#### Sample records for regression analysis kaplan-meier

1. Understanding survival analysis: Kaplan-Meier estimate.

Science.gov (United States)

Goel, Manish Kumar; Khanna, Pardeep; Kishore, Jugal

2010-10-01

Kaplan-Meier estimate is one of the best options to be used to measure the fraction of subjects living for a certain amount of time after treatment. In clinical trials or community trials, the effect of an intervention is assessed by measuring the number of subjects survived or saved after that intervention over a period of time. The time starting from a defined point to the occurrence of a given event, for example death is called as survival time and the analysis of group data as survival analysis. This can be affected by subjects under study that are uncooperative and refused to be remained in the study or when some of the subjects may not experience the event or death before the end of the study, although they would have experienced or died if observation continued, or we lose touch with them midway in the study. We label these situations as censored observations. The Kaplan-Meier estimate is the simplest way of computing the survival over time in spite of all these difficulties associated with subjects or situations. The survival curve can be created assuming various situations. It involves computing of probabilities of occurrence of event at a certain point of time and multiplying these successive probabilities by any earlier computed probabilities to get the final estimate. This can be calculated for two groups of subjects and also their statistical difference in the survivals. This can be used in Ayurveda research when they are comparing two drugs and looking for survival of subjects.

2. Kaplan-Meier Survival Analysis Overestimates the Risk of Revision Arthroplasty: A Meta-analysis.

Science.gov (United States)

Lacny, Sarah; Wilson, Todd; Clement, Fiona; Roberts, Derek J; Faris, Peter D; Ghali, William A; Marshall, Deborah A

2015-11-01

Although Kaplan-Meier survival analysis is commonly used to estimate the cumulative incidence of revision after joint arthroplasty, it theoretically overestimates the risk of revision in the presence of competing risks (such as death). Because the magnitude of overestimation is not well documented, the potential associated impact on clinical and policy decision-making remains unknown. We performed a meta-analysis to answer the following questions: (1) To what extent does the Kaplan-Meier method overestimate the cumulative incidence of revision after joint replacement compared with alternative competing-risks methods? (2) Is the extent of overestimation influenced by followup time or rate of competing risks? We searched Ovid MEDLINE, EMBASE, BIOSIS Previews, and Web of Science (1946, 1980, 1980, and 1899, respectively, to October 26, 2013) and included article bibliographies for studies comparing estimated cumulative incidence of revision after hip or knee arthroplasty obtained using both Kaplan-Meier and competing-risks methods. We excluded conference abstracts, unpublished studies, or studies using simulated data sets. Two reviewers independently extracted data and evaluated the quality of reporting of the included studies. Among 1160 abstracts identified, six studies were included in our meta-analysis. The principal reason for the steep attrition (1160 to six) was that the initial search was for studies in any clinical area that compared the cumulative incidence estimated using the Kaplan-Meier versus competing-risks methods for any event (not just the cumulative incidence of hip or knee revision); we did this to minimize the likelihood of missing any relevant studies. We calculated risk ratios (RRs) comparing the cumulative incidence estimated using the Kaplan-Meier method with the competing-risks method for each study and used DerSimonian and Laird random effects models to pool these RRs. Heterogeneity was explored using stratified meta-analyses and

3. The analysis of competing events like cause-specific mortality--beware of the Kaplan-Meier method

NARCIS (Netherlands)

Verduijn, Marion; Grootendorst, Diana C.; Dekker, Friedo W.; Jager, Kitty J.; le Cessie, Saskia

2011-01-01

Kaplan-Meier analysis is a popular method used for analysing time-to-event data. In case of competing event analyses such as that of cardiovascular and non-cardiovascular mortality, however, the Kaplan-Meier method profoundly overestimates the cumulative mortality probabilities for each of the

4. Application of Kaplan-Meier analysis in reliability evaluation of products cast from aluminium alloys

OpenAIRE

J. Szymszal; A. Gierek; J. Kliś

2010-01-01

The article evaluates the reliability of AlSi17CuNiMg alloys using Kaplan-Meier-based technique, very popular as a survival estimation tool in medical science. The main object of survival analysis is a group (or groups) of units for which the time of occurrence of an event (failure) taking place after some time of waiting is estimated. For example, in medicine, the failure can be patient’s death. In this study, the failure was the specimen fracture during a periodical fatigue test, while the ...

5. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves

Directory of Open Access Journals (Sweden)

Guyot Patricia

2012-02-01

Full Text Available Abstract Background The results of Randomized Controlled Trials (RCTs on time-to-event outcomes that are usually reported are median time to events and Cox Hazard Ratio. These do not constitute the sufficient statistics required for meta-analysis or cost-effectiveness analysis, and their use in secondary analyses requires strong assumptions that may not have been adequately tested. In order to enhance the quality of secondary data analyses, we propose a method which derives from the published Kaplan Meier survival curves a close approximation to the original individual patient time-to-event data from which they were generated. Methods We develop an algorithm that maps from digitised curves back to KM data by finding numerical solutions to the inverted KM equations, using where available information on number of events and numbers at risk. The reproducibility and accuracy of survival probabilities, median survival times and hazard ratios based on reconstructed KM data was assessed by comparing published statistics (survival probabilities, medians and hazard ratios with statistics based on repeated reconstructions by multiple observers. Results The validation exercise established there was no material systematic error and that there was a high degree of reproducibility for all statistics. Accuracy was excellent for survival probabilities and medians, for hazard ratios reasonable accuracy can only be obtained if at least numbers at risk or total number of events are reported. Conclusion The algorithm is a reliable tool for meta-analysis and cost-effectiveness analyses of RCTs reporting time-to-event data. It is recommended that all RCTs should report information on numbers at risk and total number of events alongside KM curves.

6. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves.

Science.gov (United States)

Guyot, Patricia; Ades, A E; Ouwens, Mario J N M; Welton, Nicky J

2012-02-01

The results of Randomized Controlled Trials (RCTs) on time-to-event outcomes that are usually reported are median time to events and Cox Hazard Ratio. These do not constitute the sufficient statistics required for meta-analysis or cost-effectiveness analysis, and their use in secondary analyses requires strong assumptions that may not have been adequately tested. In order to enhance the quality of secondary data analyses, we propose a method which derives from the published Kaplan Meier survival curves a close approximation to the original individual patient time-to-event data from which they were generated. We develop an algorithm that maps from digitised curves back to KM data by finding numerical solutions to the inverted KM equations, using where available information on number of events and numbers at risk. The reproducibility and accuracy of survival probabilities, median survival times and hazard ratios based on reconstructed KM data was assessed by comparing published statistics (survival probabilities, medians and hazard ratios) with statistics based on repeated reconstructions by multiple observers. The validation exercise established there was no material systematic error and that there was a high degree of reproducibility for all statistics. Accuracy was excellent for survival probabilities and medians, for hazard ratios reasonable accuracy can only be obtained if at least numbers at risk or total number of events are reported. The algorithm is a reliable tool for meta-analysis and cost-effectiveness analyses of RCTs reporting time-to-event data. It is recommended that all RCTs should report information on numbers at risk and total number of events alongside KM curves.

7. KMWin--a convenient tool for graphical presentation of results from Kaplan-Meier survival time analysis.

Science.gov (United States)

Gross, Arnd; Ziepert, Marita; Scholz, Markus

2012-01-01

Analysis of clinical studies often necessitates multiple graphical representations of the results. Many professional software packages are available for this purpose. Most packages are either only commercially available or hard to use especially if one aims to generate or customize a huge number of similar graphical outputs. We developed a new, freely available software tool called KMWin (Kaplan-Meier for Windows) facilitating Kaplan-Meier survival time analysis. KMWin is based on the statistical software environment R and provides an easy to use graphical interface. Survival time data can be supplied as SPSS (sav), SAS export (xpt) or text file (dat), which is also a common export format of other applications such as Excel. Figures can directly be exported in any graphical file format supported by R. On the basis of a working example, we demonstrate how to use KMWin and present its main functions. We show how to control the interface, customize the graphical output, and analyse survival time data. A number of comparisons are performed between KMWin and SPSS regarding graphical output, statistical output, data management and development. Although the general functionality of SPSS is larger, KMWin comprises a number of features useful for survival time analysis in clinical trials and other applications. These are for example number of cases and number of cases under risk within the figure or provision of a queue system for repetitive analyses of updated data sets. Moreover, major adjustments of graphical settings can be performed easily on a single window. We conclude that our tool is well suited and convenient for repetitive analyses of survival time data. It can be used by non-statisticians and provides often used functions as well as functions which are not supplied by standard software packages. The software is routinely applied in several clinical study groups.

8. KMWin – A Convenient Tool for Graphical Presentation of Results from Kaplan-Meier Survival Time Analysis

Science.gov (United States)

Gross, Arnd; Ziepert, Marita; Scholz, Markus

2012-01-01

Background Analysis of clinical studies often necessitates multiple graphical representations of the results. Many professional software packages are available for this purpose. Most packages are either only commercially available or hard to use especially if one aims to generate or customize a huge number of similar graphical outputs. We developed a new, freely available software tool called KMWin (Kaplan-Meier for Windows) facilitating Kaplan-Meier survival time analysis. KMWin is based on the statistical software environment R and provides an easy to use graphical interface. Survival time data can be supplied as SPSS (sav), SAS export (xpt) or text file (dat), which is also a common export format of other applications such as Excel. Figures can directly be exported in any graphical file format supported by R. Results On the basis of a working example, we demonstrate how to use KMWin and present its main functions. We show how to control the interface, customize the graphical output, and analyse survival time data. A number of comparisons are performed between KMWin and SPSS regarding graphical output, statistical output, data management and development. Although the general functionality of SPSS is larger, KMWin comprises a number of features useful for survival time analysis in clinical trials and other applications. These are for example number of cases and number of cases under risk within the figure or provision of a queue system for repetitive analyses of updated data sets. Moreover, major adjustments of graphical settings can be performed easily on a single window. Conclusions We conclude that our tool is well suited and convenient for repetitive analyses of survival time data. It can be used by non-statisticians and provides often used functions as well as functions which are not supplied by standard software packages. The software is routinely applied in several clinical study groups. PMID:22723912

9. KMWin--a convenient tool for graphical presentation of results from Kaplan-Meier survival time analysis.

Directory of Open Access Journals (Sweden)

Arnd Gross

Full Text Available BACKGROUND: Analysis of clinical studies often necessitates multiple graphical representations of the results. Many professional software packages are available for this purpose. Most packages are either only commercially available or hard to use especially if one aims to generate or customize a huge number of similar graphical outputs. We developed a new, freely available software tool called KMWin (Kaplan-Meier for Windows facilitating Kaplan-Meier survival time analysis. KMWin is based on the statistical software environment R and provides an easy to use graphical interface. Survival time data can be supplied as SPSS (sav, SAS export (xpt or text file (dat, which is also a common export format of other applications such as Excel. Figures can directly be exported in any graphical file format supported by R. RESULTS: On the basis of a working example, we demonstrate how to use KMWin and present its main functions. We show how to control the interface, customize the graphical output, and analyse survival time data. A number of comparisons are performed between KMWin and SPSS regarding graphical output, statistical output, data management and development. Although the general functionality of SPSS is larger, KMWin comprises a number of features useful for survival time analysis in clinical trials and other applications. These are for example number of cases and number of cases under risk within the figure or provision of a queue system for repetitive analyses of updated data sets. Moreover, major adjustments of graphical settings can be performed easily on a single window. CONCLUSIONS: We conclude that our tool is well suited and convenient for repetitive analyses of survival time data. It can be used by non-statisticians and provides often used functions as well as functions which are not supplied by standard software packages. The software is routinely applied in several clinical study groups.

10. Kaplan-Meier survival analysis overestimates cumulative incidence of health-related events in competing risk settings: a meta-analysis.

Science.gov (United States)

Lacny, Sarah; Wilson, Todd; Clement, Fiona; Roberts, Derek J; Faris, Peter; Ghali, William A; Marshall, Deborah A

2018-01-01

Kaplan-Meier survival analysis overestimates cumulative incidence in competing risks (CRs) settings. The extent of overestimation (or its clinical significance) has been questioned, and CRs methods are infrequently used. This meta-analysis compares the Kaplan-Meier method to the cumulative incidence function (CIF), a CRs method. We searched MEDLINE, EMBASE, BIOSIS Previews, Web of Science (1992-2016), and article bibliographies for studies estimating cumulative incidence using the Kaplan-Meier method and CIF. For studies with sufficient data, we calculated pooled risk ratios (RRs) comparing Kaplan-Meier and CIF estimates using DerSimonian and Laird random effects models. We performed stratified meta-analyses by clinical area, rate of CRs (CRs/events of interest), and follow-up time. Of 2,192 identified abstracts, we included 77 studies in the systematic review and meta-analyzed 55. The pooled RR demonstrated the Kaplan-Meier estimate was 1.41 [95% confidence interval (CI): 1.36, 1.47] times higher than the CIF. Overestimation was highest among studies with high rates of CRs [RR = 2.36 (95% CI: 1.79, 3.12)], studies related to hepatology [RR = 2.60 (95% CI: 2.12, 3.19)], and obstetrics and gynecology [RR = 1.84 (95% CI: 1.52, 2.23)]. The Kaplan-Meier method overestimated the cumulative incidence across 10 clinical areas. Using CRs methods will ensure accurate results inform clinical and policy decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

11. The Kaplan-Meier Theatre

Science.gov (United States)

Gerds, Thomas A.

2016-01-01

Survival is difficult to estimate when observation periods of individuals differ in length. Students imagine sailing the Titanic and then recording whether they "live" or "die." A clever algorithm is performed which results in the Kaplan-Meier estimate of survival.

12. Modified Weighted Kaplan-Meier Estimator

Directory of Open Access Journals (Sweden)

2007-01-01

Full Text Available In many medical studies majority of the study subjects do not reach to the event of interest during the study period. In such situations survival probabilities can be estimated for censored observation by Kaplan Meier estimator. However in case of heavy censoring these estimates are biased and over estimate the survival probabilities. For heavy censoring a new method was proposed (Bahrawar Jan, 2005 to estimate the survival probabilities by weighting the censored observations by non-censoring rate. But the main defect in this weighted method is that it gives zero weight to the last censored observation. To over come this difficulty a new weight is proposed which also gives a non-zero weight to the last censored observation.

Science.gov (United States)

Plante, Jean-François

2009-09-01

The minimum averaged mean squared error nonparametric adaptive weights use data from m possibly different populations to infer about one population of interest. The definition of these weights is based on the properties of the empirical distribution function. We use the Kaplan-Meier estimate to let the weights accommodate right-censored data and use them to define the weighted Kaplan-Meier estimate. The proposed estimate is smoother than the usual Kaplan-Meier estimate and converges uniformly in probability to the target distribution. Simulations show that the performances of the weighted Kaplan-Meier estimate on finite samples exceed that of the usual Kaplan-Meier estimate. A case study is also presented.

14. Competing risk bias was common in Kaplan-Meier risk estimates published in prominent medical journals.

Science.gov (United States)

van Walraven, Carl; McAlister, Finlay A

2016-01-01

Risk estimates from Kaplan-Meier curves are well known to medical researchers, reviewers, and editors. In this study, we determined the proportion of Kaplan-Meier analyses published in prominent medical journals that are potentially biased because of competing events ("competing risk bias"). We randomly selected 100 studies that had at least one Kaplan-Meier analysis and were recently published in prominent medical journals. Susceptibility to competing risk bias was determined by examining the outcome and potential competing events. In susceptible studies, bias was quantified using a previously validated prediction model when the number of outcomes and competing events were given. Forty-six studies (46%) contained Kaplan-Meier analyses susceptible to competing risk bias. Sixteen studies (34.8%) susceptible to competing risk cited the number of outcomes and competing events; in six of these studies (6/16, 37.5%), the outcome risk from the Kaplan-Meier estimate (relative to the true risk) was biased upward by 10% or more. Almost half of Kaplan-Meier analyses published in medical journals are susceptible to competing risk bias and may overestimate event risk. This bias was found to be quantitatively important in a third of such studies. Copyright © 2016 Elsevier Inc. All rights reserved.

15. The Kaplan-Meier Integral in the Presence of Covariates

DEFF Research Database (Denmark)

Gerds, Thomas A.; Beyersmann, Jan; Starkopf, Liis

2017-01-01

In a series of papers, Winfried Stute introduced and studied the Kaplan-Meier integral as an estimator of parameters of the joint distribution of survival times and covariates based on right censored survival times. We present a review of this work and show that his estimator has an inverse...... probability of censoring weighting (IPCW) representation. We further investigate large sample bias and efficiency. As a central application in a biostatistical context, Kaplan-Meier integrals are used to estimate transition probabilities in a non-Markov illness-death model. We extend already existing...

16. Applying Kaplan-Meier to Item Response Data

Science.gov (United States)

McNeish, Daniel

2018-01-01

Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…

17. Biostatistics with emphasis on life table survival rate calculations (including Kaplan Meier) and the logrank test

International Nuclear Information System (INIS)

Mould, Richard F.

1995-01-01

Purpose/Objective: To explain some of the most useful statistical calculation procedures which are relevant to radiation oncologists and to provide insights on what tests and procedures should be used in various situations such as when survival rates and their associated standard errors have to be determined. To describe some of the problems and pitfalls in clinical trial designs which have to be overcome if a trial is to have the possibility of reaching a successful conclusion. To review methods of computing criteria to quantitatively describe criteria of success (eg. quality of life, long-term survival, cure) of radiation oncology and to suggest possible future statistical improvements in this area. Chi-Squared Test: The chi-squared test is probably the most useful of the tests of statistical significance for the radiation oncologist. Applications will be described, including goodness of fit tests and 2x2 contingency tables which are the simplest of the generalized nxm contingency tables. Degrees of Freedom and P<0.05 for Significance Testing: An Introduction will be given to the meaning of P<0.05 in relation to significance testing and the use of tables of critical values of a test statistic (eg. chi-squared) which are given as a function of degrees of freedom and P-values. Survival Rate Calculations for Grouped and Ungrouped Data: The life-table method (sometimes termed the actuarial method) will be explained for both grouped data (eg. survival times grouped in annual intervals for patients who have died and for those who are still alive or lost to follow-up) and for ungrouped data (when individual survival times are used). The method for ungrouped data is variously termed the Kaplan-Meier or Product Limit method. Logrank Test: This is the most useful test for comparison of the survival experience of two groups of patients and its use will be explained. In part the computation is similar to that for the Kaplan-Meier/Product Limit method

18. Biostatistics with emphasis on life table survival rate calculations (including Kaplan Meier) and the logrank test

Energy Technology Data Exchange (ETDEWEB)

Mould, Richard F

1995-07-01

Purpose/Objective: To explain some of the most useful statistical calculation procedures which are relevant to radiation oncologists and to provide insights on what tests and procedures should be used in various situations such as when survival rates and their associated standard errors have to be determined. To describe some of the problems and pitfalls in clinical trial designs which have to be overcome if a trial is to have the possibility of reaching a successful conclusion. To review methods of computing criteria to quantitatively describe criteria of success (eg. quality of life, long-term survival, cure) of radiation oncology and to suggest possible future statistical improvements in this area. Chi-Squared Test: The chi-squared test is probably the most useful of the tests of statistical significance for the radiation oncologist. Applications will be described, including goodness of fit tests and 2x2 contingency tables which are the simplest of the generalized nxm contingency tables. Degrees of Freedom and P<0.05 for Significance Testing: An Introduction will be given to the meaning of P<0.05 in relation to significance testing and the use of tables of critical values of a test statistic (eg. chi-squared) which are given as a function of degrees of freedom and P-values. Survival Rate Calculations for Grouped and Ungrouped Data: The life-table method (sometimes termed the actuarial method) will be explained for both grouped data (eg. survival times grouped in annual intervals for patients who have died and for those who are still alive or lost to follow-up) and for ungrouped data (when individual survival times are used). The method for ungrouped data is variously termed the Kaplan-Meier or Product Limit method. Logrank Test: This is the most useful test for comparison of the survival experience of two groups of patients and its use will be explained. In part the computation is similar to that for the Kaplan-Meier/Product Limit method.

19. Gastric emptying of solids in humans: improved evaluation by Kaplan-Meier plots, with special reference to obesity and gender

International Nuclear Information System (INIS)

Grybaeck, P.; Naeslund, E.; Hellstroem, P.M.; Jacobsson, H.; Backman, L.

1996-01-01

It has been suggested that obesity is associated with an altered rate of gastric emptying, and that there are also sex differences in gastric emptying. The results of earlier studies examining gastric emptying rates in obesity and in males and females have proved inconsistent. The aim of this study was to investigate the influence of obesity and gender on gastric emptying, by extending conventional evaluation methods with Kaplan-Meier plots, in order to assess whether these factors have to be accounted for when interpreting results of scintigraphic gastric emptying tests. Twenty-one normal-weight volunteers and nine obese subjects were fed a standardised technetium-99m labelled albumin omelette. Imaging data were acquired at 5- and 10-min intervals in both posterior and anterior projections with the subjects in the sitting position. The half-emptying time, analysed by Kaplan-Meier plot (log-rank test), were shorter in obese subjects compared to normal-weight subjects and later in females compared to males. Also, the lag-phase and half-emptying time were shorter in obese females than in normal females. This study shows an association between different gastric emptying rates and obesity and gender. Therefore, body mass index and gender have to be accounted for when interpreting results of scintigraphic gastric emptying studies. (orig.). With 6 figs., 4 tabs

20. Gastric emptying of solids in humans: improved evaluation by Kaplan-Meier plots, with special reference to obesity and gender

Energy Technology Data Exchange (ETDEWEB)

Grybaeck, P. [Department of Diagnostic Radiology, Karolinska Hospital, Stockholm (Sweden); Naeslund, E. [Department of Surgery, Karolinska Institute at Danderyd Hospital, Stockholm (Sweden); Hellstroem, P.M. [Department of Internal Medicine, Karolinska Hospital, Stockholm (Sweden); Jacobsson, H. [Department of Diagnostic Radiology, Karolinska Hospital, Stockholm (Sweden)]|[Department of Nuclear Medicine, Karolinska Hospital, Stockholm (Sweden); Backman, L. [Department of Surgery, Karolinska Institute at Danderyd Hospital, Stockholm (Sweden)

1996-12-01

It has been suggested that obesity is associated with an altered rate of gastric emptying, and that there are also sex differences in gastric emptying. The results of earlier studies examining gastric emptying rates in obesity and in males and females have proved inconsistent. The aim of this study was to investigate the influence of obesity and gender on gastric emptying, by extending conventional evaluation methods with Kaplan-Meier plots, in order to assess whether these factors have to be accounted for when interpreting results of scintigraphic gastric emptying tests. Twenty-one normal-weight volunteers and nine obese subjects were fed a standardised technetium-99m labelled albumin omelette. Imaging data were acquired at 5- and 10-min intervals in both posterior and anterior projections with the subjects in the sitting position. The half-emptying time, analysed by Kaplan-Meier plot (log-rank test), were shorter in obese subjects compared to normal-weight subjects and later in females compared to males. Also, the lag-phase and half-emptying time were shorter in obese females than in normal females. This study shows an association between different gastric emptying rates and obesity and gender. Therefore, body mass index and gender have to be accounted for when interpreting results of scintigraphic gastric emptying studies. (orig.). With 6 figs., 4 tabs.

1. A versatile test for equality of two survival functions based on weighted differences of Kaplan-Meier curves.

Science.gov (United States)

Uno, Hajime; Tian, Lu; Claggett, Brian; Wei, L J

2015-12-10

With censored event time observations, the logrank test is the most popular tool for testing the equality of two underlying survival distributions. Although this test is asymptotically distribution free, it may not be powerful when the proportional hazards assumption is violated. Various other novel testing procedures have been proposed, which generally are derived by assuming a class of specific alternative hypotheses with respect to the hazard functions. The test considered by Pepe and Fleming (1989) is based on a linear combination of weighted differences of the two Kaplan-Meier curves over time and is a natural tool to assess the difference of two survival functions directly. In this article, we take a similar approach but choose weights that are proportional to the observed standardized difference of the estimated survival curves at each time point. The new proposal automatically makes weighting adjustments empirically. The new test statistic is aimed at a one-sided general alternative hypothesis and is distributed with a short right tail under the null hypothesis but with a heavy tail under the alternative. The results from extensive numerical studies demonstrate that the new procedure performs well under various general alternatives with a caution of a minor inflation of the type I error rate when the sample size is small or the number of observed events is small. The survival data from a recent cancer comparative study are utilized for illustrating the implementation of the process. Copyright © 2015 John Wiley & Sons, Ltd.

2. Survival analysis II: Cox regression

NARCIS (Netherlands)

Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.

2011-01-01

In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the

3. The Kaplan-Meier theatre

DEFF Research Database (Denmark)

Gerds, Thomas Alexander

2016-01-01

Survival probabilities are not straightforward toobtain when observation periods of individuals differ in length. The Kaplan–Meier theatre is a classroom activity, which starts by a data collection exercise where students imagine sailing on the Titanic. Several students ‘fall in the water’ where....... The Kaplan–Meier method assumes that censored individuals have the same survival chances as the individuals who are still observed. During the Kaplan–Meier theatre, students perform a clever algorithm (Efron 1967), which translates the assumption into action and results in the Kaplan–Meier estimate...

4. Regression Analysis

CERN Document Server

Freund, Rudolf J; Sa, Ping

2006-01-01

The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design

5. Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b

DEFF Research Database (Denmark)

Kyndi, M.; Sorensen, F.B.; Alsner, J.

2008-01-01

-Meier probability plots showed a significantly improved overall survival after PMRT for the BCL2 positive subgroup, whereas practically no survival improvement was seen after PMRT for the BCL2 negative subgroup. In multivariate analysis of OS, however, no significant interaction was found between BCL2......Purpose. To examine p53 and BCL2 expression in high-risk breast cancer patients randomized to postmastectomy radiotherapy (PMRT). Patients and methods. The present analysis included 1000 of 3 083 high-risk breast cancer patients randomly assigned to PMRT in the DBCG82 b&c studies. Tissue microarray......, Kaplan-Meier probability plots, Log-rank test, and Cox univariate and multivariate regression analyses. Results. p53 accumulation was not significantly associated with increased overall mortality, DM or LRR probability in univariate or multivariate Cox regression analyses. Kaplan-Meier probability plots...

6. Regression analysis by example

CERN Document Server

Chatterjee, Samprit

2012-01-01

Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

7. Survival Analysis of Patients with End Stage Renal Disease

Science.gov (United States)

Urrutia, J. D.; Gayo, W. S.; Bautista, L. A.; Baccay, E. B.

2015-06-01

This paper provides a survival analysis of End Stage Renal Disease (ESRD) under Kaplan-Meier Estimates and Weibull Distribution. The data were obtained from the records of V. L. MakabaliMemorial Hospital with respect to time t (patient's age), covariates such as developed secondary disease (Pulmonary Congestion and Cardiovascular Disease), gender, and the event of interest: the death of ESRD patients. Survival and hazard rates were estimated using NCSS for Weibull Distribution and SPSS for Kaplan-Meier Estimates. These lead to the same conclusion that hazard rate increases and survival rate decreases of ESRD patient diagnosed with Pulmonary Congestion, Cardiovascular Disease and both diseases with respect to time. It also shows that female patients have a greater risk of death compared to males. The probability risk was given the equation R = 1 — e-H(t) where e-H(t) is the survival function, H(t) the cumulative hazard function which was created using Cox-Regression.

8. Bayesian logistic regression analysis

NARCIS (Netherlands)

Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

2012-01-01

In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

9. Linear Regression Analysis

CERN Document Server

Seber, George A F

2012-01-01

Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

10. Multicollinearity and Regression Analysis

Science.gov (United States)

Daoud, Jamal I.

2017-12-01

In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

11. Understanding logistic regression analysis

OpenAIRE

Sperandei, Sandro

2014-01-01

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...

12. Understanding logistic regression analysis.

Science.gov (United States)

Sperandei, Sandro

2014-01-01

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

13. [Survival analysis with competing risks: estimating failure probability].

Science.gov (United States)

2004-01-01

To show the impact of competing risks of death on survival analysis. We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection). Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.

14. Multiple linear regression analysis

Science.gov (United States)

Edwards, T. R.

1980-01-01

Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

15. Markov chains and semi-Markov models in time-to-event analysis.

Science.gov (United States)

Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J

2013-10-25

A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.

16. Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b and c

International Nuclear Information System (INIS)

Kyndi, M.; Alsner, J.; Nielsen, H.M.; Overgaard, J.; Soerensen, F.B.; Knudsen, H.; Overgaard, M.

2008-01-01

Purpose. To examine p53 and BCL2 expression in high-risk breast cancer patients randomized to postmastectomy radiotherapy (PMRT). Patients and methods. The present analysis included 1 000 of 3 083 high-risk breast cancer patients randomly assigned to PMRT in the DBCG82 b and c studies. Tissue microarray sections were stained with immunohistochemistry for p53 and BCL2. Median potential follow-up was 17 years. Clinical endpoints were locoregional recurrence (LRR), distant metastases (DM), overall mortality, and overall survival (OS). Statistical analyses included Kappa statistics, χ2 or exact tests, Kaplan-Meier probability plots, Log-rank test, and Cox univariate and multivariate regression analyses. Results. p53 accumulation was not significantly associated with increased overall mortality, DM or LRR probability in univariate or multivariate Cox regression analyses. Kaplan-Meier probability plots showed reduced OS and improved DM and LRR probabilities after PMRT within subgroups of both p53 negative and p53 positive patients. Negative BCL2 expression was significantly associated with increased overall mortality, DM and LRR probability in multivariate Cox regression analyses. Kaplan-Meier probability plots showed a significantly improved overall survival after PMRT for the BCL2 positive subgroup, whereas practically no survival improvement was seen after PMRT for the BCL2 negative subgroup. In multivariate analysis of OS, however, no significant interaction was found between BCL2 and randomization status. Significant reductions in LRR probability after PMRT were recorded within both the BCL2 positive and BCL2 negative subgroups. Conclusion. p53 was not associated with survival after radiotherapy in high-risk breast cancer, but BCL2 might be

17. Restaging and Survival Analysis of 4036 Ovarian Cancer Patients According to the 2013 FIGO Classification for Ovarian, Fallopian Tube, and Primary Peritoneal Cancer

DEFF Research Database (Denmark)

Rosendahl, Mikkel; Høgdall, Claus Kim; Mosgaard, Berit Jul

2016-01-01

OBJECTIVE: With the 2013 International Federation of Gynecology and Obstetrics (FIGO) staging for ovarian, fallopian tube, and primary peritoneal cancer, the number of substages changed from 10 to 14. Any classification of a malignancy should easily assign patients to prognostic groups, refer....... MATERIALS AND METHODS: Demographic, surgical, histological, and survival data from 4036 ovarian cancer patients were used in the analysis. Five-year survival rates (5YSR) and hazard ratios for the old and revised FIGO staging were calculated using Kaplan-Meier curves and Cox regression. RESULTS: A total...

18. Análisis de supervivencia en presencia de riesgos competitivos: estimadores de la probabilidad de suceso Survival analysis with competing risks: estimating failure probability

Directory of Open Access Journals (Sweden)

Javier Llorca

2004-10-01

Full Text Available Objetivo: Mostrar el efecto de los riesgos competitivos de muerte en el análisis de supervivencia. Métodos: Se presenta un ejemplo sobre la supervivencia libre de rechazo tras un trasplante cardíaco, en el que la muerte antes de desarrollar el rechazo actúa como riesgo competitivo. Mediante una simulación se comparan el estimador de Kaplan-Meier y el modelo de decrementos múltiples. Resultados: El método de Kaplan-Meier sobrestima el riesgo de rechazo. A continuación, se expone la aplicación del modelo de decrementos múltiples para el análisis de acontecimientos secundarios (en el ejemplo, la muerte tras el rechazo. Finalmente, se discuten las asunciones propias del método de Kaplan-Meier y las razones por las que no puede ser aplicado en presencia de riesgos competitivos. Conclusiones: El análisis de supervivencia debe ajustarse por los riesgos competitivos de muerte para evitar la sobrestimación del riesgo de fallo que se produce con el método de Kaplan-Meier.Objective: To show the impact of competing risks of death on survival analysis. Method: We provide an example of survival time without chronic rejection after heart transplantation, where death before rejection acts as a competing risk. Using a computer simulation, we compare the Kaplan-Meier estimator and the multiple decrement model. Results: The Kaplan-Meier method overestimated the probability of rejection. Next, we illustrate the use of the multiple decrement model to analyze secondary end points (in our example: death after rejection. Finally, we discuss Kaplan-Meier assumptions and why they fail in the presence of competing risks. Conclusions: Survival analysis should be adjusted for competing risks of death to avoid overestimation of the risk of rejection produced with the Kaplan-Meier method.

19. The prognostic value of lymph node metastases and tumour regression grade in rectal cancer patients treated with long-course preoperative chemoradiotherapy

DEFF Research Database (Denmark)

Lindebjerg, J; Spindler, Karen-Lise Garm; Ploen, J

2009-01-01

to the tumour regression grade system and lymph node status in the surgical specimen was assessed. The prognostic value of clinico-pathological parameters was analysed using univariate analysis and Kaplan-Meier methods for comparison of groups. RESULTS: All patients responded to treatment and 47% had a major......OBJECTIVE: The purpose of the present study was to investigate the impact of tumour regression and the post-treatment lymph node status on the prognosis of rectal cancer treated by preoperative neoadjuvant chemoradiotherapy. METHOD: One hundred and thirty-five patients with locally advanced T3.......01). CONCLUSION: The combined assessment of lymph-node status and tumour response has strong prognostic value in locally advanced rectal cancer patient treated with preoperative long-course chemoradiation....

20. Polylinear regression analysis in radiochemistry

International Nuclear Information System (INIS)

Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.

1995-01-01

A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis

1. Polynomial regression analysis and significance test of the regression function

International Nuclear Information System (INIS)

Gao Zhengming; Zhao Juan; He Shengping

2012-01-01

In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

2. Regression analysis with categorized regression calibrated exposure: some interesting findings

Directory of Open Access Journals (Sweden)

Hjartåker Anette

2006-07-01

Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

3. Exponential Decay Nonlinear Regression Analysis of Patient Survival Curves: Preliminary Assessment in Non-Small Cell Lung Cancer

Science.gov (United States)

Stewart, David J.; Behrens, Carmen; Roth, Jack; Wistuba, Ignacio I.

2010-01-01

Background For processes that follow first order kinetics, exponential decay nonlinear regression analysis (EDNRA) may delineate curve characteristics and suggest processes affecting curve shape. We conducted a preliminary feasibility assessment of EDNRA of patient survival curves. Methods EDNRA was performed on Kaplan-Meier overall survival (OS) and time-to-relapse (TTR) curves for 323 patients with resected NSCLC and on OS and progression-free survival (PFS) curves from selected publications. Results and Conclusions In our resected patients, TTR curves were triphasic with a “cured” fraction of 60.7% (half-life [t1/2] >100,000 months), a rapidly-relapsing group (7.4%, t1/2=5.9 months) and a slowly-relapsing group (31.9%, t1/2=23.6 months). OS was uniphasic (t1/2=74.3 months), suggesting an impact of co-morbidities; hence, tumor molecular characteristics would more likely predict TTR than OS. Of 172 published curves analyzed, 72 (42%) were uniphasic, 92 (53%) were biphasic, 8 (5%) were triphasic. With first-line chemotherapy in advanced NSCLC, 87.5% of curves from 2-3 drug regimens were uniphasic vs only 20% of those with best supportive care or 1 drug (p<0.001). 54% of curves from 2-3 drug regimens had convex rapid-decay phases vs 0% with fewer agents (p<0.001). Curve convexities suggest that discontinuing chemotherapy after 3-6 cycles “synchronizes” patient progression and death. With postoperative adjuvant chemotherapy, the PFS rapid-decay phase accounted for a smaller proportion of the population than in controls (p=0.02) with no significant difference in rapid-decay t1/2, suggesting adjuvant chemotherapy may move a subpopulation of patients with sensitive tumors from the relapsing group to the cured group, with minimal impact on time to relapse for a larger group of patients with resistant tumors. In untreated patients, the proportion of patients in the rapid-decay phase increased (p=0.04) while rapid-decay t1/2 decreased (p=0.0004) with increasing

4. Principal component regression analysis with SPSS.

Science.gov (United States)

Liu, R X; Kuang, J; Gong, Q; Hou, X L

2003-06-01

The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

5. Regression Analysis by Example. 5th Edition

Science.gov (United States)

2012-01-01

Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

6. Gaussian process regression analysis for functional data

CERN Document Server

Shi, Jian Qing

2011-01-01

Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

7. Multivariate Regression Analysis and Slaughter Livestock,

Science.gov (United States)

AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

8. Applied regression analysis a research tool

CERN Document Server

Pantula, Sastry; Dickey, David

1998-01-01

Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

9. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

Science.gov (United States)

This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

10. Hierarchical regression analysis in structural Equation Modeling

NARCIS (Netherlands)

de Jong, P.F.

1999-01-01

In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

11. Regression Analysis and the Sociological Imagination

Science.gov (United States)

De Maio, Fernando

2014-01-01

Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

12. Survival analysis in hematologic malignancies: recommendations for clinicians

Science.gov (United States)

Delgado, Julio; Pereira, Arturo; Villamor, Neus; López-Guillermo, Armando; Rozman, Ciril

2014-01-01

The widespread availability of statistical packages has undoubtedly helped hematologists worldwide in the analysis of their data, but has also led to the inappropriate use of statistical methods. In this article, we review some basic concepts of survival analysis and also make recommendations about how and when to perform each particular test using SPSS, Stata and R. In particular, we describe a simple way of defining cut-off points for continuous variables and the appropriate and inappropriate uses of the Kaplan-Meier method and Cox proportional hazard regression models. We also provide practical advice on how to check the proportional hazards assumption and briefly review the role of relative survival and multiple imputation. PMID:25176982

13. Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b&c

DEFF Research Database (Denmark)

Kyndi, Marianne; Sørensen, Flemming Brandt; Knudsen, Helle

2008-01-01

-Meier probability plots showed a significantly improved overall survival after PMRT for the BCL2 positive subgroup, whereas practically no survival improvement was seen after PMRT for the BCL2 negative subgroup. In multivariate analysis of OS, however, no significant interaction was found between BCL2......PURPOSE: To examine p53 and BCL2 expression in high-risk breast cancer patients randomized to postmastectomy radiotherapy (PMRT). PATIENTS AND METHODS: The present analysis included 1 000 of 3 083 high-risk breast cancer patients randomly assigned to PMRT in the DBCG82 b&c studies. Tissue...... tests, Kaplan-Meier probability plots, Log-rank test, and Cox univariate and multivariate regression analyses. RESULTS: p53 accumulation was not significantly associated with increased overall mortality, DM or LRR probability in univariate or multivariate Cox regression analyses. Kaplan...

14. Carbonic anhydrase IX and response to postmastectomy radiotherapy in high-risk breast cancer: a subgroup analysis of the DBCG82 b and c trials

DEFF Research Database (Denmark)

Kyndi, M.; Sorensen, F.B.; Alsner, J.

2008-01-01

-points were loco-regional recurrence, distant metastases, disease-specific survival and overall survival. Statistical analyses included kappa statistics, chi(2) or exact tests, Kaplan-Meier probability plots, Log-rank test and Cox regression analyses. Results CA IX was assessable in 945 cores. The percentage...

15. Two Paradoxes in Linear Regression Analysis

Science.gov (United States)

FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

2016-01-01

Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

16. Regression analysis using dependent Polya trees.

Science.gov (United States)

2013-11-30

Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

17. Method for nonlinear exponential regression analysis

Science.gov (United States)

Junkin, B. G.

1972-01-01

Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

18. Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma.

Science.gov (United States)

Mount, David W; Putnam, Charles W; Centouri, Sara M; Manziello, Ann M; Pandey, Ritu; Garland, Linda L; Martinez, Jesse D

2014-06-10

Numerous microarray-based prognostic gene expression signatures of primary neoplasms have been published but often with little concurrence between studies, thus limiting their clinical utility. We describe a methodology using logistic regression, which circumvents limitations of conventional Kaplan Meier analysis. We applied this approach to a thrice-analyzed and published squamous cell carcinoma (SQCC) of the lung data set, with the objective of identifying gene expressions predictive of early death versus long survival in early-stage disease. A similar analysis was applied to a data set of triple negative breast carcinoma cases, which present similar clinical challenges. Important to our approach is the selection of homogenous patient groups for comparison. In the lung study, we selected two groups (including only stages I and II), equal in size, of earliest deaths and longest survivors. Genes varying at least four-fold were tested by logistic regression for accuracy of prediction (area under a ROC plot). The gene list was refined by applying two sliding-window analyses and by validations using a leave-one-out approach and model building with validation subsets. In the breast study, a similar logistic regression analysis was used after selecting appropriate cases for comparison. A total of 8594 variable genes were tested for accuracy in predicting earliest deaths versus longest survivors in SQCC. After applying the two sliding window and the leave-one-out analyses, 24 prognostic genes were identified; most of them were B-cell related. When the same data set of stage I and II cases was analyzed using a conventional Kaplan Meier (KM) approach, we identified fewer immune-related genes among the most statistically significant hits; when stage III cases were included, most of the prognostic genes were missed. Interestingly, logistic regression analysis of the breast cancer data set identified many immune-related genes predictive of clinical outcome. Stratification of

19. The Short-Term and Intermediate-Term Risk of Second Neoplasms After Diagnosis and Treatment of Unilateral Vestibular Schwannoma: Analysis of 9460 Cases

International Nuclear Information System (INIS)

Carlson, Matthew L.; Glasgow, Amy E.; Jacob, Jeffrey T.; Habermann, Elizabeth B.; Link, Michael J.

2016-01-01

Purpose: To determine the incidence of second intracranial neoplasms after the diagnosis and treatment of sporadic vestibular schwannoma (VS). Methods and Materials: Analysis of the Surveillance, Epidemiology, and End Results (SEER) database including all patients identified with a diagnosis of VS and a second intracranial tumor. The Kaplan-Meier method was used to determine the incidence of second tumors while allowing for censoring at loss to follow-up or death. Multivariable associations between treatment modality and second tumor formation were explored using Cox proportional hazards regression analysis. Two illustrative cases are also presented. Results: In all, 9460 patients with unilateral VS were identified between 2004 and 2012. Overall, 66 (0.7%) patients experienced a separate intracranial tumor, benign or malignant, after treatment of VS. Kaplan-Meier estimates for time to second neoplasm at 1, 3, and 5 years were 0.3%, 0.7%, and 0.8%, respectively. Multivariable comparison between VS treatment modalities revealed that the risk of second tumor formation was similar between radiation and surgery (hazard ratio [HR] 0.74; 95% confidence interval [CI] 0.36-1.51; P=.93) but greater for tumors managed with observation alone compared with radiation (HR 2.48; 95% CI 1.31-4.71; P<.01). A total of 6 (0.06%) intracranial malignancies were diagnosed after VS treatment. Kaplan-Meier estimates for time to malignancy at 1, 3, and 5 years were 0%, 0.1%, and 0.1%, respectively. After adjustment for age at diagnosis, sex, and treatment modality, the probability of malignancy after radiation was not greater than after observation alone or microsurgery (HR 4.88; 95% CI 0.85-28.14; P=.08) during the study period. Conclusions: The risk for the development of a second intracranial neoplasm, benign or malignant, at 5 years after treatment of unilateral VS is approximately 0.8%, whereas the risk of acquiring a separate malignancy is 0.1%, or approximately 1 per 1000 cases

20. The Short-Term and Intermediate-Term Risk of Second Neoplasms After Diagnosis and Treatment of Unilateral Vestibular Schwannoma: Analysis of 9460 Cases

Energy Technology Data Exchange (ETDEWEB)

Carlson, Matthew L., E-mail: carlson.matthew@mayo.edu [Department of Otorhinolaryngology, Mayo Clinic School of Medicine, Rochester, Minnesota (United States); Department of Neurologic Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota (United States); Glasgow, Amy E. [Division of Health Care Policy and Research and the Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic School of Medicine, Rochester, Minnesota (United States); Jacob, Jeffrey T. [Department of Neurologic Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota (United States); Habermann, Elizabeth B. [Division of Health Care Policy and Research and the Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic School of Medicine, Rochester, Minnesota (United States); Link, Michael J. [Department of Otorhinolaryngology, Mayo Clinic School of Medicine, Rochester, Minnesota (United States); Department of Neurologic Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota (United States)

2016-07-15

Purpose: To determine the incidence of second intracranial neoplasms after the diagnosis and treatment of sporadic vestibular schwannoma (VS). Methods and Materials: Analysis of the Surveillance, Epidemiology, and End Results (SEER) database including all patients identified with a diagnosis of VS and a second intracranial tumor. The Kaplan-Meier method was used to determine the incidence of second tumors while allowing for censoring at loss to follow-up or death. Multivariable associations between treatment modality and second tumor formation were explored using Cox proportional hazards regression analysis. Two illustrative cases are also presented. Results: In all, 9460 patients with unilateral VS were identified between 2004 and 2012. Overall, 66 (0.7%) patients experienced a separate intracranial tumor, benign or malignant, after treatment of VS. Kaplan-Meier estimates for time to second neoplasm at 1, 3, and 5 years were 0.3%, 0.7%, and 0.8%, respectively. Multivariable comparison between VS treatment modalities revealed that the risk of second tumor formation was similar between radiation and surgery (hazard ratio [HR] 0.74; 95% confidence interval [CI] 0.36-1.51; P=.93) but greater for tumors managed with observation alone compared with radiation (HR 2.48; 95% CI 1.31-4.71; P<.01). A total of 6 (0.06%) intracranial malignancies were diagnosed after VS treatment. Kaplan-Meier estimates for time to malignancy at 1, 3, and 5 years were 0%, 0.1%, and 0.1%, respectively. After adjustment for age at diagnosis, sex, and treatment modality, the probability of malignancy after radiation was not greater than after observation alone or microsurgery (HR 4.88; 95% CI 0.85-28.14; P=.08) during the study period. Conclusions: The risk for the development of a second intracranial neoplasm, benign or malignant, at 5 years after treatment of unilateral VS is approximately 0.8%, whereas the risk of acquiring a separate malignancy is 0.1%, or approximately 1 per 1000 cases

1. On logistic regression analysis of dichotomized responses.

Science.gov (United States)

Lu, Kaifeng

2017-01-01

We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

2. Robust Mediation Analysis Based on Median Regression

Science.gov (United States)

Yuan, Ying; MacKinnon, David P.

2014-01-01

Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925

3. Multiple factor analysis of metachronous upper urinary tract transitional cell carcinoma after radical cystectomy

Directory of Open Access Journals (Sweden)

P. Wang

2007-07-01

Full Text Available Transitional cell carcinoma (TCC of the urothelium is often multifocal and subsequent tumors may occur anywhere in the urinary tract after the treatment of a primary carcinoma. Patients initially presenting a bladder cancer are at significant risk of developing metachronous tumors in the upper urinary tract (UUT. We evaluated the prognostic factors of primary invasive bladder cancer that may predict a metachronous UUT TCC after radical cystectomy. The records of 476 patients who underwent radical cystectomy for primary invasive bladder TCC from 1989 to 2001 were reviewed retrospectively. The prognostic factors of UUT TCC were determined by multivariate analysis using the COX proportional hazards regression model. Kaplan-Meier analysis was also used to assess the variable incidence of UUT TCC according to different risk factors. Twenty-two patients (4.6%. developed metachronous UUT TCC. Multiplicity, prostatic urethral involvement by the bladder cancer and the associated carcinoma in situ (CIS were significant and independent factors affecting the occurrence of metachronous UUT TCC (P = 0.0425, 0.0082, and 0.0006, respectively. These results were supported, to some extent, by analysis of the UUT TCC disease-free rate by the Kaplan-Meier method, whereby patients with prostatic urethral involvement or with associated CIS demonstrated a significantly lower metachronous UUT TCC disease-free rate than patients without prostatic urethral involvement or without associated CIS (log-rank test, P = 0.0116 and 0.0075, respectively. Multiple tumors, prostatic urethral involvement and associated CIS were risk factors for metachronous UUT TCC, a conclusion that may be useful for designing follow-up strategies for primary invasive bladder cancer after radical cystectomy.

4. Functional data analysis of generalized regression quantiles

KAUST Repository

Guo, Mengmeng

2013-11-05

Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

5. Functional data analysis of generalized regression quantiles

KAUST Repository

Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl

2013-01-01

Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

6. CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin's and aggressive non-hodgkin's lymphomas

International Nuclear Information System (INIS)

Ganeshan, B.; Miles, K.A.; Shortman, R.; Afaq, A.; Ardeshna, K.M.; Groves, A.M.; Kayani, I.; Babikir, S.

2017-01-01

The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. (orig.)

7. Survival analysis

International Nuclear Information System (INIS)

1999-01-01

The primary endpoint in the majority of the studies has been either disease recurrence or death. This kind of analysis requires a special method since all patients in the study experience the endpoint. The standard method for estimating such survival distribution is Kaplan Meier method. The survival function is defined as the proportion of individuals who survive beyond certain time. Multi-variate comparison for survival has been carried out with Cox's proportional hazard model

8. Two-year survival analysis of twisted wire fixed retainer versus spiral wire and fiber-reinforced composite retainers: a preliminary explorative single-blind randomized clinical trial.

Science.gov (United States)

Sobouti, Farhad; Rakhshan, Vahid; Saravi, Mahdi Gholamrezaei; Zamanian, Ali; Shariati, Mahsa

2016-03-01

Traditional retainers (both metal and fiber-reinforced composite [FRC]) have limitations, and a retainer made from more flexible ligature wires might be advantageous. We aimed to compare an experimental design with two traditional retainers. In this prospective preliminary clinical trial, 150 post-treatment patients were enrolled and randomly divided into three groups of 50 patients each to receive mandibular canine-to-canine retainers made of FRC, flexible spiral wire (FSW), and twisted wire (TW). The patients were monitored monthly. The time at which the first signs of breakage/debonding were detected was recorded. The success rates of the retainers were compared using chi-squared, Kaplan-Meier, and Cox proportional-hazard regression analyses (α = 0.05). In total, 42 patients in the FRC group, 41 in the FSW group, and 45 in the TW group completed the study. The 2-year failure rates were 35.7% in the FRC group, 26.8% in the FSW group, and 17.8% in the TW group. These rates differed insignificantly (chi-squared p = 0.167). According to the Kaplan-Meier analysis, failure occurred at 19.95 months in the FRC group, 21.37 months in the FSW group, and 22.36 months in the TW group. The differences between the survival rates in the three groups were not significant (Cox regression p = 0.146). Although the failure rate of the experimental retainer was two times lower than that of the FRC retainer, the difference was not statistically significant. The experimental TW retainer was successful, and larger studies are warranted to verify these results.

9. CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin's and aggressive non-hodgkin's lymphomas

Energy Technology Data Exchange (ETDEWEB)

Ganeshan, B.; Miles, K.A.; Shortman, R.; Afaq, A.; Ardeshna, K.M.; Groves, A.M.; Kayani, I. [University College London, Institute of Nuclear Medicine, London (United Kingdom); Babikir, S. [International Atomic Energy Agency (IAEA), Human Health Division, Nuclear Medicine and Diagnostic Imaging Section, Vienna (Austria)

2017-03-15

The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. (orig.)

10. A method for nonlinear exponential regression analysis

Science.gov (United States)

Junkin, B. G.

1971-01-01

A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

11. Regression analysis for the social sciences

CERN Document Server

Gordon, Rachel A

2010-01-01

The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.

12. Credit Scoring Problem Based on Regression Analysis

OpenAIRE

2014-01-01

ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

13. Regression analysis for the social sciences

CERN Document Server

Gordon, Rachel A

2015-01-01

Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.

14. Bias and precision of methods for estimating the difference in restricted mean survival time from an individual patient data meta-analysis

Directory of Open Access Journals (Sweden)

Béranger Lueza

2016-03-01

Full Text Available Abstract Background The difference in restricted mean survival time ( rmstD t ∗ $$rmstD\\left({t}^{\\ast}\\right$$ , the area between two survival curves up to time horizon t ∗ $${t}^{\\ast }$$ , is often used in cost-effectiveness analyses to estimate the treatment effect in randomized controlled trials. A challenge in individual patient data (IPD meta-analyses is to account for the trial effect. We aimed at comparing different methods to estimate the rmstD t ∗ $$rmstD\\left({t}^{\\ast}\\right$$ from an IPD meta-analysis. Methods We compared four methods: the area between Kaplan-Meier curves (experimental vs. control arm ignoring the trial effect (Naïve Kaplan-Meier; the area between Peto curves computed at quintiles of event times (Peto-quintile; the weighted average of the areas between either trial-specific Kaplan-Meier curves (Pooled Kaplan-Meier or trial-specific exponential curves (Pooled Exponential. In a simulation study, we varied the between-trial heterogeneity for the baseline hazard and for the treatment effect (possibly correlated, the overall treatment effect, the time horizon t ∗ $${t}^{\\ast }$$ , the number of trials and of patients, the use of fixed or DerSimonian-Laird random effects model, and the proportionality of hazards. We compared the methods in terms of bias, empirical and average standard errors. We used IPD from the Meta-Analysis of Chemotherapy in Nasopharynx Carcinoma (MAC-NPC and its updated version MAC-NPC2 for illustration that included respectively 1,975 and 5,028 patients in 11 and 23 comparisons. Results The Naïve Kaplan-Meier method was unbiased, whereas the Pooled Exponential and, to a much lesser extent, the Pooled Kaplan-Meier methods showed a bias with non-proportional hazards. The Peto-quintile method underestimated the rmstD t ∗ $$rmstD\\left({t}^{\\ast}\\right$$ , except with non-proportional hazards at t ∗ $${t}^{\\ast }$$ = 5 years. In the presence of treatment effect

15. A rotor optimization using regression analysis

Science.gov (United States)

Giansante, N.

1984-01-01

The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

16. Left ventricular dyssynchrony assessed by gated SPECT phase analysis is an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy

Energy Technology Data Exchange (ETDEWEB)

Uebleis, Christopher; Hellweger, Stefan; Lehner, Sebastian; Haug, Alexander; Bartenstein, Peter; Cumming, Paul; Hacker, Marcus [Ludwig-Maximilians University, Department of Nuclear Medicine, Munich (Germany); Laubender, Ruediger Paul [Ludwig-Maximilians University, Institute of Medical Informatics, Biometry, and Epidemiology (IBE), Munich (Germany); Becker, Alexander [Ludwig-Maximilians University, Medical Department I, Munich (Germany); Sohn, Hae-Young [Ludwig-Maximilians University, Medical Department Innenstadt, Munich (Germany); Van Kriekinge, Serge D.; Slomka, Piotr J. [Cedars-Sinai Medical Center, Los Angeles, CA (United States); UCLA, David Geffen School of Medicine, Los Angeles, CA (United States)

2012-10-15

Left ventricular (LV) mechanical dyssynchrony (LVMD) was assessed by gated single-photon emission CT myocardial perfusion imaging (MPI) as an independent predictor of death from any cause in patients with known coronary artery disease (CAD) and reduced LV function. Between 2001 and 2010, 135 patients (64 {+-} 11 years of age, 84 % men) with known CAD, reduced LV ejection fraction (LVEF, 38 {+-} 15 %) and without an implanted cardiac resynchronization therapy device underwent gated MPI at rest. LV functional evaluation, which included phase analysis, was conducted to identify patients with LVMD. Kaplan-Meier survival curves were calculated for death of any cause during a mean follow-up of 2.0 {+-} 1.7 years. Uni- and multivariate Cox proportional hazards regression models were calculated to identify independent predictors of death from any cause. Of the 135 patients, 30 (22 %) died during follow-up (18 cardiac deaths and 12 deaths from other causes). Kaplan-Meier curves showed a significantly shorter survival time in the patients with severely reduced LVEF (<30 %, n = 45) or with LVMD (n = 81, log-rank test P <0.005). Cox models identified LVMD, LVEF <30 % and a total perfusion deficit at rest of {>=}20 % as independent predictors of death from any cause. While patients with LVEF <30 % in conjunction with LVMD had similar survival times irrespective of whether they had early revascularization or medical therapy, those patients with LVEF {>=}30% and LVMD who underwent revascularization had significantly longer survival. In patients with known CAD and reduced LV function, dyssynchrony of the LV is an independent predictor of death from any cause. (orig.)

17. Repeated Results Analysis for Middleware Regression Benchmarking

Czech Academy of Sciences Publication Activity Database

Bulej, Lubomír; Kalibera, T.; Tůma, P.

2005-01-01

Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005

18. Common pitfalls in statistical analysis: Linear regression analysis

Directory of Open Access Journals (Sweden)

Rakesh Aggarwal

2017-01-01

Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

19. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

Science.gov (United States)

Azen, Razia; Traxel, Nicole

2009-01-01

This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

20. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

International Nuclear Information System (INIS)

Jafri, Y.Z.; Kamal, L.

2007-01-01

Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

1. Regression analysis of sparse asynchronous longitudinal data.

Science.gov (United States)

Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

2015-09-01

We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

2. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

Science.gov (United States)

2015-01-01

Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

3. Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis.

Science.gov (United States)

Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro

2012-11-01

Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright

4. Preface to Berk's "Regression Analysis: A Constructive Critique"

OpenAIRE

de Leeuw, Jan

2003-01-01

It is pleasure to write a preface for the book ”Regression Analysis” of my fellow series editor Dick Berk. And it is a pleasure in particular because the book is about regression analysis, the most popular and the most fundamental technique in applied statistics. And because it is critical of the way regression analysis is used in the sciences, in particular in the social and behavioral sciences. Although the book can be read as an introduction to regression analysis, it can also be read as a...

5. Least-Squares Linear Regression and Schrodinger's Cat: Perspectives on the Analysis of Regression Residuals.

Science.gov (United States)

Hecht, Jeffrey B.

The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. Only bivariate (one dependent and one independent)…

6. Simulation Experiments in Practice: Statistical Design and Regression Analysis

OpenAIRE

Kleijnen, J.P.C.

2007-01-01

In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

7. General Nature of Multicollinearity in Multiple Regression Analysis.

Science.gov (United States)

Liu, Richard

1981-01-01

Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

8. application of multilinear regression analysis in modeling of soil

African Journals Online (AJOL)

Windows User

Accordingly [1, 3] in their work, they applied linear regression ... (MLRA) is a statistical technique that uses several explanatory ... order to check this, they adopted bivariate correlation analysis .... groups, namely A-1 through A-7, based on their relative expected ..... Multivariate Regression in Gorgan Province North of Iran” ...

9. Do clinical data and human papilloma virus genotype influence spontaneous regression in grade I cervical intraepithelial neoplasia?

Science.gov (United States)

Cortés-Alaguero, Caterina; González-Mirasol, Esteban; Morales-Roselló, José; Poblet-Martinez, Enrique

2017-03-15

To determine whether medical history, clinical examination and human papilloma virus (HPV) genotype influence spontaneous regression in cervical intraepithelial neoplasia grade I (CIN-I). We retrospectively evaluated 232 women who were histologically diagnosed as have CIN-I by means of Kaplan-Meier curves, the pattern of spontaneous regression according to the medical history, clinical examination, and HPV genotype. Spontaneous regression occurred in most patients and was influenced by the presence of multiple HPV genotypes but not by the HPV genotype itself. In addition, regression frequency was diminished when more than 50% of the cervix surface was affected or when an abnormal cytology was present at the beginning of follow-up. The frequency of regression in CIN-I is high, making long-term follow-up and conservative management advisable. Data from clinical examination and HPV genotyping might help to anticipate which lesions will regress.

10. Competing approaches to analysis of failure times with competing risks.

Science.gov (United States)

Farley, T M; Ali, M M; Slaymaker, E

2001-12-15

For the analysis of time to event data in contraceptive studies when individuals are subject to competing causes for discontinuation, some authors have recently advocated the use of the cumulative incidence rate as a more appropriate measure to summarize data than the complement of the Kaplan-Meier estimate of discontinuation. The former method estimates the rate of discontinuation in the presence of competing causes, while the latter is a hypothetical rate that would be observed if discontinuations for the other reasons could not occur. The difference between the two methods of analysis is the continuous time equivalent of a debate that took place in the contraceptive literature in the 1960s, when several authors advocated the use of net (adjusted or single decrement life table rates) rates in preference to crude rates (multiple decrement life table rates). A small simulation study illustrates the interpretation of the two types of estimate - the complement of the Kaplan-Meier estimate corresponds to a hypothetical rate where discontinuations for other reasons did not occur, while the cumulative incidence gives systematically lower estimates. The Kaplan-Meier estimates are more appropriate when estimating the effectiveness of a contraceptive method, but the cumulative incidence estimates are more appropriate when making programmatic decisions regarding contraceptive methods. Other areas of application, such as cancer studies, may prefer to use the cumulative incidence estimates, but their use should be determined according to the application. Copyright 2001 John Wiley & Sons, Ltd.

11. Moderation analysis using a two-level regression model.

Science.gov (United States)

Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

2014-10-01

Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

12. A comparative study of multiple regression analysis and back ...

Abhijit Sarkar

artificial neural network (ANN) models to predict weld bead geometry and HAZ width in submerged arc welding ... Keywords. Submerged arc welding (SAW); multi-regression analysis (MRA); artificial neural network ..... Degree of freedom.

13. The evolution of GDP in USA using cyclic regression analysis

OpenAIRE

Catalin Angelo IOAN; Gina IOAN

2013-01-01

Based on the four major types of economic cycles (Kondratieff, Juglar, Kitchin, Kuznet), the paper aims to determine their actual length (for the U.S. economy) using cyclic regressions based on Fourier analysis.

14. On two flexible methods of 2-dimensional regression analysis

Czech Academy of Sciences Publication Activity Database

Volf, Petr

2012-01-01

Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf

15. LINEAR REGRESSION MODEL ESTİMATİON FOR RIGHT CENSORED DATA

Directory of Open Access Journals (Sweden)

Ersin Yılmaz

2016-05-01

Full Text Available In this study, firstly we will define a right censored data. If we say shortly right-censored data is censoring values that above the exact line. This may be related with scaling device. And then  we will use response variable acquainted from right-censored explanatory variables. Then the linear regression model will be estimated. For censored data’s existence, Kaplan-Meier weights will be used for  the estimation of the model. With the weights regression model  will be consistent and unbiased with that.   And also there is a method for the censored data that is a semi parametric regression and this method also give  useful results  for censored data too. This study also might be useful for the health studies because of the censored data used in medical issues generally.

16. Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis

DEFF Research Database (Denmark)

Nielsen, Allan Aasbjerg

2007-01-01

This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...... the clock error) and to obtain estimates of the uncertainty with which the position is determined. Regression analysis is used in many other fields of application both in the natural, the technical and the social sciences. Examples may be curve fitting, calibration, establishing relationships between...

17. Research and analyze of physical health using multiple regression analysis

Directory of Open Access Journals (Sweden)

T. S. Kyi

2014-01-01

Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

18. The prognostic value of time parameters in adjuvant radiotherapy of head and neck cancer. A retrospective analysis of 138 patients

International Nuclear Information System (INIS)

Dietl, B.; Schaefer, C.; Koelbl, O.

2005-01-01

Purpose: to answer the question, how the parameters waiting time, radiation treatment time and overall treatment time (OTT) influenced the endpoints overall (OS), event-free (EFS) and local recurrence-free survival (LRFS) in patients with locally advanced head-and-neck cancer, who had received postoperative radiotherapy. Patients and methods: 138 patients were included into a retrospective analysis from 10/1993 to 05/2000. Besides the time parameters waiting time, radiation treatment time and OTT, tumor- and therapy-related parameters (T-, N-, R-status, grading, tumor site, surgical technique, and postoperative hemoglobin < 12 g/dl) with potential impact on the endpoints were investigated in the univariate analysis (Kaplan-Meier log-rank test). Individual parameters with a significant impact (p = 0.05) were subjected to a multivariate Cox regression analysis. Results: besides a postoperative hemoglobin value < 12 g/dl, in the univariate analysis an OTT ≥ 105 days negatively influenced all endpoints, as well as a radiation treatment time ≥ 60 days. On multivariate Cox regression analysis, postoperative hemoglobin < 12 g/dl and an OTT ≥ 105 days were identified as independent negative prognostic factors for all endpoints. Conclusion: the waiting time should be managed according to the ASARA (as short as reasonably achievable) recommendation, radiation treatment should not be protracted exceeding an overall treatment of 105 days. Generally, time parameters should be routinely included in the standard tumor documentation, thus facilitating further evaluation of these prognostically relevant factors. (orig.)

19. Linear regression and sensitivity analysis in nuclear reactor design

International Nuclear Information System (INIS)

Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.

2015-01-01

Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

20. Optimal choice of basis functions in the linear regression analysis

International Nuclear Information System (INIS)

Khotinskij, A.M.

1988-01-01

Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs

1. Predicting Dropouts of University Freshmen: A Logit Regression Analysis.

Science.gov (United States)

Lam, Y. L. Jack

1984-01-01

Stepwise discriminant analysis coupled with logit regression analysis of freshmen data from Brandon University (Manitoba) indicated that six tested variables drawn from research on university dropouts were useful in predicting attrition: student status, residence, financial sources, distance from home town, goal fulfillment, and satisfaction with…

2. Simulation Experiments in Practice : Statistical Design and Regression Analysis

NARCIS (Netherlands)

Kleijnen, J.P.C.

2007-01-01

In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic

3. Background stratified Poisson regression analysis of cohort data.

Science.gov (United States)

Richardson, David B; Langholz, Bryan

2012-03-01

Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

4. Background stratified Poisson regression analysis of cohort data

International Nuclear Information System (INIS)

Richardson, David B.; Langholz, Bryan

2012-01-01

Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

5. Survival Analysis of Factors Influencing Cyclic Fatigue of Nickel-Titanium Endodontic Instruments

Directory of Open Access Journals (Sweden)

Eva Fišerová

2015-01-01

Full Text Available Objective. The aim of this study was to validate a survival analysis assessing the effect of type of rotary system, canal curvature, and instrument size on cyclic resistance. Materials and Methods. Cyclic fatigue testing was carried out in stainless steel artificial canals with radii of curvature of 3 or 5 mm and the angle of curvature of 60 degrees. All the instruments were new and 25 mm in working length, and ISO colour coding indicated the instrument size (yellow for size 20; red for size 25. Wizard Navigator instruments, Mtwo instruments, ProTaper instruments, and Revo-S instruments were passively rotated at 250 rotations per minute, and the time fracture was being recorded. Subsequently, fractographic analysis of broken tips was performed by scanning electron microscope. The data were then analysed by the Kaplan-Meier estimator of the survival function, the Cox proportional hazards model, the Wald test for regression covariates, and the Wald test for significance of regression model. Conclusion. The lifespan registered for the tested instruments was Mtwo > Wizard Navigator > Revo-S > ProTaper; 5 mm radius > 3 mm radius; and yellow > red in ISO colour coding system.

6. Sparse Regression by Projection and Sparse Discriminant Analysis

KAUST Repository

Qi, Xin

2015-04-03

© 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

7. An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy

DEFF Research Database (Denmark)

Merlo, Juan; Wagner, Philippe; Ghith, Nermin

2016-01-01

BACKGROUND AND AIM: Many multilevel logistic regression analyses of "neighbourhood and health" focus on interpreting measures of associations (e.g., odds ratio, OR). In contrast, multilevel analysis of variance is rarely considered. We propose an original stepwise analytical approach that disting...

8. MULGRES: a computer program for stepwise multiple regression analysis

Science.gov (United States)

A. Jeff Martin

1971-01-01

MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.

9. Application of multilinear regression analysis in modeling of soil ...

African Journals Online (AJOL)

The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...

10. Regression Analysis: Instructional Resource for Cost/Managerial Accounting

Science.gov (United States)

Stout, David E.

2015-01-01

This paper describes a classroom-tested instructional resource, grounded in principles of active learning and a constructivism, that embraces two primary objectives: "demystify" for accounting students technical material from statistics regarding ordinary least-squares (OLS) regression analysis--material that students may find obscure or…

11. Real-time regression analysis with deep convolutional neural networks

OpenAIRE

Huerta, E. A.; George, Daniel; Zhao, Zhizhen; Allen, Gabrielle

2018-01-01

We discuss the development of novel deep learning algorithms to enable real-time regression analysis for time series data. We showcase the application of this new method with a timely case study, and then discuss the applicability of this approach to tackle similar challenges across science domains.

12. Management of Industrial Performance Indicators: Regression Analysis and Simulation

Directory of Open Access Journals (Sweden)

Walter Roberto Hernandez Vergara

2017-11-01

Full Text Available Stochastic methods can be used in problem solving and explanation of natural phenomena through the application of statistical procedures. The article aims to associate the regression analysis and systems simulation, in order to facilitate the practical understanding of data analysis. The algorithms were developed in Microsoft Office Excel software, using statistical techniques such as regression theory, ANOVA and Cholesky Factorization, which made it possible to create models of single and multiple systems with up to five independent variables. For the analysis of these models, the Monte Carlo simulation and analysis of industrial performance indicators were used, resulting in numerical indices that aim to improve the goals’ management for compliance indicators, by identifying systems’ instability, correlation and anomalies. The analytical models presented in the survey indicated satisfactory results with numerous possibilities for industrial and academic applications, as well as the potential for deployment in new analytical techniques.

13. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

Science.gov (United States)

Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

2016-01-01

Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

14. Patterns of Occurrence and Outcomes of Contralateral Breast Cancer: Analysis of SEER Data

Directory of Open Access Journals (Sweden)

Zhenchong Xiong

2018-05-01

Full Text Available Population-based estimates are lacking for the temporal trends in the contralateral breast cancer (CBC risk for patients with breast cancer (BC. Data for BC patients diagnosed with CBC were collected from the Surveillance, Epidemiology, and End Results database. CBC incidence was calculated using the Kaplan-Meier method and the temporal trend in CBC incidence was assessed using joinpoint regression. Survival analysis was calculated using propensity scoring (PS and multivariate Cox regression with a competing risk model. We found that 10,944 of 212,630 patients with early-stage BC were subsequently diagnosed with secondary BC in the contralateral breast. The 5-, 10-, 15-, and 20-year cumulative CBC incidences were 1.9, 4.6, 7.6, and 10.5%, respectively. Being younger (<40 years, black, hormone receptor-negative, and having undergone radiotherapy were correlated with a high risk of CBC occurrence. CBC incidence increased continuously in the first 11 years after the initial cancer diagnosis, and the upward trend slowed from years 11 to 21, and tended to decline from years 21 to 24. CBC diagnosis was significantly and negatively associated with survival. We reported population-based estimates of the CBC occurrence pattern and risk factors. Patients are at high risk of developing CBC in the first 21 years after the initial BC diagnosis.

15. Survival analysis of heart failure patients: A case study.

Directory of Open Access Journals (Sweden)

Full Text Available This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015. All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

16. Survival analysis of heart failure patients: A case study.

Science.gov (United States)

2017-01-01

This study was focused on survival analysis of heart failure patients who were admitted to Institute of Cardiology and Allied hospital Faisalabad-Pakistan during April-December (2015). All the patients were aged 40 years or above, having left ventricular systolic dysfunction, belonging to NYHA class III and IV. Cox regression was used to model mortality considering age, ejection fraction, serum creatinine, serum sodium, anemia, platelets, creatinine phosphokinase, blood pressure, gender, diabetes and smoking status as potentially contributing for mortality. Kaplan Meier plot was used to study the general pattern of survival which showed high intensity of mortality in the initial days and then a gradual increase up to the end of study. Martingale residuals were used to assess functional form of variables. Results were validated computing calibration slope and discrimination ability of model via bootstrapping. For graphical prediction of survival probability, a nomogram was constructed. Age, renal dysfunction, blood pressure, ejection fraction and anemia were found as significant risk factors for mortality among heart failure patients.

17. The Regression Analysis of Individual Financial Performance: Evidence from Croatia

OpenAIRE

Bahovec, Vlasta; Barbić, Dajana; Palić, Irena

2017-01-01

Background: A large body of empirical literature indicates that gender and financial literacy are significant determinants of individual financial performance. Objectives: The purpose of this paper is to recognize the impact of the variable financial literacy and the variable gender on the variation of the financial performance using the regression analysis. Methods/Approach: The survey was conducted using the systematically chosen random sample of Croatian financial consumers. The cross sect...

18. Regression analysis of a chemical reaction fouling model

International Nuclear Information System (INIS)

Vasak, F.; Epstein, N.

1996-01-01

A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

19. Poisson Regression Analysis of Illness and Injury Surveillance Data

Energy Technology Data Exchange (ETDEWEB)

Frome E.L., Watkins J.P., Ellis E.D.

2012-12-12

The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra

20. Urbanization factors associated with childhood asthma and prematurity: a population-based analysis aged from 0 to 5 years in Taiwan by using Cox regression within a hospital cluster model.

Science.gov (United States)

Lin, Sheng-Chieh; Lin, Hui-Wen

2015-04-01

Childhood asthma and premature birth are both common; however, no studies have reported urbanization association between asthma and prematurity and the duration of prematurity affect asthma development. We use Taiwan Longitudinal Health Insurance Database (LHID) to explore association between asthma and prematurity among children by using a population-based analysis. This is a retrospective cohort study with registration data derived from Taiwan LHID. We evaluated prematurely born infants and children aged prematurely and 13 851 (40.27 per 1000 person-years) controls. The hazard ratio for asthma during 5-year follow-up period was 1.95 (95% confidence interval = 1.67-2.28) among children born prematurely. Boys born prematurely aged 0-2 years were associated with higher asthma rates compared with girls in non-premature and premature groups. Living in urban areas, those born prematurely were associated with higher rates of asthma compared with non-prematurity. Those born prematurely lived in northern region had higher asthma hazard ratio than other regions. Our analyses indicated that sex, age, urbanization level, and geographic region are significantly associated with prematurity and asthma. Based on cumulative asthma-free survival curve generated using the Kaplan-Meier method, infants born prematurely should be closely monitored to see if they would develop asthma until the age of 6 years.

1. On macroeconomic values investigation using fuzzy linear regression analysis

Directory of Open Access Journals (Sweden)

Richard Pospíšil

2017-06-01

Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.

2. Regression analysis of radiological parameters in nuclear power plants

International Nuclear Information System (INIS)

Bhargava, Pradeep; Verma, R.K.; Joshi, M.L.

2003-01-01

Indian Pressurized Heavy Water Reactors (PHWRs) have now attained maturity in their operations. Indian PHWR operation started in the year 1972. At present there are 12 operating PHWRs collectively producing nearly 2400 MWe. Sufficient radiological data are available for analysis to draw inferences which may be utilised for better understanding of radiological parameters influencing the collective internal dose. Tritium is the main contributor to the occupational internal dose originating in PHWRs. An attempt has been made to establish the relationship between radiological parameters, which may be useful to draw inferences about the internal dose. Regression analysis have been done to find out the relationship, if it exist, among the following variables: A. Specific tritium activity of heavy water (Moderator and PHT) and tritium concentration in air at various work locations. B. Internal collective occupational dose and tritium release to environment through air route. C. Specific tritium activity of heavy water (Moderator and PHT) and collective internal occupational dose. For this purpose multivariate regression analysis has been carried out. D. Tritium concentration in air at various work location and tritium release to environment through air route. For this purpose multivariate regression analysis has been carried out. This analysis reveals that collective internal dose has got very good correlation with the tritium activity release to the environment through air route. Whereas no correlation has been found between specific tritium activity in the heavy water systems and collective internal occupational dose. The good correlation has been found in case D and F test reveals that it is not by chance. (author)

3. Primary Squamous Cell Carcinoma of the Thyroid: A Population-Based Analysis.

Science.gov (United States)

Au, Joshua K; Alonso, Jose; Kuan, Edward C; Arshi, Armin; St John, Maie A

2017-07-01

Objectives To analyze the epidemiology and describe the prognostic indicators of patients with primary squamous cell carcinoma of the thyroid. Study Design and Setting Retrospective cohort study based on a national database. Methods The US National Cancer Institute's SEER registry (Surveillance, Epidemiology, and End Results) was reviewed for patients with primary squamous cell carcinoma of the thyroid from 1973 to 2012. Study variables included age, sex, race, tumor size, tumor grade, regional and distant metastases, and treatment modality. Survival measures included overall survival (OS) and disease-specific survival (DSS). Results A total of 199 cases of primary squamous cell carcinoma of the thyroid were identified. Mean age at diagnosis was 68.1 years; 58.3% were female; and 79.4% were white. Following diagnosis, 46.3% of patients underwent surgery; 55.7%, radiation therapy; and 45.8%, surgery with radiation therapy. Kaplan-Meier analysis demonstrated OS and DSS of 16% and 21% at 5 years, respectively. Median survival after diagnosis was 9.1 months. Multivariate Cox regression analysis showed that predictors of OS and DSS included age ( P Squamous cell carcinoma of the thyroid is a rare malignancy with a very poor prognosis. Surgical resection confers an overall survival benefit. Age, tumor grade, and tumor size are predictors of OS and DSS.

4. Factors Affecting Adjuvant Therapy in Stage III Pancreatic Cancer—Analysis of the National Cancer Database

Directory of Open Access Journals (Sweden)

Mridula Krishnan

2017-08-01

5. Forecasting urban water demand: A meta-regression analysis.

Science.gov (United States)

Sebri, Maamar

2016-12-01

Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

6. Natural history definition and a suggested clinical approach to Buerger's disease: a case-control study with survival analysis.

Science.gov (United States)

Fazeli, Bahare; Ravari, Hassan; Assadi, Reza

2012-08-01

The aim of this study was first to describe the natural history of Buerger's disease (BD) and then to discuss a clinical approach to this disease based on multivariate analysis. One hundred eight patients who corresponded with Shionoya's criteria were selected from 2000 to 2007 for this study. Major amputation was considered the ultimate adverse event. Survival analyses were performed by Kaplan-Meier curves. Independent variables including gender, duration of smoking, number of cigarettes smoked per day, minor amputation events and type of treatments, were determined by multivariate Cox regression analysis. The recorded data demonstrated that BD may present in four forms, including relapsing-remitting (75%), secondary progressive (4.6%), primary progressive (14.2%) and benign BD (6.2%). Most of the amputations occurred due to relapses within the six years after diagnosis of BD. In multivariate analysis, duration of smoking of more than 20 years had a significant relationship with further major amputation among patients with BD. Smoking cessation programs with experienced psychotherapists are strongly recommended for those areas in which Buerger's disease is common. Patients who have smoked for more than 20 years should be encouraged to quit smoking, but should also be recommended for more advanced treatment for limb salvage.

7. Finding determinants of audit delay by pooled OLS regression analysis

OpenAIRE

Vuko, Tina; Čular, Marko

2014-01-01

The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days) from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011). We use pooled OLS regression analysis, mode...

8. Chondrosarcoma of the Osseous Spine: An Analysis of Epidemiology, Patient Outcomes, and Prognostic Factors Using the SEER Registry From 1973 to 2012.

Science.gov (United States)

Arshi, Armin; Sharim, Justin; Park, Don Y; Park, Howard Y; Bernthal, Nicholas M; Yazdanshenas, Hamed; Shamie, Arya N

2017-05-01

Retrospective analysis. To determine the epidemiology and prognostic indicators in patients with chondrosarcoma of the osseous spine. Chondrosarcoma of the spine is rare, with limited data on its epidemiology, clinicopathologic features, and treatment outcomes. Therapy centers on complete en bloc resection with radiotherapy reserved for subtotal resection or advanced disease. The Surveillance, Epidemiology, and End Results Registry was queried for patients with chondrosarcoma of the osseous spine from 1973 to 2012. Study variables included age, sex, race, year of diagnosis, size, grade, extent of disease, and treatment modality. The search identified 973 cases of spinal chondrosarcoma. Mean age at diagnosis was 51.6 years, and 627% of patients were males. Surgical resection and radiotherapy were performed in 75.2% and 21.3% of cases, respectively. Kaplan-Meier analysis demonstrated overall survival (OS) and disease-specific survival (DSS) of 53% and 64%, respectively, at 5 years. Multivariate Cox regression analysis showed that age (OS, P chondrosarcoma of the spine independent of extent of disease. Radiotherapy improves survival in patients with metastatic disease and worsens outcomes in patients with confined and locally invasive disease. 4.

9. Analysis of a novel protocol of combined induction chemotherapy and concurrent chemoradiation in unresected non-small-cell lung cancer: a ten-year experience with vinblastine, Cisplatin, and radiation therapy.

Science.gov (United States)

Waters, Eugenie; Dingle, Brian; Rodrigues, George; Vincent, Mark; Ash, Robert; Dar, Rashid; Inculet, Richard; Kocha, Walter; Malthaner, Richard; Sanatani, Michael; Stitt, Larry; Yaremko, Brian; Younus, Jawaid; Yu, Edward

2010-07-01

The London Regional Cancer Program (LRCP) uses a unique schedule of induction plus concurrent chemoradiation, termed VCRT (vinblastine, cisplatin, and radiation therapy), for the treatment of a subset of unresectable stage IIIA and IIIB non-small-cell lung cancer (NSCLC). This analysis was conducted to better understand the outcomes in VCRT-treated patients. We report a retrospective analysis of a large cohort of patients who underwent VCRT at the LRCP over a 10-year period, from 1996 to 2006. The analysis focused on OS, toxicities, and the outcomes from completion surgery in a small subset of patients. A total of 294 patients were included and 5-year OS, determined using Kaplan-Meier methodology, was 19.8% with a MST of 18.2 months. Reported grade 3-4 toxicities included neutropenia (39%), anemia (10%), pneumonitis (1%), and esophagitis (3%). Significant differences in survival between groups of patients were demonstrated with log-rank tests for completion surgery, use of radiation therapy, and cisplatin dose. Similarly, Univariate Cox regression showed that completion surgery, use of radiation therapy, cisplatin dose, and vinblastine dose were associated with increased survival. This retrospective analysis of a large cohort of patients reveals an OS for VCRT comparable to that reported in the literature for other current combined chemoradiation protocols. The success of this protocol seems to be dose dependent and the outcomes in those who underwent completion surgery suggests that pathologic complete remission is possible for IIIA and IIIB NSCLC.

10. Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Directory of Open Access Journals (Sweden)

Ciprian M. Crainiceanu

2005-09-01

Full Text Available Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

11. Relationship between angina pectoris and outcomes in patients with heart failure and reduced ejection fraction: an analysis of the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA).

Science.gov (United States)

Badar, Athar A; Perez-Moreno, Ana Cristina; Jhund, Pardeep S; Wong, Chih M; Hawkins, Nathaniel M; Cleland, John G F; van Veldhuisen, Dirk J; Wikstrand, John; Kjekshus, John; Wedel, Hans; Watkins, Stuart; Gardner, Roy S; Petrie, Mark C; McMurray, John J V

2014-12-21

Angina pectoris is common in patients with heart failure and reduced ejection fraction (HF-REF) but its relationship with outcomes has not been well defined. This relationship was investigated further in a retrospective analysis of the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Four thousand, eight hundred and seventy-eight patients were divided into three categories: no history of angina and no chest pain at baseline (Group A; n = 1240), past history of angina but no chest pain at baseline (Group B; n = 1353) and both a history of angina and chest pain at baseline (Group C; n = 2285). Outcomes were examined using Kaplan-Meier and Cox regression survival analysis. Compared with Group A, Group C had a higher risk of non-fatal myocardial infarction or unstable angina (HR: 2.36, 1.54-3.61; P angina are at an increased risk of acute coronary syndrome and HF hospitalization. Whether these patients would benefit from more aggressive medical therapy or percutaneous revascularization is not known and merits further investigation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

12. New-Onset Diabetes Mellitus in Liver Transplant Recipients With Hepatitis C: Analysis of the National Database.

Science.gov (United States)

Li, Z; Sun, F; Hu, Z; Xiang, J; Zhou, J; Yan, S; Wu, J; Zhou, L; Zheng, S

2016-01-01

New-onset diabetes mellitus (NODM) after liver transplantation (LT) occurs with increased frequency in recipients with hepatitis C virus (HCV). We compared the incidence and risk factors for NODM in HCV vs non-HCV recipients. Among 24,956 liver recipients, 18,741 without pretransplantation diabetes were identified. NODM-free survival was analyzed using Kaplan-Meier and log-rank tests, and risk factors for NODM were examined using multivariate Cox regression analysis. The overall incidence of NODM was 13.0% at 1 year after LT. At 1, 2, 3, and 5 years after LT, incidence of NODM in HCV recipients was 14.4%, 4.3%, 3.1%, and 3.5%, respectively, compared with 11.9%, 3.5%, 3.2%, and 6.4%, respectively, in non-HCV recipients. HCV recipients had a higher risk of NODM than non-HCV recipients (hazard ratio 1.17 [1.09-1.27], P diabetes mellitus. Risk factors in non-HCV recipients were male recipient, BMI, and recipients with nonalcoholic steatohepatitis diagnosis. HCV recipients have a higher incidence and more risk factors for NODM than non-HCV recipients. Early identification of modifiable risk factors will assist clinical interventions to prevent NODM complications after LT. Copyright © 2016 Elsevier Inc. All rights reserved.

13. Perioperative and long-term outcome of thymectomy for myasthenia gravis: comparison of surgical approaches and prognostic analysis.

Science.gov (United States)

Liu, Cheng-wu; Luo, Meng; Mei, Jian-dong; Zhu, Yun-ke; Pu, Qiang; Ma, Lin; Che, Guo-wei; Lin, Yi-dan; Wu, Zhu; Wang, Yun; Kou, Ying-li; Liu, Lun-xu

2013-01-01

Thymectomy is an established treatment for myasthenia gravis (MG), and video-assisted thoracoscopic surgery (VATS) thymectomy has become an acceptable surgical procedure. This study aimed to compare the results of VATS thymectomy and open thymectomy and to identify the prognostic factors after thymectomy. The clinical data of 187 consecutive thymectomies performed between July 2000 and December 2009 were retrospectively reviewed; 75 open thymectomies and 112 VATS thymectomies. Clinical efficacy and variables influencing outcome were assessed by Kaplan-Meier survival curves and Cox proportional hazards regression analysis. The operative blood loss in the VATS group was significantly less than that in the open group ((62.14 ± 55.43) ml vs. (137.87 ± 165.25) ml, P CSR) was the end point for evaluation of the treatment results. The overall five-year CSR rate was 57.5%. Two good prognostic factors were identified; preoperative prescription of anticholinesterase alone (P = 0.035) and non-thymomatous MG (P = 0.003). The five-year CSR rate of the ocular type of MG reached a high level of 67.4%. Thymectomy can achieve good long-term CSR in MG, and VATS is an ideal alternative method. High-dose prescription of anticholinesterase and the advanced stage by Myasthenia Gravis Foundation of America (MGFA) classification have higher risks of postoperative crisis. Preoperative prescription of anticholinesterase alone and non-thymomatous MG are good prognostic factors. Thymectomy should also be considered for the ocular type of MG.

14. Sparse Regression by Projection and Sparse Discriminant Analysis

KAUST Repository

Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu

2015-01-01

predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths

15. Finding determinants of audit delay by pooled OLS regression analysis

Directory of Open Access Journals (Sweden)

Tina Vuko

2014-03-01

Full Text Available The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011. We use pooled OLS regression analysis, modelling audit delay as a function of the following explanatory variables: audit firm type, audit opinion, profitability, leverage, inventory and receivables to total assets, absolute value of total accruals, company size and audit committee existence. Our results indicate that audit committee existence, profitability and leverage are statistically significant determinants of audit delay in Croatia.

16. A Visual Analytics Approach for Correlation, Classification, and Regression Analysis

Energy Technology Data Exchange (ETDEWEB)

Steed, Chad A [ORNL; SwanII, J. Edward [Mississippi State University (MSU); Fitzpatrick, Patrick J. [Mississippi State University (MSU); Jankun-Kelly, T.J. [Mississippi State University (MSU)

2012-02-01

New approaches that combine the strengths of humans and machines are necessary to equip analysts with the proper tools for exploring today's increasing complex, multivariate data sets. In this paper, a novel visual data mining framework, called the Multidimensional Data eXplorer (MDX), is described that addresses the challenges of today's data by combining automated statistical analytics with a highly interactive parallel coordinates based canvas. In addition to several intuitive interaction capabilities, this framework offers a rich set of graphical statistical indicators, interactive regression analysis, visual correlation mining, automated axis arrangements and filtering, and data classification techniques. The current work provides a detailed description of the system as well as a discussion of key design aspects and critical feedback from domain experts.

17. Inferring gene expression dynamics via functional regression analysis

Directory of Open Access Journals (Sweden)

Leng Xiaoyan

2008-01-01

Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

18. Weibull and lognormal Taguchi analysis using multiple linear regression

International Nuclear Information System (INIS)

Piña-Monarrez, Manuel R.; Ortiz-Yañez, Jesús F.

2015-01-01

The paper provides to reliability practitioners with a method (1) to estimate the robust Weibull family when the Taguchi method (TM) is applied, (2) to estimate the normal operational Weibull family in an accelerated life testing (ALT) analysis to give confidence to the extrapolation and (3) to perform the ANOVA analysis to both the robust and the normal operational Weibull family. On the other hand, because the Weibull distribution neither has the normal additive property nor has a direct relationship with the normal parameters (µ, σ), in this paper, the issues of estimating a Weibull family by using a design of experiment (DOE) are first addressed by using an L_9 (3"4) orthogonal array (OA) in both the TM and in the Weibull proportional hazard model approach (WPHM). Then, by using the Weibull/Gumbel and the lognormal/normal relationships and multiple linear regression, the direct relationships between the Weibull and the lifetime parameters are derived and used to formulate the proposed method. Moreover, since the derived direct relationships always hold, the method is generalized to the lognormal and ALT analysis. Finally, the method’s efficiency is shown through its application to the used OA and to a set of ALT data. - Highlights: • It gives the statistical relations and steps to use the Taguchi Method (TM) to analyze Weibull data. • It gives the steps to determine the unknown Weibull family to both the robust TM setting and the normal ALT level. • It gives a method to determine the expected lifetimes and to perform its ANOVA analysis in TM and ALT analysis. • It gives a method to give confidence to the extrapolation in an ALT analysis by using the Weibull family of the normal level.

19. Determinants of orphan drugs prices in France: a regression analysis.

Science.gov (United States)

Korchagina, Daria; Millier, Aurelie; Vataire, Anne-Lise; Aballea, Samuel; Falissard, Bruno; Toumi, Mondher

2017-04-21

The introduction of the orphan drug legislation led to the increase in the number of available orphan drugs, but the access to them is often limited due to the high price. Social preferences regarding funding orphan drugs as well as the criteria taken into consideration while setting the price remain unclear. The study aimed at identifying the determinant of orphan drug prices in France using a regression analysis. All drugs with a valid orphan designation at the moment of launch for which the price was available in France were included in the analysis. The selection of covariates was based on a literature review and included drug characteristics (Anatomical Therapeutic Chemical (ATC) class, treatment line, age of target population), diseases characteristics (severity, prevalence, availability of alternative therapeutic options), health technology assessment (HTA) details (actual benefit (AB) and improvement in actual benefit (IAB) scores, delay between the HTA and commercialisation), and study characteristics (type of study, comparator, type of endpoint). The main data sources were European public assessment reports, HTA reports, summaries of opinion on orphan designation of the European Medicines Agency, and the French insurance database of drugs and tariffs. A generalized regression model was developed to test the association between the annual treatment cost and selected covariates. A total of 68 drugs were included. The mean annual treatment cost was €96,518. In the univariate analysis, the ATC class (p = 0.01), availability of alternative treatment options (p = 0.02) and the prevalence (p = 0.02) showed a significant correlation with the annual cost. The multivariate analysis demonstrated significant association between the annual cost and availability of alternative treatment options, ATC class, IAB score, type of comparator in the pivotal clinical trial, as well as commercialisation date and delay between the HTA and commercialisation. The

20. Regression of uveal malignant melanomas following cobalt-60 plaque. Correlates between acoustic spectrum analysis and tumor regression

International Nuclear Information System (INIS)

Coleman, D.J.; Lizzi, F.L.; Silverman, R.H.; Ellsworth, R.M.; Haik, B.G.; Abramson, D.H.; Smith, M.E.; Rondeau, M.J.

1985-01-01

Parameters derived from computer analysis of digital radio-frequency (rf) ultrasound scan data of untreated uveal malignant melanomas were examined for correlations with tumor regression following cobalt-60 plaque. Parameters included tumor height, normalized power spectrum and acoustic tissue type (ATT). Acoustic tissue type was based upon discriminant analysis of tumor power spectra, with spectra of tumors of known pathology serving as a model. Results showed ATT to be correlated with tumor regression during the first 18 months following treatment. Tumors with ATT associated with spindle cell malignant melanoma showed over twice the percentage reduction in height as those with ATT associated with mixed/epithelioid melanomas. Pre-treatment height was only weakly correlated with regression. Additionally, significant spectral changes were observed following treatment. Ultrasonic spectrum analysis thus provides a noninvasive tool for classification, prediction and monitoring of tumor response to cobalt-60 plaque

1. Can we eliminate neoadjuvant chemoradiotherapy in favor of neoadjuvant multiagent chemotherapy for select stage II/III rectal adenocarcinomas: Analysis of the National Cancer Data base.

Science.gov (United States)

Cassidy, Richard J; Liu, Yuan; Patel, Kirtesh; Zhong, Jim; Steuer, Conor E; Kooby, David A; Russell, Maria C; Gillespie, Theresa W; Landry, Jerome C

2017-03-01

Stage II and III rectal cancers have been effectively treated with neoadjuvant chemoradiotherapy (NCRT) followed by definitive resection. Advancements in surgical technique and systemic therapy have prompted investigation of neoadjuvant multiagent chemotherapy (NMAC) regimens with the elimination of radiation (RT). The objective of the current study was to investigate factors that predict for the use of NCRT versus NMAC and compare outcomes using the National Cancer Data Base (NCDB) for select stage II and III rectal cancers. In the NCDB, 21,707 patients from 2004 through 2012 with clinical T2N1 (cT2N1), cT3N0, or cT3N1 rectal cancers were identified who had received NCRT or NMAC followed by low anterior resection. Kaplan-Meier analyses, log-rank tests, and Cox-proportional hazards regression analyses were conducted along with propensity score matching analysis to reduce treatment selection bias. The 5-year actuarial overall survival (OS) rate was 75% for patients who received NCRT versus 67.2% for those who received NMAC (P elimination of neoadjuvant RT for select patients with stage II and III rectal adenocarcinoma was associated with worse OS and should not be recommended outside of a clinical trial. Cancer 2017;123:783-93. © 2016 American Cancer Society. © 2016 American Cancer Society.

2. Enhanced left ventricular mass regression after aortic valve replacement in patients with aortic stenosis is associated with improved long-term survival.

Science.gov (United States)

Ali, Ayyaz; Patel, Amit; Ali, Ziad; Abu-Omar, Yasir; Saeed, Amber; Athanasiou, Thanos; Pepper, John

2011-08-01

Aortic valve replacement in patients with aortic stenosis is usually followed by regression of left ventricular hypertrophy. More complete resolution of left ventricular hypertrophy is suggested to be associated with superior clinical outcomes; however, its translational impact on long-term survival after aortic valve replacement has not been investigated. Demographic, operative, and clinical data were obtained retrospectively through case note review. Transthoracic echocardiography was used to measure left ventricular mass preoperatively and at annual follow-up visits. Patients were classified according to their reduction in left ventricular mass at 1 year after the operation: group 1, less than 25 g; group 2, 25 to 150 g; and group 3, more than 150 g. Kaplan-Meier and multivariable Cox regression were used. A total of 147 patients were discharged from the hospital after aortic valve replacement for aortic stenosis between 1991 and 2001. Preoperative left ventricular mass was 279 ± 98 g in group 1 (n = 47), 347 ± 104 g in group 2 (n = 62), and 491 ± 183 g in group 3 (n = 38) (P regression such as ischemic heart disease or hypertension, valve type, or valve size used. Ten-year actuarial survival was not statistically different in patients with enhanced left ventricular mass regression when compared with the log-rank test (group 1, 51% ± 9%; group 2, 54% ± 8%; and group 3, 72% ± 10%) (P = .26). After adjustment, left ventricular mass reduction of more than 150 g was demonstrated as an independent predictor of improved long-term survival on multivariate analysis (P = .02). Our study is the first to suggest that enhanced postoperative left ventricular mass regression, specifically in patients undergoing aortic valve replacement for aortic stenosis, may be associated with improved long-term survival. In view of these findings, strategies purported to be associated with superior left ventricular mass regression should be considered when undertaking

3. Mixed kernel function support vector regression for global sensitivity analysis

Science.gov (United States)

Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

2017-11-01

Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

4. Framing an Nuclear Emergency Plan using Qualitative Regression Analysis

International Nuclear Information System (INIS)

Amy Hamijah Abdul Hamid; Ibrahim, M.Z.A.; Deris, S.R.

2014-01-01

Since the arising on safety maintenance issues due to post-Fukushima disaster, as well as, lack of literatures on disaster scenario investigation and theory development. This study is dealing with the initiation difficulty on the research purpose which is related to content and problem setting of the phenomenon. Therefore, the research design of this study refers to inductive approach which is interpreted and codified qualitatively according to primary findings and written reports. These data need to be classified inductively into thematic analysis as to develop conceptual framework related to several theoretical lenses. Moreover, the framing of the expected framework of the respective emergency plan as the improvised business process models are abundant of unstructured data abstraction and simplification. The structural methods of Qualitative Regression Analysis (QRA) and Work System snapshot applied to form the data into the proposed model conceptualization using rigorous analyses. These methods were helpful in organising and summarizing the snapshot into an ' as-is ' work system that being recommended as ' to-be' w ork system towards business process modelling. We conclude that these methods are useful to develop comprehensive and structured research framework for future enhancement in business process simulation. (author)

5. Online Statistical Modeling (Regression Analysis) for Independent Responses

Science.gov (United States)

Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

2017-06-01

Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

6. Robust Regression and its Application in Financial Data Analysis

OpenAIRE

Mansoor Momeni; Mahmoud Dehghan Nayeri; Ali Faal Ghayoumi; Hoda Ghorbani

2010-01-01

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from th...

7. Statistical analysis of sediment toxicity by additive monotone regression splines

NARCIS (Netherlands)

Boer, de W.J.; Besten, den P.J.; Braak, ter C.J.F.

2002-01-01

Modeling nonlinearity and thresholds in dose-effect relations is a major challenge, particularly in noisy data sets. Here we show the utility of nonlinear regression with additive monotone regression splines. These splines lead almost automatically to the estimation of thresholds. We applied this

8. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

Directory of Open Access Journals (Sweden)

Zhiming Song

2015-01-01

Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.

9. Regression and kriging analysis for grid power factor estimation

Directory of Open Access Journals (Sweden)

Rajesh Guntaka

2014-12-01

Full Text Available The measurement of power factor (PF in electrical utility grids is a mainstay of load balancing and is also a critical element of transmission and distribution efficiency. The measurement of PF dates back to the earliest periods of electrical power distribution to public grids. In the wide-area distribution grid, measurement of current waveforms is trivial and may be accomplished at any point in the grid using a current tap transformer. However, voltage measurement requires reference to ground and so is more problematic and measurements are normally constrained to points that have ready and easy access to a ground source. We present two mathematical analysis methods based on kriging and linear least square estimation (LLSE (regression to derive PF at nodes with unknown voltages that are within a perimeter of sample nodes with ground reference across a selected power grid. Our results indicate an error average of 1.884% that is within acceptable tolerances for PF measurements that are used in load balancing tasks.

10. A simplified procedure of linear regression in a preliminary analysis

Directory of Open Access Journals (Sweden)

Silvia Facchinetti

2013-05-01

Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.

11. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis

CERN Document Server

Harrell , Jr , Frank E

2015-01-01

This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap.  The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes.  This text realistically...

12. An Analysis of Bank Service Satisfaction Based on Quantile Regression and Grey Relational Analysis

Directory of Open Access Journals (Sweden)

Wen-Tsao Pan

2016-01-01

Full Text Available Bank service satisfaction is vital to the success of a bank. In this paper, we propose to use the grey relational analysis to gauge the levels of service satisfaction of the banks. With the grey relational analysis, we compared the effects of different variables on service satisfaction. We gave ranks to the banks according to their levels of service satisfaction. We further used the quantile regression model to find the variables that affected the satisfaction of a customer at a specific quantile of satisfaction level. The result of the quantile regression analysis provided a bank manager with information to formulate policies to further promote satisfaction of the customers at different quantiles of satisfaction level. We also compared the prediction accuracies of the regression models at different quantiles. The experiment result showed that, among the seven quantile regression models, the median regression model has the best performance in terms of RMSE, RTIC, and CE performance measures.

13. Methods of Detecting Outliers in A Regression Analysis Model ...

African Journals Online (AJOL)

PROF. O. E. OSUAGWU

2013-06-01

Jun 1, 2013 ... especially true in observational studies .... Simple linear regression and multiple ... The simple linear ..... Grubbs,F.E (1950): Sample Criteria for Testing Outlying observations: Annals of ... In experimental design, the Relative.

14. 231 Using Multiple Regression Analysis in Modelling the Role of ...

African Journals Online (AJOL)

User

of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.

15. Analysis of quantile regression as alternative to ordinary least squares

OpenAIRE

Ibrahim Abdullahi; Abubakar Yahaya

2015-01-01

In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...

16. Prediction of radiation levels in residences: A methodological comparison of CART [Classification and Regression Tree Analysis] and conventional regression

International Nuclear Information System (INIS)

Janssen, I.; Stebbings, J.H.

1990-01-01

In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs

17. Multiple regression for physiological data analysis: the problem of multicollinearity.

Science.gov (United States)

Slinker, B K; Glantz, S A

1985-07-01

Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

18. Analysis of some methods for reduced rank Gaussian process regression

DEFF Research Database (Denmark)

Quinonero-Candela, J.; Rasmussen, Carl Edward

2005-01-01

While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...

19. Intermediate and advanced topics in multilevel logistic regression analysis.

Science.gov (United States)

Austin, Peter C; Merlo, Juan

2017-09-10

Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

20. A review and comparison of methods for recreating individual patient data from published Kaplan-Meier survival curves for economic evaluations: a simulation study.

Science.gov (United States)

Wan, Xiaomin; Peng, Liubao; Li, Yuanjian

2015-01-01

In general, the individual patient-level data (IPD) collected in clinical trials are not available to independent researchers to conduct economic evaluations; researchers only have access to published survival curves and summary statistics. Thus, methods that use published survival curves and summary statistics to reproduce statistics for economic evaluations are essential. Four methods have been identified: two traditional methods 1) least squares method, 2) graphical method; and two recently proposed methods by 3) Hoyle and Henley, 4) Guyot et al. The four methods were first individually reviewed and subsequently assessed regarding their abilities to estimate mean survival through a simulation study. A number of different scenarios were developed that comprised combinations of various sample sizes, censoring rates and parametric survival distributions. One thousand simulated survival datasets were generated for each scenario, and all methods were applied to actual IPD. The uncertainty in the estimate of mean survival time was also captured. All methods provided accurate estimates of the mean survival time when the sample size was 500 and a Weibull distribution was used. When the sample size was 100 and the Weibull distribution was used, the Guyot et al. method was almost as accurate as the Hoyle and Henley method; however, more biases were identified in the traditional methods. When a lognormal distribution was used, the Guyot et al. method generated noticeably less bias and a more accurate uncertainty compared with the Hoyle and Henley method. The traditional methods should not be preferred because of their remarkable overestimation. When the Weibull distribution was used for a fitted model, the Guyot et al. method was almost as accurate as the Hoyle and Henley method. However, if the lognormal distribution was used, the Guyot et al. method was less biased compared with the Hoyle and Henley method.

1. Grades, Gender, and Encouragement: A Regression Discontinuity Analysis

Science.gov (United States)

Owen, Ann L.

2010-01-01

The author employs a regression discontinuity design to provide direct evidence on the effects of grades earned in economics principles classes on the decision to major in economics and finds a differential effect for male and female students. Specifically, for female students, receiving an A for a final grade in the first economics class is…

2. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

Science.gov (United States)

Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

2017-12-01

The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

3. Design and analysis of experiments classical and regression approaches with SAS

CERN Document Server

Onyiah, Leonard C

2008-01-01

Introductory Statistical Inference and Regression Analysis Elementary Statistical Inference Regression Analysis Experiments, the Completely Randomized Design (CRD)-Classical and Regression Approaches Experiments Experiments to Compare Treatments Some Basic Ideas Requirements of a Good Experiment One-Way Experimental Layout or the CRD: Design and Analysis Analysis of Experimental Data (Fixed Effects Model) Expected Values for the Sums of Squares The Analysis of Variance (ANOVA) Table Follow-Up Analysis to Check fo

4. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

Science.gov (United States)

SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

5. Marginal regression analysis of recurrent events with coarsened censoring times.

Science.gov (United States)

Hu, X Joan; Rosychuk, Rhonda J

2016-12-01

Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.

6. Regression analysis of censored data using pseudo-observations

DEFF Research Database (Denmark)

Parner, Erik T.; Andersen, Per Kragh

2010-01-01

We draw upon a series of articles in which a method based on pseu- dovalues is proposed for direct regression modeling of the survival function, the restricted mean, and the cumulative incidence function in competing risks with right-censored data. The models, once the pseudovalues have been...... computed, can be fit using standard generalized estimating equation software. Here we present Stata procedures for computing these pseudo-observations. An example from a bone marrow transplantation study is used to illustrate the method....

7. Application of regression analysis to creep of space shuttle materials

International Nuclear Information System (INIS)

Rummler, D.R.

1975-01-01

Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed

8. Model performance analysis and model validation in logistic regression

Directory of Open Access Journals (Sweden)

Rosa Arboretti Giancristofaro

2007-10-01

Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

9. BRGLM, Interactive Linear Regression Analysis by Least Square Fit

International Nuclear Information System (INIS)

Ringland, J.T.; Bohrer, R.E.; Sherman, M.E.

1985-01-01

1 - Description of program or function: BRGLM is an interactive program written to fit general linear regression models by least squares and to provide a variety of statistical diagnostic information about the fit. Stepwise and all-subsets regression can be carried out also. There are facilities for interactive data management (e.g. setting missing value flags, data transformations) and tools for constructing design matrices for the more commonly-used models such as factorials, cubic Splines, and auto-regressions. 2 - Method of solution: The least squares computations are based on the orthogonal (QR) decomposition of the design matrix obtained using the modified Gram-Schmidt algorithm. 3 - Restrictions on the complexity of the problem: The current release of BRGLM allows maxima of 1000 observations, 99 variables, and 3000 words of main memory workspace. For a problem with N observations and P variables, the number of words of main memory storage required is MAX(N*(P+6), N*P+P*P+3*N, and 3*P*P+6*N). Any linear model may be fit although the in-memory workspace will have to be increased for larger problems

10. Nonlinear regression analysis for evaluating tracer binding parameters using the programmable K1003 desk computer

International Nuclear Information System (INIS)

Sarrach, D.; Strohner, P.

1986-01-01

The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated

11. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

NARCIS (Netherlands)

Kleijnen, J.P.C.

1995-01-01

This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

12. Semiparametric regression analysis of interval-censored competing risks data.

Science.gov (United States)

Mao, Lu; Lin, Dan-Yu; Zeng, Donglin

2017-09-01

Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes. © 2017, The International Biometric Society.

13. Prognostic and survival analysis of 837 Chinese colorectal cancer patients.

Science.gov (United States)

Yuan, Ying; Li, Mo-Dan; Hu, Han-Guang; Dong, Cai-Xia; Chen, Jia-Qi; Li, Xiao-Fen; Li, Jing-Jing; Shen, Hong

2013-05-07

To develop a prognostic model to predict survival of patients with colorectal cancer (CRC). Survival data of 837 CRC patients undergoing surgery between 1996 and 2006 were collected and analyzed by univariate analysis and Cox proportional hazard regression model to reveal the prognostic factors for CRC. All data were recorded using a standard data form and analyzed using SPSS version 18.0 (SPSS, Chicago, IL, United States). Survival curves were calculated by the Kaplan-Meier method. The log rank test was used to assess differences in survival. Univariate hazard ratios and significant and independent predictors of disease-specific survival and were identified by Cox proportional hazard analysis. The stepwise procedure was set to a threshold of 0.05. Statistical significance was defined as P analysis suggested age, preoperative obstruction, serum carcinoembryonic antigen level at diagnosis, status of resection, tumor size, histological grade, pathological type, lymphovascular invasion, invasion of adjacent organs, and tumor node metastasis (TNM) staging were positive prognostic factors (P analysis showed a significant statistical difference in 3-year survival among these groups: LNR1, 73%; LNR2, 55%; and LNR3, 42% (P analysis results showed that histological grade, depth of bowel wall invasion, and number of metastatic lymph nodes were the most important prognostic factors for CRC if we did not consider the interaction of the TNM staging system (P < 0.05). When the TNM staging was taken into account, histological grade lost its statistical significance, while the specific TNM staging system showed a statistically significant difference (P < 0.0001). The overall survival of CRC patients has improved between 1996 and 2006. LNR is a powerful factor for estimating the survival of stage III CRC patients.

14. Third-line Targeted Therapy in Metastatic Renal Cell Carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium

DEFF Research Database (Denmark)

Wells, J Connor; Stukalin, Igor; Norton, Craig

2017-01-01

and were included in the analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Patients were analyzed for overall survival (OS) and progression-free survival using Kaplan-Meier curves, and were evaluated for overall response. Cox regression analyses were used to determine the statistical association...

15. Simulation Experiments in Practice : Statistical Design and Regression Analysis

NARCIS (Netherlands)

Kleijnen, J.P.C.

2007-01-01

In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is

16. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

Science.gov (United States)

Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

17. Analysis of Relationship Between Personality and Favorite Places with Poisson Regression Analysis

Directory of Open Access Journals (Sweden)

Yoon Song Ha

2018-01-01

Full Text Available A relationship between human personality and preferred locations have been a long conjecture for human mobility research. In this paper, we analyzed the relationship between personality and visiting place with Poisson Regression. Poisson Regression can analyze correlation between countable dependent variable and independent variable. For this analysis, 33 volunteers provided their personality data and 49 location categories data are used. Raw location data is preprocessed to be normalized into rates of visit and outlier data is prunned. For the regression analysis, independent variables are personality data and dependent variables are preprocessed location data. Several meaningful results are found. For example, persons with high tendency of frequent visiting to university laboratory has personality with high conscientiousness and low openness. As well, other meaningful location categories are presented in this paper.

18. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

Science.gov (United States)

Ferrari, Alberto

2017-01-01

Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

19. Quantile regression analysis of body mass and wages.

Science.gov (United States)

Johar, Meliyanni; Katayama, Hajime

2012-05-01

Using the National Longitudinal Survey of Youth 1979, we explore the relationship between body mass and wages. We use quantile regression to provide a broad description of the relationship across the wage distribution. We also allow the relationship to vary by the degree of social skills involved in different jobs. Our results find that for female workers body mass and wages are negatively correlated at all points in their wage distribution. The strength of the relationship is larger at higher-wage levels. For male workers, the relationship is relatively constant across wage distribution but heterogeneous across ethnic groups. When controlling for the endogeneity of body mass, we find that additional body mass has a negative causal impact on the wages of white females earning more than the median wages and of white males around the median wages. Among these workers, the wage penalties are larger for those employed in jobs that require extensive social skills. These findings may suggest that labor markets reward white workers for good physical shape differently, depending on the level of wages and the type of job a worker has. Copyright © 2011 John Wiley & Sons, Ltd.

20. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

Science.gov (United States)

Parsons, Vickie s.

2009-01-01

The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

1. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

Science.gov (United States)

Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

2. Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis

Science.gov (United States)

Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.

2018-05-01

Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.

3. The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis

DEFF Research Database (Denmark)

Czekaj, Tomasz Gerard

and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...

4. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

Science.gov (United States)

Laurens, L M L; Wolfrum, E J

2013-12-18

One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

5. Methods of Detecting Outliers in A Regression Analysis Model. | Ogu ...

African Journals Online (AJOL)

A Boilers data with dependent variable Y (man-Hour) and four independent variables X1 (Boiler Capacity), X2 (Design Pressure), X3 (Boiler Type), X4 (Drum Type) were used. The analysis of the Boilers data reviewed an unexpected group of Outliers. The results from the findings showed that an observation can be outlying ...

6. Quantitative electron microscope autoradiography: application of multiple linear regression analysis

International Nuclear Information System (INIS)

Markov, D.V.

1986-01-01

A new method for the analysis of high resolution EM autoradiographs is described. It identifies labelled cell organelle profiles in sections on a strictly statistical basis and provides accurate estimates for their radioactivity without the need to make any assumptions about their size, shape and spatial arrangement. (author)

7. Microhabitat analysis using radiotelemetry locations and polytomous logistic regression

Science.gov (United States)

Malcolm P. North; Joel H. Reynolds

1996-01-01

Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's...

8. Singular spectrum analysis, Harmonic regression and El-Nino effect ...

42

Keywords: Total ozone; Singular Spectrum Analysis; Spatial interpolation; Multivariate ENSO .... needed for a whole gamut of activities that contribute to the ultimate synthesis ..... −0.0009 3 + 0.0581 2 − 1.0123 + 7.3246, 2 = 0.53…

9. ASURV: Astronomical SURVival Statistics

Science.gov (United States)

Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

2014-06-01

ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

10. Epilepsy in Rett syndrome--lessons from the Rett networked database

DEFF Research Database (Denmark)

Nissenkorn, Andreea; Levy-Drummer, Rachel S; Bondi, Ori

2015-01-01

collected. Statistical analysis was done using the IBM SPSS Version 21 software, logistic regression, and Kaplan-Meier survival curves. RESULTS: Epilepsy was present in 68.1% of the patients, with uncontrolled seizures in 32.6% of the patients with epilepsy. Mean age of onset of epilepsy was 4...

11. Influence of antiviral therapy on survival of patients with hepatitis B ...

African Journals Online (AJOL)

The mortality rates in two groups were evaluated with Kaplan-Meier estimate. ... 274 (76.9 %) died, with 89 patients belonging to the antiviral group while the ... TACE is different from systemic ... and identification of study participants was not ..... Table 3: Cox regression analysis to deteermine variables associated with overall ...

12. Analysis of cost regression and post-accident absence

Science.gov (United States)

Wojciech, Drozd

2017-07-01

The article presents issues related with costs of work safety. It proves the thesis that economic aspects cannot be overlooked in effective management of occupational health and safety and that adequate expenditures on safety can bring tangible benefits to the company. Reliable analysis of this problem is essential for the description the problem of safety the work. In the article attempts to carry it out using the procedures of mathematical statistics [1, 2, 3].

13. Outcome predictors in the management of intramedullary classic ependymoma: An integrative survival analysis.

Science.gov (United States)

Wang, Yinqing; Cai, Ranze; Wang, Rui; Wang, Chunhua; Chen, Chunmei

2018-06-01

This is a retrospective study.The aim of this study was to illustrate the survival outcomes of patients with classic ependymoma (CE) and identify potential prognostic factors.CE is the most common category of spinal ependymomas, but few published studies have discussed predictors of the survival outcome.A Boolean search of the PubMed, Embase, and OVID databases was conducted by 2 investigators independently. The objects were intramedullary grade II ependymoma according to 2007 WHO classification. Univariate Kaplan-Meier analysis and Log-Rank tests were performed to identify variables associated with progression-free survival (PFS) or overall survival (OS). Multivariate Cox regression was performed to assess hazard ratios (HRs) with 95% confidence intervals (95% CIs). Statistical analysis was performed by SPSS version 23.0 (IBM Corp.) with statistical significance defined as P analysis showed that patients who had undergone total resection (TR) had better PFS and OS than those with subtotal resection (STR) and biopsy (P = .002, P = .004, respectively). Within either univariate or multivariate analysis (P = .000, P = .07, respectively), histological type was an independent prognostic factor for PFS of CE [papillary type: HR 0.002, 95% CI (0.000-0.073), P = .001, tanycytic type: HR 0.010, 95% CI (0.000-0.218), P = .003].It was the first integrative analysis of CE to elucidate the correlation between kinds of factors and prognostic outcomes. Definite histological type and safely TR were foundation of CE's management. 4.

14. A Quality Assessment Tool for Non-Specialist Users of Regression Analysis

Science.gov (United States)

Argyrous, George

2015-01-01

This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…

15. Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features.

Science.gov (United States)

Wang, Wei; Lin, Tianxin; Huang, Jian; Hu, Weilie; Xu, Kewei; Liu, Jun

2011-01-01

Mel-18 is a member of the polycomb group (PcG) of proteins, which are chromatin regulatory factors that play an important role in development and oncogenesis. This study was designed to investigate the clinical and prognostic significance of Mel-18 in the patients with prostate cancer. Immunostaining with Mel-18 specific antibodies was performed on paraffin sections from 202 patients. Correlations between Mel-18 and the Gleason grading system, clinical stage, serum prostate-specific antigen (PSA) levels, and age were evaluated. PSA recurrence in 76 patients who underwent radical prostatectomy and survival in 59 patients with metastases at diagnosis were analyzed to evaluate the influence of Mel-18 expression in cancer progression using Kaplan-Meier analysis and multivariate Cox regression analysis. Staining was seen in all prostatic tissues. Mel-18 expression was significantly reduced in the prostate cancer patients with PSA levels over 100 ng/ml (P=0.009), advanced clinical stage (>T4, N1, or M1 disease, P=0.029), higher Gleason grade or with a higher Gleason score (P=0.018) than in those with other clinicopathologic features. Negative expression of Mel-18 was associated with significantly higher rates of PSA recurrence after radical prostatectomy than with positive expression of Mel-18 (P = 0.029), and was an independent predictor of PSA recurrence (P=0.034, HR=2.143) in multivariate analysis. Similarly, metastatic prostate cancer patients with negative expression of Mel-18 showed significantly worse survival compared with the positive expression of Mel-18 (P=0.025). In multivariate analysis, negative expression of Mel-18 was an independent predictor of cancer-specific survival (P=0.024, HR=2.365). Our study provides important evidence for the recognition of Mel-18 as a tumor suppressor. The expression of Mel-18 showed potential as a prognostic marker for human prostate cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

16. An improved multiple linear regression and data analysis computer program package

Science.gov (United States)

Sidik, S. M.

1972-01-01

NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

17. PATH ANALYSIS WITH LOGISTIC REGRESSION MODELS : EFFECT ANALYSIS OF FULLY RECURSIVE CAUSAL SYSTEMS OF CATEGORICAL VARIABLES

OpenAIRE

Nobuoki, Eshima; Minoru, Tabata; Geng, Zhi; Department of Medical Information Analysis, Faculty of Medicine, Oita Medical University; Department of Applied Mathematics, Faculty of Engineering, Kobe University; Department of Probability and Statistics, Peking University

2001-01-01

This paper discusses path analysis of categorical variables with logistic regression models. The total, direct and indirect effects in fully recursive causal systems are considered by using model parameters. These effects can be explained in terms of log odds ratios, uncertainty differences, and an inner product of explanatory variables and a response variable. A study on food choice of alligators as a numerical exampleis reanalysed to illustrate the present approach.

18. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

Science.gov (United States)

Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

2015-02-01

To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

19. Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response

International Nuclear Information System (INIS)

Skwarchuk, Mark W.; Jackson, Andrew; Zelefsky, Michael J.; Venkatraman, Ennapadam S.; Cowen, Didier M.; Levegruen, Sabine; Burman, Chandra M.; Fuks, Zvi; Leibel, Steven A.; Ling, C. Clifton

2000-01-01

Purpose: The purpose of this paper is to use the outcome of a dose escalation protocol for three-dimensional conformal radiation therapy (3D-CRT) of prostate cancer to study the dose-response for late rectal toxicity and to identify anatomic, dosimetric, and clinical factors that correlate with late rectal bleeding in multivariate analysis. Methods and Materials: Seven hundred forty-three patients with T1c-T3 prostate cancer were treated with 3D-CRT with prescribed doses of 64.8 to 81.0 Gy. The 5-year actuarial rate of late rectal toxicity was assessed using Kaplan-Meier statistics. A retrospective dosimetric analysis was performed for patients treated to 70.2 Gy (52 patients) or 75.6 Gy (119 patients) who either exhibited late rectal bleeding (RTOG Grade 2/3) within 30 months after treatment (i.e., 70.2 Gy--13 patients, 75.6 Gy--36 patients) or were nonbleeding for at least 30 months (i.e., 70.2 Gy--39 patients, 75.6 Gy--83 patients). Univariate and multivariate logistic regression was performed to correlate late rectal bleeding with several anatomic, dosimetric, and clinical variables. Results: A dose response for ≥ Grade 2 late rectal toxicity was observed. By multivariate analysis, the following factors were significantly correlated with ≥ Grade 2 late rectal bleeding for patients prescribed 70.2 Gy: 1) enclosure of the outer rectal contour by the 50% isodose on the isocenter slice (i.e., Iso50) (p max (p max

20. National Practice Patterns for Clinical T1N0 Nasopharyngeal Cancer in the Elderly: A National Cancer Data Base Analysis.

Science.gov (United States)

Post, Carl M; Lin, Chi; Adeberg, Sebastian; Gupta, Mrigank; Zhen, Weining; Verma, Vivek

2018-03-01

The standard of care for T1N0 nasopharyngeal cancer (NPC) is definitive radiation therapy (RT). However, practice patterns in the elderly may not necessarily follow national guidelines. Herein, we investigated national practice patterns for T1N0 NPC. The National Cancer Data Base (NCDB) was queried for clinical T1N0 primary NPC cases (2004-2013) in patients ≥70 years old. Patient, tumor, and treatment parameters were extracted. Kaplan-Meier analysis was used to compare overall survival (OS) between patients receiving RT versus those under observation. Logistic regression was used to examine variables associated with receipt of RT. Cox proportional hazards modeling determined variables associated with OS. Landmark analysis of patients surviving 1 year or more was performed to assess survival differences between groups. In total, data of 147 patients were analyzed. RT was delivered to 89 patients (61%), whereas 58 (39%) patients underwent observation. On multivariable analysis, older patients were less likely to receive RT (p=0.003), but there were no differences between groups in terms of Charlson-Deyo comorbidity index. Median and 5-year OS in patients receiving RT versus those under observation were 71 and 33 months, and 59% and 48% (p=0.011), respectively. For patients surviving 1 year or more (n=96), there was a strong trend showing that receipt of RT was associated with better median and 5-year OS. This National Data Base analysis shows that observation is relatively common for T1N0 NPC in the elderly, but is associated with poorer survival. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

1. Development of a User Interface for a Regression Analysis Software Tool

Science.gov (United States)

Ulbrich, Norbert Manfred; Volden, Thomas R.

2010-01-01

An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

2. Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression

Energy Technology Data Exchange (ETDEWEB)

Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be [Department of Applied Physics, Ghent University, B-9000 Ghent (Belgium); Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels (Belgium); Shabbir, A. [Department of Applied Physics, Ghent University, B-9000 Ghent (Belgium); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Hornung, G. [Department of Applied Physics, Ghent University, B-9000 Ghent (Belgium)

2016-11-15

Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standard least squares.

3. Survival Analysis and its Associated Factors of Beta Thalassemia Major in Hamadan Province

Directory of Open Access Journals (Sweden)

Reza Zamani

2015-05-01

Full Text Available Background: There currently is a lack of knowledge about the long-term survival of patients with beta thalassemia (BT, particularly in regions with low incidence of the disease. The aim of the present study was to determine the survival rate of the patients with BT major and the factors associated with the survival time. Methods: This retrospective cohort study was performed in Hamadan province, located in the west of Iran. The study included patients that referred to the provincial hospitals during 16 year period from 1997 to 2013. The follow up of each subject was calculated from the date of birth to the date of death. Demographic and clinical data were extracted from patients’ medical records using a checklist. Statistical analysis included the Kaplan-Meier method to analyze survivals, log-rank to compare curves between groups, and Cox regression for multivariate prognostic analysis. Results: A total of 133 patients with BT major were enrolled, 54.9% of whom were male and 66.2% were urban. The 10-, 20- and 30-year survival rate for all patients were 98.3%, 88.4% and 80.5%, respectively. Based on hazard ratio (HR, we found that accompanied diseases (P=0.01, blood type (P=0.03 and residency status (P=0.01 were significant predictors for the survival time of patients. Conclusion: The survival rate of BT patients has improved. Future researches such as prospective designs are required for the estimation of survival rate and to find other prognostic factors, which have reliable sources of data.

4. Quality of life in breast cancer patients--a quantile regression analysis.

Science.gov (United States)

2008-01-01

Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

5. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

Science.gov (United States)

Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

2015-01-01

To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

6. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

Science.gov (United States)

Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

2011-08-01

In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

7. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

Science.gov (United States)

Zarb, Francis; McEntee, Mark F; Rainford, Louise

2015-06-01

To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

8. Testing contingency hypotheses in budgetary research: An evaluation of the use of moderated regression analysis

NARCIS (Netherlands)

Hartmann, Frank G.H.; Moers, Frank

1999-01-01

In the contingency literature on the behavioral and organizational effects of budgeting, use of the Moderated Regression Analysis (MRA) technique is prevalent. This technique is used to test contingency hypotheses that predict interaction effects between budgetary and contextual variables. This

9. Neutrophil-to-lymphocyte ratio as an independent predictor for survival in patients with localized clear cell renal cell carcinoma after radiofrequency ablation: a propensity score matching analysis.

Science.gov (United States)

Chang, Xiaofeng; Zhang, Fan; Liu, Tieshi; Wang, Wei; Guo, Hongqian

2017-06-01

To investigate the role of neutrophil-to-lymphocyte ratio as a prognostic indicator in patients with localized clear cell renal cell carcinoma treated with radiofrequency ablation. We retrospectively analyzed data from patients with renal cell carcinoma who underwent radiofrequency ablation from 2006 to 2013. The Kaplan-Meier method was used to generate the survival curves according to different categories of neutrophil-to-lymphocyte ratio. Relationships between preoperative neutrophil-to-lymphocyte ratio or the change of neutrophil-to-lymphocyte ratio and survival were evaluated with multivariable Cox proportional hazards regression analysis. A propensity score matching analysis was carried out to avoid confounding bias. A total of 185 patients were included in present study. When stratified by preoperative neutrophil-to-lymphocyte ratio cutoff value of 2.79, 5-year recurrence-free survival, 5-year disease-free survival, and 5-year overall survival rates of neutrophil-to-lymphocyte ratio analysis, 5-year recurrence-free survival, 5-year disease-free survival, and 5-year overall survival rates of neutrophil-to-lymphocyte ratio ratio with the change of neutrophil-to-lymphocyte ratio, patients with both preoperative neutrophil-to-lymphocyte ratio ≥2.79 and the change of neutrophil-to-lymphocyte ratio ≥0.40 had the worst disease-free survival. Results of multivariable analysis showed that preoperative neutrophil-to-lymphocyte ratio and the change of neutrophil-to-lymphocyte ratio correlated with cancer relapse remarkably. High preoperative neutrophil-to-lymphocyte ratio and elevated postoperative neutrophil-to-lymphocyte ratio are associated with significant increase in risk of local recurrence as well as distant metastasis. The combination of neutrophil-to-lymphocyte ratio with the other prognostic indicators can be applied in the evaluation of relapse risk in patients with clear cell renal cell carcinoma after radiofrequency ablation.

10. Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics

OpenAIRE

Ole E. Barndorff-Nielsen; Neil Shephard

2002-01-01

This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...

11. Prognostic analysis of uterine cervical cancer treated with postoperative radiotherapy: importance of positive or close parametrial resection margin

Energy Technology Data Exchange (ETDEWEB)

Kim, Yi Jun; Lee, Kyung Ja; Park, Kyung Ran [Dept. of Radiation Oncology, (Korea, Republic of); and others

2015-06-15

To analyze prognostic factors for locoregional recurrence (LRR), distant metastasis (DM), and overall survival (OS) in cervical cancer patients who underwent radical hysterectomy followed by postoperative radiotherapy (PORT) in a single institute. Clinicopathologic data of 135 patients with clinical stage IA2 to IIA2 cervical cancer treated with PORT from 2001 to 2012 were reviewed, retrospectively. Postoperative parametrial resection margin (PRM) and vaginal resection margin (VRM) were investigated separately. The median treatment dosage of external beam radiotherapy (EBRT) to the whole pelvis was 50.4 Gy in 1.8 Gy/fraction. High-dose-rate vaginal brachytherapy after EBRT was given to patients with positive or close VRMs. Concurrent platinum-based chemoradiotherapy (CCRT) was administered to 73 patients with positive resection margin, lymph node (LN) metastasis, or direct extension of parametrium. Kaplan-Meier method and log-rank test were used for analyzing LRR, DM, and OS; Cox regression was applied to analyze prognostic factors. The 5-year disease-free survival was 79% and 5-year OS was 91%. In univariate analysis, positive or close PRM, LN metastasis, direct extension of parametrium, lymphovascular invasion, histology of adenocarcinoma, and chemotherapy were related with more DM and poor OS. In multivariate analysis, PRM and LN metastasis remained independent prognostic factors for OS. PORT after radical hysterectomy in uterine cervical cancer showed excellent OS in this study. Positive or close PRM after radical hysterectomy in uterine cervical cancer correlates with poor prognosis even with CCRT. Therefore, additional treatments to improve local control such as radiation boosting need to be considered.

12. Treatment and survival outcomes of small cell carcinoma of the esophagus: an analysis of the National Cancer Data Base.

Science.gov (United States)

Wong, Andrew T; Shao, Meng; Rineer, Justin; Osborn, Virginia; Schwartz, David; Schreiber, David

2017-02-01

Given the paucity of esophageal small cell carcinoma (SCC) cases, there are few large studies evaluating this disease. In this study, the National Cancer Data Base (NCDB) was utilized to analyze the clinical features, treatment, and survival of patients with esophageal SCC in a large, population-based dataset. We selected patients diagnosed with esophageal SCC from 1998 to 2011. Patients were identified as having no treatment, chemotherapy alone, radiation ± sequential chemotherapy, concurrent chemoradiation, and esophagectomy ± chemotherapy and/or radiation. Overall survival (OS) was analyzed using the Kaplan-Meier method and compared using the log-rank test. Multivariate Cox regression analysis was conducted to identify factors associated with OS. A total of 583 patients were identified. Most patients had stage IV disease (41.7%). Regarding treatment selection, chemoradiation was the most commonly utilized for patients with nonmetasatic disease, whereas chemotherapy alone was most common for metastatic patients. Esophagectomy (median survival 44.9 months with 3 year OS 50.5%) was associated with the best OS for patients with localized (node-negative) disease compared with chemotherapy alone (p < 0.001) or chemoradiation (p = 0.01). For locoregional (node-positive) disease, treatment with chemoradiation resulted in a median survival of 17.8 months and a 3 year OS 31.6%. On multivariate analysis, treatment with chemotherapy alone (p = 0.003) was associated with worse OS while esophagectomy (p = 0.04) was associated with improved OS compared to chemoradiation. Esophageal SCC is an aggressive malignancy with most patients presenting with metastatic disease. Either esophagectomy or chemoradiation as part of multimodality treatment appear to improve OS for selected patients with nonmetastatic disease. © 2016 International Society for Diseases of the Esophagus.

13. Survival, causes of death, and prognostic factors in systemic sclerosis: analysis of 947 Brazilian patients.

Science.gov (United States)

Sampaio-Barros, Percival D; Bortoluzzo, Adriana B; Marangoni, Roberta G; Rocha, Luiza F; Del Rio, Ana Paula T; Samara, Adil M; Yoshinari, Natalino H; Marques-Neto, João Francisco

2012-10-01

To analyze survival, prognostic factors, and causes of death in a large cohort of patients with systemic sclerosis (SSc). From 1991 to 2010, 947 patients with SSc were treated at 2 referral university centers in Brazil. Causes of death were considered SSc-related and non-SSc-related. Multiple logistic regression analysis was used to identify prognostic factors. Survival at 5 and 10 years was estimated using the Kaplan-Meier method. One hundred sixty-eight patients died during the followup. Among the 110 deaths considered related to SSc, there was predominance of lung (48.1%) and heart (24.5%) involvement. Most of the 58 deaths not related to SSc were caused by infection, cardiovascular or cerebrovascular disease, and cancer. Male sex, modified Rodnan skin score (mRSS) > 20, osteoarticular involvement, lung involvement, and renal crisis were the main prognostic factors associated to death. Overall survival rate was 90% for 5 years and 84% for 10 years. Patients presented worse prognosis if they had diffuse SSc (85% vs 92% at 5 yrs, respectively, and 77% vs 87% at 10 yrs, compared to limited SSc), male sex (77% vs 90% at 5 yrs and 64% vs 86% at 10 yrs, compared to female sex), and mRSS > 20 (83% vs 90% at 5 yrs and 66% vs 86% at 10 yrs, compared to mRSS < 20). Survival was worse in male patients with diffuse SSc, and lung and heart involvement represented the main causes of death in this South American series of patients with SSc.

14. Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure.

Science.gov (United States)

Gandhi, Parul U; Gaggin, Hanna K; Belcher, Arianna M; Harisiades, Jamie E; Basile, Anna; Falco, Antonia; Rosati, Alessandra; Piscione, Federico; Januzzi, James L; Turco, M Caterina

2015-05-20

BCL-2-associated athanogene 3 (BAG3) is a protein implicated in the cardiomyocyte stress response and genesis of cardiomyopathy. Extracellular BAG3 is measurable in patients with heart failure (HF), but the relationship of BAG3 with HF prognosis is unclear. BAG3 plasma concentrations were measured in 39 acutely decompensated HF patients; the primary endpoint was death at 1 year. Baseline characteristics were compared by vital status and median BAG3 concentration. Correlation of BAG3 with left ventricular ejection fraction (LVEF) and other biomarkers was performed. Prognostic value was assessed using Cox proportional hazards regression and Kaplan-Meier analysis. At baseline, median BAG3 was significantly higher in decedents (N=11) than survivors (N=28; 1489 ng/mL versus 50 ng/mL; P=0.04); decedents also had worse renal function and higher median natriuretic peptide (NP) and sST2. BAG3 was not significantly correlated with NPs, mid-regional pro-adrenomedullin, sST2, or eGFR, however. Mortality was increased in patients with supra-median BAG3 (>336 ng/mL; 42.1% versus 15.0%, P=0.06). In age and LVEF-adjusted Cox proportional hazards, BAG3 remained a significant mortality predictor (HR=3.20; 95% CI=1.34-7.65; P=0.02); those with supra-median BAG3 had significantly shorter time-to-death (P=0.04). The stress response protein BAG3 is measurable in patients with ADHF and may be prognostic for death. Copyright © 2015 Elsevier B.V. All rights reserved.

15. Multiple regression analysis of anthropometric measurements influencing the cephalic index of male Japanese university students.

Science.gov (United States)

Hossain, Md Golam; Saw, Aik; Alam, Rashidul; Ohtsuki, Fumio; Kamarul, Tunku

2013-09-01

Cephalic index (CI), the ratio of head breadth to head length, is widely used to categorise human populations. The aim of this study was to access the impact of anthropometric measurements on the CI of male Japanese university students. This study included 1,215 male university students from Tokyo and Kyoto, selected using convenient sampling. Multiple regression analysis was used to determine the effect of anthropometric measurements on CI. The variance inflation factor (VIF) showed no evidence of a multicollinearity problem among independent variables. The coefficients of the regression line demonstrated a significant positive relationship between CI and minimum frontal breadth (p regression analysis showed a greater likelihood for minimum frontal breadth (p regression analysis revealed bizygomatic breadth, head circumference, minimum frontal breadth, head height and morphological facial height to be the best predictor craniofacial measurements with respect to CI. The results suggest that most of the variables considered in this study appear to influence the CI of adult male Japanese students.

16. The impact of body mass index (BMI variation on mortality of incident elderly patients on peritoneal dialysis: a joint model analysis

Directory of Open Access Journals (Sweden)

Marcia Regina Gianotti Franco

Full Text Available Abstract Introduction: Data on impact of high body mass index (BMI on mortality of patients on peritoneal dialysis (PD, especially among elderly, are inconsistent. Objective: To evaluate impact of BMI on cohort of incident elderly PD patients over time. Methods: Prospective multicenter cohort study (December / 2004-October/2007 with 674 patients. Socio-demographic and clinical data evaluated with patients followed until death, transfer to hemodialysis (HD, recovery of renal function, loss of follow-up or transplant. Patients were divided into incident on renal replacement therapy (RRT for PD (PD first: 230 and transferred from hemodialysis (HD first: 444. Analysis was performed comparing these two groups using chi-square or Kruskal Wallis. Similar analysis was used to compare patients on automated peritoneal dialysis (APD vs. continuous ambulatory peritoneal dialysis (CAPD. Data were compared between patients according to BMI by ANOVA, Kruskal Wallis or chi-square. For analysis of survival, Kaplan Meier method was used and to adjust confounding variables, Cox regression proportional hazard. Joint model for longitudinal and time-dependent data was conducted, assessing impact that a longitudinal variable displays on time of survival. Results: Malnourished patients (76.79 ± 7.53 years were older (p < 0.0001 with higher percentage of death (44.6%, p = 0.001; diabetes mellitus showed high prevalence in obese patients (68%, p < 0.0001; higher blood pressure levels (p = 0.002 were present in obese and overweight patients. Conclusions: Increased BMI variation over time proved to be a protective factor, with a decrease of about 1% in risk of death for every BMI unit earned.

17. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

Science.gov (United States)

Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

2012-05-01

Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

18. Distance Based Root Cause Analysis and Change Impact Analysis of Performance Regressions

Directory of Open Access Journals (Sweden)

Junzan Zhou

2015-01-01

Full Text Available Performance regression testing is applied to uncover both performance and functional problems of software releases. A performance problem revealed by performance testing can be high response time, low throughput, or even being out of service. Mature performance testing process helps systematically detect software performance problems. However, it is difficult to identify the root cause and evaluate the potential change impact. In this paper, we present an approach leveraging server side logs for identifying root causes of performance problems. Firstly, server side logs are used to recover call tree of each business transaction. We define a novel distance based metric computed from call trees for root cause analysis and apply inverted index from methods to business transactions for change impact analysis. Empirical studies show that our approach can effectively and efficiently help developers diagnose root cause of performance problems.

19. A primer for biomedical scientists on how to execute model II linear regression analysis.

Science.gov (United States)

Ludbrook, John

2012-04-01

1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

20. Detecting overdispersion in count data: A zero-inflated Poisson regression analysis

Science.gov (United States)

Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Nor, Maria Elena; Mohamed, Maryati; Ismail, Norradihah

2017-09-01

This study focusing on analysing count data of butterflies communities in Jasin, Melaka. In analysing count dependent variable, the Poisson regression model has been known as a benchmark model for regression analysis. Continuing from the previous literature that used Poisson regression analysis, this study comprising the used of zero-inflated Poisson (ZIP) regression analysis to gain acute precision on analysing the count data of butterfly communities in Jasin, Melaka. On the other hands, Poisson regression should be abandoned in the favour of count data models, which are capable of taking into account the extra zeros explicitly. By far, one of the most popular models include ZIP regression model. The data of butterfly communities which had been called as the number of subjects in this study had been taken in Jasin, Melaka and consisted of 131 number of subjects visits Jasin, Melaka. Since the researchers are considering the number of subjects, this data set consists of five families of butterfly and represent the five variables involve in the analysis which are the types of subjects. Besides, the analysis of ZIP used the SAS procedure of overdispersion in analysing zeros value and the main purpose of continuing the previous study is to compare which models would be better than when exists zero values for the observation of the count data. The analysis used AIC, BIC and Voung test of 5% level significance in order to achieve the objectives. The finding indicates that there is a presence of over-dispersion in analysing zero value. The ZIP regression model is better than Poisson regression model when zero values exist.

1. Analysis of γ spectra in airborne radioactivity measurements using multiple linear regressions

International Nuclear Information System (INIS)

Bao Min; Shi Quanlin; Zhang Jiamei

2004-01-01

This paper describes the net peak counts calculating of nuclide 137 Cs at 662 keV of γ spectra in airborne radioactivity measurements using multiple linear regressions. Mathematic model is founded by analyzing every factor that has contribution to Cs peak counts in spectra, and multiple linear regression function is established. Calculating process adopts stepwise regression, and the indistinctive factors are eliminated by F check. The regression results and its uncertainty are calculated using Least Square Estimation, then the Cs peak net counts and its uncertainty can be gotten. The analysis results for experimental spectrum are displayed. The influence of energy shift and energy resolution on the analyzing result is discussed. In comparison with the stripping spectra method, multiple linear regression method needn't stripping radios, and the calculating result has relation with the counts in Cs peak only, and the calculating uncertainty is reduced. (authors)

2. Analysis of survival for patients with chronic kidney disease primarily related to renal cancer surgery.

Science.gov (United States)

Wu, Jitao; Suk-Ouichai, Chalairat; Dong, Wen; Antonio, Elvis Caraballo; Derweesh, Ithaar H; Lane, Brian R; Demirjian, Sevag; Li, Jianbo; Campbell, Steven C

2018-01-01

To evaluate predictors of long-term survival for patients with chronic kidney disease primarily due to surgery (CKD-S). Patients with CKD-S have generally good survival that approximates patients who do not have CKD even after renal cancer surgery (RCS), yet there may be heterogeneity within this cohort. From 1997 to 2008, 4 246 patients underwent RCS at our centre. The median (interquartile range [IQR]) follow-up was 9.4 (7.3-11.0) years. New baseline glomerular filtration rate (GFR) was defined as highest GFR between nadir and 6 weeks after RCS. We retrospectively evaluated three cohorts: no-CKD (new baseline GFR of ≥60 mL/min/1.73 m 2 ); CKD-S (new baseline GFR of cancer-related survival (NRCRS) for the CKD-S cohort. Kaplan-Meier analysis assessed the longitudinal impact of new baseline GFR (45-60 mL/min/1.73 m 2 vs <45 mL/min/1.73 m 2 ) and Cox regression evaluated relative impact of preoperative GFR, new baseline GFR, and relevant demographics/comorbidities. Of the 4 246 patients who underwent RCS, 931 had CKD-S and 1 113 had CKD-M/S, whilst 2 202 had no-CKD even after RCS. Partial/radical nephrectomy (PN/RN) was performed in 54%/46% of the patients, respectively. For CKD-S, 641 patients had a new baseline GFR of 45-60 mL/min/1.73 m 2 and 290 had a new baseline GFR of <45 mL/min/1.73 m 2 . Kaplan-Meier analysis showed significantly reduced NRCRS for patients with CKD-S with a GFR of <45 mL/min/1.73 m 2 compared to those with no-CKD or CKD-S with a GFR of 45-60 mL/min/1.73 m 2 (both P ≤ 0.004), and competing risk analysis confirmed this (P < 0.001). Age, gender, heart disease, and new baseline GFR were all associated independently with NRCRS for patients with CKD-S (all P ≤ 0.02). Our data suggest that CKD-S is heterogeneous, and patients with a reduced new baseline GFR have compromised survival, particularly if <45 mL/min/1.73 m 2 . Our findings may have implications regarding choice of PN/RN in patients at risk of developing

3. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

Energy Technology Data Exchange (ETDEWEB)

Deng, Yangyang; Parajuli, Prem B.

2011-08-10

Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of \$0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

4. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

Science.gov (United States)

Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

2017-01-01

The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

5. Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data

Science.gov (United States)

Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

2014-01-01

In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438

6. Regression analysis understanding and building business and economic models using Excel

CERN Document Server

Wilson, J Holton

2012-01-01

The technique of regression analysis is used so often in business and economics today that an understanding of its use is necessary for almost everyone engaged in the field. This book will teach you the essential elements of building and understanding regression models in a business/economic context in an intuitive manner. The authors take a non-theoretical treatment that is accessible even if you have a limited statistical background. It is specifically designed to teach the correct use of regression, while advising you of its limitations and teaching about common pitfalls. This book describe

7. Predictors of In-Hospital Death After Aneurysmal Subarachnoid Hemorrhage: Analysis of a Nationwide Database (Swiss SOS [Swiss Study on Aneurysmal Subarachnoid Hemorrhage]).

Science.gov (United States)

Stienen, Martin Nikolaus; Germans, Menno; Burkhardt, Jan-Karl; Neidert, Marian C; Fung, Christian; Bervini, David; Zumofen, Daniel; Röthlisberger, Michel; Marbacher, Serge; Maduri, Rodolfo; Robert, Thomas; Seule, Martin A; Bijlenga, Philippe; Schaller, Karl; Fandino, Javier; Smoll, Nicolas R; Maldaner, Nicolai; Finkenstädt, Sina; Esposito, Giuseppe; Schatlo, Bawarjan; Keller, Emanuela; Bozinov, Oliver; Regli, Luca

2018-02-01

To identify predictors of in-hospital mortality in patients with aneurysmal subarachnoid hemorrhage and to estimate their impact. Retrospective analysis of prospective data from a nationwide multicenter registry on all aneurysmal subarachnoid hemorrhage cases admitted to a tertiary neurosurgical department in Switzerland (Swiss SOS [Swiss Study on Aneurysmal Subarachnoid Hemorrhage]; 2009-2015). Both clinical and radiological independent predictors of in-hospital mortality were identified, and their effect size was determined by calculating adjusted odds ratios (aORs) using multivariate logistic regression. Survival was displayed using Kaplan-Meier curves. Data of n=1866 aneurysmal subarachnoid hemorrhage patients in the Swiss SOS database were available. In-hospital mortality was 20% (n=373). In n=197 patients (10.6%), active treatment was discontinued after hospital admission (no aneurysm occlusion attempted), and this cohort was excluded from analysis of the main statistical model. In the remaining n=1669 patients, the rate of in-hospital mortality was 13.9% (n=232). Strong independent predictors of in-hospital mortality were rebleeding (aOR, 7.69; 95% confidence interval, 3.00-19.71; P <0.001), cerebral infarction attributable to delayed cerebral ischemia (aOR, 3.66; 95% confidence interval, 1.94-6.89; P <0.001), intraventricular hemorrhage (aOR, 2.65; 95% confidence interval, 1.38-5.09; P =0.003), and new infarction post-treatment (aOR, 2.57; 95% confidence interval, 1.43-4.62; P =0.002). Several-and among them modifiable-factors seem to be associated with in-hospital mortality after aneurysmal subarachnoid hemorrhage. Our data suggest that strategies aiming to reduce the risk of rebleeding are most promising in patients where active treatment is initially pursued. URL: http://www.clinicaltrials.gov. Unique identifier: NCT03245866. © 2018 American Heart Association, Inc.

8. Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing

Science.gov (United States)

Lee, L.; Helsel, D.

2007-01-01

Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.

9. Number of Lymph Nodes Removed and Survival after Gastric Cancer Resection: An Analysis from the US Gastric Cancer Collaborative.

Science.gov (United States)

Gholami, Sepideh; Janson, Lucas; Worhunsky, David J; Tran, Thuy B; Squires, Malcolm Hart; Jin, Linda X; Spolverato, Gaya; Votanopoulos, Konstantinos I; Schmidt, Carl; Weber, Sharon M; Bloomston, Mark; Cho, Clifford S; Levine, Edward A; Fields, Ryan C; Pawlik, Timothy M; Maithel, Shishir K; Efron, Bradley; Norton, Jeffrey A; Poultsides, George A

2015-08-01

Examination of at least 16 lymph nodes (LNs) has been traditionally recommended during gastric adenocarcinoma resection to optimize staging, but the impact of this strategy on survival is uncertain. Because recent randomized trials have demonstrated a therapeutic benefit from extended lymphadenectomy, we sought to investigate the impact of the number of LNs removed on prognosis after gastric adenocarcinoma resection. We analyzed patients who underwent gastrectomy for gastric adenocarcinoma from 2000 to 2012, at 7 US academic institutions. Patients with M1 disease or R2 resections were excluded. Disease-specific survival (DSS) was calculated using the Kaplan-Meier method and compared using log-rank and Cox regression analyses. Of 742 patients, 257 (35%) had 7 to 15 LNs removed and 485 (65%) had ≥16 LNs removed. Disease-specific survival was not significantly longer after removal of ≥16 vs 7 to 15 LNs (10-year survival, 55% vs 47%, respectively; p = 0.53) for the entire cohort, but was significantly improved in the subset of patients with stage IA to IIIA (10-year survival, 74% vs 57%, respectively; p = 0.018) or N0-2 disease (72% vs 55%, respectively; p = 0.023). Similarly, for patients who were classified to more likely be "true N0-2," based on frequentist analysis incorporating both the number of positive and of total LNs removed, the hazard ratio for disease-related death (adjusted for T stage, R status, grade, receipt of neoadjuvant and adjuvant therapy, and institution) significantly decreased as the number of LNs removed increased. The number of LNs removed during gastrectomy for adenocarcinoma appears itself to have prognostic implications for long-term survival. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

10. Structure-Function Analysis of Nonarteritic Anterior Ischemic Optic Neuropathy and Age-Related Differences in Outcome.

Science.gov (United States)

Sun, Ming-Hui; Liao, Yaping Joyce

2017-09-01

The optic nerve head is vulnerable to ischemia leading to anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years of age. We performed a cross-sectional study of 55 nonarteritic anterior ischemic optic neuropathy (NAION) eyes in 34 patients to assess clinical outcome and perform structure-function correlations. The peak age of NAION onset was between 50 and 55 years. Sixty-seven percent of patients presented with their first event between the ages of 40 and 60 years, and 32% presented at ≤50 years. Those with NAION onset at age ≤50 years did not have significantly better visual outcome per logMAR visual acuity, automated perimetric mean deviation (PMD) or optical coherence tomography (OCT) measurements. Kaplan-Meier survival curve and multivariate Cox proportional regression analysis showed that age >50 years at NAION onset was associated with greater risk of second eye involvement, with hazard ratio of 20. Older age at onset was significantly correlated with greater thinning of the ganglion cell complex (GCC) (P = 0.022) but not with logMAR visual acuity, PMD, or thinning of retinal nerve fiber layer (RNFL). Using area under receiver operating characteristic curve analyses, we found that thinning of RNFL and GCC was best able to predict visual outcome, and that mean RNFL thickness >65 μm or macular GCC thickness >55 μm significantly correlated with good visual field outcome. We showed that NAION onset at age >50 years had a greater risk of second eye involvement. Patients with OCT mean RNFL thickness >65 μm and mean macular ganglion cell complex thickness >55 μm had better visual outcomes.

11. Marital status and survival in patients with rectal cancer: An analysis of the Surveillance, Epidemiology and End Results (SEER) database.

Science.gov (United States)

Wang, Xiangyang; Cao, Weilan; Zheng, Chenguo; Hu, Wanle; Liu, Changbao

2018-06-01

Marital status has been validated as an independent prognostic factor for survival in several cancer types, but is controversial in rectal cancer (RC). The objective of this study was to investigate the impact of marital status on the survival outcomes of patients with RC. We extracted data of 27,498 eligible patients diagnosed with RC between 2004 and 2009 from the Surveillance, Epidemiology and End Results (SEER) database. Patients were categorized into married, never married, divorced/separated and widowed groups.We used Chi-square tests to compare characteristics of patients with different marital status.Rectal cancer specific survival was compared using the Kaplan-Meier method,and multivariate Cox regression analyses was used to analyze the survival outcome risk factors in different marital status. The widowed group had the highest percentage of elderly patients and women,higher proportion of adenocarcinomas, and more stage I/II in tumor stage (P married group (76.7% VS 85.4%). Compared with the married patients, the never married (HR 1.40), widowed (HR 1.61,) and divorced/separated patients (HR 1.16) had an increased overall 5-year mortality. A further analysis showed that widowed patients had an increased overall 5-year cause-specific survival(CSS) compared with married patients at stage I(HR 1.92),stage II (HR 1.65),stage III (HR 1.73),and stage IV (HR 1.38). Our study showed marriage was associated with better outcomes of RC patients, but unmarried RC patients, especially widowed patients,are at greater risk of cancer specific mortality. Copyright © 2018 Elsevier Ltd. All rights reserved.

12. A multiple regression analysis for accurate background subtraction in 99Tcm-DTPA renography

International Nuclear Information System (INIS)

Middleton, G.W.; Thomson, W.H.; Davies, I.H.; Morgan, A.

1989-01-01

A technique for accurate background subtraction in 99 Tc m -DTPA renography is described. The technique is based on a multiple regression analysis of the renal curves and separate heart and soft tissue curves which together represent background activity. It is compared, in over 100 renograms, with a previously described linear regression technique. Results show that the method provides accurate background subtraction, even in very poorly functioning kidneys, thus enabling relative renal filtration and excretion to be accurately estimated. (author)

13. Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: Systematic review and meta-analysis

International Nuclear Information System (INIS)

Hulsteijn, Leonie T. van; Corssmit, Eleonora P.M.; Coremans, Ida E.M.; Smit, Johannes W.A.; Jansen, Jeroen C.; Dekkers, Olaf M.

2013-01-01

The primary treatment goal of radiotherapy for paragangliomas of the head and neck region (HNPGLs) is local control of the tumor, i.e. stabilization of tumor volume. Interestingly, regression of tumor volume has also been reported. Up to the present, no meta-analysis has been performed giving an overview of regression rates after radiotherapy in HNPGLs. The main objective was to perform a systematic review and meta-analysis to assess regression of tumor volume in HNPGL-patients after radiotherapy. A second outcome was local tumor control. Design of the study is systematic review and meta-analysis. PubMed, EMBASE, Web of Science, COCHRANE and Academic Search Premier and references of key articles were searched in March 2012 to identify potentially relevant studies. Considering the indolent course of HNPGLs, only studies with ⩾12 months follow-up were eligible. Main outcomes were the pooled proportions of regression and local control after radiotherapy as initial, combined (i.e. directly post-operatively or post-embolization) or salvage treatment (i.e. after initial treatment has failed) for HNPGLs. A meta-analysis was performed with an exact likelihood approach using a logistic regression with a random effect at the study level. Pooled proportions with 95% confidence intervals (CI) were reported. Fifteen studies were included, concerning a total of 283 jugulotympanic HNPGLs in 276 patients. Pooled regression proportions for initial, combined and salvage treatment were respectively 21%, 33% and 52% in radiosurgery studies and 4%, 0% and 64% in external beam radiotherapy studies. Pooled local control proportions for radiotherapy as initial, combined and salvage treatment ranged from 79% to 100%. Radiotherapy for jugulotympanic paragangliomas results in excellent local tumor control and therefore is a valuable treatment for these types of tumors. The effects of radiotherapy on regression of tumor volume remain ambiguous, although the data suggest that regression can

14. An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models

DEFF Research Database (Denmark)

Kinnebrock, Silja; Podolskij, Mark

This paper introduces a new estimator to measure the ex-post covariation between high-frequency financial time series under market microstructure noise. We provide an asymptotic limit theory (including feasible central limit theorems) for standard methods such as regression, correlation analysis...... process can be relaxed and how our method can be applied to non-synchronous observations. We also present an empirical study of how high-frequency correlations, regressions and covariances change through time....

15. Exploratory regression analysis: a tool for selecting models and determining predictor importance.

Science.gov (United States)

Braun, Michael T; Oswald, Frederick L

2011-06-01

Linear regression analysis is one of the most important tools in a researcher's toolbox for creating and testing predictive models. Although linear regression analysis indicates how strongly a set of predictor variables, taken together, will predict a relevant criterion (i.e., the multiple R), the analysis cannot indicate which predictors are the most important. Although there is no definitive or unambiguous method for establishing predictor variable importance, there are several accepted methods. This article reviews those methods for establishing predictor importance and provides a program (in Excel) for implementing them (available for direct download at http://dl.dropbox.com/u/2480715/ERA.xlsm?dl=1) . The program investigates all 2(p) - 1 submodels and produces several indices of predictor importance. This exploratory approach to linear regression, similar to other exploratory data analysis techniques, has the potential to yield both theoretical and practical benefits.

16. Treatment of malignant biliary occlusion by means of transhepatic percutaneous biliary drainage with insertion of metal stents - results of an 8-year follow-up and analysis of the prognostic parameters; Behandlung der malignen Gallenwegsstenose mittels perkutaner transhepatischer Metallendoprothesenimplantation: 8 Jahres-Ergebnisse und Analyse prognostischer Faktoren

Energy Technology Data Exchange (ETDEWEB)

Alfke, H.; Alfke, B.; Froelich, J.J.; Klose, K.J.; Wagner, H.J. [Klinik fuer Strahlendiagnostik Philipps Univ. Marburg (Germany)

2003-08-01

Purpose: To analyze outcome and predictive factors for patient survival and patency rates of unresectable malignant biliary obstruction treated with percutaneous transhepatic insertion of metal stents. Materials and Methods: This is a retroselective analysis of 130 patients treated in one interventional radiological center with data collected from patient records and by telephone interviews. The procedure-related data had been prospectively documented in a computer data base. The Kaplan-Meier analysis was performed for univariate and multivariate comparison of survival and patency rates with the log-rank test used for different tumor types. Predictive factors for survival and 30-day mortality were analyzed by a stepwise logistic regression. Results: Underlying causes of malignant biliary obstructions were cholangiocarcinoma in 50, pancreatic carcinoma in 29, liver metastases in 27, gallbladder carcinoma in 20, and other tumors in 4 patients. The technical success rate was 99%, the complication rate 27% and the 30-day mortality 11%. Primary patency rates (406 days with a median of 207 days) did not differ significantly for different tumor types. The survival rates were significantly (p = 0.03 by log-rank test) better for patients with cholangiocarcinoma than for patients with pancreatic carcinoma and liver metastases. Multiple regression analysis revealed no predictive factor for patient survival and 30-day mortality. Conclusion: Percutaneous transhepatic insertion of metal biliary endoprostheses offers a good initial and long-term relief of jaundice caused by malignant biliary obstruction. Although survival rates for patients with cholangiocarcinoma are better than for other causes of malignant biliary obstruction, a clear predictive factor is lacking for patients undergoing palliative biliary stent insertion. (orig.) [German] Ziel: Ergebnisse der perkutanen transhepatischen Metallendoprothesenimplantation bei malignen Gallenwegsverschluessen zu evaluieren und

17. Analysis of stresses on buried pipeline subjected to landslide based on numerical simulation and regression analysis

Energy Technology Data Exchange (ETDEWEB)

Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)

2010-07-01

Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.

18. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

Science.gov (United States)

Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

2010-11-01

Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

19. Trend Analysis of Cancer Mortality and Incidence in Panama, Using Joinpoint Regression Analysis.

Science.gov (United States)

Politis, Michael; Higuera, Gladys; Chang, Lissette Raquel; Gomez, Beatriz; Bares, Juan; Motta, Jorge

2015-06-01

Cancer is one of the leading causes of death worldwide and its incidence is expected to increase in the future. In Panama, cancer is also one of the leading causes of death. In 1964, a nationwide cancer registry was started and it was restructured and improved in 2012. The aim of this study is to utilize Joinpoint regression analysis to study the trends of the incidence and mortality of cancer in Panama in the last decade. Cancer mortality was estimated from the Panamanian National Institute of Census and Statistics Registry for the period 2001 to 2011. Cancer incidence was estimated from the Panamanian National Cancer Registry for the period 2000 to 2009. The Joinpoint Regression Analysis program, version 4.0.4, was used to calculate trends by age-adjusted incidence and mortality rates for selected cancers. Overall, the trend of age-adjusted cancer mortality in Panama has declined over the last 10 years (-1.12% per year). The cancers for which there was a significant increase in the trend of mortality were female breast cancer and ovarian cancer; while the highest increases in incidence were shown for breast cancer, liver cancer, and prostate cancer. Significant decrease in the trend of mortality was evidenced for the following: prostate cancer, lung and bronchus cancer, and cervical cancer; with respect to incidence, only oral and pharynx cancer in both sexes had a significant decrease. Some cancers showed no significant trends in incidence or mortality. This study reveals contrasting trends in cancer incidence and mortality in Panama in the last decade. Although Panama is considered an upper middle income nation, this study demonstrates that some cancer mortality trends, like the ones seen in cervical and lung cancer, behave similarly to the ones seen in high income countries. In contrast, other types, like breast cancer, follow a pattern seen in countries undergoing a transition to a developed economy with its associated lifestyle, nutrition, and body weight

20. Regression analysis of growth responses to water depth in three wetland plant species

DEFF Research Database (Denmark)

Sorrell, Brian K; Tanner, Chris C; Brix, Hans

2012-01-01

depths from 0 – 0.5 m. Morphological and growth responses to depth were followed for 54 days before harvest, and then analysed by repeated measures analysis of covariance, and non-linear and quantile regression analysis (QRA), to compare flooding tolerances. Principal results Growth responses to depth...

1. Censoring approach to the detection limits in X-ray fluorescence analysis

International Nuclear Information System (INIS)

Pajek, M.; Kubala-Kukus, A.

2004-01-01

We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called 'nondetects', can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples

2. Evaluation of the TRPM2 channel as a biomarker in breast cancer using public databases analysis.

Science.gov (United States)

Breast cancer is one of the most common malignancies affecting women. Recent investigations have revealed a major role of ion channels in cancer. The transient receptor potential melastatin-2 (TRPM2) is a plasma membrane and lysosomal channel with important roles in cell migration and cell death in immune cells and tumor cells. In this study, we investigated the prognostic value of TRPM2 channel in breast cancer, analyzing public databases compiled in Oncomine™ (Thermo Fisher, Ann Arbor, MI) and online Kaplan-Meier Plotter platforms. The results revealed that TRPM2 mRNA overexpression is significant in situ and invasive breast carcinoma compared to normal breast tissue. Furthermore, multi-gene validation using Oncomine™ showed that this channel is coexpressed with proteins related to cellular migration, transformation, and apoptosis. On the other hand, Kaplan-Meier analysis exhibited that low expression of TRPM2 could be used to predict poor outcome in ER- and HER2+ breast carcinoma patients. TRPM2 is a promising biomarker for aggressiveness of breast cancer, and a potential target for the development of new therapies. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

3. Talent in Female Gymnastics: a Survival Analysis Based upon Performance Characteristics.

Science.gov (United States)

Pion, J; Lenoir, M; Vandorpe, B; Segers, V

2015-11-01

This study investigated the link between the anthropometric, physical and motor characteristics assessed during talent identification and dropout in young female gymnasts. 3 cohorts of female gymnasts (n=243; 6-9 years) completed a test battery for talent identification. Performance-levels were monitored over 5 years of competition. Kaplan-Meier and Cox Proportional Hazards analyses were conducted to determine the survival rate and the characteristics that influence dropout respectively. Kaplan-Meier analysis indicated that only 18% of the female gymnasts that passed the baseline talent identification test survived at the highest competition level 5 years later. The Cox Proportional Hazards Model indicated that gymnasts with a score in the best quartile for a specific characteristic significantly increased chances of survival by 45-129%. These characteristics being: basic motor skills (129%), shoulder strength (96%), leg strength (53%) and 3 gross motor coordination items (45-73%). These results suggest that tests batteries commonly used for talent identification in young female gymnasts may also provide valuable insights into future dropout. Therefore, multidimensional test batteries deserve a prominent place in the selection process. The individual test results should encourage trainers to invest in an early development of basic physical and motor characteristics to prevent attrition. © Georg Thieme Verlag KG Stuttgart · New York.

4. Multiple regression analysis of Jominy hardenability data for boron treated steels

International Nuclear Information System (INIS)

Komenda, J.; Sandstroem, R.; Tukiainen, M.

1997-01-01

The relations between chemical composition and their hardenability of boron treated steels have been investigated using a multiple regression analysis method. A linear model of regression was chosen. The free boron content that is effective for the hardenability was calculated using a model proposed by Jansson. The regression analysis for 1261 steel heats provided equations that were statistically significant at the 95% level. All heats met the specification according to the nordic countries producers classification. The variation in chemical composition explained typically 80 to 90% of the variation in the hardenability. In the regression analysis elements which did not significantly contribute to the calculated hardness according to the F test were eliminated. Carbon, silicon, manganese, phosphorus and chromium were of importance at all Jominy distances, nickel, vanadium, boron and nitrogen at distances above 6 mm. After the regression analysis it was demonstrated that very few outliers were present in the data set, i.e. data points outside four times the standard deviation. The model has successfully been used in industrial practice replacing some of the necessary Jominy tests. (orig.)

5. Treating experimental data of inverse kinetic method by unitary linear regression analysis

International Nuclear Information System (INIS)

Zhao Yusen; Chen Xiaoliang

2009-01-01

The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

6. Regression analysis of informative current status data with the additive hazards model.

Science.gov (United States)

Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

2015-04-01

This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

7. Prediction of hearing outcomes by multiple regression analysis in patients with idiopathic sudden sensorineural hearing loss.

Science.gov (United States)

Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki

2014-12-01

This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.

8. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

Science.gov (United States)

Anderson, Carl A; McRae, Allan F; Visscher, Peter M

2006-07-01

Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

9. Prognostic implications of serial risk score assessments in patients with pulmonary arterial hypertension: a Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) analysis.

Science.gov (United States)

Benza, Raymond L; Miller, Dave P; Foreman, Aimee J; Frost, Adaani E; Badesch, David B; Benton, Wade W; McGoon, Michael D

2015-03-01

Data from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) were used previously to develop a risk score calculator to predict 1-year survival. We evaluated prognostic implications of changes in the risk score and individual risk-score parameters over 12 months. Patients were grouped by decreased, unchanged, or increased risk score from enrollment to 12 months. Kaplan-Meier estimates of subsequent 1-year survival were made based on change in the risk score during the initial 12 months of follow-up. Cox regression was used for multivariable analysis. Of 2,529 patients in the analysis cohort, the risk score was decreased in 800, unchanged in 959, and increased in 770 at 12 months post-enrollment. Six parameters (functional class, systolic blood pressure, heart rate, 6-minute walk distance, brain natriuretic peptide levels, and pericardial effusion) each changed sufficiently over time to improve or worsen risk scores in ≥5% of patients. One-year survival estimates in the subsequent year were 93.7%, 90.3%, and 84.6% in patients with a decreased, unchanged, and increased risk score at 12 months, respectively. Change in risk score significantly predicted future survival, adjusting for risk at enrollment. Considering follow-up risk concurrently with risk at enrollment, follow-up risk was a much stronger predictor, although risk at enrollment maintained a significant effect on future survival. Changes in REVEAL risk scores occur in most patients with pulmonary arterial hypertension over a 12-month period and are predictive of survival. Thus, serial risk score assessments can identify changes in disease trajectory that may warrant treatment modifications. Copyright © 2015 International Society for Heart and Lung Transplantation. All rights reserved.

10. Prognostic value of myocardial perfusion SPECT images in combination with the maximal heart rate at exercise testing in Japanese patients with suspected ischemic heart disease. A sub-analysis of J-ACCESS

International Nuclear Information System (INIS)

Ueshima, Kenji; Usami, Satoru; Yasuno, Shinji; Nakao, Kazuwa; Yamashina, Akira; Nishiyama, Osamu; Yamazaki, Takuya; Nishimura, Tsunehiko

2009-01-01

We assessed whether a combination of summed stress scores (SSS) using exercise myocardial perfusion single photon emission computed tomography (SPECT) (Ex-SPECT) and maximal heart rate accurately predicts cardiac events through a sub-analysis of J-ACCESS (Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT) which was conducted to evaluate the prognosis of Japanese patients with suspected ischemic heart disease. In J-ACCESS, 2,373 patients with suspected coronary artery disease not receiving beta-blocker treatment underwent Ex-SPECT. These patients were categorized into the following four groups: Group A [achieved target heart rate (THR) and SSS<4: n=631], B (did not achieve THR and SSS<4: n=612), C (achieved THR and SSS≥4: n=570), and D (did not achieve THR and SSS≥4: n=560). We evaluated the incidence rate of cardiac events including cardiac death, myocardial infarction, and heart failure requiring hospital admission during a 3-year period. In Group A, B, C, and D, 9 of 631 (1.4%), 15 of 612 (2.4%), 23 of 570 (4.0%) and 30 of 560 (5.4%) patients experienced cardiac events, respectively. Although the hazard ratio of the SSS≥4 was 2.45 (p<0.001) and that of the attained THR was 0.69 (p=0.10) in the multiple Cox regression analysis, Kaplan-Meier curves showed that the cardiac events rate was lower in the order of A, B, C, and D (p<0.001). The combination of SSS using Ex-SPECT and the maximal heart rate is a useful predictor of cardiac events in patients with suspected coronary artery disease. (author)

11. Hepatitis B and C Co-Infection in HIV Patients from the TREAT Asia HIV Observational Database: Analysis of Risk Factors and Survival

Science.gov (United States)

Chen, Marcelo; Wong, Wing-Wai; Law, Matthew G.; Kiertiburanakul, Sasisopin; Yunihastuti, Evy; Merati, Tuti Parwati; Lim, Poh Lian; Chaiwarith, Romanee; Phanuphak, Praphan; Lee, Man Po; Kumarasamy, Nagalingeswaran; Saphonn, Vonthanak; Ditangco, Rossana; Sim, Benedict L. H.; Nguyen, Kinh Van; Pujari, Sanjay; Kamarulzaman, Adeeba; Zhang, Fujie; Pham, Thuy Thanh; Choi, Jun Yong; Oka, Shinichi; Kantipong, Pacharee; Mustafa, Mahiran; Ratanasuwan, Winai; Durier, Nicolas; Chen, Yi-Ming Arthur

2016-01-01

Background We assessed the effects of hepatitis B (HBV) or hepatitis C (HCV) co-infection on outcomes of antiretroviral therapy (ART) in HIV-infected patients enrolled in the TREAT Asia HIV Observational Database (TAHOD), a multi-center cohort of HIV-infected patients in the Asia-Pacific region. Methods Patients testing HBs antigen (Ag) or HCV antibody (Ab) positive within enrollment into TAHOD were considered HBV or HCV co-infected. Factors associated with HBV and/or HCV co-infection were assessed by logistic regression models. Factors associated with post-ART HIV immunological response (CD4 change after six months) and virological response (HIV RNA <400 copies/ml after 12 months) were also determined. Survival was assessed by the Kaplan-Meier method and log rank test. Results A total of 7,455 subjects were recruited by December 2012. Of patients tested, 591/5656 (10.4%) were HBsAg positive, 794/5215 (15.2%) were HCVAb positive, and 88/4966 (1.8%) were positive for both markers. In multivariate analysis, HCV co-infection, age, route of HIV infection, baseline CD4 count, baseline HIV RNA, and HIV-1 subtype were associated with immunological recovery. Age, route of HIV infection, baseline CD4 count, baseline HIV RNA, ART regimen, prior ART and HIV-1 subtype, but not HBV or HCV co-infection, affected HIV RNA suppression. Risk factors affecting mortality included HCV co-infection, age, CDC stage, baseline CD4 count, baseline HIV RNA and prior mono/dual ART. Shortest survival was seen in subjects who were both HBV- and HCV-positive. Conclusion In this Asian cohort of HIV-infected patients, HCV co-infection, but not HBV co-infection, was associated with lower CD4 cell recovery after ART and increased mortality. PMID:26933963

12. Impact of Serum Apolipoprotein A-I on Prognosis and Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer: a Propensity Score-Matched Analysis

Directory of Open Access Journals (Sweden)

Qi Quan

2017-04-01

Full Text Available PURPOSE: We aimed to investigate the role of apolipoprotein A-I (ApoA-I as a predictor of prognosis and treatment efficacy of bevacizumab in patients with metastatic colorectal cancer (mCRC treated with first-line chemotherapy with or without bevacizumab. METHODS: We conducted a retrospective study on consecutive patients who were diagnosed with mCRC at Sun Yat-sen University Cancer Center. According to their pretreatment ApoA-I level, patients were divided into low– and high–ApoA-I groups. Propensity score-matched method was performed to balance baseline characteristics between two groups. Based on whether they accepted bevacizumab as a first-line therapy, patients were further divided into the chemo + bevacizumab group and the chemo group. Overall survival (OS and progression-free survival (PFS were assessed with Kaplan-Meier method, log-rank test, and Cox regression. RESULTS: The optimal cutoff value for the ApoA-I level was determined to be 1.105 g/l. In the propensity-matched cohort of 508 patients, low ApoA-I was significantly associated with inferior OS (P < .001 and PFS (P < .001 than high ApoA-I. Multivariate analysis showed that ApoA-I level was an independent prognostic maker of OS (P < .001 and PFS (P = .001. PFS (P < .001 in either the high– or low–ApoA-I groups could be extended significantly after the administration of bevacizumab, and patients with a high ApoA-I level also had a better OS in the chemo + bevacizumab group than the chemo group (P = .049. CONCLUSIONS: Patients with a low ApoA-I level have poor prognoses, and they did not display an OS benefit from bevacizumab.

13. Right mini-parasternotomy may be a good minimally invasive alternative to full sternotomy for cardiac valve operations-a propensity-adjusted analysis.

Science.gov (United States)

Chiu, K M; Chen, R J; Lin, T Y; Chen, J S; Huang, J H; Huang, C Y; Chu, S H

2014-03-26

Limited realworld data existed for miniparasternotomy approach with good sample size in Asian cohorts and most previous studies were eclipsed by case heterogeneity. The goal of this study was to compare safety and quality outcomes of cardiac noncoronary valve operations by miniparasternotomy and full sternotomy approaches on riskadjusted basis. From our hospital database, we retrieved the cases of non-coronary valve operations from 1 January 2005 to 31 December 2012, including re-do, emergent, and combined procedures. Estimated EuroScore-II and propensity score for choosing mini-parasternotomy were adjusted for in the regression models on hospital mortality, complications (pneumonia, stroke, sepsis, etc.), and quality parameters (length of stay, ICU time, ventilator time, etc.). Non-complicated cases, defined as survival to discharge, ventilator use not over one week, and intensive care unit stay not over two weeks, were used for quality parameters. There were 283 miniparasternotomy and 177 full sternotomy cases. EuroScore-II differed significantly (medians 2.1 vs. 4.7, p<0.001). Propensity scores for choosing miniparasternotomy were higher with lower EuroScore-II (OR=0.91 per 1%, p<0.001), aortic regurgitation (OR=2.3, p=0.005), and aortic non-mitral valve disease (OR=3.9, p<0.001). Adjusted for propensity score and EuroScore-II, mini-parasternotomy group had less pneumonia (OR=0.32, p=0.043), less sepsis (OR=0.31, p=0.045), and shorter non-complicated length of stay (coefficient=7.2 (day), p<0.001) than full sternotomy group, whereas Kaplan-Meier survival, non-complicated ICU time, non-complicated ventilator time, and 30-day mortality did not differ significantly. The propensity-adjusted analysis demonstrated encouraging safety and quality outcomes for mini-parasternotomy valve operation in carefully selected patients.

14. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

Energy Technology Data Exchange (ETDEWEB)

Stanic, Sinisa, E-mail: sinisa.stanic@carle.com [Carle Cancer Center and University of Illinois College of Medicine, Urbana, Illinois (United States); Paulus, Rebecca [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Timmerman, Robert D. [University of Texas Southwestern, Dallas, Texas (United States); Michalski, Jeff M. [Washington University, St. Louis, Missouri (United States); Barriger, Robert B. [Indiana University, Indianapolis, Indiana (United States); Bezjak, Andrea [Princess Margaret Cancer Center, Toronto, Ontario (Canada); Videtic, Gregory M.M. [Cleveland Clinic Foundation, Cleveland, Ohio (United States); Bradley, Jeffrey [Washington University, St. Louis, Missouri (United States)

2014-04-01

Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.

15. Efficacy analysis of two drugs consisting platinum combined with first-line chemotherapeutics regimens on 117 elderly patients with advanced non-small cell lung carcinoma

Directory of Open Access Journals (Sweden)

Li-li ZHANG

2013-09-01

Full Text Available Objective　To investigate the therapeutic effects of Gemcitabine(GEM, Vinorelbine(NVB,Paclitaxel(TAX and other first-line chemotherapeutics plus platinum containing drugs on the elderly patients with advanced non-small cell lung cancer(NSCLC who had undergone surgery, and analyze the clinicopathological factors influencing the prognosis. Methods　One hundred and seventeen advanced NSCLC patients aged 60 or over were treated with GP(GEM+platinum, or NP(NVB+platinum, or TP(TAX+platinum, or other first-line chemotherapeutics plus platinum(OCP after surgery, and their clinical data were then retrospectively studied to look for the relationship of patients' prognosis to clinicopathological factors(gender, operation methods, pathologicaltypes, differentiation, clinical stages.The survival curve was plotted with Kaplan-Meier method, hypothesis test was performed by log-rank, and the independent prognostic factors were screened with Cox proportional hazards regression model. Results　Theone-, three- and five-year survival rates of the 117 patients were 47.23%,17.52% and 8.05%, respectively. The progression free survival(PFS of GP, NP, TP and OCP groups were 6.0, 5.2, 6.1 and5.5 months(P>0.05, respectively. The median progression free survival was 5.7 months. Univariate and multivariate analysis showed that the differentiated degrees and clinical stages of elderly NSCLC patients were the independent prognostic factors. Conclusions　Clinicopathological factors(differentiated degree andclinical stages are closely related to one-, three- and five-year survival rates of advanced NSCLC in elderly patients who received treatment of first-line chemotherapeutics plus platinum. However, the efficacy ofGP, NP, TP or OCP shows no significant difference.

16. Survival analysis of increases in care needs associated with dementia and living alone among older long-term care service users in Japan.

Science.gov (United States)

Lin, Huei-Ru; Otsubo, Tetsuya; Imanaka, Yuichi

2017-08-15

Japan is known for its long life expectancy and rapidly aging society that there are various demands of older adults need to be fulfilled with, and one of them is long-term care needs. Therefore, Japan implemented the Long-Term Care Insurance in year 2000 for citizens who are above 65-year old and citizens who are above 40-year old in needs of long-term care services. This study was undertaken to longitudinally examine the influence of dementia and living alone on care needs increases among older long-term care insurance service users in Japan. Long-term care insurance claims data were used to identify enrollees who applied for long-term care services between October 2010 and September 2011, and subjects were tracked until March 2015. A Kaplan-Meier survival analysis was conducted to examine increases in care needs over time in months. Cox regression models were used to examine the effects of dementia and living alone on care needs increases. The cumulative survival rates before care needs increased over the 4.5-year observation period were 17.6% in the dementia group and 31.9% in the non-dementia group. After adjusting for age, sex, care needs level, and status of living alone, the risk of care needs increases was found to be 1.5 times higher in the dementia group. Living alone was not a significant risk factor of care needs increases, but people with dementia who lived alone had a higher risk of care needs increases than those without dementia. Dementia, older age, the female sex, and lower care needs levels were associated with a higher risk of care needs increases over the study period. Among these variables, dementia had the strongest impact on care needs increases, especially in persons who lived alone.

17. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

International Nuclear Information System (INIS)

Stanic, Sinisa; Paulus, Rebecca; Timmerman, Robert D.; Michalski, Jeff M.; Barriger, Robert B.; Bezjak, Andrea; Videtic, Gregory M.M.; Bradley, Jeffrey

2014-01-01

Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT

18. Analysis of Functional Data with Focus on Multinomial Regression and Multilevel Data

DEFF Research Database (Denmark)

Mousavi, Seyed Nourollah

Functional data analysis (FDA) is a fast growing area in statistical research with increasingly diverse range of application from economics, medicine, agriculture, chemometrics, etc. Functional regression is an area of FDA which has received the most attention both in aspects of application...... and methodological development. Our main Functional data analysis (FDA) is a fast growing area in statistical research with increasingly diverse range of application from economics, medicine, agriculture, chemometrics, etc. Functional regression is an area of FDA which has received the most attention both in aspects...

19. The use of cognitive ability measures as explanatory variables in regression analysis.

Science.gov (United States)

Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

2012-12-01

Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual's wage, or a decision such as an individual's education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score , constructed via standard psychometric practice from individuals' responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a "mixed effects structural equations" (MESE) model, may be more appropriate in many circumstances.

20. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

DEFF Research Database (Denmark)

Barndorff-Nielsen, Ole Eiler; Shephard, N.

2004-01-01

This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

1. Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis

International Nuclear Information System (INIS)

Fang, Xiande; Xu, Yu

2011-01-01

The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination R c 2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines. -- Highlights: → Performed a critical review of empirical models of turbine efficiency. → Developed an empirical model in the desired form for air cycle refrigeration, using the Taylor expansion and regression analysis. → Verified the method for developing the empirical model. → Verified the model.

2. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis.

Science.gov (United States)

Khalil, Mohamed H; Shebl, Mostafa K; Kosba, Mohamed A; El-Sabrout, Karim; Zaki, Nesma

2016-08-01

This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens' eggs. Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens.

3. Exploring factors associated with traumatic dental injuries in preschool children: a Poisson regression analysis.

Science.gov (United States)

Feldens, Carlos Alberto; Kramer, Paulo Floriani; Ferreira, Simone Helena; Spiguel, Mônica Hermann; Marquezan, Marcela

2010-04-01

This cross-sectional study aimed to investigate the factors associated with dental trauma in preschool children using Poisson regression analysis with robust variance. The study population comprised 888 children aged 3- to 5-year-old attending public nurseries in Canoas, southern Brazil. Questionnaires assessing information related to the independent variables (age, gender, race, mother's educational level and family income) were completed by the parents. Clinical examinations were carried out by five trained examiners in order to assess traumatic dental injuries (TDI) according to Andreasen's classification. One of the five examiners was calibrated to assess orthodontic characteristics (open bite and overjet). Multivariable Poisson regression analysis with robust variance was used to determine the factors associated with dental trauma as well as the strengths of association. Traditional logistic regression was also performed in order to compare the estimates obtained by both methods of statistical analysis. 36.4% (323/888) of the children suffered dental trauma and there was no difference in prevalence rates from 3 to 5 years of age. Poisson regression analysis showed that the probability of the outcome was almost 30% higher for children whose mothers had more than 8 years of education (Prevalence Ratio = 1.28; 95% CI = 1.03-1.60) and 63% higher for children with an overjet greater than 2 mm (Prevalence Ratio = 1.63; 95% CI = 1.31-2.03). Odds ratios clearly overestimated the size of the effect when compared with prevalence ratios. These findings indicate the need for preventive orientation regarding TDI, in order to educate parents and caregivers about supervising infants, particularly those with increased overjet and whose mothers have a higher level of education. Poisson regression with robust variance represents a better alternative than logistic regression to estimate the risk of dental trauma in preschool children.

4. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis

Directory of Open Access Journals (Sweden)

Maarten van Smeden

2016-11-01

Full Text Available Abstract Background Ten events per variable (EPV is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. Methods The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth’s correction, are compared. Results The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect (‘separation’. We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth’s correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. Conclusions The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

5. Quantile regression for the statistical analysis of immunological data with many non-detects.

Science.gov (United States)

Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

2012-07-07

Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

6. Determining Balıkesir’s Energy Potential Using a Regression Analysis Computer Program

Directory of Open Access Journals (Sweden)

Bedri Yüksel

2014-01-01

Full Text Available Solar power and wind energy are used concurrently during specific periods, while at other times only the more efficient is used, and hybrid systems make this possible. When establishing a hybrid system, the extent to which these two energy sources support each other needs to be taken into account. This paper is a study of the effects of wind speed, insolation levels, and the meteorological parameters of temperature and humidity on the energy potential in Balıkesir, in the Marmara region of Turkey. The relationship between the parameters was studied using a multiple linear regression method. Using a designed-for-purpose computer program, two different regression equations were derived, with wind speed being the dependent variable in the first and insolation levels in the second. The regression equations yielded accurate results. The computer program allowed for the rapid calculation of different acceptance rates. The results of the statistical analysis proved the reliability of the equations. An estimate of identified meteorological parameters and unknown parameters could be produced with a specified precision by using the regression analysis method. The regression equations also worked for the evaluation of energy potential.

7. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

Science.gov (United States)

van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

2016-11-24

Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

8. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

Science.gov (United States)

Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

2016-02-01

The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

9. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

Science.gov (United States)

Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

2017-05-01

This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

10. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

Science.gov (United States)

Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

2014-06-17

The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

11. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

Science.gov (United States)

Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

2006-01-01

Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

12. Application of range-test in multiple linear regression analysis in ...

African Journals Online (AJOL)

Application of range-test in multiple linear regression analysis in the presence of outliers is studied in this paper. First, the plot of the explanatory variables (i.e. Administration, Social/Commercial, Economic services and Transfer) on the dependent variable (i.e. GDP) was done to identify the statistical trend over the years.

13. Multiple Logistic Regression Analysis of Cigarette Use among High School Students

Science.gov (United States)

2011-01-01

A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…

14. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

Science.gov (United States)

Thomas, Emily H.; Galambos, Nora

2004-01-01

To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

15. A systematic review and meta-regression analysis of mivacurium for tracheal intubation

NARCIS (Netherlands)

Vanlinthout, L.E.H.; Mesfin, S.H.; Hens, N.; Vanacker, B.F.; Robertson, E.N.; Booij, L.H.D.J.

2014-01-01

We systematically reviewed factors associated with intubation conditions in randomised controlled trials of mivacurium, using random-effects meta-regression analysis. We included 29 studies of 1050 healthy participants. Four factors explained 72.9% of the variation in the probability of excellent

16. Declining Bias and Gender Wage Discrimination? A Meta-Regression Analysis

Science.gov (United States)

Jarrell, Stephen B.; Stanley, T. D.

2004-01-01

The meta-regression analysis reveals that there is a strong tendency for discrimination estimates to fall and wage discrimination exist against the woman. The biasing effect of researchers' gender of not correcting for selection bias has weakened and changes in labor market have made it less important.

17. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

Science.gov (United States)

Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

2011-04-01

The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF

18. Low dose rate brachytherapy (LDR-BT) as monotherapy for early stage prostate cancer in Italy: practice and outcome analysis in a series of 2237 patients from 11 institutions.

Science.gov (United States)

Fellin, Giovanni; Mirri, Maria A; Santoro, Luigi; Jereczek-Fossa, Barbara A; Divan, Claudio; Mussari, Salvatore; Ziglio, Francesco; La Face, Beniamino; Barbera, Fernando; Buglione, Michela; Bandera, Laura; Ghedi, Barbara; Di Muzio, Nadia G; Losa, Andrea; Mangili, Paola; Nava, Luciano; Chiarlone, Renato; Ciscognetti, Nunzia; Gastaldi, Emilio; Cattani, Federica; Spoto, Ruggero; Vavassori, Andrea; Giglioli, Francesca R; Guarneri, Alessia; Cerboneschi, Valentina; Mignogna, Marcello; Paoluzzi, Mauro; Ravaglia, Valentina; Chiumento, Costanza; Clemente, Stefania; Fusco, Vincenzo; Santini, Roberto; Stefanacci, Marco; Mangiacotti, Francesco P; Martini, Marco; Palloni, Tiziana; Schinaia, Giuseppe; Lazzari, Grazia; Silvano, Giovanni; Magrini, Stefano; Ricardi, Umberto; Santoni, Riccardo; Orecchia, Roberto

2016-09-01

Low-dose-rate brachytherapy (LDR-BT) in localized prostate cancer is available since 15 years in Italy. We realized the first national multicentre and multidisciplinary data collection to evaluate LDR-BT practice, given as monotherapy, and outcome in terms of biochemical failure. Between May 1998 and December 2011, 2237 patients with early-stage prostate cancer from 11 Italian community and academic hospitals were treated with iodine-125 ((125)I) or palladium-103 LDR-BT as monotherapy and followed up for at least 2 years. (125)I seeds were implanted in 97.7% of the patients: the mean dose received by 90% of target volume was 145 Gy; the mean target volume receiving 100% of prescribed dose (V100) was 91.1%. Biochemical failure-free survival (BFFS), disease-specific survival (DSS) and overall survival (OS) were estimated using Kaplan-Meier method. Log-rank test and multivariable Cox regression were used to evaluate the relationship of covariates with outcomes. Median follow-up time was 65 months. 5- and 7-year DSS, OS and BFFS were 99 and 98%, 94 and 89%, and 92 and 88%, respectively. At multivariate analysis, the National Comprehensive Cancer Network score (p LDR-BT. This first multicentre Italian report confirms LDR-BT as an excellent curative modality for low-/intermediate-risk prostate cancer. Multidisciplinary teams may help to select adequately patients to be treated with brachytherapy, with a direct impact on the implant quality and, possibly, on outcome.

19. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

Science.gov (United States)

Ulbrich, N.; Volden, T.

2018-01-01

Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

Energy Technology Data Exchange (ETDEWEB)

Dong, Yi-Yuan [Affiliated Hospital of Guilin Medical University, Department of Radiation Oncology, Guilin (China); Guilin Medical University Affiliated Hospital, Department of Otorhinolaryngology, Guilin (China); Xiang, Chun [Nan Xishan Hospital, Department of Otorhinolaryngology, Guilin (China); Lu, Jian-Xun [Affiliated Hospital of Youjiang Medical University for Nationalities, Department of Oncology, Baise (China); Su, Yi-Xin [Lingshan People' s Hospital, Department of Radiation Oncology, Lingshan (China); Pan, Yu-Fei [Nan Xishan Hospital, Department of Radiation Oncology, Guilin (China); Cai, Rui; Zhang, Rong-Jun; He, Zhuo-Kai; Liu, Mei-Lian; Huang, Hui; Bai, Xue; Tang, Hua-Ying; Shi, Yun-Hua; Wang, Yan; Jiang, Wei [Affiliated Hospital of Guilin Medical University, Department of Radiation Oncology, Guilin (China)

2016-06-15

The benefit of adjuvant chemotherapy (AC) in locoregionally advanced nasopharyngeal carcinoma (NPC) is controversial. This study compared concurrent chemoradiotherapy plus AC (CCRT/AC) with CCRT. Pair-matched analysis based on eight clinicopathological features of 244 patients treated with platinum-based CCRT/AC or CCRT alone was performed. Survival outcomes were assessed using the Kaplan-Meier method and log-rank test. Toxicities and response rates were compared using Fisher's exact test. Four-year overall survival, progression-free survival, distant failure-free survival, and locoregional failure-free survival were 72 %, 61 %, 71 %, and 81 %, respectively, for the CCRT arm, compared to 74 % (hazard ratio, HR 0.89; 95 % confidence interval, CI 0.64-1.23; P = 0.474), 62 % (HR 0.91, 95 % CI 0.68-1.20, P = 0.489), 73 % (HR 0.84, 95 % CI 0.59-1.18, P = 0.316), and 84 % (HR 0.84, 95 % CI 0.52-1.24, P = 0.323), respectively, for the CCRT/AC arm. Cox multivariate regression analysis demonstrated AC was not an independent prognostic factor. Overall, there was a higher incidence of grade 3-4 toxicities in the CCRT/AC arm. The most common grade 3-4 adverse events in the CCRT/AC arm were vomiting (27 %), nausea (43 %), leukopenia/neutropenia (23 %), thrombocytopenia (8.8 %), and anemia (6.2 %). Addition of AC to CCRT increased toxicities but did not improve survival in locoregionally advanced NPC. (orig.) [German] Der Nutzen der adjuvanten Chemotherapie (AC) bei lokoregional fortgeschrittenem nasopharyngealem Karzinom (NPC) ist kontrovers. In dieser Studie wurde die simultane Radiochemotherapie (''concurrent chemoradiotherapy'', CCRT) plus adjuvante Chemotherapie (AC) mit einer alleinigen CCRT verglichen. Die Matched-pair-Analyse basiert auf acht klinisch-pathologischen Merkmalen von 244 Patienten, die mit platinbasierter CCRT/AC oder alleiniger CCRT behandelt wurden. Die Ueberlebensendpunkte wurden mit der Kaplan-Meier-Methode und dem Log

1. A Simple Linear Regression Method for Quantitative Trait Loci Linkage Analysis With Censored Observations

OpenAIRE

Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.

2006-01-01

Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...

2. Choosing of mode and calculation of multiple regression equation parameters in X-ray radiometric analysis

International Nuclear Information System (INIS)

Mamikonyan, S.V.; Berezkin, V.V.; Lyubimova, S.V.; Svetajlo, Yu.N.; Shchekin, K.I.

1978-01-01

A method to derive multiple regression equations for X-ray radiometric analysis is described. Te method is realized in the form of the REGRA program in an algorithmic language. The subprograms included in the program are describe. In analyzing cement for Mg, Al, Si, Ca and Fe contents as an example, the obtainment of working equations in the course of calculations by the program is shown to simpliy the realization of computing devices in instruments for X-ray radiometric analysis

3. Forecasting Model for IPTV Service in Korea Using Bootstrap Ridge Regression Analysis

Science.gov (United States)

Lee, Byoung Chul; Kee, Seho; Kim, Jae Bum; Kim, Yun Bae

The telecom firms in Korea are taking new step to prepare for the next generation of convergence services, IPTV. In this paper we described our analysis on the effective method for demand forecasting about IPTV broadcasting. We have tried according to 3 types of scenarios based on some aspects of IPTV potential market and made a comparison among the results. The forecasting method used in this paper is the multi generation substitution model with bootstrap ridge regression analysis.

4. Predicting Insolvency : A comparison between discriminant analysis and logistic regression using principal components

OpenAIRE

Geroukis, Asterios; Brorson, Erik

2014-01-01

In this study, we compare the two statistical techniques logistic regression and discriminant analysis to see how well they classify companies based on clusters – made from the solvency ratio ­– using principal components as independent variables. The principal components are made with different financial ratios. We use cluster analysis to find groups with low, medium and high solvency ratio of 1200 different companies found on the NASDAQ stock market and use this as an apriori definition of ...

5. Analysis of designed experiments by stabilised PLS Regression and jack-knifing

DEFF Research Database (Denmark)

Martens, Harald; Høy, M.; Westad, F.

2001-01-01

Pragmatical, visually oriented methods for assessing and optimising bi-linear regression models are described, and applied to PLS Regression (PLSR) analysis of multi-response data from controlled experiments. The paper outlines some ways to stabilise the PLSR method to extend its range...... the reliability of the linear and bi-linear model parameter estimates. The paper illustrates how the obtained PLSR "significance" probabilities are similar to those from conventional factorial ANOVA, but the PLSR is shown to give important additional overview plots of the main relevant structures in the multi....... An Introduction, Wiley, Chichester, UK, 2001]....

6. Statistical methods in regression and calibration analysis of chromosome aberration data

International Nuclear Information System (INIS)

Merkle, W.

1983-01-01

The method of iteratively reweighted least squares for the regression analysis of Poisson distributed chromosome aberration data is reviewed in the context of other fit procedures used in the cytogenetic literature. As an application of the resulting regression curves methods for calculating confidence intervals on dose from aberration yield are described and compared, and, for the linear quadratic model a confidence interval is given. Emphasis is placed on the rational interpretation and the limitations of various methods from a statistical point of view. (orig./MG)

7. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

Science.gov (United States)

Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

2017-05-10

We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P valuelinear regression P value). The statistical power of CAT test decreased, while the result of linear regression analysis remained the same when population size was reduced by 100 times and AMI incidence rate remained unchanged. The two statistical methods have their advantages and disadvantages. It is necessary to choose statistical method according the fitting degree of data, or comprehensively analyze the results of two methods.

8. Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.

Science.gov (United States)

Yang, Chi-Chuan; Chen, Yi-Hau; Chang, Hsing-Yi

2017-09-20

Childhood and adolescenthood overweight or obesity, which may be quantified through the body mass index (BMI), is strongly associated with adult obesity and other health problems. Motivated by the child and adolescent behaviors in long-term evolution (CABLE) study, we are interested in individual, family, and school factors associated with marginal quantiles of longitudinal adolescent BMI values. We propose a new method for composite marginal quantile regression analysis for longitudinal outcome data, which performs marginal quantile regressions at multiple quantile levels simultaneously. The proposed method extends the quantile regression coefficient modeling method introduced by Frumento and Bottai (Biometrics 2016; 72:74-84) to longitudinal data accounting suitably for the correlation structure in longitudinal observations. A goodness-of-fit test for the proposed modeling is also developed. Simulation results show that the proposed method can be much more efficient than the analysis without taking correlation into account and the analysis performing separate quantile regressions at different quantile levels. The application to the longitudinal adolescent BMI data from the CABLE study demonstrates the practical utility of our proposal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

9. Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

Science.gov (United States)

Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

2014-01-01

It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916

10. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

Science.gov (United States)

Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

2014-01-01

It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

11. Analysis of the Influence of Quantile Regression Model on Mainland Tourists’ Service Satisfaction Performance

Directory of Open Access Journals (Sweden)

Wen-Cheng Wang

2014-01-01

Full Text Available It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

12. Bias due to two-stage residual-outcome regression analysis in genetic association studies.

Science.gov (United States)

2011-11-01

Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.

13. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

Science.gov (United States)

Hu, Yi-Chung

2014-01-01

On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

14. [Multiple linear regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis].

Science.gov (United States)

Ma, Yu-Feng; Wang, Qing-Fu; Chen, Zhao-Jun; Du, Chun-Lin; Li, Jun-Hai; Huang, Hu; Shi, Zong-Ting; Yin, Yue-Shan; Zhang, Lei; A-Di, Li-Jiang; Dong, Shi-Yu; Wu, Ji

2012-05-01

To perform Multiple Linear Regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis, and to analyze their relationship with clinical and biomechanical concepts. From March 2011 to July 2011, 140 patients (250 knees) were reviewed, including 132 knees in the left and 118 knees in the right; ranging in age from 40 to 71 years, with an average of 54.68 years. The MB-RULER measurement software was applied to measure femoral angle, tibial angle, femorotibial angle, joint gap angle from antero-posterir and lateral position of X-rays. The WOMAC scores were also collected. Then multiple regression equations was applied for the linear regression analysis of correlation between the X-ray measurement and WOMAC scores. There was statistical significance in the regression equation of AP X-rays value and WOMAC scores (Pregression equation of lateral X-ray value and WOMAC scores (P>0.05). 1) X-ray measurement of knee joint can reflect the WOMAC scores to a certain extent. 2) It is necessary to measure the X-ray mechanical axis of knee, which is important for diagnosis and treatment of osteoarthritis. 3) The correlation between tibial angle,joint gap angle on antero-posterior X-ray and WOMAC scores is significant, which can be used to assess the functional recovery of patients before and after treatment.

15. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

Science.gov (United States)

Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

2016-01-01

Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

16. Replica analysis of overfitting in regression models for time-to-event data

Science.gov (United States)

Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

2017-09-01

Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

17. Support vector methods for survival analysis: a comparison between ranking and regression approaches.

Science.gov (United States)

Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K

2011-10-01

To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods

18. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

Science.gov (United States)

Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

2017-04-01

To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

19. Non-stationary hydrologic frequency analysis using B-spline quantile regression

Science.gov (United States)

Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.

2017-11-01

Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.

20. Comparison of cranial sex determination by discriminant analysis and logistic regression.

Science.gov (United States)

2016-04-05

Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

1. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

Science.gov (United States)

Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

2016-01-01

Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

2. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

Directory of Open Access Journals (Sweden)

Mahmood Ali A.

2017-01-01

Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

3. Data analysis and approximate models model choice, location-scale, analysis of variance, nonparametric regression and image analysis

CERN Document Server

Davies, Patrick Laurie

2014-01-01

Introduction IntroductionApproximate Models Notation Two Modes of Statistical AnalysisTowards One Mode of Analysis Approximation, Randomness, Chaos, Determinism ApproximationA Concept of Approximation Approximation Approximating a Data Set by a Model Approximation Regions Functionals and EquivarianceRegularization and Optimality Metrics and DiscrepanciesStrong and Weak Topologies On Being (almost) Honest Simulations and Tables Degree of Approximation and p-values ScalesStability of Analysis The Choice of En(α, P) Independence Procedures, Approximation and VaguenessDiscrete Models The Empirical Density Metrics and Discrepancies The Total Variation Metric The Kullback-Leibler and Chi-Squared Discrepancies The Po(λ) ModelThe b(k, p) and nb(k, p) Models The Flying Bomb Data The Student Study Times Data OutliersOutliers, Data Analysis and Models Breakdown Points and Equivariance Identifying Outliers and Breakdown Outliers in Multivariate Data Outliers in Linear Regression Outliers in Structured Data The Location...

4. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis.

Science.gov (United States)

Chen, Wei-Hsin; Hsu, Hung-Jen; Kumar, Gopalakrishnan; Budzianowski, Wojciech M; Ong, Hwai Chyuan

2017-12-01

This study focuses on the biochar formation and torrefaction performance of sugarcane bagasse, and they are predicted using the bilinear interpolation (BLI), inverse distance weighting (IDW) interpolation, and regression analysis. It is found that the biomass torrefied at 275°C for 60min or at 300°C for 30min or longer is appropriate to produce biochar as alternative fuel to coal with low carbon footprint, but the energy yield from the torrefaction at 300°C is too low. From the biochar yield, enhancement factor of HHV, and energy yield, the results suggest that the three methods are all feasible for predicting the performance, especially for the enhancement factor. The power parameter of unity in the IDW method provides the best predictions and the error is below 5%. The second order in regression analysis gives a more reasonable approach than the first order, and is recommended for the predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

5. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

Science.gov (United States)

Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

2016-11-01

For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

6. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

Energy Technology Data Exchange (ETDEWEB)

Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

2016-10-15

This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

7. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

International Nuclear Information System (INIS)

Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

2016-01-01

This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

8. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis

Directory of Open Access Journals (Sweden)

BUDIMAN

2012-01-01

Full Text Available Budiman, Arisoesilaningsih E. 2012. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis. Biodiversitas 13: 18-22. The aims of this research was to determine the multiple regression models of vegetative and corm growth of Amorphophallus muelleri Blume in some age variations and habitat conditions of agroforestry in East Java. Descriptive exploratory research method was conducted by systematic random sampling at five agroforestries on four plantations in East Java: Saradan, Bojonegoro, Nganjuk and Blitar. In each agroforestry, we observed A. muelleri vegetative and corm growth on four growing age (1, 2, 3 and 4 years old respectively as well as environmental variables such as altitude, vegetation, climate and soil conditions. Data were analyzed using descriptive statistics to compare A. muelleri habitat in five agroforestries. Meanwhile, the influence and contribution of each environmental variable to the growth of A. muelleri vegetative and corm were determined using multiple regression analysis of SPSS 17.0. The multiple regression models of A. muelleri vegetative and corm growth were generated based on some characteristics of agroforestries and age showed high validity with R2 = 88-99%. Regression model showed that age, monthly temperatures, percentage of radiation and soil calcium (Ca content either simultaneously or partially determined the growth of A. muelleri vegetative and corm. Based on these models, the A. muelleri corm reached the optimal growth after four years of cultivation and they will be ready to be harvested. Additionally, the soil Ca content should reach 25.3 me.hg-1 as Sugihwaras agroforestry, with the maximal radiation of 60%.

9. Detrended fluctuation analysis as a regression framework: Estimating dependence at different scales

Czech Academy of Sciences Publication Activity Database

2015-01-01

Roč. 91, č. 1 (2015), 022802-1-022802-5 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GP14-11402P Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : Detrended cross-correlation analysis * Regression * Scales Subject RIV: AH - Economics Impact factor: 2.288, year: 2014 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452315.pdf

10. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

OpenAIRE

Chayalakshmi C.L

2018-01-01

MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

11. Use of generalized ordered logistic regression for the analysis of multidrug resistance data.

Science.gov (United States)

Agga, Getahun E; Scott, H Morgan

2015-10-01

Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.

12. Regression analysis: An evaluation of the inuences behindthe pricing of beer

OpenAIRE

Eriksson, Sara; Häggmark, Jonas

2017-01-01

This bachelor thesis in applied mathematics is an analysis of which factors affect the pricing of beer at the Swedish market. A multiple linear regression model is created with the statistical programming language R through a study of the influences for several explanatory variables. For example these variables include country of origin, beer style, volume sold and a Bayesian weighted mean rating from RateBeer, a popular website for beer enthusiasts. The main goal of the project is to find si...

13. Health care: necessity or luxury good? A meta-regression analysis

OpenAIRE

Iordache, Ioana Raluca

2014-01-01

When estimating the influence income per capita exerts on health care expenditure, the research in the field offers mixed results. Studies employ different data, estimation techniques and models, which brings about the question whether these differences in research design play any part in explaining the heterogeneity of reported outcomes. By employing meta-regression analysis, the present paper analyzes 220 estimates of health spending income elasticity collected from 54 studies and finds tha...

14. Regression Analysis for Multivariate Dependent Count Data Using Convolved Gaussian Processes

OpenAIRE

Sofro, A'yunin; Shi, Jian Qing; Cao, Chunzheng

2017-01-01

Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covarianc...

15. Temporal trends in sperm count: a systematic review and meta-regression analysis.

Science.gov (United States)

Levine, Hagai; Jørgensen, Niels; Martino-Andrade, Anderson; Mendiola, Jaime; Weksler-Derri, Dan; Mindlis, Irina; Pinotti, Rachel; Swan, Shanna H

2017-11-01

Reported declines in sperm counts remain controversial today and recent trends are unknown. A definitive meta-analysis is critical given the predictive value of sperm count for fertility, morbidity and mortality. To provide a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group. PubMed/MEDLINE and EMBASE were searched for English language studies of human SC published in 1981-2013. Following a predefined protocol 7518 abstracts were screened and 2510 full articles reporting primary data on SC were reviewed. A total of 244 estimates of SC and TSC from 185 studies of 42 935 men who provided semen samples in 1973-2011 were extracted for meta-regression analysis, as well as information on years of sample collection and covariates [fertility group ('Unselected by fertility' versus 'Fertile'), geographic group ('Western', including North America, Europe Australia and New Zealand versus 'Other', including South America, Asia and Africa), age, ejaculation abstinence time, semen collection method, method of measuring SC and semen volume, exclusion criteria and indicators of completeness of covariate data]. The slopes of SC and TSC were estimated as functions of sample collection year using both simple linear regression and weighted meta-regression models and the latter were adjusted for pre-determined covariates and modification by fertility and geographic group. Assumptions were examined using multiple sensitivity analyses and nonlinear models. SC declined significantly between 1973 and 2011 (slope in unadjusted simple regression models -0.70 million/ml/year; 95% CI: -0.72 to -0.69; P regression analysis reports a significant decline in sperm counts (as measured by SC and TSC) between 1973 and 2011, driven by a 50-60% decline among men unselected by fertility from North America, Europe, Australia and New Zealand. Because

16. Regression analysis for LED color detection of visual-MIMO system

Science.gov (United States)

Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

2018-04-01

Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

17. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

KAUST Repository

Wei, Jiawei

2012-12-04

Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

18. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

KAUST Repository

Wei, Jiawei; Carroll, Raymond J.; Mü ller, Ursula U.; Keilegom, Ingrid Van; Chatterjee, Nilanjan

2012-01-01

Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

19. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

Science.gov (United States)

Greensmith, David J

2014-01-01

Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

20. Dose-Dependent Effects of Statins for Patients with Aneurysmal Subarachnoid Hemorrhage: Meta-Regression Analysis.

Science.gov (United States)

To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh

2018-05-01

The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.

1. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.

Science.gov (United States)

Hayes, Andrew F; Rockwood, Nicholas J

2017-11-01

There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

2. Mediation analysis for logistic regression with interactions: Application of a surrogate marker in ophthalmology

DEFF Research Database (Denmark)

Jensen, Signe Marie; Hauger, Hanne; Ritz, Christian

2018-01-01

Mediation analysis is often based on fitting two models, one including and another excluding a potential mediator, and subsequently quantify the mediated effects by combining parameter estimates from these two models. Standard errors of such derived parameters may be approximated using the delta...... method. For a study evaluating a treatment effect on visual acuity, a binary outcome, we demonstrate how mediation analysis may conveniently be carried out by means of marginally fitted logistic regression models in combination with the delta method. Several metrics of mediation are estimated and results...

3. A regression analysis of the effect of energy use in agriculture

International Nuclear Information System (INIS)

Karkacier, Osman; Gokalp Goktolga, Z.; Cicek, Adnan

2006-01-01

This study investigates the impacts of energy use on productivity of Turkey's agriculture. It reports the results of a regression analysis of the relationship between energy use and agricultural productivity. The study is based on the analysis of the yearbook data for the period 1971-2003. Agricultural productivity was specified as a function of its energy consumption (TOE) and gross additions of fixed assets during the year. Least square (LS) was employed to estimate equation parameters. The data of this study comes from the State Institute of Statistics (SIS) and The Ministry of Energy of Turkey

4. Length bias correction in gene ontology enrichment analysis using logistic regression.

Science.gov (United States)

Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

2012-01-01

When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

5. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

Science.gov (United States)

Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

2008-04-01

Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

6. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

Science.gov (United States)

Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

2018-03-01

A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

7. Mathematical models for estimating earthquake casualties and damage cost through regression analysis using matrices

International Nuclear Information System (INIS)

Urrutia, J D; Bautista, L A; Baccay, E B

2014-01-01

The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.

8. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis

Directory of Open Access Journals (Sweden)

Carlos Augusto Zangrando Toneli

2011-09-01

Full Text Available Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.

9. Identification of cotton properties to improve yarn count quality by using regression analysis

International Nuclear Information System (INIS)

Amin, M.; Ullah, M.; Akbar, A.

2014-01-01

Identification of raw material characteristics towards yarn count variation was studied by using statistical techniques. Regression analysis is used to meet the objective. Stepwise regression is used for mode) selection, and coefficient of determination and mean squared error (MSE) criteria are used to identify the contributing factors of cotton properties for yam count. Statistical assumptions of normality, autocorrelation and multicollinearity are evaluated by using probability plot, Durbin Watson test, variance inflation factor (VIF), and then model fitting is carried out. It is found that, invisible (INV), nepness (Nep), grayness (RD), cotton trash (TR) and uniformity index (VI) are the main contributing cotton properties for yarn count variation. The results are also verified by Pareto chart. (author)

10. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

Directory of Open Access Journals (Sweden)

K. Seetharaman

2015-08-01

Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

11. THE PROGNOSIS OF RUSSIAN DEFENSE INDUSTRY DEVELOPMENT IMPLEMENTED THROUGH REGRESSION ANALYSIS

Directory of Open Access Journals (Sweden)

L.M. Kapustina

2007-03-01

Full Text Available The article illustrates the results of investigation the major internal and external factors which influence the development of the defense industry, as well as the results of regression analysis which quantitatively displays the factorial contribution in the growth rate of Russian defense industry. On the basis of calculated regression dependences the authors fulfilled the medium-term prognosis of defense industry. Optimistic and inertial versions of defense product growth rate for the period up to 2009 are based on scenario conditions in Russian economy worked out by the Ministry of economy and development. In conclusion authors point out which factors and conditions have the largest impact on successful and stable operation of Russian defense industry.

12. Experimental and regression analysis for multi cylinder diesel engine operated with hybrid fuel blends

Directory of Open Access Journals (Sweden)

Gopal Rajendiran

2014-01-01

Full Text Available The purpose of this research work is to build a multiple linear regression model for the characteristics of multicylinder diesel engine using multicomponent blends (diesel- pungamia methyl ester-ethanol as fuel. Nine blends were tested by varying diesel (100 to 10% by Vol., biodiesel (80 to 10% by vol. and keeping ethanol as 10% constant. The brake thermal efficiency, smoke, oxides of nitrogen, carbon dioxide, maximum cylinder pressure, angle of maximum pressure, angle of 5% and 90% mass burning were predicted based on load, speed, diesel and biodiesel percentage. To validate this regression model another multi component fuel comprising diesel-palm methyl ester-ethanol was used in same engine. Statistical analysis was carried out between predicted and experimental data for both fuel. The performance, emission and combustion characteristics of multi cylinder diesel engine using similar fuel blends can be predicted without any expenses for experimentation.

13. CASAS: Cancer Survival Analysis Suite, a web based application.

Science.gov (United States)

Rupji, Manali; Zhang, Xinyan; Kowalski, Jeanne

2017-01-01

We present CASAS, a shiny R based tool for interactive survival analysis and visualization of results. The tool provides a web-based one stop shop to perform the following types of survival analysis:  quantile, landmark and competing risks, in addition to standard survival analysis.  The interface makes it easy to perform such survival analyses and obtain results using the interactive Kaplan-Meier and cumulative incidence plots.  Univariate analysis can be performed on one or several user specified variable(s) simultaneously, the results of which are displayed in a single table that includes log rank p-values and hazard ratios along with their significance. For several quantile survival analyses from multiple cancer types, a single summary grid is constructed. The CASAS package has been implemented in R and is available via http://shinygispa.winship.emory.edu/CASAS/. The developmental repository is available at https://github.com/manalirupji/CASAS/.

14. Prevalence of treponema species detected in endodontic infections: systematic review and meta-regression analysis.

Science.gov (United States)

Leite, Fábio R M; Nascimento, Gustavo G; Demarco, Flávio F; Gomes, Brenda P F A; Pucci, Cesar R; Martinho, Frederico C

2015-05-01

This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic cases. The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus databases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

15. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

Science.gov (United States)

Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

2015-03-01

Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

16. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

Science.gov (United States)

In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

17. A PANEL REGRESSION ANALYSIS OF HUMAN CAPITAL RELEVANCE IN SELECTED SCANDINAVIAN AND SE EUROPEAN COUNTRIES

Directory of Open Access Journals (Sweden)

Filip Kokotovic

2016-06-01

Full Text Available The study of human capital relevance to economic growth is becoming increasingly important taking into account its relevance in many of the Sustainable Development Goals proposed by the UN. This paper conducted a panel regression analysis of selected SE European countries and Scandinavian countries using the Granger causality test and pooled panel regression. In order to test the relevance of human capital on economic growth, several human capital proxy variables were identified. Aside from the human capital proxy variables, other explanatory variables were selected using stepwise regression while the dependant variable was GDP. This paper concludes that there are significant structural differences in the economies of the two observed panels. Of the human capital proxy variables observed, for the panel of SE European countries only life expectancy was statistically significant and it had a negative impact on economic growth, while in the panel of Scandinavian countries total public expenditure on education had a statistically significant positive effect on economic growth. Based upon these results and existing studies, this paper concludes that human capital has a far more significant impact on economic growth in more developed economies.

18. Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements

KAUST Repository

Ryu, Duchwan

2010-09-28

We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.

19. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

Science.gov (United States)

Saunders, Christina T; Blume, Jeffrey D

2017-10-26

Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

20. Robust best linear estimation for regression analysis using surrogate and instrumental variables.

Science.gov (United States)

Wang, C Y

2012-04-01

We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.

1. Estimation of Unemployment Duration in Botoşani County Using Survival Analysis

Directory of Open Access Journals (Sweden)

Darabă Gabriel

2017-01-01

Full Text Available In this paper we aim at estimating the unemployment duration in Botosani County in order tostudy the impact of individual characteristics (gender, age, place of residence, unemploymentbenefit, etc. on the length of unemployment spells. We use Cox regression model to measure theeffects of gender, age, residential environment, etc. on the hazard rate of leaving unemploymentandKaplan-Meier estimator to compare survival probabilities among different categories ofunemployed persons. The study is carried out on a sample of 200 unemployment spellsregisteredwith the Employment Agency of Botoşani County from January 2012 to December 2015. Theresults reveal that place of residence, unemployment benefit and unemployed category have asignificant impact on unemployment spells.

2. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

Science.gov (United States)

Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

2014-10-01

Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

3. Analysis of sparse data in logistic regression in medical research: A newer approach

Directory of Open Access Journals (Sweden)

S Devika

2016-01-01

Full Text Available Background and Objective: In the analysis of dichotomous type response variable, logistic regression is usually used. However, the performance of logistic regression in the presence of sparse data is questionable. In such a situation, a common problem is the presence of high odds ratios (ORs with very wide 95% confidence interval (CI (OR: >999.999, 95% CI: 999.999. In this paper, we addressed this issue by using penalized logistic regression (PLR method. Materials and Methods: Data from case-control study on hyponatremia and hiccups conducted in Christian Medical College, Vellore, Tamil Nadu, India was used. The outcome variable was the presence/absence of hiccups and the main exposure variable was the status of hyponatremia. Simulation dataset was created with different sample sizes and with a different number of covariates. Results: A total of 23 cases and 50 controls were used for the analysis of ordinary and PLR methods. The main exposure variable hyponatremia was present in nine (39.13% of the cases and in four (8.0% of the controls. Of the 23 hiccup cases, all were males and among the controls, 46 (92.0% were males. Thus, the complete separation between gender and the disease group led into an infinite OR with 95% CI (OR: >999.999, 95% CI: 999.999 whereas there was a finite and consistent regression coefficient for gender (OR: 5.35; 95% CI: 0.42, 816.48 using PLR. After adjusting for all the confounding variables, hyponatremia entailed 7.9 (95% CI: 2.06, 38.86 times higher risk for the development of hiccups as was found using PLR whereas there was an overestimation of risk OR: 10.76 (95% CI: 2.17, 53.41 using the conventional method. Simulation experiment shows that the estimated coverage probability of this method is near the nominal level of 95% even for small sample sizes and for a large number of covariates. Conclusions: PLR is almost equal to the ordinary logistic regression when the sample size is large and is superior in small cell

4. Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression

Science.gov (United States)

Cai, Xianlei; Wang, Chen; Yu, Wanqi; Fan, Wenjie; Wang, Shan; Shen, Ning; Wu, Pengcheng; Li, Xiuyang; Wang, Fudi

2016-01-01

The objective of this study was to investigate the associations between selenium exposure and cancer risk. We identified 69 studies and applied meta-analysis, meta-regression and dose-response analysis to obtain available evidence. The results indicated that high selenium exposure had a protective effect on cancer risk (pooled OR = 0.78; 95%CI: 0.73–0.83). The results of linear and nonlinear dose-response analysis indicated that high serum/plasma selenium and toenail selenium had the efficacy on cancer prevention. However, we did not find a protective efficacy of selenium supplement. High selenium exposure may have different effects on specific types of cancer. It decreased the risk of breast cancer, lung cancer, esophageal cancer, gastric cancer, and prostate cancer, but it was not associated with colorectal cancer, bladder cancer, and skin cancer. PMID:26786590

5. An evaluation of an operating BWR piping system damping during earthquake by applying auto regressive analysis

International Nuclear Information System (INIS)

Kitada, Y.; Makiguchi, M.; Komori, A.; Ichiki, T.

1985-01-01

The records of three earthquakes which had induced significant earthquake response to the piping system were obtained with the earthquake observation system. In the present paper, first, the eigenvalue analysis results for the natural piping system based on the piping support (boundary) conditions are described and second, the frequency and the damping factor evaluation results for each vibrational mode are described. In the present study, the Auto Regressive (AR) analysis method is used in the evaluation of natural frequencies and damping factors. The AR analysis applied here has a capability of direct evaluation of natural frequencies and damping factors from earthquake records observed on a piping system without any information on the input motions to the system. (orig./HP)

6. Use of generalized regression models for the analysis of stress-rupture data

International Nuclear Information System (INIS)

Booker, M.K.

1978-01-01

The design of components for operation in an elevated-temperature environment often requires a detailed consideration of the creep and creep-rupture properties of the construction materials involved. Techniques for the analysis and extrapolation of creep data have been widely discussed. The paper presents a generalized regression approach to the analysis of such data. This approach has been applied to multiple heat data sets for types 304 and 316 austenitic stainless steel, ferritic 2 1 / 4 Cr-1 Mo steel, and the high-nickel austenitic alloy 800H. Analyses of data for single heats of several materials are also presented. All results appear good. The techniques presented represent a simple yet flexible and powerful means for the analysis and extrapolation of creep and creep-rupture data

7. Neck-focused panic attacks among Cambodian refugees; a logistic and linear regression analysis.

Science.gov (United States)

Hinton, Devon E; Chhean, Dara; Pich, Vuth; Um, Khin; Fama, Jeanne M; Pollack, Mark H

2006-01-01

Consecutive Cambodian refugees attending a psychiatric clinic were assessed for the presence and severity of current--i.e., at least one episode in the last month--neck-focused panic. Among the whole sample (N=130), in a logistic regression analysis, the Anxiety Sensitivity Index (ASI; odds ratio=3.70) and the Clinician-Administered PTSD Scale (CAPS; odds ratio=2.61) significantly predicted the presence of current neck panic (NP). Among the neck panic patients (N=60), in the linear regression analysis, NP severity was significantly predicted by NP-associated flashbacks (beta=.42), NP-associated catastrophic cognitions (beta=.22), and CAPS score (beta=.28). Further analysis revealed the effect of the CAPS score to be significantly mediated (Sobel test [Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182]) by both NP-associated flashbacks and catastrophic cognitions. In the care of traumatized Cambodian refugees, NP severity, as well as NP-associated flashbacks and catastrophic cognitions, should be specifically assessed and treated.

8. Characterization of sonographically indeterminate ovarian tumors with MR imaging. A logistic regression analysis

International Nuclear Information System (INIS)

Yamashita, Y.; Hatanaka, Y.; Torashima, M.; Takahashi, M.; Miyazaki, K.; Okamura, H.

1997-01-01

Purpose: The goal of this study was to maximize the discrimination between benign and malignant masses in patients with sonographically indeterminate ovarian lesions by means of unenhanced and contrast-enhanced MR imaging, and to develop a computer-assisted diagnosis system. Material and Methods: Findings in precontrast and Gd-DTPA contrast-enhanced MR images of 104 patients with 115 sonographically indeterminate ovarian masses were analyzed, and the results were correlated with histopathological findings. Of 115 lesions, 65 were benign (23 cystadenomas, 13 complex cysts, 11 teratomas, 6 fibrothecomas, 12 others) and 50 were malignant (32 ovarian carcinomas, 7 metastatic tumors of the ovary, 4 carcinomas of the fallopian tubes, 7 others). A logistic regression analysis was performed to discriminate between benign and malignant lesions, and a model of a computer-assisted diagnosis was developed. This model was prospectively tested in 75 cases of ovarian tumors found at other institutions. Results: From the univariate analysis, the following parameters were selected as significant for predicting malignancy (p≤0.05): A solid or cystic mass with a large solid component or wall thickness greater than 3 mm; complex internal architecture; ascites; and bilaterality. Based on these parameters, a model of a computer-assisted diagnosis system was developed with the logistic regression analysis. To distinguish benign from malignant lesions, the maximum cut-off point was obtained between 0.47 and 0.51. In a prospective application of this model, 87% of the lesions were accurately identified as benign or malignant. (orig.)

9. Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement

Science.gov (United States)

Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.

2018-04-01

Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).

10. Application of nonlinear regression analysis for ammonium exchange by natural (Bigadic) clinoptilolite

International Nuclear Information System (INIS)

Gunay, Ahmet

2007-01-01

The experimental data of ammonium exchange by natural Bigadic clinoptilolite was evaluated using nonlinear regression analysis. Three two-parameters isotherm models (Langmuir, Freundlich and Temkin) and three three-parameters isotherm models (Redlich-Peterson, Sips and Khan) were used to analyse the equilibrium data. Fitting of isotherm models was determined using values of standard normalization error procedure (SNE) and coefficient of determination (R 2 ). HYBRID error function provided lowest sum of normalized error and Khan model had better performance for modeling the equilibrium data. Thermodynamic investigation indicated that ammonium removal by clinoptilolite was favorable at lower temperatures and exothermic in nature

11. A REVIEW ON THE USE OF REGRESSION ANALYSIS IN STUDIES OF AUDIT QUALITY

Directory of Open Access Journals (Sweden)

Agung Dodit Muliawan

2015-07-01

Full Text Available This study aimed to review how regression analysis has been used in studies of abstract phenomenon, such as audit quality, an importance concept in the auditing practice (Schroeder et al., 1986, yet is not well defined. The articles reviewed were the research articles that include audit quality as research variable, either as dependent or independent variables. The articles were purposefully selected to represent balance combination between audit specific and more general accounting journals and between Anglo Saxon and Anglo American journals. The articles were published between 1983-2011 and from the A/A class journal based on ERA 2010’s classifications. The study found that most of the articles reviewed used multiple regression analysis and treated audit quality as dependent variable and measured it by using a proxy. This study also highlights the size of data sample used and the lack of discussions about the assumptions of the statistical analysis used in most of the articles reviewed. This study concluded that the effectiveness and validity of multiple regressions do not only depends on its application by the researchers but also on how the researchers communicate their findings to the audience. KEYWORDS Audit quality, regression analysis ABSTRAK Kajian ini bertujuan untuk mereviu bagaimana analisa regresi digunakan dalam suatu fenomena abstrak seperti kualitas audit, suatu konsep yang penting dalam praktik audit (Schroeder et al., 1986 namun belum terdefinisi dengan jelas. Artikel yang direviu dalam kajian ini adalah artikel penelitian yang memasukkan kualitas audit sebagai variabel penelitian, baik sebagai variabel independen maupun dependen. Artikel-artikel tersebut dipilih dengan cara purposif sampling untuk mendapatkan keterwakilan yang seimbang antara artikel jurnal khusus audit dan akuntansi secara umum, serta mewakili jurnal Anglo Saxon dan Anglo American. Artikel yang direviu diterbitkan pada periode 1983-2011 oleh jurnal yang

12. Estimating the causes of traffic accidents using logistic regression and discriminant analysis.

Science.gov (United States)

Karacasu, Murat; Ergül, Barış; Altin Yavuz, Arzu

2014-01-01

Factors that affect traffic accidents have been analysed in various ways. In this study, we use the methods of logistic regression and discriminant analysis to determine the damages due to injury and non-injury accidents in the Eskisehir Province. Data were obtained from the accident reports of the General Directorate of Security in Eskisehir; 2552 traffic accidents between January and December 2009 were investigated regarding whether they resulted in injury. According to the results, the effects of traffic accidents were reflected in the variables. These results provide a wealth of information that may aid future measures toward the prevention of undesired results.

13. Regression analysis of pulsed eddy current signals for inspection of steam generator tube support structures

International Nuclear Information System (INIS)

Buck, J.; Underhill, P.R.; Mokros, S.G.; Morelli, J.; Krause, T.W.; Babbar, V.K.; Lepine, B.

2015-01-01

Nuclear steam generator (SG) support structure degradation and fouling can result in damage to SG tubes and loss of SG efficiency. Conventional eddy current technology is extensively used to detect cracks, frets at supports and other flaws, but has limited capabilities in the presence of multiple degradation modes or fouling. Pulsed eddy current (PEC) combined with principal components analysis (PCA) and multiple linear regression models was examined for the inspection of support structure degradation and SG tube off-centering with the goal of extending results to include additional degradation modes. (author)

14. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

Directory of Open Access Journals (Sweden)

Zhigao Zeng

2016-01-01

Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

15. FREQFIT: Computer program which performs numerical regression and statistical chi-squared goodness of fit analysis

International Nuclear Information System (INIS)

Hofland, G.S.; Barton, C.C.

1990-01-01

The computer program FREQFIT is designed to perform regression and statistical chi-squared goodness of fit analysis on one-dimensional or two-dimensional data. The program features an interactive user dialogue, numerous help messages, an option for screen or line printer output, and the flexibility to use practically any commercially available graphics package to create plots of the program's results. FREQFIT is written in Microsoft QuickBASIC, for IBM-PC compatible computers. A listing of the QuickBASIC source code for the FREQFIT program, a user manual, and sample input data, output, and plots are included. 6 refs., 1 fig

16. Multivariate regression analysis for determining short-term values of radon and its decay products from filter measurements

International Nuclear Information System (INIS)

Kraut, W.; Schwarz, W.; Wilhelm, A.

1994-01-01

A multivariate regression analysis is applied to decay measurements of α-resp. β-filter activcity. Activity concentrations for Po-218, Pb-214 and Bi-214, resp. for the Rn-222 equilibrium equivalent concentration are obtained explicitly. The regression analysis takes into account properly the variances of the measured count rates and their influence on the resulting activity concentrations. (orig.) [de

17. A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis

International Nuclear Information System (INIS)

Kumar, Akansha; Tsvetkov, Pavel V.

2015-01-01

Highlights: • This paper presents a new method useful for the optimization of complex dynamic systems. • The method uses the strengths of; genetic algorithms (GA), and regression splines. • The method is applied to the design of a gas cooled fast breeder reactor design. • Tools like Java, R, and codes like MCNP, Matlab are used in this research. - Abstract: A module based optimization method using genetic algorithms (GA), and multivariate regression analysis has been developed to optimize a set of parameters in the design of a nuclear reactor. GA simulates natural evolution to perform optimization, and is widely used in recent times by the scientific community. The GA fits a population of random solutions to the optimized solution of a specific problem. In this work, we have developed a genetic algorithm to determine the values for a set of nuclear reactor parameters to design a gas cooled fast breeder reactor core including a basis thermal–hydraulics analysis, and energy transfer. Multivariate regression is implemented using regression splines (RS). Reactor designs are usually complex and a simulation needs a significantly large amount of time to execute, hence the implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using RS in conjunction with GA. Due to using RS, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a multivariate regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The reactor parameters are given by the, radius of a fuel pin cell, isotopic enrichment of the fissile material in the fuel, mass flow rate of the coolant, and temperature of the coolant at the core inlet. And, the optimization objectives for the reactor core are, high breeding of U-233 and Pu-239 in

18. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

Science.gov (United States)

Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

2013-06-01

This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

19. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

Science.gov (United States)

Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

2018-03-01

Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

20. Risk of Recurrence in Operated Parasagittal Meningiomas: A Logistic Binary Regression Model.

Science.gov (United States)

Escribano Mesa, José Alberto; Alonso Morillejo, Enrique; Parrón Carreño, Tesifón; Huete Allut, Antonio; Narro Donate, José María; Méndez Román, Paddy; Contreras Jiménez, Ascensión; Pedrero García, Francisco; Masegosa González, José

2018-02-01

Parasagittal meningiomas arise from the arachnoid cells of the angle formed between the superior sagittal sinus (SSS) and the brain convexity. In this retrospective study, we focused on factors that predict early recurrence and recurrence times. We reviewed 125 patients with parasagittal meningiomas operated from 1985 to 2014. We studied the following variables: age, sex, location, laterality, histology, surgeons, invasion of the SSS, Simpson removal grade, follow-up time, angiography, embolization, radiotherapy, recurrence and recurrence time, reoperation, neurologic deficit, degree of dependency, and patient status at the end of follow-up. Patients ranged in age from 26 to 81 years (mean 57.86 years; median 60 years). There were 44 men (35.2%) and 81 women (64.8%). There were 57 patients with neurologic deficits (45.2%). The most common presenting symptom was motor deficit. World Health Organization grade I tumors were identified in 104 patients (84.6%), and the majority were the meningothelial type. Recurrence was detected in 34 cases. Time of recurrence was 9 to 336 months (mean: 84.4 months; median: 79.5 months). Male sex was identified as an independent risk for recurrence with relative risk 2.7 (95% confidence interval 1.21-6.15), P = 0.014. Kaplan-Meier curves for recurrence had statistically significant differences depending on sex, age, histologic type, and World Health Organization histologic grade. A binary logistic regression was made with the Hosmer-Lemeshow test with P > 0.05; sex, tumor size, and histologic type were used in this model. Male sex is an independent risk factor for recurrence that, associated with other factors such tumor size and histologic type, explains 74.5% of all cases in a binary regression model. Copyright © 2017 Elsevier Inc. All rights reserved.

1. Regression analysis of mixed recurrent-event and panel-count data.

Science.gov (United States)

Zhu, Liang; Tong, Xinwei; Sun, Jianguo; Chen, Manhua; Srivastava, Deo Kumar; Leisenring, Wendy; Robison, Leslie L

2014-07-01

In event history studies concerning recurrent events, two types of data have been extensively discussed. One is recurrent-event data (Cook and Lawless, 2007. The Analysis of Recurrent Event Data. New York: Springer), and the other is panel-count data (Zhao and others, 2010. Nonparametric inference based on panel-count data. Test 20: , 1-42). In the former case, all study subjects are monitored continuously; thus, complete information is available for the underlying recurrent-event processes of interest. In the latter case, study subjects are monitored periodically; thus, only incomplete information is available for the processes of interest. In reality, however, a third type of data could occur in which some study subjects are monitored continuously, but others are monitored periodically. When this occurs, we have mixed recurrent-event and panel-count data. This paper discusses regression analysis of such mixed data and presents two estimation procedures for the problem. One is a maximum likelihood estimation procedure, and the other is an estimating equation procedure. The asymptotic properties of both resulting estimators of regression parameters are established. Also, the methods are applied to a set of mixed recurrent-event and panel-count data that arose from a Childhood Cancer Survivor Study and motivated this investigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

2. Regression analysis of mixed panel count data with dependent terminal events.

Science.gov (United States)

Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L

2017-05-10

Event history studies are commonly conducted in many fields, and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data earlier, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established, and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally, the methodology is applied to a childhood cancer study that motivated this study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

3. Weighted functional linear regression models for gene-based association analysis.

Science.gov (United States)

Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

2018-01-01

Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

4. Determination of baroreflex sensitivity during the modified Oxford maneuver by trigonometric regressive spectral analysis.

Directory of Open Access Journals (Sweden)

Julia Gasch

Full Text Available BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary and under pharmacological stimulation (non-stationary using the algorithm of trigonometric regressive spectral analysis (TRS. Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system.

5. Logistic regression analysis to predict Medical Licensing Examination of Thailand (MLET) Step1 success or failure.

Science.gov (United States)

Wanvarie, Samkaew; Sathapatayavongs, Boonmee

2007-09-01

The aim of this paper was to assess factors that predict students' performance in the Medical Licensing Examination of Thailand (MLET) Step1 examination. The hypothesis was that demographic factors and academic records would predict the students' performance in the Step1 Licensing Examination. A logistic regression analysis of demographic factors (age, sex and residence) and academic records [high school grade point average (GPA), National University Entrance Examination Score and GPAs of the pre-clinical years] with the MLET Step1 outcome was accomplished using the data of 117 third-year Ramathibodi medical students. Twenty-three (19.7%) students failed the MLET Step1 examination. Stepwise logistic regression analysis showed that the significant predictors of MLET Step1 success/failure were residence background and GPAs of the second and third preclinical years. For students whose sophomore and third-year GPAs increased by an average of 1 point, the odds of passing the MLET Step1 examination increased by a factor of 16.3 and 12.8 respectively. The minimum GPAs for students from urban and rural backgrounds to pass the examination were estimated from the equation (2.35 vs 2.65 from 4.00 scale). Students from rural backgrounds and/or low-grade point averages in their second and third preclinical years of medical school are at risk of failing the MLET Step1 examination. They should be given intensive tutorials during the second and third pre-clinical years.

6. Financial analysis and forecasting of the results of small businesses performance based on regression model

Directory of Open Access Journals (Sweden)

Svetlana O. Musienko

2017-03-01

Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small

7. Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes

International Nuclear Information System (INIS)

Faranda, Davide; Dubrulle, Bérengère; Daviaud, François; Pons, Flavio Maria Emanuele; Saint-Michel, Brice; Herbert, Éric; Cortet, Pierre-Philippe

2014-01-01

We introduce a novel way to extract information from turbulent datasets by applying an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new index Υ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von Kármán swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the Υ is highest in regions where shear layer vortices are present, thereby establishing a link between deviations from the Kolmogorov model and coherent structures. These deviations are consistent with the ones observed by computing the Hurst exponents for the same time series. We show that some salient features of the analysis are preserved when considering global instead of local observables. Finally, we analyze flow configurations with multistability features where the ARMA technique is efficient in discriminating different stability branches of the system

8. Within-session analysis of the extinction of pavlovian fear-conditioning using robust regression

Directory of Open Access Journals (Sweden)

Vargas-Irwin, Cristina

2010-06-01

Full Text Available Traditionally , the analysis of extinction data in fear conditioning experiments has involved the use of standard linear models, mostly ANOVA of between-group differences of subjects that have undergone different extinction protocols, pharmacological manipulations or some other treatment. Although some studies report individual differences in quantities such as suppression rates or freezing percentages, these differences are not included in the statistical modeling. Withinsubject response patterns are then averaged using coarse-grain time windows which can overlook these individual performance dynamics. Here we illustrate an alternative analytical procedure consisting of 2 steps: the estimation of a trend for within-session data and analysis of group differences in trend as main outcome. This procedure is tested on real fear-conditioning extinction data, comparing trend estimates via Ordinary Least Squares (OLS and robust Least Median of Squares (LMS regression estimates, as well as comparing between-group differences and analyzing mean freezing percentage versus LMS slopes as outcomes

9. Statistical learning method in regression analysis of simulated positron spectral data

International Nuclear Information System (INIS)

Avdic, S. Dz.

2005-01-01

Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)

10. Marital status integration and suicide: A meta-analysis and meta-regression.

Science.gov (United States)

Kyung-Sook, Woo; SangSoo, Shin; Sangjin, Shin; Young-Jeon, Shin

2018-01-01

Marital status is an index of the phenomenon of social integration within social structures and has long been identified as an important predictor suicide. However, previous meta-analyses have focused only on a particular marital status, or not sufficiently explored moderators. A meta-analysis of observational studies was conducted to explore the relationships between marital status and suicide and to understand the important moderating factors in this association. Electronic databases were searched to identify studies conducted between January 1, 2000 and June 30, 2016. We performed a meta-analysis, subgroup analysis, and meta-regression of 170 suicide risk estimates from 36 publications. Using random effects model with adjustment for covariates, the study found that the suicide risk for non-married versus married was OR = 1.92 (95% CI: 1.75-2.12). The suicide risk was higher for non-married individuals aged analysis by gender, non-married men exhibited a greater risk of suicide than their married counterparts in all sub-analyses, but women aged 65 years or older showed no significant association between marital status and suicide. The suicide risk in divorced individuals was higher than for non-married individuals in both men and women. The meta-regression showed that gender, age, and sample size affected between-study variation. The results of the study indicated that non-married individuals have an aggregate higher suicide risk than married ones. In addition, gender and age were confirmed as important moderating factors in the relationship between marital status and suicide. Copyright © 2017 Elsevier Ltd. All rights reserved.

11. Standardizing effect size from linear regression models with log-transformed variables for meta-analysis.

Science.gov (United States)

Rodríguez-Barranco, Miguel; Tobías, Aurelio; Redondo, Daniel; Molina-Portillo, Elena; Sánchez, María José

2017-03-17

Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease. Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a linear regression model. If this is the case for some, but not all studies, the effects need to be homogenized. We derived a set of formulae to transform absolute changes into relative ones, and vice versa, to allow including all results in a meta-analysis. We applied our procedure to all possible combinations of log-transformed independent or dependent variables. We also evaluated it in a simulation based on two variables either normally or asymmetrically distributed. In all the scenarios, and based on different change criteria, the effect size estimated by the derived set of formulae was equivalent to the real effect size. To avoid biased estimates of the effect, this procedure should be used with caution in the case of independent variables with asymmetric distributions that significantly differ from the normal distribution. We illustrate an application of this procedure by an application to a meta-analysis on the potential effects on neurodevelopment in children exposed to arsenic and manganese. The procedure proposed has been shown to be valid and capable of expressing the effect size of a linear regression model based on different change criteria in the variables. Homogenizing the results from different studies beforehand allows them to be combined in a meta-analysis, independently of whether the transformations had been performed on the dependent and/or independent variables.

12. Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis.

Science.gov (United States)

Díaz-Alemán, Valentín T; González-Hernández, Marta; Perera-Sanz, Daniel; Armas-Domínguez, Karintia

2016-01-01

To determine the sensitivity, specificity and agreement between the Quasar program, glaucoma progression analysis (GPA II) event analysis and expert opinion in the detection of glaucomatous progression. The Quasar program is based on linear regression analysis of both mean defect (MD) and pattern standard deviation (PSD). Each series of visual fields was evaluated by three methods; Quasar, GPA II and four experts. The sensitivity, specificity and agreement (kappa) for each method was calculated, using expert opinion as the reference standard. The study included 439 SITA Standard visual fields of 56 eyes of 42 patients, with a mean of 7.8 ± 0.8 visual fields per eye. When suspected cases of progression were considered stable, sensitivity and specificity of Quasar, GPA II and the experts were 86.6% and 70.7%, 26.6% and 95.1%, and 86.6% and 92.6% respectively. When suspected cases of progression were considered as progressing, sensitivity and specificity of Quasar, GPA II and the experts were 79.1% and 81.2%, 45.8% and 90.6%, and 85.4% and 90.6% respectively. The agreement between Quasar and GPA II when suspected cases were considered stable or progressing was 0.03 and 0.28 respectively. The degree of agreement between Quasar and the experts when suspected cases were considered stable or progressing was 0.472 and 0.507. The degree of agreement between GPA II and the experts when suspected cases were considered stable or progressing was 0.262 and 0.342. The combination of MD and PSD regression analysis in the Quasar program showed better agreement with the experts and higher sensitivity than GPA II.

13. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation.

Science.gov (United States)

Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

2018-03-05

Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.

14. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

Science.gov (United States)

Wang, Fengfeng; Wong, S. C. Cesar; Chan, Lawrence W. C.; Cho, William C. S.; Yip, S. P.; Yung, Benjamin Y. M.

2014-01-01

Background. MicroRNA (miRNA) is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC), and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI) and chromosomal instability (CIN) signaling pathways. Results. A regression model was adopted to identify the significantly associated miRNAs targeting a set of candidate genes frequently involved in colorectal cancer MSI and CIN pathways. Multiple linear regression analysis was used to construct the model and find the significant mRNA-miRNA associations. We identified three significantly associated mRNA-miRNA pairs: BCL2 was positively associated with miR-16 and SMAD4 was positively associated with miR-567 in the CRC tissue, while MSH6 was positively associated with miR-142-5p in the normal tissue. As for the whole model, BCL2 and SMAD4 models were not significant, and MSH6 model was significant. The significant associations were different in the normal and the CRC tissues. Conclusion. Our results have laid down a solid foundation in exploration of novel CRC mechanisms, and identification of miRNA roles as oncomirs or tumor suppressor mirs in CRC. PMID:24895601

15. Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration

Science.gov (United States)

Árnadóttir, Í.; Gíslason, M. K.; Carraro, U.

2016-01-01

Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration. PMID:28115982

16. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

Science.gov (United States)

Ulbrich, N.

2015-01-01

An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

17. Regression tree analysis for predicting body weight of Nigerian Muscovy duck (Cairina moschata

Directory of Open Access Journals (Sweden)

Oguntunji Abel Olusegun

2017-01-01

Full Text Available Morphometric parameters and their indices are central to the understanding of the type and function of livestock. The present study was conducted to predict body weight (BWT of adult Nigerian Muscovy ducks from nine (9 morphometric parameters and seven (7 body indices and also to identify the most important predictor of BWT among them using regression tree analysis (RTA. The experimental birds comprised of 1,020 adult male and female Nigerian Muscovy ducks randomly sampled in Rain Forest (203, Guinea Savanna (298 and Derived Savanna (519 agro-ecological zones. Result of RTA revealed that compactness; body girth and massiveness were the most important independent variables in predicting BWT and were used in constructing RT. The combined effect of the three predictors was very high and explained 91.00% of the observed variation of the target variable (BWT. The optimal regression tree suggested that Muscovy ducks with compactness >5.765 would be fleshy and have highest BWT. The result of the present study could be exploited by animal breeders and breeding companies in selection and improvement of BWT of Muscovy ducks.

18. Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis

Science.gov (United States)

Chang, C. H.; Chan, H. C.; Chen, B. A.

2016-12-01

Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.

19. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

Science.gov (United States)

Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

2016-09-01

The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

20. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

Science.gov (United States)

Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

2008-11-01

We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

1. Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration

Directory of Open Access Journals (Sweden)

K. J. Edmunds

2016-01-01

Full Text Available Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration.

2. Logistic regression analysis of psychosocial correlates associated with recovery from schizophrenia in a Chinese community.

Science.gov (United States)

Tse, Samson; Davidson, Larry; Chung, Ka-Fai; Yu, Chong Ho; Ng, King Lam; Tsoi, Emily

2015-02-01

More mental health services are adopting the recovery paradigm. This study adds to prior research by (a) using measures of stages of recovery and elements of recovery that were designed and validated in a non-Western, Chinese culture and (b) testing which demographic factors predict advanced recovery and whether placing importance on certain elements predicts advanced recovery. We examined recovery and factors associated with recovery among 75 Hong Kong adults who were diagnosed with schizophrenia and assessed to be in clinical remission. Data were collected on socio-demographic factors, recovery stages and elements associated with recovery. Logistic regression analysis was used to identify variables that could best predict stages of recovery. Receiver operating characteristic curves were used to detect the classification accuracy of the model (i.e. rates of correct classification of stages of recovery). Logistic regression results indicated that stages of recovery could be distinguished with reasonable accuracy for Stage 3 ('living with disability', classification accuracy = 75.45%) and Stage 4 ('living beyond disability', classification accuracy = 75.50%). However, there was no sufficient information to predict Combined Stages 1 and 2 ('overwhelmed by disability' and 'struggling with disability'). It was found that having a meaningful role and age were the most important differentiators of recovery stage. Preliminary findings suggest that adopting salient life roles personally is important to recovery and that this component should be incorporated into mental health services. © The Author(s) 2014.

3. Exergy Analysis of a Subcritical Reheat Steam Power Plant with Regression Modeling and Optimization

Directory of Open Access Journals (Sweden)

MUHIB ALI RAJPER

2016-07-01

Full Text Available In this paper, exergy analysis of a 210 MW SPP (Steam Power Plant is performed. Firstly, the plant is modeled and validated, followed by a parametric study to show the effects of various operating parameters on the performance parameters. The net power output, energy efficiency, and exergy efficiency are taken as the performance parameters, while the condenser pressure, main steam pressure, bled steam pressures, main steam temperature, and reheat steam temperature isnominated as the operating parameters. Moreover, multiple polynomial regression models are developed to correlate each performance parameter with the operating parameters. The performance is then optimizedby using Direct-searchmethod. According to the results, the net power output, energy efficiency, and exergy efficiency are calculated as 186.5 MW, 31.37 and 30.41%, respectively under normal operating conditions as a base case. The condenser is a major contributor towards the energy loss, followed by the boiler, whereas the highest irreversibilities occur in the boiler and turbine. According to the parametric study, variation in the operating parameters greatly influences the performance parameters. The regression models have appeared to be a good estimator of the performance parameters. The optimum net power output, energy efficiency and exergy efficiency are obtained as 227.6 MW, 37.4 and 36.4, respectively, which have been calculated along with optimal values of selected operating parameters.

4. Thermodynamic Analysis of Simple Gas Turbine Cycle with Multiple Regression Modelling and Optimization

Directory of Open Access Journals (Sweden)

Abdul Ghafoor Memon

2014-03-01

Full Text Available In this study, thermodynamic and statistical analyses were performed on a gas turbine system, to assess the impact of some important operating parameters like CIT (Compressor Inlet Temperature, PR (Pressure Ratio and TIT (Turbine Inlet Temperature on its performance characteristics such as net power output, energy efficiency, exergy efficiency and fuel consumption. Each performance characteristic was enunciated as a function of operating parameters, followed by a parametric study and optimization. The results showed that the performance characteristics increase with an increase in the TIT and a decrease in the CIT, except fuel consumption which behaves oppositely. The net power output and efficiencies increase with the PR up to certain initial values and then start to decrease, whereas the fuel consumption always decreases with an increase in the PR. The results of exergy analysis showed the combustion chamber as a major contributor to the exergy destruction, followed by stack gas. Subsequently, multiple regression models were developed to correlate each of the response variables (performance characteristic with the predictor variables (operating parameters. The regression model equations showed a significant statistical relationship between the predictor and response variables.

5. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis

KAUST Repository

Rubio, Francisco J.

2016-02-09

We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.

6. Personality disorders, violence, and antisocial behavior: a systematic review and meta-regression analysis.

Science.gov (United States)

Yu, Rongqin; Geddes, John R; Fazel, Seena

2012-10-01

The risk of antisocial outcomes in individuals with personality disorder (PD) remains uncertain. The authors synthesize the current evidence on the risks of antisocial behavior, violence, and repeat offending in PD, and they explore sources of heterogeneity in risk estimates through a systematic review and meta-regression analysis of observational studies comparing antisocial outcomes in personality disordered individuals with controls groups. Fourteen studies examined risk of antisocial and violent behavior in 10,007 individuals with PD, compared with over 12 million general population controls. There was a substantially increased risk of violent outcomes in studies with all PDs (random-effects pooled odds ratio [OR] = 3.0, 95% CI = 2.6 to 3.5). Meta-regression revealed that antisocial PD and gender were associated with higher risks (p = .01 and .07, respectively). The odds of all antisocial outcomes were also elevated. Twenty-five studies reported the risk of repeat offending in PD compared with other offenders. The risk of a repeat offense was also increased (fixed-effects pooled OR = 2.4, 95% CI = 2.2 to 2.7) in offenders with PD. The authors conclude that although PD is associated with antisocial outcomes and repeat offending, the risk appears to differ by PD category, gender, and whether individuals are offenders or not.

7. Driven Factors Analysis of China’s Irrigation Water Use Efficiency by Stepwise Regression and Principal Component Analysis

Directory of Open Access Journals (Sweden)

Renfu Jia

2016-01-01

Full Text Available This paper introduces an integrated approach to find out the major factors influencing efficiency of irrigation water use in China. It combines multiple stepwise regression (MSR and principal component analysis (PCA to obtain more realistic results. In real world case studies, classical linear regression model often involves too many explanatory variables and the linear correlation issue among variables cannot be eliminated. Linearly correlated variables will cause the invalidity of the factor analysis results. To overcome this issue and reduce the number of the variables, PCA technique has been used combining with MSR. As such, the irrigation water use status in China was analyzed to find out the five major factors that have significant impacts on irrigation water use efficiency. To illustrate the performance of the proposed approach, the calculation based on real data was conducted and the results were shown in this paper.

8. Clinical benefit from pharmacological elevation of high-density lipoprotein cholesterol: meta-regression analysis.

Science.gov (United States)

Hourcade-Potelleret, F; Laporte, S; Lehnert, V; Delmar, P; Benghozi, Renée; Torriani, U; Koch, R; Mismetti, P

2015-06-01

Epidemiological evidence that the risk of coronary heart disease is inversely associated with the level of high-density lipoprotein cholesterol (HDL-C) has motivated several phase III programmes with cholesteryl ester transfer protein (CETP) inhibitors. To assess alternative methods to predict clinical response of CETP inhibitors. Meta-regression analysis on raising HDL-C drugs (statins, fibrates, niacin) in randomised controlled trials. 51 trials in secondary prevention with a total of 167,311 patients for a follow-up >1 year where HDL-C was measured at baseline and during treatment. The meta-regression analysis showed no significant association between change in HDL-C (treatment vs comparator) and log risk ratio (RR) of clinical endpoint (non-fatal myocardial infarction or cardiac death). CETP inhibitors data are consistent with this finding (RR: 1.03; P5-P95: 0.99-1.21). A prespecified sensitivity analysis by drug class suggested that the strength of relationship might differ between pharmacological groups. A significant association for both statins (p<0.02, log RR=-0.169-0.0499*HDL-C change, R(2)=0.21) and niacin (p=0.02, log RR=1.07-0.185*HDL-C change, R(2)=0.61) but not fibrates (p=0.18, log RR=-0.367+0.077*HDL-C change, R(2)=0.40) was shown. However, the association was no longer detectable after adjustment for low-density lipoprotein cholesterol for statins or exclusion of open trials for niacin. Meta-regression suggested that CETP inhibitors might not influence coronary risk. The relation between change in HDL-C level and clinical endpoint may be drug dependent, which limits the use of HDL-C as a surrogate marker of coronary events. Other markers of HDL function may be more relevant. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

9. Dual Regression

OpenAIRE

2012-01-01

We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

10. Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.

Science.gov (United States)

Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E

2018-03-01

Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.

11. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

Science.gov (United States)

Yang, Miao; Yuan, Ke-Hai

2016-01-01

Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

12. Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data

Science.gov (United States)

Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.

2017-01-01

Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564

13. Characterization of breast masses by dynamic enhanced MR imaging. A logistic regression analysis

International Nuclear Information System (INIS)

Ikeda, O.; Morishita, S.; Kido, T.; Kitajima, M.; Yamashita, Y.; Takahashi, M.; Okamura, K.; Fukuda, S.

1999-01-01

Purpose: To identify features useful for differentiation between malignant and benign breast neoplasms using multivariate analysis of findings by MR imaging. Material and Methods: In a retrospective analysis, 61 patients with 64 breast masses underwent MR imaging and the time-signal intensity curves for precontrast dynamic postcontrast images were quantitatively analyzed. Statistical analysis was performed using a logistic regression model, which was prospectively tested in another 34 patients with suspected breast masses. Results: Univariate analysis revealed that the reliable indicators for malignancy were first the appearance of the tumor border, followed by the washout ratio, internal architecture after contrast enhancement, and peak time. The factors significantly associated with malignancy were irregular tumor border, followed by washout ratio, internal architecture, and peak time. For differentiation between benignity and malignancy, the maximum cut-off point was to be found between 0.47 and 0.51. In a prospective application of this model, 91% of the lesions were accurately discriminated as benign or malignant lesions. Conclusion: Combination of contrast-enhanced dynamic and postcontrast-enhanced MR imaging provided accurate data for the diagnosis of malignant neoplasms of the breast. The model had an accuracy of 91% (sensitivity 90%, specificity 93%). (orig.)

14. Estimation of a Reactor Core Power Peaking Factor Using Support Vector Regression and Uncertainty Analysis

International Nuclear Information System (INIS)

Bae, In Ho; Naa, Man Gyun; Lee, Yoon Joon; Park, Goon Cherl

2009-01-01

The monitoring of detailed 3-dimensional (3D) reactor core power distribution is a prerequisite in the operation of nuclear power reactors to ensure that various safety limits imposed on the LPD and DNBR, are not violated during nuclear power reactor operation. The LPD and DNBR should be calculated in order to perform the two major functions of the core protection calculator system (CPCS) and the core operation limit supervisory system (COLSS). The LPD at the hottest part of a hot fuel rod, which is related to the power peaking factor (PPF, F q ), is more important than the LPD at any other position in a reactor core. The LPD needs to be estimated accurately to prevent nuclear fuel rods from melting. In this study, support vector regression (SVR) and uncertainty analysis have been applied to estimation of reactor core power peaking factor

15. A Note on Penalized Regression Spline Estimation in the Secondary Analysis of Case-Control Data

KAUST Repository

Gazioglu, Suzan; Wei, Jiawei; Jennings, Elizabeth M.; Carroll, Raymond J.

2013-01-01

Primary analysis of case-control studies focuses on the relationship between disease (D) and a set of covariates of interest (Y, X). A secondary application of the case-control study, often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated due to the case-control sampling, and to avoid the biased sampling that arises from the design, it is typical to use the control data only. In this paper, we develop penalized regression spline methodology that uses all the data, and improves precision of estimation compared to using only the controls. A simulation study and an empirical example are used to illustrate the methodology.

16. A Note on Penalized Regression Spline Estimation in the Secondary Analysis of Case-Control Data

KAUST Repository

Gazioglu, Suzan

2013-05-25

Primary analysis of case-control studies focuses on the relationship between disease (D) and a set of covariates of interest (Y, X). A secondary application of the case-control study, often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated due to the case-control sampling, and to avoid the biased sampling that arises from the design, it is typical to use the control data only. In this paper, we develop penalized regression spline methodology that uses all the data, and improves precision of estimation compared to using only the controls. A simulation study and an empirical example are used to illustrate the methodology.

17. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

Science.gov (United States)

Tam, Vivian W Y; Wang, K; Tam, C M

2008-04-01

Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.

18. Logistic Regression Analysis on Factors Affecting Adoption of Rice-Fish Farming in North Iran

Directory of Open Access Journals (Sweden)

Seyyed Ali NOORHOSSEINI-NIYAKI

2012-06-01

Full Text Available We evaluated the factors influencing the adoption of rice-fish farming in the Tavalesh region near the Caspian Sea in northern Iran. We conducted a survey with open-ended questions. Data were collected from 184 respondents (61 adopters and 123 non-adopters randomly sampled from selected villages and analyzed using logistic regression and multi-response analysis. Family size, number of contacts with an extension agent, participation in extension-education activities, membership in social institutions and the presence of farm workers were the most important socio-economic factors for the adoption of rice-fish farming system. In addition, economic problems were the most common issue reported by adopters. Other issues such as lack of access to appropriate fish food, losses of fish, lack of access to high quality fish fingerlings and dehydration and poor water quality were also important to a number of farmers.

19. Impact of Dobutamine in Patients With Septic Shock: A Meta-Regression Analysis.

Science.gov (United States)

Nadeem, Rashid; Sockanathan, Shivani; Singh, Mukesh; Hussain, Tamseela; Kent, Patrick; AbuAlreesh, Sarah

2017-05-01

Septic shock frequently requires vasopressor agents. Conflicting evidence exists for use of inotropes in patients with septic shock. Data from English studies on human adult septic shock patients were collected. A total of 83 studies were reviewed, while 11 studies with 21 data sets including 239 patients were pooled for meta-regression analysis. For VO2, pooled difference in means (PDM) was 0.274. For cardiac index (CI), PDM was 0.783. For delivery of oxygen, PDM was -0.890. For heart rate, PDM was -0.714. For left ventricle stroke work index, PDM was 0.375. For mean arterial pressure, PDM was -0.204. For mean pulmonary artery pressure, PDM was 0.085. For O2 extraction, PDM was 0.647. For PaCO2, PDM was -0.053. For PaO2, PDM was 0.282. For pulmonary artery occlusive pressure, PDM was 0.270. For pulmonary capillary wedge pressure, PDM was 0.300. For PVO2, PDM was -0.492. For right atrial pressure, PDM was 0.246. For SaO2, PDM was 0.604. For stroke volume index, PDM was 0.446. For SvO2, PDM was -0.816. For systemic vascular resistance, PDM was -0.600. For systemic vascular resistance index, PDM was 0.319. Meta-regression analysis was performed for VO2, DO2, CI, and O2 extraction. Age was found to be significant confounding factor for CI, DO2, and O2 extraction. APACHE score was not found to be a significant confounding factor for any of the parameters. Dobutamine seems to have a positive effect on cardiovascular parameters in patients with septic shock. Prospective studies with larger samples are required to further validate this observation.

20. Poisson regression analysis of the mortality among a cohort of World War II nuclear industry workers

International Nuclear Information System (INIS)

Frome, E.L.; Cragle, D.L.; McLain, R.W.

1990-01-01

A historical cohort mortality study was conducted among 28,008 white male employees who had worked for at least 1 month in Oak Ridge, Tennessee, during World War II. The workers were employed at two plants that were producing enriched uranium and a research and development laboratory. Vital status was ascertained through 1980 for 98.1% of the cohort members and death certificates were obtained for 96.8% of the 11,671 decedents. A modified version of the traditional standardized mortality ratio (SMR) analysis was used to compare the cause-specific mortality experience of the World War II workers with the U.S. white male population. An SMR and a trend statistic were computed for each cause-of-death category for the 30-year interval from 1950 to 1980. The SMR for all causes was 1.11, and there was a significant upward trend of 0.74% per year. The excess mortality was primarily due to lung cancer and diseases of the respiratory system. Poisson regression methods were used to evaluate the influence of duration of employment, facility of employment, socioeconomic status, birth year, period of follow-up, and radiation exposure on cause-specific mortality. Maximum likelihood estimates of the parameters in a main-effects model were obtained to describe the joint effects of these six factors on cause-specific mortality of the World War II workers. We show that these multivariate regression techniques provide a useful extension of conventional SMR analysis and illustrate their effective use in a large occupational cohort study

1. Diagnostic accuracy of atypical p-ANCA in autoimmune hepatitis using ROC- and multivariate regression analysis.

Science.gov (United States)

Terjung, B; Bogsch, F; Klein, R; Söhne, J; Reichel, C; Wasmuth, J-C; Beuers, U; Sauerbruch, T; Spengler, U

2004-09-29

Antineutrophil cytoplasmic antibodies (atypical p-ANCA) are detected at high prevalence in sera from patients with autoimmune hepatitis (AIH), but their diagnostic relevance for AIH has not been systematically evaluated so far. Here, we studied sera from 357 patients with autoimmune (autoimmune hepatitis n=175, primary sclerosing cholangitis (PSC) n=35, primary biliary cirrhosis n=45), non-autoimmune chronic liver disease (alcoholic liver cirrhosis n=62; chronic hepatitis C virus infection (HCV) n=21) or healthy controls (n=19) for the presence of various non-organ specific autoantibodies. Atypical p-ANCA, antinuclear antibodies (ANA), antibodies against smooth muscles (SMA), antibodies against liver/kidney microsomes (anti-Lkm1) and antimitochondrial antibodies (AMA) were detected by indirect immunofluorescence microscopy, antibodies against the M2 antigen (anti-M2), antibodies against soluble liver antigen (anti-SLA/LP) and anti-Lkm1 by using enzyme linked immunosorbent assays. To define the diagnostic precision of the autoantibodies, results of autoantibody testing were analyzed by receiver operating characteristics (ROC) and forward conditional logistic regression analysis. Atypical p-ANCA were detected at high prevalence in sera from patients with AIH (81%) and PSC (94%). ROC- and logistic regression analysis revealed atypical p-ANCA and SMA, but not ANA as significant diagnostic seromarkers for AIH (atypical p-ANCA: AUC 0.754+/-0.026, odds ratio [OR] 3.4; SMA: 0.652+/-0.028, OR 4.1). Atypical p-ANCA also emerged as the only diagnostically relevant seromarker for PSC (AUC 0.690+/-0.04, OR 3.4). None of the tested antibodies yielded a significant diagnostic accuracy for patients with alcoholic liver cirrhosis, HCV or healthy controls. Atypical p-ANCA along with SMA represent a seromarker with high diagnostic accuracy for AIH and should be explicitly considered in a revised version of the diagnostic score for AIH.

2. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage

OpenAIRE

Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

2014-01-01

In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and ...

3. Radical prostatectomy for clinically localised prostate cancer at Rigshospitalet 1995-2011 - an analysis of surgical and oncological outcome.

Science.gov (United States)

Røder, Martin Andreas

2013-12-01

RP for localized PCa was introduced at Rigshospitalet in 1995. Since then, the incidence of PCa and number of RPs performed every year has increased enormously. Presently, RP is performed a six different hospitals in Denmark. No previous studies have meticulously described outcomes of RP in Denmark. This PhD-thesis focuses on surgical and oncological outcome after RP at Rigshospitalet. The primary purpose was to describe biochemical outcome, risk factors associated with positive surgical margins, and the impact of margin location on risk of biochemical recurrence. The PhD-thesis is based on results from approximately 1,300 men who underwent RP between 1995 and 2011 at Rigshospitalet. The patients have been followed prospectively in a local database. BR was defined as the first PSA ≥ 0.2 ng/ml and time to BR was calculated from the date of surgery. Analysis of time to BR was done using Kaplan-Meier estimation and Cox regression analysis including both pre- and postoperative parameters. The association between preoperative and surgical parameters, including surgeon and nerve-sparing surgery, and PSM was analysed using logistic regression analysis. The 10-year estimated BRFS was 75%, 60% and 39% for low-, intermediate-, and high-risk patients, respectively. An in-depth analysis of high-risk patients demonstrated a 10-year metastasis-free and cancer-specific survival of 85% and 90%, respectively. A PSM was demonstrated to increase the risk of BR up to 3 fold. The location of PSM was found to be associated with the risk of BR, i.e. non-apical PSM had the highest risk of BR compared to margin negative and apical PSM, especially in pT2 tumours. A number of factors were found to correlate with the risk of PSM, especially preoperative PSA, surgeon and nerve-sparing surgery. This thesis demonstrates that outcome of RP at Rigshospitalet is comparable to international results. Our studies confirm the prognostic importance of PSM, also in pT2 disease, and indicate that

4. Regression analysis for bivariate gap time with missing first gap time data.

Science.gov (United States)

Huang, Chia-Hui; Chen, Yi-Hau

2017-01-01

We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

5. Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.

Science.gov (United States)

Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

2016-05-01

To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.

6. An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm

Science.gov (United States)

Zainal, Nurezayana; Zain, Azlan Mohd; Sharif, Safian; Nuzly Abdull Hamed, Haza; Mohamad Yusuf, Suhaila

2017-09-01

The aim of this study is to develop an integrated study of surface roughness (Ra) in the die-sinking electrical discharge machining (EDM) process of Ti-6AL-4V titanium alloy with positive polarity of copper-tungsten (Cu-W) electrode. Regression analysis and glowworm swarm optimization (GSO) algorithm were considered for modelling and optimization process. Pulse on time (A), pulse off time (B), peak current (C) and servo voltage (D) were selected as the machining parameters with various levels. The experiments have been conducted based on the two levels of full factorial design with an added center point design of experiments (DOE). Moreover, mathematical models with linear and 2 factor interaction (2FI) effects of the parameters chosen were developed. The validity test of the fit and the adequacy of the developed mathematical models have been carried out by using analysis of variance (ANOVA) and F-test. The statistical analysis showed that the 2FI model outperformed with the most minimal value of Ra compared to the linear model and experimental result.

7. Global Prevalence of Elder Abuse: A Meta-analysis and Meta-regression.

Science.gov (United States)

Ho, C Sh; Wong, S Y; Chiu, M M; Ho, R Cm

2017-06-01

Elder abuse is increasingly recognised as a global public health and social problem. There has been limited inter-study comparison of the prevalence and risk factors for elder abuse. This study aimed to estimate the pooled and subtype prevalence of elder abuse worldwide and identify significant associated risk factors. We conducted a meta-analysis and meta-regression of 34 population-based and 17 non-population-based studies. The pooled prevalences of elder abuse were 10.0% (95% confidence interval, 5.2%-18.6%) and 34.3% (95% confidence interval, 22.9%-47.8%) in population-based studies and third party- or caregiver-reported studies, respectively. Being in a marital relationship was found to be a significant moderator using random-effects model. This meta-analysis revealed that third parties or caregivers were more likely to report abuse than older abused adults. Subgroup analyses showed that females and those resident in non-western countries were more likely to be abused. Emotional abuse was the most prevalent elder abuse subtype and financial abuse was less commonly reported by third parties or caregivers. Heterogeneity in the prevalence was due to the high proportion of married older adults in the sample. Subgroup analysis showed that cultural factors, subtypes of abuse, and gender also contributed to heterogeneity in the pooled prevalence of elder abuse.

8. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

Science.gov (United States)

Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

2013-01-01

Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

9. Automated Detection of Connective Tissue by Tissue Counter Analysis and Classification and Regression Trees

Directory of Open Access Journals (Sweden)

Josef Smolle

2001-01-01

Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.

10. Predictive factors in patients eligible for pegfilgrastim prophylaxis focusing on RDI using ordered logistic regression analysis.

Science.gov (United States)

Kanbayashi, Yuko; Ishikawa, Takeshi; Kanazawa, Motohiro; Nakajima, Yuki; Kawano, Rumi; Tabuchi, Yusuke; Yoshioka, Tomoko; Ihara, Norihiko; Hosokawa, Toyoshi; Takayama, Koichi; Shikata, Keisuke; Taguchi, Tetsuya

2018-03-16

Although pegfilgrastim prophylaxis is expected to maintain the relative dose intensity (RDI) of chemotherapy and improve safety, information is limited. However, the optimal selection of patients eligible for pegfilgrastim prophylaxis is an important issue from a medical economics viewpoint. Therefore, this retrospective study identified factors that could predict these eligible patients to maintain the RDI. The participants included 166 cancer patients undergoing pegfilgrastim prophylaxis combined with chemotherapy in our outpatient chemotherapy center between March 2015 and April 2017. Variables were extracted from clinical records for regression analysis of factors related to maintenance of the RDI. RDI was classified into four categories: 100% = 0, 85% or predictive factors in patients eligible for pegfilgrastim prophylaxis to maintain the RDI. Threshold measures were examined using a receiver operating characteristic (ROC) analysis curve. Age [odds ratio (OR) 1.07, 95% confidence interval (CI) 1.04-1.11; P maintenance. ROC curve analysis of the group that failed to maintain the RDI indicated that the threshold for age was 70 years and above, with a sensitivity of 60.0% and specificity of 80.2% (area under the curve: 0.74). In conclusion, younger age, anemia (less), and administration of pegfilgrastim 24-72 h after chemotherapy were significant factors for RDI maintenance.

11. Relationship between the curve of Spee and craniofacial variables: A regression analysis.

Science.gov (United States)

Halimi, Abdelali; Benyahia, Hicham; Azeroual, Mohamed-Faouzi; Bahije, Loubna; Zaoui, Fatima

2018-06-01

The aim of this regression analysis was to identify the determining factors, which impact the curve of Spee during its genesis, its therapeutic reconstruction, and its stability, within a continuously evolving craniofacial morphology throughout life. We selected a total of 107 patients, according to the inclusion criteria. A morphological and functional clinical examination was performed for each patient: plaster models, tracing of the curve of Spee, crowding, Angle's classification, overjet and overbite were thus recorded. Then, we made a cephalometric analysis based on the standardized lateral cephalograms. In the sagittal dimension, we measured the values of angles ANB, SNA, SNB, SND, I/i; and the following distances: AoBo, I/NA, i/NB, SE and SL. In the vertical dimension, we measured the values of angles FMA, GoGn/SN, the occlusal plane, and the following distances: SAr, ArD, Ar/Con, Con/Gn, GoPo, HFP, HFA and IF. The statistical analysis was performed using the SPSS software with a significance level of 0.05. Our sample including 107 subjects was composed of 77 female patients (71.3%) and 30 male patients (27.8%) 7 hypodivergent patients (6.5%), 56 hyperdivergent patients (52.3%) and 44 normodivergent patients (41.1%). Patients' mean age was 19.35±5.95 years. The hypodivergent patients presented more pronounced curves of Spee compared to the normodivergent and the hyperdivergent populations; patients in skeletal Class I presented less pronounced curves of Spee compared to patients in skeletal Class II and Class III. These differences were non significant (P>0.05). The curve of Spee was positively and moderately correlated with Angle's classification, overjet, overbite, sellion-articulare distance, and breathing type (P0.05). Seventy five percent (75%) of the hyperdivergent patients with an oral breathing presented an overbite of 3mm, which is quite excessive given the characteristics often admitted for this typology; this parameter could explain the overbite

12. Regression analysis utilizing subjective evaluation of emotional experience in PET studies on emotions.

Science.gov (United States)

Aalto, Sargo; Wallius, Esa; Näätänen, Petri; Hiltunen, Jaana; Metsähonkala, Liisa; Sipilä, Hannu; Karlsson, Hasse

2005-09-01

A methodological study on subject-specific regression analysis (SSRA) exploring the correlation between the neural response and the subjective evaluation of emotional experience in eleven healthy females is presented. The target emotions, i.e., amusement and sadness, were induced using validated film clips, regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET), and the subjective intensity of the emotional experience during the PET scanning was measured using a category ratio (CR-10) scale. Reliability analysis of the rating data indicated that the subjects rated the intensity of their emotional experience fairly consistently on the CR-10 scale (Cronbach alphas 0.70-0.97). A two-phase random-effects analysis was performed to ensure the generalizability and inter-study comparability of the SSRA results. Random-effects SSRAs using Statistical non-Parametric Mapping 99 (SnPM99) showed that rCBF correlated with the self-rated intensity of the emotional experience mainly in the brain regions that were identified in the random-effects subtraction analyses using the same imaging data. Our results give preliminary evidence of a linear association between the neural responses related to amusement and sadness and the self-evaluated intensity of the emotional experience in several regions involved in the emotional response. SSRA utilizing subjective evaluation of emotional experience turned out a feasible and promising method of analysis. It allows versatile exploration of the neurobiology of emotions and the neural correlates of actual and individual emotional experience. Thus, SSRA might be able to catch the idiosyncratic aspects of the emotional response better than traditional subtraction analysis.

13. Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment

NARCIS (Netherlands)

Bakker, D.P.; Busscher, H.J.; Zanten, J. van; Vries, J. de; Klijnstra, J.W.; Mei, H.C. van der

2004-01-01

Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial

14. Multiple linear regression analysis of bacterial deposition to polyurethane coating after conditioning film formation in the marine environment

NARCIS (Netherlands)

Bakker, Dewi P; Busscher, Henk J; van Zanten, Joyce; de Vries, Jacob; Klijnstra, Job W; van der Mei, Henny C

Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial

15. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

Science.gov (United States)

Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

2018-02-10

Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

16. Genetic analysis of partial egg production records in Japanese quail using random regression models.

Science.gov (United States)

Abou Khadiga, G; Mahmoud, B Y F; Farahat, G S; Emam, A M; El-Full, E A

2017-08-01

The main objectives of this study were to detect the most appropriate random regression model (RRM) to fit the data of monthly egg production in 2 lines (selected and control) of Japanese quail and to test the consistency of different criteria of model choice. Data from 1,200 female Japanese quails for the first 5 months of egg production from 4 consecutive generations of an egg line selected for egg production in the first month (EP1) was analyzed. Eight RRMs with different orders of Legendre polynomials were compared to determine the proper model for analysis. All criteria of model choice suggested that the adequate model included the second-order Legendre polynomials for fixed effects, and the third-order for additive genetic effects and permanent environmental effects. Predictive ability of the best model was the highest among all models (ρ = 0.987). According to the best model fitted to the data, estimates of heritability were relatively low to moderate (0.10 to 0.17) showed a descending pattern from the first to the fifth month of production. A similar pattern was observed for permanent environmental effects with greater estimates in the first (0.36) and second (0.23) months of production than heritability estimates. Genetic correlations between separate production periods were higher (0.18 to 0.93) than their phenotypic counterparts (0.15 to 0.87). The superiority of the selected line over the control was observed through significant (P egg production in earlier ages (first and second months) than later ones. A methodology based on random regression animal models can be recommended for genetic evaluation of egg production in Japanese quail. © 2017 Poultry Science Association Inc.

17. How efficient are referral hospitals in Uganda? A data envelopment analysis and tobit regression approach.

Science.gov (United States)

Mujasi, Paschal N; Asbu, Eyob Z; Puig-Junoy, Jaume

2016-07-08

Hospitals represent a significant proportion of health expenditures in Uganda, accounting for about 26 % of total health expenditure. Improving the technical efficiency of hospitals in Uganda can result in large savings which can be devoted to expand access to services and improve quality of care. This paper explores the technical efficiency of referral hospitals in Uganda during the 2012/2013 financial year. This was a cross sectional study using secondary data. Input and output data were obtained from the Uganda Ministry of Health annual health sector performance report for the period July 1, 2012 to June 30, 2013 for the 14 public sector regional referral and 4 large private not for profit hospitals. We assumed an output-oriented model with Variable Returns to Scale to estimate the efficiency score for each hospital using Data Envelopment Analysis (DEA) with STATA13. Using a Tobit model DEA, efficiency scores were regressed against selected institutional and contextual/environmental factors to estimate their impacts on efficiency. The average variable returns to scale (Pure) technical efficiency score was 91.4 % and the average scale efficiency score was 87.1 % while the average constant returns to scale technical efficiency score was 79.4 %. Technically inefficient hospitals could have become more efficient by increasing the outpatient department visits by 45,943; and inpatient days by 31,425 without changing the total number of inputs. Alternatively, they would achieve efficiency by for example transferring the excess 216 medical staff and 454 beds to other levels of the health system without changing the total number of outputs. Tobit regression indicates that significant factors in explaining hospital efficiency are: hospital size (p Uganda.

18. The survival analysis on localized prostate cancer treated with neoadjuvant endocrine therapy followed by intensity modulated radiation therapy

International Nuclear Information System (INIS)

Gao Hong; Li Gaofeng; Wu Qinhong; Li Xuenan; Zhong Qiuzi; Xu Yonggang

2010-01-01

Objective: To retrospectively investigate clinical outcomes and prognostic factors in localized prostate cancer treated with neoadjuvant endocrine therapy followed by intensity modulated radiotherapy (IMRT). Methods: Between March 2003 and October 2008, 54 localized prostate cancer treated by IMRT were recruited. All patients had received endocrine therapy before IMRT. The endocrine therapy included surgical castration or medical castration in combination with antiandrogens. The target of IMRT was the prostate and seminal vesicles with or without pelvis. The biochemical failure was defined according to the phoenix definition. By using the risk grouping standard proposed by D'Amico, patients were divided into three groups: low-risk group (n = 5), intermediate-risk group (n = 12), and high-risk group (n = 37). Kaplan-Meier method was used to calculate the overall survival rate. Prognostic factors were analyzed by univariate and multiple Cox regression analysis. Results: The follow-up rate was 98%. The number of patients under follow-up was 39 at 3 years and 25 at 5 years. Potential prognostic factors, including risk groups, mode of endocrine therapy, time of endocrine therapy, phoenix grouping before IMRT, the prostate specific antigen doubling time (PSADT) before radiotherapy, PSA value before IMRT, interval of endocrine therapy and IMRT, irradiation region, and irradiation dose were analyzed by survival analysis. In univariate analysis, time of endocrine therapy (75 % vs 95 %, χ 2 = 6. 45, P = 0. 011), phoenix grouping before IMRT (87% vs 96%, χ 2 = 4. 36, P = 0. 037), interval of endocrine therapy and IMRT (80% vs 95%, χ 2 = 11.60, P= 0. 001), irradiation dose (75% vs 91%, χ 2 =5.92, P= 0. 015) were statistically significant prognostic factors for 3 - year overall survival , and risk groups (85 vs 53 vs 29, χ 2 = 6. 40, P =0. 041) and PSADT before IMRT (62 vs 120, U =24. 50, P =0. 003) were significant factors for the median survival time. In the multiple Cox

19. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

Science.gov (United States)

Xu, Kelin; Jin, Li; Xiong, Momiao

2017-05-18

Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction

20. Machine learning of swimming data via wisdom of crowd and regression analysis.

Science.gov (United States)

Xie, Jiang; Xu, Junfu; Nie, Celine; Nie, Qing

2017-04-01

Every performance, in an officially sanctioned meet, by a registered USA swimmer is recorded into an online database with times dating back to 1980. For the first time, statistical analysis and machine learning methods are systematically applied to 4,022,631 swim records. In this study, we investigate performance features for all strokes as a function of age and gender. The variances in performance of males and females for different ages and strokes were studied, and the correlations of performances for different ages were estimated using the Pearson correlation. Regression analysis show the performance trends for both males and females at different ages and suggest critical ages for peak training. Moreover, we assess twelve popular machine learning methods to predict or classify swimmer performance. Each method exhibited different strengths or weaknesses in different cases, indicating no one method could predict well for all strokes. To address this problem, we propose a new method by combining multiple inference methods to derive Wisdom of Crowd Classifier (WoCC). Our simulation experiments demonstrate that the WoCC is a consistent method with better overall prediction accuracy. Our study reveals several new age-dependent trends in swimming and provides an accurate method for classifying and predicting swimming times.

1. A general framework for the regression analysis of pooled biomarker assessments.

Science.gov (United States)

Liu, Yan; McMahan, Christopher; Gallagher, Colin

2017-07-10

As a cost-efficient data collection mechanism, the process of assaying pooled biospecimens is becoming increasingly common in epidemiological research; for example, pooling has been proposed for the purpose of evaluating the diagnostic efficacy of biological markers (biomarkers). To this end, several authors have proposed techniques that allow for the analysis of continuous pooled biomarker assessments. Regretfully, most of these techniques proceed under restrictive assumptions, are unable to account for the effects of measurement error, and fail to control for confounding variables. These limitations are understandably attributable to the complex structure that is inherent to measurements taken on pooled specimens. Consequently, in order to provide practitioners with the tools necessary to accurately and efficiently analyze pooled biomarker assessments, herein, a general Monte Carlo maximum likelihood-based procedure is presented. The proposed approach allows for the regression analysis of pooled data under practically all parametric models and can be used to directly account for the effects of measurement error. Through simulation, it is shown that the proposed approach can accurately and efficiently estimate all unknown parameters and is more computational efficient than existing techniques. This new methodology is further illustrated using monocyte chemotactic protein-1 data collected by the Collaborative Perinatal Project in an effort to assess the relationship between this chemokine and the risk of miscarriage. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

2. Demand analysis of flood insurance by using logistic regression model and genetic algorithm

Science.gov (United States)

Sidi, P.; Mamat, M. B.; Sukono; Supian, S.; Putra, A. S.

2018-03-01

Citarum River floods in the area of South Bandung Indonesia, often resulting damage to some buildings belonging to the people living in the vicinity. One effort to alleviate the risk of building damage is to have flood insurance. The main obstacle is not all people in the Citarum basin decide to buy flood insurance. In this paper, we intend to analyse the decision to buy flood insurance. It is assumed that there are eight variables that influence the decision of purchasing flood assurance, include: income level, education level, house distance with river, building election with road, flood frequency experience, flood prediction, perception on insurance company, and perception towards government effort in handling flood. The analysis was done by using logistic regression model, and to estimate model parameters, it is done with genetic algorithm. The results of the analysis shows that eight variables analysed significantly influence the demand of flood insurance. These results are expected to be considered for insurance companies, to influence the decision of the community to be willing to buy flood insurance.

3. [Multiple linear regression and ROC curve analysis of the factors of lumbar spine bone mineral density].

Science.gov (United States)

Zhang, Xiaodong; Zhao, Yinxia; Hu, Shaoyong; Hao, Shuai; Yan, Jiewen; Zhang, Lingyan; Zhao, Jing; Li, Shaolin

2015-09-01

To investigate the correlation between the lumbar vertebra bone mineral density (BMD) and age, gender, height, weight, body mass index, waistline, hipline, bone marrow and abdomen fat, and to explore the key factor affecting the BMD. A total of 72 cases were randomly recruited. All the subjects underwent a spectroscopic examination of the third lumber vertebra with single-voxel method in 1.5T MR. Lipid fractions (FF%) were measured. Quantitative CT were also performed to get the BMD of L3 and the corresponding abdomen subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). The statistical analysis were performed by SPSS 19.0. Multiple linear regression showed except the age and FF% showed significant difference (P0.05). The correlation of age and FF% with BMD was statistically negatively significant (r=-0.830, -0.521, P<0.05). The ROC curve analysis showed that the sensitivety and specificity of predicting osteoporosis were 81.8% and 86.9%, with a threshold of 58.5 years old. And it showed that the sensitivety and specificity of predicting osteoporosis were 90.9% and 55.7%, with a threshold of 52.8% for FF%. The lumbar vertebra BMD was significantly and negatively correlated with age and bone marrow FF%, but it was not significantly correlated with gender, height, weight, BMI, waistline, hipline, SAT and VAT. And age was the critical factor.

4. Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression.

Science.gov (United States)

Coelho, Lúcia H G; Gutz, Ivano G R

2006-03-15

A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.

5. Risky decision making in Attention-Deficit/Hyperactivity Disorder: A meta-regression analysis.

Science.gov (United States)

Dekkers, Tycho J; Popma, Arne; Agelink van Rentergem, Joost A; Bexkens, Anika; Huizenga, Hilde M

2016-04-01

ADHD has been associated with various forms of risky real life decision making, for example risky driving, unsafe sex and substance abuse. However, results from laboratory studies on decision making deficits in ADHD have been inconsistent, probably because of between study differences. We therefore performed a meta-regression analysis in which 37 studies (n ADHD=1175; n Control=1222) were included, containing 52 effect sizes. The overall analysis yielded a small to medium effect size (standardized mean difference=.36, pdecision making than control groups. There was a trend for a moderating influence of co-morbid Disruptive Behavior Disorders (DBD): studies including more participants with co-morbid DBD had larger effect sizes. No moderating influence of co-morbid internalizing disorders, age or task explicitness was found. These results indicate that ADHD is related to increased risky decision making in laboratory settings, which tended to be more pronounced if ADHD is accompanied by DBD. We therefore argue that risky decision making should have a more prominent role in research on the neuropsychological and -biological mechanisms of ADHD, which can be useful in ADHD assessment and intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

6. Normalization in Unsupervised Segmentation Parameter Optimization: A Solution Based on Local Regression Trend Analysis

Directory of Open Access Journals (Sweden)

Stefanos Georganos

2018-02-01

Full Text Available In object-based image analysis (OBIA, the appropriate parametrization of segmentation algorithms is crucial for obtaining satisfactory image classification results. One of the ways this can be done is by unsupervised segmentation parameter optimization (USPO. A popular USPO method does this through the optimization of a “global score” (GS, which minimizes intrasegment heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this approach has not been investigated in detail. In the context of a remote sensing very-high-resolution urban application, we show the limitations of the fixed threshold approach, both in a theoretical and applied manner, and instead propose a novel solution to identify the range of candidate segmentations using local regression trend analysis. We found that the proposed approach showed significant improvements over the use of fixed minimum/maximum values, is less subjective than user-defined threshold values and, thus, can be of merit for a fully automated procedure and big data applications.

7. Prognostic significance of multidrug-resistance protein (MDR-1 in renal clear cell carcinomas: A five year follow-up analysis

Directory of Open Access Journals (Sweden)

Strazzullo Viviana

2006-12-01

Full Text Available Abstract Background A large number of renal cancer patients shows poor or partial response to chemotherapy and the mechanisms have not been still understood. Multi-drug resistance is the principal mechanism by which many cancers develop resistance to chemotherapic drugs. The role of the multi-drug resistant transporter (MDR-1/P-glycoprotein, the gene product of MDR-1, and that one of the so-called multi-drug resistance associated protein (MRP, two energy-dependent efflux pumps, are commonly known to confer drug resistance. We studied MDR-1 expression in selected cases of renal cell carcinoma (RCC, clear cell type, with long-term follow-up, in order to establish its prognostic role and its possible contribution in the choice of post-surgical therapy. Methods MDR-1 has been studied by standard LSAB-HRP immunohistochemical technique, in paraffin embedded RCC samples. Protein expression has been compared to clinical and histopathological data and to disease specific survival of RCC patients, by Kaplan-Meier curve and Cox multivariate regression analyses. Results Two groups of RCCs were obtained by esteeming MDR-1 expression and disease specific survival (obtained with Kaplan-Meier curve and Cox multivariate regression analyses: the first one presents low or absent MDR-1 expression and good survival; the second one is characterized by high MDR-1 expression and significant poor outcome (p p p p Conclusion In our opinion, the results of this study well prove the relationship between MDR-1 expression and worse clinical prognosis in RCC, because MDR-1 over-expressing RCCs can be considered a group of tumours with a more aggressive behavior. This finding outlines a possible role of MDR-1 as prognostic factor, dependent and independent of multidrug resistance. These results could be useful to predict cancer evolution and to choose the appropriate treatment: this is another step that can stimulate further promising and interesting investigations on broader

8. A 10-year cohort analysis of routine paediatric ART data in a rural South African setting.

Science.gov (United States)

Lilian, R R; Mutasa, B; Railton, J; Mongwe, W; McINTYRE, J A; Struthers, H E; Peters, R P H

2017-01-01

South Africa's paediatric antiretroviral therapy (ART) programme is managed using a monitoring and evaluation tool known as TIER.Net. This electronic system has several advantages over paper-based systems, allowing profiling of the paediatric ART programme over time. We analysed anonymized TIER.Net data for HIV-infected children aged ART in a rural district of South Africa between 2005 and 2014. We performed Kaplan-Meier survival analysis to assess outcomes over time. Records of 5461 children were available for analysis; 3593 (66%) children were retained in care. Losses from the programme were higher in children initiated on treatment in more recent years (P ART programme and highlights interventions to improve programme performance.

9. Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia

Science.gov (United States)

Li, Yue; Liang, Minggao; Zhang, Zhaolei

2014-01-01

Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML

10. Measuring the satisfaction of intensive care unit patient families in Morocco: a regression tree analysis.

Science.gov (United States)

Damghi, Nada; Khoudri, Ibtissam; Oualili, Latifa; Abidi, Khalid; Madani, Naoufel; Zeggwagh, Amine Ali; Abouqal, Redouane

2008-07-01

Meeting the needs of patients' family members becomes an essential part of responsibilities of intensive care unit physicians. The aim of this study was to evaluate the satisfaction of patients' family members using the Arabic version of the Society of Critical Care Medicine's Family Needs Assessment questionnaire and to assess the predictors of family satisfaction using the classification and regression tree method. The authors conducted a prospective study. This study was conducted at a 12-bed medical intensive care unit in Morocco. Family representatives (n = 194) of consecutive patients with a length of stay >48 hrs were included in the study. Intervention was the Society of Critical Care Medicine's Family Needs Assessment questionnaire. Demographic data for relatives included age, gender, relationship with patients, education level, and intensive care unit commuting time. Clinical data for patients included age, gender, diagnoses, intensive care unit length of stay, Acute Physiology and Chronic Health Evaluation, MacCabe index, Therapeutic Interventioning Scoring System, and mechanical ventilation. The Arabic version of the Society of Critical Care Medicine's Family Needs Assessment questionnaire was administered between the third and fifth days after admission. Of family representatives, 81% declared being satisfied with information provided by physicians, 27% would like more information about the diagnosis, 30% about prognosis, and 45% about treatment. In univariate analysis, family satisfaction (small Society of Critical Care Medicine's Family Needs Assessment questionnaire score) increased with a lower family education level (p = .005), when the information was given by a senior physician (p = .014), and when the Society of Critical Care Medicine's Family Needs Assessment questionnaire was administered by an investigator (p = .002). Multivariate analysis (classification and regression tree) showed that the education level was the predominant factor

11. Reduced COPD Exacerbation Risk Correlates With Improved FEV1: A Meta-Regression Analysis.

Science.gov (United States)

Zider, Alexander D; Wang, Xiaoyan; Buhr, Russell G; Sirichana, Worawan; Barjaktarevic, Igor Z; Cooper, Christopher B

2017-09-01

The mechanism by which various classes of medication reduce COPD exacerbation risk remains unknown. We hypothesized a correlation between reduced exacerbation risk and improvement in airway patency as measured according to FEV 1 . By systematic review, COPD trials were identified that reported therapeutic changes in predose FEV 1 (dFEV 1 ) and occurrence of moderate to severe exacerbations. Using meta-regression analysis, a model was generated with dFEV 1 as the moderator variable and the absolute difference in exacerbation rate (RD), ratio of exacerbation rates (RRs), or hazard ratio (HR) as dependent variables. The analysis of RD and RR included 119,227 patients, and the HR analysis included 73,475 patients. For every 100-mL change in predose FEV 1 , the HR decreased by 21% (95% CI, 17-26; P < .001; R 2  = 0.85) and the absolute exacerbation rate decreased by 0.06 per patient per year (95% CI, 0.02-0.11; P = .009; R 2  = 0.05), which corresponded to an RR of 0.86 (95% CI, 0.81-0.91; P < .001; R 2  = 0.20). The relationship with exacerbation risk remained statistically significant across multiple subgroup analyses. A significant correlation between increased FEV 1 and lower COPD exacerbation risk suggests that airway patency is an important mechanism responsible for this effect. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

12. Evidence and temporality of the obesity paradox in coronary bypass surgery: an analysis of cause-specific mortality.

Science.gov (United States)

Schwann, Thomas A; Ramia, Paul S; Engoren, Milo C; Bonnell, Mark R; Goodwin, Matthew; Monroe, Ian; Habib, Robert H

2018-06-02

We evaluated the presence of an 'obesity paradox' in coronary artery bypass grafting (CABG) patients, determined its time course and ascertained whether it is associated with improved cardiovascular (CV) survival versus non-CV survival. A retrospective analysis of 3 prospectively collected databases was conducted. A fifteen-year Kaplan-Meier analysis in 7091 CABG patients was performed and repeated in 5 body mass index [BMI (kg/m2)] cohorts [Normal (18.5-24.99 kg/m2), Overweight (25-29.99 kg/m2), Obese I (30-34.99 kg/m2), Obese II (35-39.99 kg/m2) and Obese III (≥40 kg/m2)]. Mortality hazard ratios {HR [95% confidence interval (CI)]} were derived using comprehensive multivariable competing risk Cox regression, accounting for BMI categories for overall (0-15), Early (0-1), Intermediate (1-8) and Late (8-15) postoperative years, to relax the proportional hazards assumption. The regression was repeated using BMI as a continuous variable. Mortality was classified into any, CV and non-CV. Obese patients were younger with more comorbidities. Fifteen-year survival was improved in the Overweight and Obese I groups (P < 0.001). Adjusted 15-year mortality was reduced in the Overweight [HR (95% CI) = 0.88 (0.79-0.98)] and Obese I [HR = 0.88 (0.78-0.99)] groups driven by improved CV and non-CV survival. This trend was noted in the early (Overweight) and intermediate postoperative periods (Overweight and Obese I) with no significance in the late period. Higher mortality in the Obese III [HR = 1.28 (1.06-1.55)] group was driven by a decreased CV survival. Using BMI as a continuous variable, a BMI of 29 kg/m2 was associated with optimal survival. We identified a protective partial obesity paradox in the early and intermediate postoperative periods among Overweight and mildly obese (Obese I) patients with improved CV and non-CV survival. The morbidly obese (the Obese III group) had higher early and late CV mortality.

13. Ca analysis: An Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis☆

Science.gov (United States)

Greensmith, David J.

2014-01-01

Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908

14. Retrospective Analysis of the Survival Benefit of Induction Chemotherapy in Stage IVa-b Nasopharyngeal Carcinoma.

Science.gov (United States)

Lan, Xiao-Wen; Zou, Xue-Bin; Xiao, Yao; Tang, Jie; OuYang, Pu-Yun; Su, Zhen; Xie, Fang-Yun

2016-01-01

The value of adding induction chemotherapy to chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma (LA-NPC) remains controversial, yet high-risk patients with LA-NPC have poor outcomes after chemoradiotherapy. We aimed to assess the survival benefits of induction chemotherapy in stage IVa-b NPC. A total of 602 patients with stage IVa-b NPC treated with intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy with or without induction chemotherapy were retrospectively analyzed. Overall survival (OS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS) and progression-free survival (PFS) were evaluated using the Kaplan-Meier method, log-rank test and Cox regression analysis. In univariate analysis, 5-year OS was 83.2% for induction chemotherapy plus concurrent chemotherapy and 74.8% for concurrent chemotherapy alone, corresponding to an absolute risk reduction of 8.4% (P = 0.022). Compared to concurrent chemotherapy alone, addition of induction chemotherapy improved 5-year DMFS (83.2% vs. 74.4%, P = 0.018) but not 5-year LRFS (83.7% vs. 83.0%, P = 0.848) or PFS (71.9% vs. 66.0%, P = 0.12). Age, T category, N category, chemotherapy strategy and clinical stage were associated with 5-year OS (P = 0.017, P = 0.031, P = 0.007, P = 0.022, P = 0.001, respectively). In multivariate analysis, induction chemotherapy plus concurrent chemotherapy was an independent favorable prognostic factor for OS (HR, 0.62; 95% CI, 0.43-0.90, P = 0.012) and DMFS (HR, 0.57; 95% CI, 0.38-0.83, P = 0.004). In subgroup analysis, induction chemotherapy significantly improved 5-year DMFS in stage IVa (86.8% vs. 77.3%, P = 0.008), but provided no significant benefit in stage IVb. In patients with stage IVa-b NPC treated with IMRT, addition of induction chemotherapy to concurrent chemotherapy significantly improved 5-year OS and 5-year DMFS. This study provides a basis for selection of high risk patients in future clinical therapeutic

15. ANALYSIS OF THE FINANCIAL PERFORMANCES OF THE FIRM, BY USING THE MULTIPLE REGRESSION MODEL

Directory of Open Access Journals (Sweden)

Constantin Anghelache

2011-11-01

Full Text Available The information achieved through the use of simple linear regression are not always enough to characterize the evolution of an economic phenomenon and, furthermore, to identify its possible future evolution. To remedy these drawbacks, the special literature includes multiple regression models, in which the evolution of the dependant variable is defined depending on two or more factorial variables.

16. RBPJ and EphrinB2 as Molecular Targets to Treat Brain Arteriovenous Malformation in Notch4 Induced Mouse Model

Science.gov (United States)

2017-10-01

of time for mutant mice to moribundity. We recorded numbers of subjects at risk at 0, 25, 50, 75, 100 days old and use the number to generate Kaplan ...Meier curve. We obtained Kaplan -Meier analysis data showed that time to moribundity doubled in Notch4iGOF- EC;RbpjiΔEC mice, as compared to

17. Using the classical linear regression model in analysis of the dependences of conveyor belt life

Directory of Open Access Journals (Sweden)

Miriam Andrejiová

2013-12-01

Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

18. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

Science.gov (United States)

Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

2017-02-01

Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

19. Effect of acute hypoxia on cognition: A systematic review and meta-regression analysis.

Science.gov (United States)

McMorris, Terry; Hale, Beverley J; Barwood, Martin; Costello, Joseph; Corbett, Jo

2017-03-01

A systematic meta-regression analysis of the effects of acute hypoxia on the performance of central executive and non-executive tasks, and the effects of the moderating variables, arterial partial pressure of oxygen (PaO 2 ) and hypobaric versus normobaric hypoxia, was undertaken. Studies were included if they were performed on healthy humans; within-subject design was used; data were reported giving the PaO 2 or that allowed the PaO 2 to be estimated (e.g. arterial oxygen saturation and/or altitude); and the duration of being in a hypoxic state prior to cognitive testing was ≤6days. Twenty-two experiments met the criteria for inclusion and demonstrated a moderate, negative mean effect size (g=-0.49, 95% CI -0.64 to -0.34, p<0.001). There were no significant differences between central executive and non-executive, perception/attention and short-term memory, tasks. Low (35-60mmHg) PaO 2 was the key predictor of cognitive performance (R 2 =0.45, p<0.001) and this was independent of whether the exposure was in hypobaric hypoxic or normobaric hypoxic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

20. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

Science.gov (United States)

Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

2014-01-01

A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

1. The impact of healthcare spending on health outcomes: A meta-regression analysis.

Science.gov (United States)

Gallet, Craig A; Doucouliagos, Hristos

2017-04-01

While numerous studies assess the impact of healthcare spending on health outcomes, typically reporting multiple estimates of the elasticity of health outcomes (most often measured by a mortality rate or life expectancy) with respect to healthcare spending, the extent to which study attributes influence these elasticity estimates is unclear. Accordingly, we utilize a meta-data set (consisting of 65 studies completed over the 1969-2014 period) to examine these elasticity estimates using meta-regression analysis (MRA). Correcting for a number of issues, including publication selection bias, healthcare spending is found to have the greatest impact on the mortality rate compared to life expectancy. Indeed, conditional on several features of the literature, the spending elasticity for mortality is near -0.13, whereas it is near to +0.04 for life expectancy. MRA results reveal that the spending elasticity for the mortality rate is particularly sensitive to data aggregation, the specification of the health production function, and the nature of healthcare spending. The spending elasticity for life expectancy is particularly sensitive to the age at which life expectancy is measured, as well as the decision to control for the endogeneity of spending in the health production function. With such results in hand, we have a better understanding of how modeling choices influence results reported in this literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

2. Is the perceived placebo effect comparable between adults and children? A meta-regression analysis.

Science.gov (United States)

Janiaud, Perrine; Cornu, Catherine; Lajoinie, Audrey; Djemli, Amina; Cucherat, Michel; Kassai, Behrouz

2017-01-01

A potential larger perceived placebo effect in children compared with adults could influence the detection of the treatment effect and the extrapolation of the treatment benefit from adults to children. This study aims to explore this potential difference, using a meta-epidemiological approach. A systematic review of the literature was done to identify trials included in meta-analyses evaluating a drug intervention with separate data for adults and children. The standardized mean change and the proportion of responders (binary outcomes) were used to calculate the perceived placebo effect. A meta-regression analysis was conducted to test for the difference between adults and children of the perceived placebo effect. For binary outcomes, the perceived placebo effect was significantly more favorable in children compared with adults (β = 0.13; P = 0.001). Parallel group trials (β = -1.83; P < 0.001), subjective outcomes (β = -0.76; P < 0.001), and the disease type significantly influenced the perceived placebo effect. The perceived placebo effect is different between adults and children for binary outcomes. This difference seems to be influenced by the design, the disease, and outcomes. Calibration of new studies for children should consider cautiously the placebo effect in children.

3. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

Science.gov (United States)

Shen, Chung-Wei; Chen, Yi-Hau

2015-10-01

Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

4. Applying Different Independent Component Analysis Algorithms and Support Vector Regression for IT Chain Store Sales Forecasting

Science.gov (United States)

Dai, Wensheng

2014-01-01

Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740

5. Applying different independent component analysis algorithms and support vector regression for IT chain store sales forecasting.

Science.gov (United States)

Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie

2014-01-01

Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

6. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

Science.gov (United States)

Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

2016-10-01

We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

7. Performance Prediction Modelling for Flexible Pavement on Low Volume Roads Using Multiple Linear Regression Analysis

Directory of Open Access Journals (Sweden)

C. Makendran

2015-01-01

Full Text Available Prediction models for low volume village roads in India are developed to evaluate the progression of different types of distress such as roughness, cracking, and potholes. Even though the Government of India is investing huge quantum of money on road construction every year, poor control over the quality of road construction and its subsequent maintenance is leading to the faster road deterioration. In this regard, it is essential that scientific maintenance procedures are to be evolved on the basis of performance of low volume flexible pavements. Considering the above, an attempt has been made in this research endeavor to develop prediction models to understand the progression of roughness, cracking, and potholes in flexible pavements exposed to least or nil routine maintenance. Distress data were collected from the low volume rural roads covering about 173 stretches spread across Tamil Nadu state in India. Based on the above collected data, distress prediction models have been developed using multiple linear regression analysis. Further, the models have been validated using independent field data. It can be concluded that the models developed in this study can serve as useful tools for the practicing engineers maintaining flexible pavements on low volume roads.

8. Logistic regression analysis of financial literacy implications for retirement planning in Croatia

Directory of Open Access Journals (Sweden)

Dajana Barbić

2016-12-01

Full Text Available The relationship between financial literacy and financial behavior is important, as individuals are increasingly being asked to take responsibility for their financial wellbeing, especially their retirement. Analyzing of individual savings and attitudes towards retirement planning is important, as these types of investments are a way of preserving security during years of financial vulnerability. Research indicates that individuals who do not save adequately for their retirement, generally have a relatively low level of financial literacy. This research investigates the relationship between financial literacy and retirement planning in Croatia. To analyze the relationship between financial literacy and planning for retirement, maximum likelihood logistic regression analysis was used. The paper shows that those who answer financial literacy questions correctly are more likely to have a positive attitude towards retirement planning and are more likely to save for retirement, ensuring them of higher levels of financial security in retirement. The Goodness-of-Fit evaluation for the estimated logit model was performed using the Andrews and Hosmer-Lemeshow Tests.

9. Prediction of Depression in Cancer Patients With Different Classification Criteria, Linear Discriminant Analysis versus Logistic Regression.

Science.gov (United States)

Shayan, Zahra; Mohammad Gholi Mezerji, Naser; Shayan, Leila; Naseri, Parisa

2015-11-03

Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices. This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models. CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model. The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.

10. A systematic review and meta-regression analysis of mivacurium for tracheal intubation.

Science.gov (United States)

Vanlinthout, L E H; Mesfin, S H; Hens, N; Vanacker, B F; Robertson, E N; Booij, L H D J

2014-12-01

We systematically reviewed factors associated with intubation conditions in randomised controlled trials of mivacurium, using random-effects meta-regression analysis. We included 29 studies of 1050 healthy participants. Four factors explained 72.9% of the variation in the probability of excellent intubation conditions: mivacurium dose, 24.4%; opioid use, 29.9%; time to intubation and age together, 18.6%. The odds ratio (95% CI) for excellent intubation was 3.14 (1.65-5.73) for doubling the mivacurium dose, 5.99 (2.14-15.18) for adding opioids to the intubation sequence, and 6.55 (6.01-7.74) for increasing the delay between mivacurium injection and airway insertion from 1 to 2 min in subjects aged 25 years and 2.17 (2.01-2.69) for subjects aged 70 years, p < 0.001 for all. We conclude that good conditions for tracheal intubation are more likely by delaying laryngoscopy after injecting a higher dose of mivacurium with an opioid, particularly in older people. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

11. Academic performance of children born preterm: a meta-analysis and meta-regression.

Science.gov (United States)

Twilhaar, E Sabrina; de Kieviet, Jorrit F; Aarnoudse-Moens, Cornelieke Sh; van Elburg, Ruurd M; Oosterlaan, Jaap

2017-08-28

Advances in neonatal healthcare have resulted in decreased mortality after preterm birth but have not led to parallel decreases in morbidity. Academic performance provides insight in the outcomes and specific difficulties and needs of preterm children. To study academic performance in preterm children born in the antenatal steroids and surfactant era and possible moderating effects of perinatal and demographic factors. PubMed, Web of Science and PsycINFO were searched for peer-reviewed articles. Cohort studies with a full-term control group reporting standardised academic performance scores of preterm children (Academic test scores and special educational needs of preterm and full-term children were analysed using random effects meta-analysis. Random effects meta-regressions were performed to explore the predictive role of perinatal and demographic factors for between-study variance in effect sizes. The 17 eligible studies included 2390 preterm children and 1549 controls. Preterm children scored 0.71 SD below full-term peers on arithmetic (pacademic performance (p=0.006). Preterm children born in the antenatal steroids and surfactant era show considerable academic difficulties. Preterm children with bronchopulmonarydysplasia are at particular risk for poor academic outcome. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

12. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

International Nuclear Information System (INIS)

Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

2013-01-01

Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

13. Associations of neighborhood disorganization and maternal spanking with children's aggression: A fixed-effects regression analysis.

Science.gov (United States)

Ma, Julie; Grogan-Kaylor, Andrew; Lee, Shawna J

2018-02-01

This study employed fixed effects regression that controls for selection bias, omitted variables bias, and all time-invariant aspects of parent and child characteristics to examine the simultaneous associations between neighborhood disorganization, maternal spanking, and aggressive behavior in early childhood using data from the Fragile Families and Child Wellbeing Study (FFCWS). Analysis was based on 2,472 children and their mothers who participated in Wave 3 (2001-2003; child age 3) and Wave 4 (2003-2006; child age 5) of the FFCWS. Results indicated that higher rates of neighborhood crime and violence predicted higher levels of child aggression. Maternal spanking in the past year, whether frequent or infrequent, was also associated with increases in aggressive behavior. This study contributes statistically rigorous evidence that exposure to violence in the neighborhood as well as the family context are predictors of child aggression. We conclude with a discussion for the need for multilevel prevention and intervention approaches that target both community and parenting factors. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

14. Desertification Susceptibility Mapping Using Logistic Regression Analysis in the Djelfa Area, Algeria

Directory of Open Access Journals (Sweden)

Farid Djeddaoui

2017-10-01

Full Text Available The main goal of this work was to identify the areas that are most susceptible to desertification in a part of the Algerian steppe, and to quantitatively assess the key factors that contribute to this desertification. In total, 139 desertified zones were mapped using field surveys and photo-interpretation. We selected 16 spectral and geomorphic predictive factors, which a priori play a significant role in desertification. They were mainly derived from Landsat 8 imagery and Shuttle Radar Topographic Mission digital elevation model (SRTM DEM. Some factors, such as the topographic position index (TPI and curvature, were used for the first time in this kind of study. For this purpose, we adapted the logistic regression algorithm for desertification susceptibility mapping, which has been widely used for landslide susceptibility mapping. The logistic model was evaluated using the area under the receiver operating characteristic (ROC curve. The model accuracy was 87.8%. We estimated the model uncertainties using a bootstrap method. Our analysis suggests that the predictive model is robust and stable. Our results indicate that land cover factors, including normalized difference vegetation index (NDVI and rangeland classes, play a major role in determining desertification occurrence, while geomorphological factors have a limited impact. The predictive map shows that 44.57% of the area is classified as highly to very highly susceptible to desertification. The developed approach can be used to assess desertification in areas with similar characteristics and to guide possible actions to combat desertification.

15. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

Science.gov (United States)

Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

2015-01-01

Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

16. Effects of Iranian Economic Reforms on Equity in Social and Healthcare Financing: A Segmented Regression Analysis.

Science.gov (United States)

Zandian, Hamed; Takian, Amirhossein; Rashidian, Arash; Bayati, Mohsen; Zahirian Moghadam, Telma; Rezaei, Satar; Olyaeemanesh, Alireza

2018-03-01

One of the main objectives of the Targeted Subsidies Law (TSL) in Iran was to improve equity in healthcare financing. This study aimed at measuring the effects of the TSL, which was implemented in Iran in 2010, on equity in healthcare financing. Segmented regression analysis was applied to assess the effects of TSL implementation on the Gini and Kakwani indices of outcome variables in Iranian households. Data for the years 1977-2014 were retrieved from formal databases. Changes in the levels and trends of the outcome variables before and after TSL implementation were assessed using Stata version 13. In the 33 years before the implementation of the TSL, the Gini index decreased from 0.401 to 0.381. The Gini index and its intercept significantly decreased to 0.362 (pfinancing. Hence, while measuring the long-term impact of TSL is paramount, healthcare decision-makers need to consider the efficacy of the TSL in order to develop plans for achieving the desired equity in healthcare financing.

17. Applying Different Independent Component Analysis Algorithms and Support Vector Regression for IT Chain Store Sales Forecasting

Directory of Open Access Journals (Sweden)

Wensheng Dai

2014-01-01

Full Text Available Sales forecasting is one of the most important issues in managing information technology (IT chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR, is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA, temporal ICA (tICA, and spatiotemporal ICA (stICA to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

18. Determinant Factors in Graft Rejection Using Cox Regression, among the Recipients of Second Renal Transplant in Imam Khomeini Hospital in Urmia, 1988-2000

Directory of Open Access Journals (Sweden)

Rahim Tahmasebi

2010-09-01

Full Text Available Background: The objective of this study was to evaluate graft survival among the recipients of second renal transplant in Imam Khomeini centre hospital in Urmia. Methods: The study population consisted of 50 patients receiving renal grafts for the second time between 1988 and 2008 in Imam Khomeini centre hospital in Urmia. Two survival outcomes, first and second graft survival, were analyzed. Graft survival was defined from date of transplant until its rejection. For the purpose of graft survival analysis, graft failure was defined as return to dialysis, and death due to the functioning graft. Data were collected through individual patient questionnaires. Demographic and clinical factors, transfusion history, type of immunosuppressive drugs, levels of serum creatinine, triglyceride, cholesterol, and LDL at 3 and 6 months after transplantation were collected. Cox-proportional hazard model and Kaplan-Meier were used to data analysis. Results: First graft survival at 1, 2, 3, and 5 years was 74%, 66%, 53%, and 41%, respectively. Second graft survival at 1, 2, 3, and 5 years was 81%, 74%, 70%, and 61%, respectively. Causes of graft loss in first renal transplantation were 6% sever acute graft rejection, 12% acute graft rejection and 82% chronic graft rejection. In the multivariate analysis, only serum creatinine, blood pressure, and immunosuppressive drugs predicted first graft loss and serum creatinine, immunosuppressive drugs, and related donor family predicted second graft rejection. Conclusion: The serum creatinine and immunosuppressive drugs including cyclosporine, cellcept, and prednisolone are the most influential factors on graft survival.

19. Regression Analysis of Top of Descent Location for Idle-thrust Descents

Science.gov (United States)

Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg

2013-01-01

In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.

20. Perioperative factors predicting poor outcome in elderly patients following emergency general surgery: a multivariate regression analysis

Science.gov (United States)

Lees, Mackenzie C.; Merani, Shaheed; Tauh, Keerit; Khadaroo, Rachel G.

2015-01-01

Background Older adults (≥ 65 yr) are the fastest growing population and are presenting in increasing numbers for acute surgical care. Emergency surgery is frequently life threatening for older patients. Our objective was to identify predictors of mortality and poor outcome among elderly patients undergoing emergency general surgery. Methods We conducted a retrospective cohort study of patients aged 65–80 years undergoing emergency general surgery between 2009 and 2010 at a tertiary care centre. Demographics, comorbidities, in-hospital complications, mortality and disposition characteristics of patients were collected. Logistic regression analysis was used to identify covariate-adjusted predictors of in-hospital mortality and discharge of patients home. Results Our analysis included 257 patients with a mean age of 72 years; 52% were men. In-hospital mortality was 12%. Mortality was associated with patients who had higher American Society of Anesthesiologists (ASA) class (odds ratio [OR] 3.85, 95% confidence interval [CI] 1.43–10.33, p = 0.008) and in-hospital complications (OR 1.93, 95% CI 1.32–2.83, p = 0.001). Nearly two-thirds of patients discharged home were younger (OR 0.92, 95% CI 0.85–0.99, p = 0.036), had lower ASA class (OR 0.45, 95% CI 0.27–0.74, p = 0.002) and fewer in-hospital complications (OR 0.69, 95% CI 0.53–0.90, p = 0.007). Conclusion American Society of Anesthesiologists class and in-hospital complications are perioperative predictors of mortality and disposition in the older surgical population. Understanding the predictors of poor outcome and the importance of preventing in-hospital complications in older patients will have important clinical utility in terms of preoperative counselling, improving health care and discharging patients home. PMID:26204143

1. Shock Index Correlates with Extravasation on Angiographs of Gastrointestinal Hemorrhage: A Logistics Regression Analysis

International Nuclear Information System (INIS)

Nakasone, Yutaka; Ikeda, Osamu; Yamashita, Yasuyuki; Kudoh, Kouichi; Shigematsu, Yoshinori; Harada, Kazunori

2007-01-01

We applied multivariate analysis to the clinical findings in patients with acute gastrointestinal (GI) hemorrhage and compared the relationship between these findings and angiographic evidence of extravasation. Our study population consisted of 46 patients with acute GI bleeding. They were divided into two groups. In group 1 we retrospectively analyzed 41 angiograms obtained in 29 patients (age range, 25-91 years; average, 71 years). Their clinical findings including the shock index (SI), diastolic blood pressure, hemoglobin, platelet counts, and age, which were quantitatively analyzed. In group 2, consisting of 17 patients (age range, 21-78 years; average, 60 years), we prospectively applied statistical analysis by a logistics regression model to their clinical findings and then assessed 21 angiograms obtained in these patients to determine whether our model was useful for predicting the presence of angiographic evidence of extravasation. On 18 of 41 (43.9%) angiograms in group 1 there was evidence of extravasation; in 3 patients it was demonstrated only by selective angiography. Factors significantly associated with angiographic visualization of extravasation were the SI and patient age. For differentiation between cases with and cases without angiographic evidence of extravasation, the maximum cutoff point was between 0.51 and 0.0.53. Of the 21 angiograms obtained in group 2, 13 (61.9%) showed evidence of extravasation; in 1 patient it was demonstrated only on selective angiograms. We found that in 90% of the cases, the prospective application of our model correctly predicted the angiographically confirmed presence or absence of extravasation. We conclude that in patients with GI hemorrhage, angiographic visualization of extravasation is associated with the pre-embolization SI. Patients with a high SI value should undergo study to facilitate optimal treatment planning

2. Integrative analysis of multiple diverse omics datasets by sparse group multitask regression

Directory of Open Access Journals (Sweden)

Dongdong eLin

2014-10-01

Full Text Available A variety of high throughput genome-wide assays enable the exploration of genetic risk factors underlying complex traits. Although these studies have remarkable impact on identifying susceptible biomarkers, they suffer from issues such as limited sample size and low reproducibility. Combining individual studies of different genetic levels/platforms has the promise to improve the power and consistency of biomarker identification. In this paper, we propose a novel integrative method, namely sparse group multitask regression, for integrating diverse omics datasets, platforms and populations to identify risk genes/factors of complex diseases. This method combines multitask learning with sparse group regularization, which will: 1 treat the biomarker identification in each single study as a task and then combine them by multitask learning; 2 group variables from all studies for identifying significant genes; 3 enforce sparse constraint on groups of variables to overcome the ‘small sample, but large variables’ problem. We introduce two sparse group penalties: sparse group lasso and sparse group ridge in our multitask model, and provide an effective algorithm for each model. In addition, we propose a significance test for the identification of potential risk genes. Two simulation studies are performed to evaluate the performance of our integrative method by comparing it with conventional meta-analysis method. The results show that our sparse group multitask method outperforms meta-analysis method significantly. In an application to our osteoporosis studies, 7 genes are identified as significant genes by our method and are found to have significant effects in other three independent studies for validation. The most significant gene SOD2 has been identified in our previous osteoporosis study involving the same expression dataset. Several other genes such as TREML2, HTR1E and GLO1 are shown to be novel susceptible genes for osteoporosis, as confirmed

3. THE ROLE AND PLACE OF LOGISTIC REGRESSION AND ROC ANALYSIS IN SOLVING MEDICAL DIAGNOSTIC TASK

Directory of Open Access Journals (Sweden)

S. G. Grigoryev

2016-01-01

Full Text Available Diagnostics, equally with  prevention and  treatment, is a basis of medical science and practice. For its history the medicine  has accumulated a great variety  of diagnostic methods for different diseases and  pathologic conditions. Nevertheless, new  tests,  methods and  tools are being  developed and recommended to application nowadays. Such  indicators as sensitivity and  specificity which  are defined on the basis  of fourfold contingency  tables   construction or  ROC-analysis method with  ROC  – curve  modelling (Receiver operating characteristic are used  as the  methods to estimate the  diagnostic capability. Fourfold  table  is used  with  the purpose to estimate the method which confirms or denies the diagnosis, i.e. a quality indicator. ROC-curve, being a graph, allows making the estimation of model  quality by subdivision of two classes  on the  basis  of identifying the  point  of cutting off a continuous or discrete quantitative attribute.The method of logistic regression technique is introduced as a tool to develop some  mathematical-statistical forecasting model  of probability of the event the researcher is interested in if there are two possible variants of the outcome. The method of ROC-analysis is chosen and described in detail as a tool to estimate the  model  quality. The capabilities of the named methods are demonstrated by a real example of creation  and  efficiency estimation (sensitivity and  specificity of a forecasting model  of probability of complication development in the form of pyodermatitis in children with  atopic dermatitis.

4. Changes of platelet GMP-140 in diabetic nephropathy and its multi-factor regression analysis

International Nuclear Information System (INIS)

Wang Zizheng; Du Tongxin; Wang Shukui

2001-01-01

The relation of platelet GMP-140 and its related factors with diabetic nephropathy was studied. 144 patients of diabetic mellitus without nephropathy (group without DN, mean suffering duration of 25.5 +- 18.6 months); 80 with diabetic nephropathy (group DN, mean suffering duration of 58.7 +- 31.6 months) and 50 normal controls were chosen in the research. Platelet GMP-140, plasma α 1 -MG, β 2 -MG, and 24 hour urine albumin (ALB), IgG, α 1 -MG, β 2 -MG were detected by RIA, while HBA 1 C via chromatographic separation and FBG, PBG, Ch, TG, HDL, FG via biochemical methods. All the data had been processed with software on computer with t-test and linear regression, and multi-factor analysis were done also. The levels of platelet GMP-140, FG, DBP, TG, HBA 1 C and PBG in group DN were significantly higher than those of group without DN and normal control (P 0.05), while they were higher than those of normal controls. Multi-factor analysis of platelet GMP-140 with TG, DBP and HBA 1 C were performed in 80 patients with DN (P 1 C are the independent factors enhancing the activation of platelets. The disturbance of lipid metabolism in type II diabetic mellitus may also enhance the activation of platelets. Elevation of blood pressure may accelerate the initiation and deterioration of DN in which change of platelet GMP-140 is an independent factor. Elevation of HBA 1 C and blood glucose are related closely to the diabetic nephropathy

5. Public reporting influences antibiotic and injection prescription in primary care: a segmented regression analysis.

Science.gov (United States)

Liu, Chenxi; Zhang, Xinping; Wan, Jie

2015-08-01

Inappropriate use and overuse of antibiotics and injections are serious threats to the global population, particularly in developing countries. In recent decades, public reporting of health care performance (PRHCP) has been an instrument to improve the quality of care. However, existing evidence shows a mixed effect of PRHCP. This study evaluated the effect of PRHCP on physicians' prescribing practices in a sample of primary care institutions in China. Segmented regression analysis was used to produce convincing evidence for health policy and reform. The PRHCP intervention was implemented in Qian City that started on 1 October 2013. Performance data on prescription statistics were disclosed to patients and health workers monthly in 10 primary care institutions. A total of 326 655 valid outpatient prescriptions were collected. Monthly effective prescriptions were calculated as analytical units in the research (1st to 31st every month). This study involved multiple assessments of outcomes 13 months before and 11 months after PRHCP intervention (a total of 24 data points). Segmented regression models showed downward trends from baseline on antibiotics (coefficient = -0.64, P = 0.004), combined use of antibiotics (coefficient = -0.41, P < 0.001) and injections (coefficient = -0.5957, P = 0.001) after PRHCP intervention. The average expenditure of patients slightly increased monthly before the intervention (coefficient = 0.8643, P < 0.001); PRHCP intervention also led to a temporary increase in average expenditure of patients (coefficient = 2.20, P = 0.307) but slowed down the ascending trend (coefficient = -0.45, P = 0.033). The prescription rate of antibiotics and injections after intervention (about 50%) remained high. PRHCP showed positive effects on physicians' prescribing behaviour, considering the downward trends on the use of antibiotics and injections and average expenditure through the intervention. However, the effect

6. Duloxetine compared with fluoxetine and venlafaxine: use of meta-regression analysis for indirect comparisons

Directory of Open Access Journals (Sweden)

Lançon Christophe

2006-07-01

Full Text Available Abstract Background Data comparing duloxetine with existing antidepressant treatments is limited. A comparison of duloxetine with fluoxetine has been performed but no comparison with venlafaxine, the other antidepressant in the same therapeutic class with a significant market share, has been undertaken. In the absence of relevant data to assess the place that duloxetine should occupy in the therapeutic arsenal, indirect comparisons are the most rigorous way to go. We conducted a systematic review of the efficacy of duloxetine, fluoxetine and venlafaxine versus placebo in the treatment of Major Depressive Disorder (MDD, and performed indirect comparisons through meta-regressions. Methods The bibliography of the Agency for Health Care Policy and Research and the CENTRAL, Medline, and Embase databases were interrogated using advanced search strategies based on a combination of text and index terms. The search focused on randomized placebo-controlled clinical trials involving adult patients treated for acute phase Major Depressive Disorder. All outcomes were derived to take account for varying placebo responses throughout studies. Primary outcome was treatment efficacy as measured by Hedge's g effect size. Secondary outcomes were response and dropout rates as measured by log odds ratios. Meta-regressions were run to indirectly compare the drugs. Sensitivity analysis, assessing the influence of individual studies over the results, and the influence of patients' characteristics were run. Results 22 studies involving fluoxetine, 9 involving duloxetine and 8 involving venlafaxine were selected. Using indirect comparison methodology, estimated effect sizes for efficacy compared with duloxetine were 0.11 [-0.14;0.36] for fluoxetine and 0.22 [0.06;0.38] for venlafaxine. Response log odds ratios were -0.21 [-0.44;0.03], 0.70 [0.26;1.14]. Dropout log odds ratios were -0.02 [-0.33;0.29], 0.21 [-0.13;0.55]. Sensitivity analyses showed that results were

7. Comparing transfusion reaction rates for various plasma types: a systematic review and meta-analysis/regression.

Science.gov (United States)

Saadah, Nicholas H; van Hout, Fabienne M A; Schipperus, Martin R; le Cessie, Saskia; Middelburg, Rutger A; Wiersum-Osselton, Johanna C; van der Bom, Johanna G

2017-09-01

We estimated rates for common plasma-associated transfusion reactions and compared reported rates for various plasma types. We performed a systematic review and meta-analysis of peer-reviewed articles that reported plasma transfusion reaction rates. Random-effects pooled rates were calculated and compared between plasma types. Meta-regression was used to compare various plasma types with regard to their reported plasma transfusion reaction rates. Forty-eight studies reported transfusion reaction rates for fresh-frozen plasma (FFP; mixed-sex and male-only), amotosalen INTERCEPT FFP, methylene blue-treated FFP, and solvent/detergent-treated pooled plasma. Random-effects pooled average rates for FFP were: allergic reactions, 92/10 5 units transfused (95% confidence interval [CI], 46-184/10 5 units transfused); febrile nonhemolytic transfusion reactions (FNHTRs), 12/10 5 units transfused (95% CI, 7-22/10 5 units transfused); transfusion-associated circulatory overload (TACO), 6/10 5 units transfused (95% CI, 1-30/10 5 units transfused); transfusion-related acute lung injury (TRALI), 1.8/10 5 units transfused (95% CI, 1.2-2.7/10 5 units transfused); and anaphylactic reactions, 0.8/10 5 units transfused (95% CI, 0-45.7/10 5 units transfused). Risk differences between plasma types were not significant for allergic reactions, TACO, or anaphylactic reactions. Methylene blue-treated FFP led to fewer FNHTRs than FFP (risk difference = -15.3 FNHTRs/10 5 units transfused; 95% CI, -24.7 to -7.1 reactions/10 5 units transfused); and male-only FFP led to fewer cases of TRALI than mixed-sex FFP (risk difference = -0.74 TRALI/10 5 units transfused; 95% CI, -2.42 to -0.42 injuries/10 5 units transfused). Meta-regression demonstrates that the rate of FNHTRs is lower for methylene blue-treated compared with FFP, and the rate of TRALI is lower for male-only than for mixed-sex FFP; whereas no significant differences are observed between plasma types for allergic reactions, TACO

8. Silent changes of tuberculosis in Iran (2005-2015: A joinpoint regression analysis

Directory of Open Access Journals (Sweden)

Abolfazl Marvi

2017-01-01

Full Text Available Introduction and Aim: Tuberculosis (TB poses a severe risk to public health through the world but excessively distresses low-income nations. The aim of this study is to analyze silent changes of TB in Iran (2005–2015: A joinpoint regression analysis. Materials and Methods: This is a trend study conducted on all patients (n = 70 that register in control disease center of Joibar (one of coastal cities and tourism destination in Northern Iran which was recognized as an independent town since 1998 during 2005–2015. The characteristics of patients imported to the SPSS 19 and variation in incidence rate of different forms of pulmonary TB (PTB (PTB+ or PTB– and extra-PTB (EPTB/year was analyzed. Variation in incidence rate of TB for male and female groups and different age groups (0–14, 15–24, 25–34, 35–44, 45–54, 55–64, and above 65 years was analyzed, variation in trend of this diseases for different groups was compared in intended years, and also, variation in incidence rate of TB was analyzed by Joinpoint Regression Software. Results: The total number of TB was 70 cases during 2005–2015. The mean age of patients was 42.31 ± 21.26 years and median age was 40 years. About 71.4% of patients were PTB (55.7% for with PTB+ and 15.7% with PTB– and rest of them (28.4% were EPTB. In regard to classification of cases, 97.1% of them were new cases, 1.45% of them were relapsed cases, and 1.45% of them imported cases. In addition, history of hospitalization due to TB was observed in 44.3%. Conclusion: Despite recent developments of governmental health-care system in Iran and proper access to it and considering this fact that identification of TB cases with passive surveillance is possible. Hence, developing certain programs for sensitization of the covered population is essential.

9. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection

DEFF Research Database (Denmark)

Sidenius, N; Sier, C.F.M.; Ullum, H

2000-01-01

levels of soluble uPAR (suPAR) in patients with advanced HIV-1 disease and whether the serum level of suPAR is predictive of clinical outcome. Using an enzyme-linked immunosorbent assay, the level of suPAR was measured retrospectively in serum samples from 314 patients with HIV-1 infection. By Kaplan......-Meier and Cox regression analyses, the serum suPAR levels were correlated to survival with AIDS-related death as the end point. High levels of serum suPAR (greater than median) were associated with poor overall survival, and Kaplan-Meier analysis on patients stratified by suPAR level demonstrated a continuous...

10. Hypofractionated radiation therapy for invasive thyroid carcinoma in dogs: a retrospective analysis of survival

International Nuclear Information System (INIS)

Brearley, M.J.; Hayes, A.M.; Murphy, S.

1999-01-01

Thirteen dogs with invasive thyroid carcinoma (WHO classification T2b or T3b) seen between January 1991 and October 1997 were treated by external beam Irradiation. Four once-weekly fractions of 9 gray of 4 MeV X-rays were administered. Four of the dogs died of progression of the primary disease and four from metastatic spread. Of the remaining dogs, three died of unrelated problems, although two were still alive at the time of the censor. Kaplan-Meier analysis of the survival time from first dose to death from either primary or metastatic disease gave a median survival time of 96 weeks (mean 85 weeks, range six to 247 weeks). Radiographic evidence of pulmonary metastatic disease at presentation had no prognostic value whereas crude growth rate was a highly significant factor. The present series Indicates that radiation therapy should be considered an important modality for the control of invasive thyroid carcinoma in the dog

11. Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data.

Science.gov (United States)

Horne, Margaret A; Flemming, Kelly D; Su, I-Chang; Stapf, Christian; Jeon, Jin Pyeong; Li, Da; Maxwell, Susanne S; White, Philip; Christianson, Teresa J; Agid, Ronit; Cho, Won-Sang; Oh, Chang Wan; Wu, Zhen; Zhang, Jun-Ting; Kim, Jeong Eun; Ter Brugge, Karel; Willinsky, Robert; Brown, Robert D; Murray, Gordon D; Al-Shahi Salman, Rustam

2016-02-01

Cerebral cavernous malformations (CCMs) can cause symptomatic intracranial haemorrhage (ICH), but the estimated risks are imprecise and predictors remain uncertain. We aimed to obtain precise estimates and predictors of the risk of ICH during untreated follow-up in an individual patient data meta-analysis. We invited investigators of published cohorts of people aged at least 16 years, identified by a systematic review of Ovid MEDLINE and Embase from inception to April 30, 2015, to provide individual patient data on clinical course from CCM diagnosis until first CCM treatment or last available follow-up. We used survival analysis to estimate the 5-year risk of symptomatic ICH due to CCMs (primary outcome), multivariable Cox regression to identify baseline predictors of outcome, and random-effects models to pool estimates in a meta-analysis. Among 1620 people in seven cohorts from six studies, 204 experienced ICH during 5197 person-years of follow-up (Kaplan-Meier estimated 5-year risk 15·8%, 95% CI 13·7-17·9). The primary outcome of ICH within 5 years of CCM diagnosis was associated with clinical presentation with ICH or new focal neurological deficit (FND) without brain imaging evidence of recent haemorrhage versus other modes of presentation (hazard ratio 5·6, 95% CI 3·2-9·7) and with brainstem CCM location versus other locations (4·4, 2·3-8·6), but age, sex, and CCM multiplicity did not add independent prognostic information. The 5-year estimated risk of ICH during untreated follow-up was 3·8% (95% CI 2·1-5·5) for 718 people with non-brainstem CCM presenting without ICH or FND, 8·0% (0·1-15·9) for 80 people with brainstem CCM presenting without ICH or FND, 18·4% (13·3-23·5) for 327 people with non-brainstem CCM presenting with ICH or FND, and 30·8% (26·3-35·2) for 495 people with brainstem CCM presenting with ICH or FND. Mode of clinical presentation and CCM location are independently associated with ICH within 5 years of CCM diagnosis. These

12. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

Science.gov (United States)

Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

2006-08-01

A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

13. Sensitivity of Microstructural Factors Influencing the Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure using Multiple Regression Analysis

International Nuclear Information System (INIS)

Lee, Seung-Yong; Lee, Sang-In; Hwang, Byoung-chul

2016-01-01

In this study, the effect of microstructural factors on the impact toughness of hypoeutectoid steels with ferrite-pearlite structure was quantitatively investigated using multiple regression analysis. Microstructural analysis results showed that the pearlite fraction increased with increasing austenitizing temperature and decreasing transformation temperature which substantially decreased the pearlite interlamellar spacing and cementite thickness depending on carbon content. The impact toughness of hypoeutectoid steels usually increased as interlamellar spacing or cementite thickness decreased, although the impact toughness was largely associated with pearlite fraction. Based on these results, multiple regression analysis was performed to understand the individual effect of pearlite fraction, interlamellar spacing, and cementite thickness on the impact toughness. The regression analysis results revealed that pearlite fraction significantly affected impact toughness at room temperature, while cementite thickness did at low temperature.

14. A SOCIOLOGICAL ANALYSIS OF THE CHILDBEARING COEFFICIENT IN THE ALTAI REGION BASED ON METHOD OF FUZZY LINEAR REGRESSION

Directory of Open Access Journals (Sweden)

2017-06-01

Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.

15. Ceramic-on-ceramic bearing fractures in total hip arthroplasty: an analysis of data from the National Joint Registry.

Science.gov (United States)

Howard, D P; Wall, P D H; Fernandez, M A; Parsons, H; Howard, P W

2017-08-01

Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used, but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle of Man. We analysed data on 223 362 bearings from 111 681 primary CoC THAs and 182 linked revisions for bearing fracture recorded in the NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. A total of 222 852 bearings (99.8%) were CeramTec Biolox products. Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80 170 (0.126%) Biolox Delta liners and 35 of 31 258 (0.112%) Biolox Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (chi-squared 68.0, p ceramic type. Liner thickness was not predictive of fracture (p = 0.67). Body mass index (BMI) was independently associated with revision for both head fractures (odds ratio (OR) 1.09 per unit increase, p = 0.031) and liner fractures (OR 1.06 per unit increase, p = 0.006). We report the largest independent study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low but previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture. Cite this article: Bone Joint J 2017;99-B:1012-19. ©2017 The British Editorial Society of Bone & Joint Surgery.

16. Logistic Regression Analysis of Operational Errors and Routine Operations Using Sector Characteristics

National Research Council Canada - National Science Library

Pfleiderer, Elaine M; Scroggins, Cheryl L; Manning, Carol A

2009-01-01

Two separate logistic regression analyses were conducted for low- and high-altitude sectors to determine whether a set of dynamic sector characteristics variables could reliably discriminate between operational error (OE...

17. Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements

KAUST Repository

Ryu, Duchwan; Li, Erning; Mallick, Bani K.

2010-01-01

" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.

18. Spontaneous regression of cerebral arteriovenous malformations: clinical and angiographic analysis with review of the literature

International Nuclear Information System (INIS)

Lee, S.K.; Vilela, P.; Willinsky, R.; TerBrugge, K.G.

2002-01-01

Spontaneous regression of cerebral arteriovenous malformation (AVM) is rare and poorly understood. We reviewed the clinical and angiographic findings in patients who had spontaneous regression of cerebral AVMs to determine whether common features were present. The clinical and angiographic findings of four cases from our series and 29 cases from the literature were retrospectively reviewed. The clinical and angiographic features analyzed were: age at diagnosis, initial presentation, venous drainage pattern, number of draining veins, location of the AVM, number of arterial feeders, clinical events during the interval period to thrombosis, and interval period to spontaneous thrombosis. Common clinical and angiographic features of spontaneous regression of cerebral AVMs are: intracranial hemorrhage as an initial presentation, small AVMs, and a single draining vein. Spontaneous regression of cerebral AVMs can not be predicted by clinical or angiographic features, therefore it should not be considered as an option in cerebral AVM management, despite its proven occurrence. (orig.)

19. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.

Science.gov (United States)

Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L

2017-02-06

Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.

20. Analysis of dental caries using generalized linear and count regression models

Directory of Open Access Journals (Sweden)

Javali M. Phil

2013-11-01

Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

1. Solitary plasmacytoma: population-based analysis of survival trends and effect of various treatment modalities in the USA.

Science.gov (United States)

Thumallapally, Nishitha; Meshref, Ahmed; Mousa, Mohammed; Terjanian, Terenig

2017-01-05

Solitary plasmacytoma (SP) is a localized neoplastic plasma cell disorder with an annual incidence of less than 450 cases. Given the rarity of this disorder, it is difficult to conduct large-scale population studies. Consequently, very limited information on the disorder is available, making it difficult to estimate the incidence and survival rates. Furthermore, limited information is available on the efficacy of various treatment modalities in relation to primary tumor sites. The data for this retrospective study were drawn from the Surveillance, Epidemiology and End Results (SEER) database, which comprises 18 registries; patient demographics, treatment modalities and survival rates were obtained for those diagnosed with SP from 1998 to 2007. Various prognostic factors were analyzed via Kaplan-Meier analysis and log-rank test, with 5-year relative survival rate defined as the primary outcome of interest. Cox regression analysis was employed in the multivariate analysis. The SEER search from 1998 to 2007 yielded records for 1691 SP patients. The median age at diagnosis was 63 years. The patient cohort was 62.4% male, 37.6% female, 80% Caucasian, 14.6% African American and 5.4% other races. Additionally, 57.8% had osseous plasmacytoma, and 31.9% had extraosseous involvement. Unspecified plasmacytoma was noted in 10.2% of patients. The most common treatment modalities were radiotherapy (RT) (48.8%), followed by combination surgery with RT (21.2%) and surgery alone (11.6%). Univariate analysis of prognostic factors revealed that the survival outcomes were better for younger male patients who received RT with surgery (p multiple myeloma (MM) was noted in 551 patients. Age >60 years was associated with a lower 5-year survival in patients who progressed to MM compared to those who were diagnosed initially with MM (15.1 vs 16.6%). Finally, those who received RT and progressed to MM still had a higher chance of survival than those who were diagnosed with MM initially and

2. Malignant Lymphatic and Hematopoietic Neoplasms Mortality in Serbia, 1991–2010: A Joinpoint Regression Analysis

Science.gov (United States)

Ilic, Milena; Ilic, Irena

2014-01-01

Background Limited data on mortality from malignant lymphatic and hematopoietic neoplasms have been published for Serbia. Methods The study covered population of Serbia during the 1991–2010 period. Mortality trends were assessed using the joinpoint regression analysis. Results Trend for overall death rates from malignant lymphoid and haematopoietic neoplasms significantly decreased: by −2.16% per year from 1991 through 1998, and then significantly increased by +2.20% per year for the 1998–2010 period. The growth during the entire period was on average +0.8% per year (95% CI 0.3 to 1.3). Mortality was higher among males than among females in all age groups. According to the comparability test, mortality trends from malignant lymphoid and haematopoietic neoplasms in men and women were parallel (final selected model failed to reject parallelism, P = 0.232). Among younger Serbian population (0–44 years old) in both sexes: trends significantly declined in males for the entire period, while in females 15–44 years of age mortality rates significantly declined only from 2003 onwards. Mortality trend significantly increased in elderly in both genders (by +1.7% in males and +1.5% in females in the 60–69 age group, and +3.8% in males and +3.6% in females in the 70+ age group). According to the comparability test, mortality trend for Hodgkin's lymphoma differed significantly from mortality trends for all other types of malignant lymphoid and haematopoietic neoplasms (P<0.05). Conclusion Unfavourable mortality trend in Serbia requires targeted intervention for risk factors control, early diagnosis and modern therapy. PMID:25333862

3. Effects of Iranian Economic Reforms on Equity in Social and Healthcare Financing: A Segmented Regression Analysis

Science.gov (United States)

Bayati, Mohsen

2018-01-01

Objectives One of the main objectives of the Targeted Subsidies Law (TSL) in Iran was to improve equity in healthcare financing. This study aimed at measuring the effects of the TSL, which was implemented in Iran in 2010, on equity in healthcare financing. Methods Segmented regression analysis was applied to assess the effects of TSL implementation on the Gini and Kakwani indices of outcome variables in Iranian households. Data for the years 1977-2014 were retrieved from formal databases. Changes in the levels and trends of the outcome variables before and after TSL implementation were assessed using Stata version 13. Results In the 33 years before the implementation of the TSL, the Gini index decreased from 0.401 to 0.381. The Gini index and its intercept significantly decreased to 0.362 (p<0.001) 5 years after the implementation of the TSL. There was no statistically significant change in the gross domestic product or inflation rate after TSL implementation. The Kakwani index significantly increased from -0.020 to 0.007 (p<0.001) before the implementation of the TSL, while we observed no statistically significant change (p=0.81) in the Kakwani index after TSL implementation. Conclusions The TSL reform, which was introduced as part of an economic development plan in Iran in 2010, led to a significant reduction in households’ income inequality. However, the TSL did not significantly affect equity in healthcare financing. Hence, while measuring the long-term impact of TSL is paramount, healthcare decision-makers need to consider the efficacy of the TSL in order to develop plans for achieving the desired equity in healthcare financing. PMID:29631352

4. Prostate cancer mortality in Serbia, 1991-2010: a joinpoint regression analysis.

Science.gov (United States)

Ilic, Milena; Ilic, Irena

2016-06-01

The aim of this descriptive epidemiological study was to analyze the mortality trend of prostate cancer in Serbia (excluding the Kosovo and Metohia) from 1991 to 2010. The age-standardized prostate cancer mortality rates (per 100 000) were calculated by direct standardization, using the World Standard Population. Average annual percentage of change (AAPC) and the corresponding 95% confidence interval (CI) was computed for trend using the joinpoint regression analysis. Significantly increased trend in prostate cancer mortality was recorded in Serbia continuously from 1991 to 2010 (AAPC = +2.2, 95% CI = 1.6-2.9). Mortality rates for prostate cancer showed a significant upward trend in all men aged 50 and over: AAPC (95% CI) was +1.9% (0.1-3.8) in aged 50-59 years, +1.7% (0.9-2.6) in aged 60-69 years, +2.0% (1.2-2.9) in aged 70-79 years and +3.5% (2.4-4.6) in aged 80 years and over. According to comparability test, prostate cancer mortality trends in majority of age groups were parallel (final selected model failed to reject parallelism, P > 0.05). The increasing prostate cancer mortality trend implies the need for more effective measures of prevention, screening and early diagnosis, as well as prostate cancer treatment in Serbia. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

5. Hysterectomy trends in Australia, 2000-2001 to 2013-2014: joinpoint regression analysis.

Science.gov (United States)

Wilson, Louise F; Pandeya, Nirmala; Mishra, Gita D

2017-10-01

Hysterectomy is a common gynecological procedure, particularly in middle and high income countries. The aim of this paper was to describe and examine hysterectomy trends in Australia from 2000-2001 to 2013-2014. For women aged 25 years and over, data on the number of hysterectomies performed in Australia annually were sourced from the National Hospital and Morbidity Database. Age-specific and age-standardized hysterectomy rates per 10 000 women were estimated with adjustment for hysterectomy prevalence in the population. Using joinpoint regression analysis, we estimated the average annual percentage change over the whole study period (2000-2014) and the annual percentage change for each identified trend line segment. A total of 431 162 hysterectomy procedures were performed between 2000-2001 and 2013-2014; an annual average of 30 797 procedures (for women aged 25+ years). The age-standardized hysterectomy rate, adjusted for underlying hysterectomy prevalence, decreased significantly over the whole study period [average annual percentage change -2.8%; 95% confidence interval (CI) -3.5%, -2.2%]. The trend was not linear with one joinpoint detected in 2008-2009. Between 2000-2001 and 2008-2009 there was a significant decrease in incidence (annual percentage change -4.4%; 95% CI -5.2%, -3.7%); from 2008-2009 to 2013-2014 the decrease was minimal and not significantly different from zero (annual percentage change -0.1%; 95% CI -1.7%, 1.5%). A similar change in trend was seen in all age groups. Hysterectomy rates in Australian women aged 25 years and over have declined in the first decade of the 21st century. However, in the last 5 years, rates appear to have stabilized. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

6. Mortality trends among Japanese dialysis patients, 1988-2013: a joinpoint regression analysis.

Science.gov (United States)

Wakasugi, Minako; Kazama, Junichiro James; Narita, Ichiei

2016-09-01

Evaluation of mortality trends in dialysis patients is important for improving their prognoses. The present study aimed to examine temporal trends in deaths (all-cause, cardiovascular, noncardiovascular and the five leading causes) among Japanese dialysis patients. Mortality data were extracted from the Japanese Society of Dialysis Therapy registry. Age-standardized mortality rates were calculated by direct standardization against the 2013 dialysis population. The average annual percentage of change (APC) and the corresponding 95% confidence interval (CI) were computed for trends using joinpoint regression analysis. A total of 469 324 deaths occurred, of which 25.9% were from cardiac failure, 17.5% from infectious disease, 10.2% from cerebrovascular disorders, 8.6% from malignant tumors and 5.6% from cardiac infarction. The joinpoint trend for all-cause mortality decreased significantly, by -3.7% (95% CI -4.2 to -3.2) per year from 1988 through 2000, then decreased more gradually, by -1.4% (95% CI -1.7 to -1.2) per year during 2000-13. The improved mortality rates were mainly due to decreased deaths from cardiovascular disease, with mortality rates due to noncardiovascular disease outnumbering those of cardiovascular disease in the last decade. Among the top five causes of death, cardiac failure has shown a marked decrease in mortality rate. However, the rates due to infectious disease have remained stable during the study period [APC 0.1 (95% CI -0.2-0.3)]. Significant progress has been made, particularly with regard to the decrease in age-standardized mortality rates. The risk of cardiovascular death has decreased, while the risk of death from infection has remained unchanged for 25 years. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

7. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

Science.gov (United States)

DeHart, Russell

2017-01-01

This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

8. Analysis of the relationship between community characteristics and depression using geographically weighted regression.

Science.gov (United States)

Choi, Hyungyun; Kim, Ho

2017-01-01

Achieving national health equity is currently a pressing issue. Large regional variations in the health determinants are observed. Depression, one of the most common mental disorders, has large variations in incidence among different populations, and thus must be regionally analyzed. The present study aimed at analyzing regional disparities in depressive symptoms and identifying the health determinants that require regional interventions. Using health indicators of depression in the Korea Community Health Survey 2011 and 2013, the Moran's I was calculated for each variable to assess spatial autocorrelation, and a validated geographically weighted regression analysis using ArcGIS version 10.1 of different domains: health behavior, morbidity, and the social and physical environments were created, and the final model included a combination of significant variables in these models. In the health behavior domain, the weekly breakfast intake frequency of 1-2 times was the most significantly correlated with depression in all regions, followed by exposure to secondhand smoke and the level of perceived stress in some regions. In the morbidity domain, the rate of lifetime diagnosis of myocardial infarction was the most significantly correlated with depression. In the social and physical environment domain, the trust environment within the local community was highly correlated with depression, showing that lower the level of trust, higher was the level of depression. A final model was constructed and analyzed using highly influential variables from each domain. The models were divided into two groups according to the significance of correlation of each variable with the experience of depression symptoms. The indicators of the regional health status are significantly associated with the incidence of depressive symptoms within a region. The significance of this correlation varied across regions.

9. Analysis of the relationship between community characteristics and depression using geographically weighted regression

Directory of Open Access Journals (Sweden)

Hyungyun Choi

2017-06-01

Full Text Available OBJECTIVES Achieving national health equity is currently a pressing issue. Large regional variations in the health determinants are observed. Depression, one of the most common mental disorders, has large variations in incidence among different populations, and thus must be regionally analyzed. The present study aimed at analyzing regional disparities in depressive symptoms and identifying the health determinants that require regional interventions. METHODS Using health indicators of depression in the Korea Community Health Survey 2011 and 2013, the Moran’s I was calculated for each variable to assess spatial autocorrelation, and a validated geographically weighted regression analysis using ArcGIS version 10.1 of different domains: health behavior, morbidity, and the social and physical environments were created, and the final model included a combination of significant variables in these models. RESULTS In the health behavior domain, the weekly breakfast intake frequency of 1-2 times was the most significantly correlated with depression in all regions, followed by exposure to secondhand smoke and the level of perceived stress in some regions. In the morbidity domain, the rate of lifetime diagnosis of myocardial infarction was the most significantly correlated with depression. In the social and physical environment domain, the trust environment within the local community was highly correlated with depression, showing that lower the level of trust, higher was the level of depression. A final model was constructed and analyzed using highly influential variables from each domain. The models were divided into two groups according to the significance of correlation of each variable with the experience of depression symptoms. CONCLUSIONS The indicators of the regional health status are significantly associated with the incidence of depressive symptoms within a region. The significance of this correlation varied across regions.

10. Association of Attorney Advertising and FDA Action with Prescription Claims: A Time Series Segmented Regression Analysis.

Science.gov (United States)

Tippett, Elizabeth C; Chen, Brian K

2015-12-01

Attorneys sponsor television advertisements that include repeated warnings about adverse drug events to solicit consumers for lawsuits against drug manufacturers. The relationship between such advertising, safety actions by the US Food and Drug Administration (FDA), and healthcare use is unknown. To investigate the relationship between attorney advertising, FDA actions, and prescription drug claims. The study examined total users per month and prescription rates for seven drugs with substantial attorney advertising volume and FDA or other safety interventions during 2009. Segmented regression analysis was used to detect pre-intervention trends, post-intervention level changes, and changes in post-intervention trends relative to the pre-intervention trends in the use of these seven drugs, using advertising volume, media hits, and the number of Medicare enrollees as covariates. Data for these variables were obtained from the Center for Medicare and Medicaid Services, Kantar Media, and LexisNexis. Several types of safety actions were associated with reductions in drug users and/or prescription rates, particularly for fentanyl, varenicline, and paroxetine. In most cases, attorney advertising volume rose in conjunction with major safety actions. Attorney advertising volume was positively correlated with prescription rates in five of seven drugs, likely because advertising volume began rising before safety actions, when prescription rates were still increasing. On the other hand, attorney advertising had mixed associations with the number of users per month. Regulatory and safety actions likely reduced the number of users and/or prescription rates for some drugs. Attorneys may have strategically chosen to begin advertising adverse drug events prior to major safety actions, but we found little evidence that attorney advertising reduced drug use. Further research is needed to better understand how consumers and physicians respond to attorney advertising.

11. Oncological Outcomes After Robotic Proctectomy for Rectal Cancer: Analysis of a Prospective Database.

Science.gov (United States)

Sammour, Tarik; Malakorn, Songphol; Bednarski, Brian K; Kaur, Harmeet; Shin, Ui Sup; Messick, Craig; You, Yi-Qian Nancy; Chang, George J

2018-03-01

The aim of this study is to evaluate the oncological outcomes of robotic total mesorectal excision (TME) at an NCI designated cancer center. The effectiveness of laparoscopic TME could not be established, but the robotic-assisted approach may hold some promise, with improved visualization and ergonomics for pelvic dissection. Oncological outcome data is presently lacking. Patients who underwent total mesorectal excision or tumor-specific mesorectal excision for rectal cancer between April 2009 and April 2016 via a robotic approach were identified from a prospective single-institution database. The circumferential resection margin (CRM), distal resection margin, and TME completeness rates were determined. Kaplan-Meier analysis of disease-free survival and overall survival was performed for all patients treated with curative intent. A total of 276 patients underwent robotic proctectomy during the study period. Robotic surgery was performed initially by 1 surgeon with 3 additional surgeons progressively transitioning from open to robotic during the study period with annual increase in the total number of cases performed robotically. Seven patients had involved circumferential resection margins (2.5%), and there were no positive distal or proximal resection margins. One hundred eighty-six patients had TME quality assessed, and only 1 patient (0.5%) had an incomplete TME. Eighty-three patients were followed up for a minimum of 3 years, with a local recurrence rate of 2.4%, and a distant recurrence rate of 16.9%. Five-year disease-free survival on Kaplan-Meier analysis was 82%, and 5-year overall survival was 87%. Robotic proctectomy for rectal cancer can be performed with good short and medium term oncological outcomes in selected patients.

12. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

Science.gov (United States)

Karabatsos, George

2017-02-01

Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected

13. Statistical Analysis of Reactor Pressure Vessel Fluence Calculation Benchmark Data Using Multiple Regression Techniques

International Nuclear Information System (INIS)

Carew, John F.; Finch, Stephen J.; Lois, Lambros

2003-01-01

The calculated >1-MeV pressure vessel fluence is used to determine the fracture toughness and integrity of the reactor pressure vessel. It is therefore of the utmost importance to ensure that the fluence prediction is accurate and unbiased. In practice, this assurance is provided by comparing the predictions of the calculational methodology with an extensive set of accurate benchmarks. A benchmarking database is used to provide an estimate of the overall average measurement-to-calculation (M/C) bias in the calculations ( ). This average is used as an ad-hoc multiplicative adjustment to the calculations to correct for the observed calculational bias. However, this average only provides a well-defined and valid adjustment of the fluence if the M/C data are homogeneous; i.e., the data are statistically independent and there is no correlation between subsets of M/C data.Typically, the identification of correlations between the errors in the database M/C values is difficult because the correlation is of the same magnitude as the random errors in the M/C data and varies substantially over the database. In this paper, an evaluation of a reactor dosimetry benchmark database is performed to determine the statistical validity of the adjustment to the calculated pressure vessel fluence. Physical mechanisms that could potentially introduce a correlation between the subsets of M/C ratios are identified and included in a multiple regression analysis of the M/C data. Rigorous statistical criteria are used to evaluate the homogeneity of the M/C data and determine the validity of the adjustment.For the database evaluated, the M/C data are found to be strongly correlated with dosimeter response threshold energy and dosimeter location (e.g., cavity versus in-vessel). It is shown that because of the inhomogeneity in the M/C data, for this database, the benchmark data do not provide a valid basis for adjusting the pressure vessel fluence.The statistical criteria and methods employed in

14. Effect of air quality alerts on human health: a regression discontinuity analysis in Toronto, Canada.

Science.gov (United States)

Chen, Hong; Li, Qiongsi; Kaufman, Jay S; Wang, Jun; Copes, Ray; Su, Yushan; Benmarhnia, Tarik

2018-01-01

Ambient air pollution is a major health risk globally. To reduce adverse health effects on days when air pollution is high, government agencies worldwide have implemented air quality alert programmes. Despite their widespread use, little is known about whether these programmes produce any observable public-health benefits. We assessed the effectiveness of such programmes using a quasi-experimental approach. We assembled a population-based cohort comprising all individuals who resided in the city of Toronto (Ontario, Canada) from 2003 to 2012 (about 2·6 million people). We ascertained seven health outcomes known to be affected by short-term elevation of air pollution, using provincial health administrative databases. These health outcomes were cardiovascular-related mortality, respiratory-related mortality, and hospital admissions or emergency-department visits for acute myocardial infarction, heart failure, stroke, asthma, and chronic obstructive pulmonary disease (COPD). We applied a regression discontinuity design to assess the effectiveness of an intervention (ie, the air quality alert programme). To quantify the effect of the air quality alert programme, we estimated for each outcome both the absolute rate difference and the rate ratio attributable to programme eligibility (by intention-to-treat analysis) and the alerts themselves (by two-stage regression approach), respectively. Between Jan 1, 2003, and Dec 31, 2012, on average between three and 27 daily cardiovascular or respiratory events were reported in Toronto (depending on the outcome). Alert announcements reduced asthma-related emergency-department visits by 4·73 cases per 1 000 000 people per day (95% CI 0·55-9·38), or in relative terms by 25% (95% CI 1-47). Programme eligibility also led to 2·05 (95% CI 0·07-4·00) fewer daily emergency-department visits for asthma. We did not detect a significant reduction in any other health outcome as a result of alert announcements or programme

15. Phase 3 study of adjuvant radiotherapy versus wait and see in pT3 prostate cancer: impact of pathology review on analysis.

Science.gov (United States)

Bottke, Dirk; Golz, Reinhard; Störkel, Stephan; Hinke, Axel; Siegmann, Alessandra; Hertle, Lothar; Miller, Kurt; Hinkelbein, Wolfgang; Wiegel, Thomas

2013-08-01

In a randomised trial, radical prostatectomy (RP) followed by adjuvant radiotherapy (aRT) was compared with RP alone in patients with pT3 pN0 prostate cancer with or without positive margin at local pathology (German Cancer Society trial numbers ARO 96-02/AUO AP 09/95). A pathology review was performed on 85% of RP specimens of patients to investigate the influence of pathology review on the analysis. Patients post-RP (n=385) were randomised before achieving an undetectable prostate-specific antigen (PSA) level to either wait and see (n=192) or 60Gy aRT (n=193). Of 307 patients with undetectable PSA after RP, 262 had pathology review. These results were included prospectively into the analysis. Agreement between local and review pathology was measured by the total percentage of agreement and by simple kappa statistics. The prognostic reliability for the different parameters was analysed by Cox regression model. Event-free rates were determined by Kaplan-Meier analysis with a median follow-up of 40 mo for the wait-and-see arm and 38.5 mo for the aRT arm. There was fair concordance between pathology review and local pathologists for seminal vesicle invasion (pT3c: 91%; κ=0.76), surgical margin status (84%; κ=0.65), and for extraprostatic extension (pT3a/b: 75%; κ=0.74). Agreement was much less for Gleason score (47%; κ=0.42), whereby the review pathology resulted in a shift to Gleason score 7. In contrast to the analysis of progression-free survival with local pathology, the multivariate analysis including review pathology revealed PSMs and Gleason score >6 as significant prognostic factors. Phase 3 studies of postoperative treatment of prostate cancer should be accomplished in the future with a pathology review. In daily practice, a second opinion by a pathologist experienced in urogenital pathology would be desirable, in particular, for high-risk patients after RP. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.

16. TU-CD-BRB-08: Radiomic Analysis of FDG-PET Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated with SBRT

Energy Technology Data Exchange (ETDEWEB)

Cui, Y; Shirato, H [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Song, J; Pollom, E; Chang, D; Koong, A [Stanford University, Palo Alto, CA (United States); Li, R [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Stanford University, Palo Alto, CA (United States)

2015-06-15

Purpose: This study aims to identify novel prognostic imaging biomarkers in locally advanced pancreatic cancer (LAPC) using quantitative, high-throughput image analysis. Methods: 86 patients with LAPC receiving chemotherapy followed by SBRT were retrospectively studied. All patients had a baseline FDG-PET scan prior to SBRT. For each patient, we extracted 435 PET imaging features of five types: statistical, morphological, textural, histogram, and wavelet. These features went through redundancy checks, robustness analysis, as well as a prescreening process based on their concordance indices with respect to the relevant outcomes. We then performed principle component analysis on the remaining features (number ranged from 10 to 16), and fitted a Cox proportional hazard regression model using the first 3 principle components. Kaplan-Meier analysis was used to assess the ability to distinguish high versus low-risk patients separated by median predicted survival. To avoid overfitting, all evaluations were based on leave-one-out cross validation (LOOCV), in which each holdout patient was assigned to a risk group according to the model obtained from a separate training set. Results: For predicting overall survival (OS), the most dominant imaging features were wavelet coefficients. There was a statistically significant difference in OS between patients with predicted high and low-risk based on LOOCV (hazard ratio: 2.26, p<0.001). Similar imaging features were also strongly associated with local progression-free survival (LPFS) (hazard ratio: 1.53, p=0.026) on LOOCV. In comparison, neither SUVmax nor TLG was associated with LPFS (p=0.103, p=0.433) (Table 1). Results for progression-free survival and distant progression-free survival showed similar trends. Conclusion: Radiomic analysis identified novel imaging features that showed improved prognostic value over conventional methods. These features characterize the degree of intra-tumor heterogeneity reflected on FDG

17. Head and Neck Non-Melanoma Skin Cancer Treated By Superficial X-Ray Therapy: An Analysis of 1021 Cases.

Directory of Open Access Journals (Sweden)

Daniel Grossi Marconi

Full Text Available To report a single-institutional experience with the use of Superficial X-Ray Therapy (SXRT for head and neck non-melanoma skin cancer (N-MSC and to compare outcomes by prescribed fractionation schedules.The medical records of 597 patients with 1021 lesions (720 BCC, 242 SCC, 59 SCC in situ treated with kilovoltage radiation from 1979-2013 were retrospectively reviewed. The majority of patients were treated according to 1 of 3 institutional protocols based on the discretion of the radiation oncologist: 1 22 x 2.5 Gy; 2 20 x 2.5 Gy; 3 30 x 2.0 Gy. "T" stage at first presentation was as follows: Tis (59; T1 (765; T2 (175; T3 (6, T4 (9; Tx, (7. All patients were clinical N0 and M0 at presentation. Chi-square test was used to evaluate any potential association between variables. The Kaplan-Meier method was used to analyze survival with the Log Rank test used for comparison. A Cox Regression analysis was performed for multivariate analysis.The median follow up was 44 months. No significant difference was observed among the 3 prescribed fractionation schemes (p = 0.78 in terms of RTOG toxicity. There were no failures among SCC in situ, 37 local failures (23 BCC, 14 SCC, 5 regional failures (all SCC and 2 distant failures (both SCC. For BCC, the 5-year LC was 96% and the 10-year LC was 94%. For SCC the corresponding rates of local control were 92% and 87%, respectively (p = 0.03. The use of >2.0 Gy daily was significantly associated with improved LC on multivariate analysis (HR: 0.17; CI 95%: 0.05-0.59.SXRT for N-MSC of the head and neck is well tolerated, achieves excellent local control, and should continue to be recommended in the management of this disease. Fractionation schedules using >2.0 Gy daily appear to be associated with improved LC.

18. Postmastectomy Radiation Therapy Is Associated With Improved Survival in Node-Positive Male Breast Cancer: A Population Analysis

Energy Technology Data Exchange (ETDEWEB)

Abrams, Matthew J., E-mail: mabrams@tuftsmedicalcenter.org [Department of Radiation Oncology, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts (United States); Koffer, Paul P. [Department of Radiation Oncology, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts (United States); Wazer, David E. [Department of Radiation Oncology, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts (United States); Department of Radiation Oncology, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (United States); Hepel, Jaroslaw T. [Department of Radiation Oncology, The Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island (United States)

2017-06-01

Purpose: Because of its rarity, there are no randomized trials investigating postmastectomy radiation therapy (PMRT) in male breast cancer. This study retrospectively examines the impact of PMRT in male breast cancer patients in the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database. Methods and Materials: The SEER database 8.3.2 was queried for men ages 20+ with a diagnosis of localized or regional nonmetastatic invasive ductal/lobular carcinoma from 1998 to 2013. Included patients were treated by modified radical mastectomy (MRM), with or without adjuvant external beam radiation. Univariate and multivariate analyses evaluated predictors for PMRT use after MRM. Kaplan-Meier overall survival (OS) curves of the entire cohort and a case-matched cohort were calculated and compared by the log-rank test. Cox regression was used for multivariate survival analyses. Results: A total of 1933 patients were included in the unmatched cohort. There was no difference in 5-year OS between those who received PMRT and those who did not (78% vs 77%, respectively, P=.371); however, in the case-matched analysis, PMRT was associated with improved OS at 5 years (83% vs 54%, P<.001). On subset analysis of the unmatched cohort, PMRT was associated with improved OS in men with 1 to 3 positive nodes (5-year OS 79% vs 72% P=.05) and those with 4+ positive nodes (5-year OS 73% vs 53% P<.001). On multivariate analysis of the unmatched cohort, independent predictors for improved OS were use of PMRT: HR=0.551 (0.412-0.737) and estrogen receptor–positive disease: HR=0.577 (0.339-0.983). Predictors for a survival detriment were higher grade 3/4: HR=1.825 (1.105-3.015), larger tumor T2: HR=1.783 (1.357-2.342), T3/T4: HR=2.683 (1.809-3.978), higher N-stage: N1 HR=1.574 (1.184-2.091), N2/N3: HR=2.328 (1.684-3.218), black race: HR=1.689 (1.222-2.336), and older age 81+: HR=4.164 (1.497-11.582). Conclusions: There may be a survival benefit with the

19. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

Science.gov (United States)

Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

2017-05-01

Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in c