be extended to viscous fluids without difficulty. The Maxwell-type equations are unchanged by the viscosity effect, although the source terms have additional terms due to viscosities.

  17. On the numerical solution of the neutron fractional diffusion equation

    International Nuclear Information System (INIS)

    Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto

    2014-01-01

    Highlights: • The new version of neutron diffusion equation which established on the fractional derivatives is presented. • The Neutron Fractional Diffusion Equation (NFDE) is solved in the finite differences frame. • NFDE is solved using shifted Grünwald-Letnikov definition of fractional operators. • The results show that “K eff ” strongly depends on the order of fractional derivative. - Abstract: In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation (NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary exponent of differential operators. In this work a numerical solution of the NFDE is presented using shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is validated with some numerical experiments where different orders of fractional derivative are considered (e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (K eff ) depends strongly on the order of fractional derivative

  18. Seed and soliton solutions for Adler's lattice equation

    International Nuclear Information System (INIS)

    Atkinson, James; Hietarinta, Jarmo; Nijhoff, Frank

    2007-01-01

    Adler's lattice equation has acquired the status of a master equation among 2D discrete integrable systems. In this paper we derive what we believe are the first explicit solutions of this equation. In particular it turns out to be necessary to establish a non-trivial seed solution from which soliton solutions can subsequently be constructed using the Baecklund transformation. As a corollary we find the corresponding solutions of the Krichever-Novikov equation which is obtained from Adler's equation in a continuum limit. (fast track communication)

  19. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  20. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…