Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Applications of MIDAS regression in analysing trends in water quality
Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.
2014-04-01
We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.
Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H
2016-04-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.
Statistical and regression analyses of detected extrasolar systems
Czech Academy of Sciences Publication Activity Database
Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.
2013-01-01
Roč. 75, č. 1 (2013), s. 37-45 ISSN 0032-0633 Institutional support: RVO:61389021 Keywords : Exoplanets * Kepler candidates * Regression analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.630, year: 2013 http://www.sciencedirect.com/science/article/pii/S0032063312003066
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies
Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.
2016-01-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epide...
Analysing inequalities in Germany a structured additive distributional regression approach
Silbersdorff, Alexander
2017-01-01
This book seeks new perspectives on the growing inequalities that our societies face, putting forward Structured Additive Distributional Regression as a means of statistical analysis that circumvents the common problem of analytical reduction to simple point estimators. This new approach allows the observed discrepancy between the individuals’ realities and the abstract representation of those realities to be explicitly taken into consideration using the arithmetic mean alone. In turn, the method is applied to the question of economic inequality in Germany.
Estimating carbon and showing impacts of drought using satellite data in regression-tree models
Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.
2018-01-01
Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.
Tripepi, Giovanni; Jager, Kitty J.; Stel, Vianda S.; Dekker, Friedo W.; Zoccali, Carmine
2011-01-01
Because of some limitations of stratification methods, epidemiologists frequently use multiple linear and logistic regression analyses to address specific epidemiological questions. If the dependent variable is a continuous one (for example, systolic pressure and serum creatinine), the researcher
A case of parotid tumor showing remarkable regression following hyperthermo-chemo-radiotherapy
International Nuclear Information System (INIS)
Fujimura, Takashi; Yonemura, Yutaka; Kamata, Toru
1987-01-01
A 72-year-old woman developed adenocarcinoma of the left parotid gland. Because of the excessive size of her tumor and the fact that she suffered from severe liver dysfunction, she was treated by hyperthermo-chemo-radiotherapy (HCR therapy). After ten sessions of radiofrequency hyperthermia with HEH 500 (13.56 MHz radiofrequency wave), 50-Gy irradiation from a linac and administration of 33.0 g of tegafur in suppository form, the tumor mass showed remarkable regression decreasing in size by as much as 84 % on computed tomography. Histologically, the tumor which was resected under local anesthesia, showed almost total necrosis. The multidisciplinary HCR therapy was well tolerated and effective as a therapy for cancer in this case. (author)
USE OF THE SIMPLE LINEAR REGRESSION MODEL IN MACRO-ECONOMICAL ANALYSES
Directory of Open Access Journals (Sweden)
Constantin ANGHELACHE
2011-10-01
Full Text Available The article presents the fundamental aspects of the linear regression, as a toolbox which can be used in macroeconomic analyses. The article describes the estimation of the parameters, the statistical tests used, the homoscesasticity and heteroskedasticity. The use of econometrics instrument in macroeconomics is an important factor that guarantees the quality of the models, analyses, results and possible interpretation that can be drawn at this level.
International Nuclear Information System (INIS)
Bhowmik, K.R.; Islam, S.
2016-01-01
Logistic regression (LR) analysis is the most common statistical methodology to find out the determinants of childhood mortality. However, the significant predictors cannot be ranked according to their influence on the response variable. Multiple classification (MC) analysis can be applied to identify the significant predictors with a priority index which helps to rank the predictors. The main objective of the study is to find the socio-demographic determinants of childhood mortality at neonatal, post-neonatal, and post-infant period by fitting LR model as well as to rank those through MC analysis. The study is conducted using the data of Bangladesh Demographic and Health Survey 2007 where birth and death information of children were collected from their mothers. Three dichotomous response variables are constructed from children age at death to fit the LR and MC models. Socio-economic and demographic variables significantly associated with the response variables separately are considered in LR and MC analyses. Both the LR and MC models identified the same significant predictors for specific childhood mortality. For both the neonatal and child mortality, biological factors of children, regional settings, and parents socio-economic status are found as 1st, 2nd, and 3rd significant groups of predictors respectively. Mother education and household environment are detected as major significant predictors of post-neonatal mortality. This study shows that MC analysis with or without LR analysis can be applied to detect determinants with rank which help the policy makers taking initiatives on a priority basis. (author)
Erdheim-Chester disease in a child with MR imaging showing regression of marrow changes
International Nuclear Information System (INIS)
Joo, Chan Uhng; Go, Yang Sim; Kim, In Hwan; Kim, Chul Seong; Lee, Sang Yong
2005-01-01
Erdheim-Chester disease is a disseminated xanthogranulomatous infiltrative disease of unknown origin that generally presents in adulthood. A review of the English-language literature demonstrated that pediatric cases were extremely rare, and to our knowledge, only two cases, a 7- and 14-year-old, have been published. We report a case of Erdheim-Chester disease in a 10-year-old girl evaluated with MR imaging. Radiographs revealed typical bilateral, symmetric osteosclerosis of the metaphyseal regions of long bones of the upper and lower extremities. A histologic examination demonstrated foamy histiocytes in bone marrow smears. Bilateral symmetric low signal intensities of both proximal tibiae and distal femurs were demonstrated on T1-weighted MR images. After oral steroid therapy for 8 months, follow-up MR imaging showed remarkable restoration of normal high signal intensity in both the tibial and femoral metaphyses. To our knowledge, this may be the first case of Erdheim-Chester disease that showed normal restoration of the abnormal signal intensities in the metaphyses of long bones after steroid therapy. (orig.)
Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E
2017-12-01
1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.
Directory of Open Access Journals (Sweden)
Esther Leushuis
2016-12-01
Full Text Available Background: Standardization of the semen analysis may improve reproducibility. We assessed variability between laboratories in semen analyses and evaluated whether a transformation using Z scores and regression statistics was able to reduce this variability. Materials and Methods: We performed a retrospective cohort study. We calculated between-laboratory coefficients of variation (CVB for sperm concentration and for morphology. Subsequently, we standardized the semen analysis results by calculating laboratory specific Z scores, and by using regression. We used analysis of variance for four semen parameters to assess systematic differences between laboratories before and after the transformations, both in the circulation samples and in the samples obtained in the prospective cohort study in the Netherlands between January 2002 and February 2004. Results: The mean CVB was 7% for sperm concentration (range 3 to 13% and 32% for sperm morphology (range 18 to 51%. The differences between the laboratories were statistically significant for all semen parameters (all P<0.001. Standardization using Z scores did not reduce the differences in semen analysis results between the laboratories (all P<0.001. Conclusion: There exists large between-laboratory variability for sperm morphology and small, but statistically significant, between-laboratory variation for sperm concentration. Standardization using Z scores does not eliminate between-laboratory variability.
Analyses of Developmental Rate Isomorphy in Ectotherms: Introducing the Dirichlet Regression.
Directory of Open Access Journals (Sweden)
David S Boukal
Full Text Available Temperature drives development in insects and other ectotherms because their metabolic rate and growth depends directly on thermal conditions. However, relative durations of successive ontogenetic stages often remain nearly constant across a substantial range of temperatures. This pattern, termed 'developmental rate isomorphy' (DRI in insects, appears to be widespread and reported departures from DRI are generally very small. We show that these conclusions may be due to the caveats hidden in the statistical methods currently used to study DRI. Because the DRI concept is inherently based on proportional data, we propose that Dirichlet regression applied to individual-level data is an appropriate statistical method to critically assess DRI. As a case study we analyze data on five aquatic and four terrestrial insect species. We find that results obtained by Dirichlet regression are consistent with DRI violation in at least eight of the studied species, although standard analysis detects significant departure from DRI in only four of them. Moreover, the departures from DRI detected by Dirichlet regression are consistently much larger than previously reported. The proposed framework can also be used to infer whether observed departures from DRI reflect life history adaptations to size- or stage-dependent effects of varying temperature. Our results indicate that the concept of DRI in insects and other ectotherms should be critically re-evaluated and put in a wider context, including the concept of 'equiproportional development' developed for copepods.
How to show that unicorn milk is a chronobiotic: the regression-to-the-mean statistical artifact.
Atkinson, G; Waterhouse, J; Reilly, T; Edwards, B
2001-11-01
Few chronobiologists may be aware of the regression-to-the-mean (RTM) statistical artifact, even though it may have far-reaching influences on chronobiological data. With the aid of simulated measurements of the circadian rhythm phase of body temperature and a completely bogus stimulus (unicorn milk), we explain what RTM is and provide examples relevant to chronobiology. We show how RTM may lead to erroneous conclusions regarding individual differences in phase responses to rhythm disturbances and how it may appear as though unicorn milk has phase-shifting effects and can successfully treat some circadian rhythm disorders. Guidelines are provided to ensure RTM effects are minimized in chronobiological investigations.
The number of subjects per variable required in linear regression analyses
P.C. Austin (Peter); E.W. Steyerberg (Ewout)
2015-01-01
textabstractObjectives To determine the number of independent variables that can be included in a linear regression model. Study Design and Setting We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression
The number of subjects per variable required in linear regression analyses.
Austin, Peter C; Steyerberg, Ewout W
2015-06-01
To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Angstman, Nicholas B; Frank, Hans-Georg; Schmitz, Christoph
2016-01-01
As a widely used and studied model organism, Caenorhabditis elegans worms offer the ability to investigate implications of behavioral change. Although, investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plates with an E. coli lawn or with no lawn. Using an advanced software, WormLab, the full skeleton and outline of worms were tracked to determine whether the presence of food affects behavioral traits. In all seven investigated parameters, statistically significant differences were found in worm behavior between those moving on NGM-agar plates with an E. coli lawn and NGM-agar plates with no lawn. Furthermore, multiple test groups showed differences in interaction between variables as the parameters that significantly correlated statistically with speed of locomotion varied. In the present study, we demonstrate the validity of a model to analyze C. elegans behavior beyond simple speed of locomotion. The need to account for a nested design while performing statistical analyses in similar studies is also demonstrated. With extended analyses, C. elegans behavioral change can be investigated with greater sensitivity, which could have wide utility in fields such as, but not limited to, toxicology, drug discovery, and RNAi screening.
Directory of Open Access Journals (Sweden)
Nicholas eAngstman
2016-03-01
Full Text Available As a widely used and studied model organism, C. elegans worms offer the ability to investigate implications of behavioral change. Although investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plates with an E. coli lawn or with no lawn. Using an advanced software, WormLab, the full skeleton and outline of worms were tracked to determine whether the presence of food affects behavioral traits. In all seven investigated parameters, statistically significant differences were found in worm behavior between those moving on NGM-agar plates with an E. coli lawn and NGM-agar plates with no lawn. Furthermore, multiple test groups showed differences in interaction between variables as the parameters that significantly correlated statistically with speed of locomotion varied. In the present study, we demonstrate the validity of a model to analyze C. elegans behavior beyond simple speed of locomotion. The need to account for a nested design while performing statistical analyses in similar studies is also demonstrated. With extended analyses, C. elegans behavioral change can be investigated with greater sensitivity, which could have wide utility in fields such as, but not limited to, toxicology, drug discovery, and RNAi screening.
Chin Shan analyses show advantages of whole pool multi-rack approach
International Nuclear Information System (INIS)
Singh, K.P.; Soler, A.I.
1991-01-01
Nuclear fuel storage racks are essentially thin-walled, cellular structures of prismatic cross-section. Although the details of design vary from one supplier to another, certain key physical attributes are common to all designs. For example, all racks feature square cells of sufficient opening size and height to enable insertion and withdrawal of the fuel assembly. The array of cells is positioned in a vertical orientation and is supported off the pool slab surface by four or more support legs. The spent fuel pool is filled with the individual fuel racks. The plenum created by the support legs is essential for proper cooling of the fuel assemblies stored in the rack, which relies on natural convective cooling to extract the heat emitted by the spent fuel. However, it has the insalutary effect of making it kinematically less stable. Regulatory authorities require careful and comprehensive analysis of the response of the racks under the seismic motions postulated for the pool slab. Results from whole pool multi-rack (WPMR) analyses at the Chin Shan and Oyster Creek nuclear plants point up the potential inadequacies of single rack 3D analyses, and show just how important it is to carry out WPMR simulations, despite their abstruseness and high cost. (author)
Kromhout, D.
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the
Li, Spencer D.
2011-01-01
Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…
Wu, Dane W.
2002-01-01
The year 2000 US presidential election between Al Gore and George Bush has been the most intriguing and controversial one in American history. The state of Florida was the trigger for the controversy, mainly, due to the use of the misleading "butterfly ballot". Using prediction (or confidence) intervals for least squares regression lines…
Directory of Open Access Journals (Sweden)
Giuliano de Oliveira Freitas
2013-10-01
Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.
Check-all-that-apply data analysed by Partial Least Squares regression
DEFF Research Database (Denmark)
Rinnan, Åsmund; Giacalone, Davide; Frøst, Michael Bom
2015-01-01
are analysed by multivariate techniques. CATA data can be analysed both by setting the CATA as the X and the Y. The former is the PLS-Discriminant Analysis (PLS-DA) version, while the latter is the ANOVA-PLS (A-PLS) version. We investigated the difference between these two approaches, concluding...
DEFF Research Database (Denmark)
Scott, Neil W; Fayers, Peter M; Aaronson, Neil K
2010-01-01
Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise ...... when testing for DIF in HRQoL instruments. We focus on logistic regression methods, which are often used because of their efficiency, simplicity and ease of application....
International Nuclear Information System (INIS)
Slutskaya, N.G.; Mosseh, I.B.
2006-01-01
Data about genetic mutations under radiation and chemical treatment for different types of cells have been analyzed with correlation and regression analyses. Linear correlation between different genetic effects in sex cells and somatic cells have found. The results may be extrapolated on sex cells of human and mammals. (authors)
Antinomias do zoológico humano: sociabilidade selvagem, reality shows e regressão da consciência
Directory of Open Access Journals (Sweden)
Francisco Rüdiger
2008-11-01
Full Text Available Estuda-se no artigo as articulações ideológicas e sentido histórico dos chamados reality shows na sociedade brasileira contemporânea. Em primeiro, situamos o gênero numa perspectiva histórica, sublinhado suas raízes religiosas e populares em conexão com a formação do sistema de poder próprio do Ocidente. Depois, expõem-se alguns aspectos do fenômeno, chamando atenção para sua estrutura interna e seu sentido concreto em nossa organização societária, com base nas suas versões brasileiras. Em terceiro, focamos os textos nas relações de poder que se articulam por meio desses programas, discutindo algumas das várias teorizações a seu respeito. Adiante e continuando a recorrer a matérias de imprensa, procede-se a um julgamento dessas últimas, visando propor uma interpretação histórica de seu significado. A conclusão retorna ao marco inicial e oferece uma visão geral em que talvez se possa pensar melhor o que está em jogo nos reality shows. Palavras-chave reality shows no Brasil, programas de televisão, sociabilidade Abstract This article analyses the ideological connections and historical meaning of the so-called reality shows in the contemporary Brazillian society. At first, we locate this genre in a historical perspective, stressing its religious and popular roots but also the connections between it and the power systems that have built Western World. Secondly, the text expose the main features of this kind of television show, calling attention to its inner structure but also to its meaning in our social organization, making critical remarks about their Brazillian versions. Focusing on the power relations that are articulated in it, we discuss some theories made about them. The historical meaning of these shows in our present circumstances is projected in the fourth stage of the article, that explores some materials extracted from the press. Finally, we return to the larger historical context
DEFF Research Database (Denmark)
Tybjærg-Hansen, Anne
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements...... of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study......-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies...
Huang, Banglian; Yang, Yiming; Luo, Tingting; Wu, S.; Du, Xuezhu; Cai, Detian; Loo, van, E.N.; Huang Bangquan
2013-01-01
In the present study correlation, regression and path analyses were carried out to decide correlations among the agro- nomic traits and their contributions to seed yield per plant in Crambe abyssinica. Partial correlation analysis indicated that plant height (X1) was significantly correlated with branching height and the number of first branches (P <0.01); Branching height (X2) was significantly correlated with pod number of primary inflorescence (P <0.01) and number of secondary branch...
Directory of Open Access Journals (Sweden)
Željko V. Račić
2010-12-01
Full Text Available This paper aims to present the specifics of the application of multiple linear regression model. The economic (financial crisis is analyzed in terms of gross domestic product which is in a function of the foreign trade balance (on one hand and the credit cards, i.e. indebtedness of the population on this basis (on the other hand, in the USA (from 1999. to 2008. We used the extended application model which shows how the analyst should run the whole development process of regression model. This process began with simple statistical features and the application of regression procedures, and ended with residual analysis, intended for the study of compatibility of data and model settings. This paper also analyzes the values of some standard statistics used in the selection of appropriate regression model. Testing of the model is carried out with the use of the Statistics PASW 17 program.
Gilstrap, Donald L.
2013-01-01
In addition to qualitative methods presented in chaos and complexity theories in educational research, this article addresses quantitative methods that may show potential for future research studies. Although much in the social and behavioral sciences literature has focused on computer simulations, this article explores current chaos and…
Boysen, Elena; Schiller, Birgitta; Mörtl, Kathrin; Gündel, Harald; Hölzer, Michael
2018-01-10
Psychosocial working conditions attract more and more attention when it comes to mental health in the workplace. Trying to support managers to deal with their own as well as their employees' psychological risk factors, we conducted a specific manager training. Within this investigation, we wanted to learn about the training's effects and acceptance. A single-day manager training was provided in a large industrial company in Germany. The participants were asked to fill out questionnaires regarding their own physical and mental health condition as well as their working situation. Questionnaires were distributed at baseline, 3-month, and 12-month follow-up. At this point of time the investigation is still ongoing. The current article focuses on short-term preliminary effects. Analyses only included participants that already completed baseline and three months follow-up. Preliminary results from three-month follow-up survey ( n = 33, nmale = 30, Mage = 47.5) indicated positive changes in the manager's mental health condition measured by the Patient Health Questionnaire for depression (PHQ-9: Mt1 = 3.82, Mt2 = 3.15). Training managers about common mental disorders and risk factors at the workplace within a single-day workshop seems to promote positive effects on their own mental health. Especially working with the managers on their own early stress symptoms might have been an important element.
Analyses of non-fatal accidents in an opencast mine by logistic regression model - a case study.
Onder, Seyhan; Mutlu, Mert
2017-09-01
Accidents cause major damage for both workers and enterprises in the mining industry. To reduce the number of occupational accidents, these incidents should be properly registered and carefully analysed. This study efficiently examines the Aegean Lignite Enterprise (ELI) of Turkish Coal Enterprises (TKI) in Soma between 2006 and 2011, and opencast coal mine occupational accident records were used for statistical analyses. A total of 231 occupational accidents were analysed for this study. The accident records were categorized into seven groups: area, reason, occupation, part of body, age, shift hour and lost days. The SPSS package program was used in this study for logistic regression analyses, which predicted the probability of accidents resulting in greater or less than 3 lost workdays for non-fatal injuries. Social facilities-area of surface installations, workshops and opencast mining areas are the areas with the highest probability for accidents with greater than 3 lost workdays for non-fatal injuries, while the reasons with the highest probability for these types of accidents are transporting and manual handling. Additionally, the model was tested for such reported accidents that occurred in 2012 for the ELI in Soma and estimated the probability of exposure to accidents with lost workdays correctly by 70%.
Directory of Open Access Journals (Sweden)
Kevin D. Cashman
2017-05-01
Full Text Available Dietary Reference Values (DRVs for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years of the vitamin D intake–serum 25-hydroxyvitamin D (25(OHD dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OHD concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OHD >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OHD to vitamin D intake.
Cashman, Kevin D.; Ritz, Christian; Kiely, Mairead
2017-01-01
Dietary Reference Values (DRVs) for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs) are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD)-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years) of the vitamin D intake–serum 25-hydroxyvitamin D (25(OH)D) dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OH)D concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years) from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OH)D >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OH)D to vitamin D intake. PMID:28481259
Directory of Open Access Journals (Sweden)
Luise A Seeker
Full Text Available Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1 characterize the change in bovine relative leukocyte TL (RLTL across the lifetime in Holstein Friesian dairy cattle, 2 estimate genetic parameters of RLTL over time and 3 investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08 and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954.
Laszlo, Sarah; Federmeier, Kara D.
2010-01-01
Linking print with meaning tends to be divided into subprocesses, such as recognition of an input's lexical entry and subsequent access of semantics. However, recent results suggest that the set of semantic features activated by an input is broader than implied by a view wherein access serially follows recognition. EEG was collected from participants who viewed items varying in number and frequency of both orthographic neighbors and lexical associates. Regression analysis of single item ERPs replicated past findings, showing that N400 amplitudes are greater for items with more neighbors, and further revealed that N400 amplitudes increase for items with more lexical associates and with higher frequency neighbors or associates. Together, the data suggest that in the N400 time window semantic features of items broadly related to inputs are active, consistent with models in which semantic access takes place in parallel with stimulus recognition. PMID:20624252
Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R
2016-12-01
: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We
Xie, Heping; Wang, Fuxing; Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan
2017-01-01
Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = -0.11, 95% CI = [-0.19, -0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = -0.70, 95% CI = [-1.02, -0.38], p < 0.001), as well as dtransfer for cueing (β = -0.60, 95% CI = [-0.92, -0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning.
Directory of Open Access Journals (Sweden)
Abdelfattah M. Selim
2018-03-01
Full Text Available Aim: The present cross-sectional study was conducted to determine the seroprevalence and potential risk factors associated with Bovine viral diarrhea virus (BVDV disease in cattle and buffaloes in Egypt, to model the potential risk factors associated with the disease using logistic regression (LR models, and to fit the best predictive model for the current data. Materials and Methods: A total of 740 blood samples were collected within November 2012-March 2013 from animals aged between 6 months and 3 years. The potential risk factors studied were species, age, sex, and herd location. All serum samples were examined with indirect ELIZA test for antibody detection. Data were analyzed with different statistical approaches such as Chi-square test, odds ratios (OR, univariable, and multivariable LR models. Results: Results revealed a non-significant association between being seropositive with BVDV and all risk factors, except for species of animal. Seroprevalence percentages were 40% and 23% for cattle and buffaloes, respectively. OR for all categories were close to one with the highest OR for cattle relative to buffaloes, which was 2.237. Likelihood ratio tests showed a significant drop of the -2LL from univariable LR to multivariable LR models. Conclusion: There was an evidence of high seroprevalence of BVDV among cattle as compared with buffaloes with the possibility of infection in different age groups of animals. In addition, multivariable LR model was proved to provide more information for association and prediction purposes relative to univariable LR models and Chi-square tests if we have more than one predictor.
Energy Technology Data Exchange (ETDEWEB)
Reddy, T.A. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States)); Claridge, D.E. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States))
1994-01-01
Multiple regression modeling of monitored building energy use data is often faulted as a reliable means of predicting energy use on the grounds that multicollinearity between the regressor variables can lead both to improper interpretation of the relative importance of the various physical regressor parameters and to a model with unstable regressor coefficients. Principal component analysis (PCA) has the potential to overcome such drawbacks. While a few case studies have already attempted to apply this technique to building energy data, the objectives of this study were to make a broader evaluation of PCA and multiple regression analysis (MRA) and to establish guidelines under which one approach is preferable to the other. Four geographic locations in the US with different climatic conditions were selected and synthetic data sequence representative of daily energy use in large institutional buildings were generated in each location using a linear model with outdoor temperature, outdoor specific humidity and solar radiation as the three regression variables. MRA and PCA approaches were then applied to these data sets and their relative performances were compared. Conditions under which PCA seems to perform better than MRA were identified and preliminary recommendations on the use of either modeling approach formulated. (orig.)
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A
2015-03-01
Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O
2017-03-05
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized
Johansen, Mette; Bahrt, Henriette; Altman, Roy D; Bartels, Else M; Juhl, Carsten B; Bliddal, Henning; Lund, Hans; Christensen, Robin
2016-08-01
The aim was to identify factors explaining inconsistent observations concerning the efficacy of intra-articular hyaluronic acid compared to intra-articular sham/control, or non-intervention control, in patients with symptomatic osteoarthritis, based on randomized clinical trials (RCTs). A systematic review and meta-regression analyses of available randomized trials were conducted. The outcome, pain, was assessed according to a pre-specified hierarchy of potentially available outcomes. Hedges׳s standardized mean difference [SMD (95% CI)] served as effect size. REstricted Maximum Likelihood (REML) mixed-effects models were used to combine study results, and heterogeneity was calculated and interpreted as Tau-squared and I-squared, respectively. Overall, 99 studies (14,804 patients) met the inclusion criteria: Of these, only 71 studies (72%), including 85 comparisons (11,216 patients), had adequate data available for inclusion in the primary meta-analysis. Overall, compared with placebo, intra-articular hyaluronic acid reduced pain with an effect size of -0.39 [-0.47 to -0.31; P hyaluronic acid. Based on available trial data, intra-articular hyaluronic acid showed a better effect than intra-articular saline on pain reduction in osteoarthritis. Publication bias and the risk of selective outcome reporting suggest only small clinical effect compared to saline. Copyright © 2016 Elsevier Inc. All rights reserved.
Botha, J.; De Ridder, J.H.; Potgieter, J.C.; Steyn, H.S.; Malan, L.
2013-01-01
A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fa...
Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L
2018-02-01
A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Multi-Scale Carbon Isotopic Analyses Show Allende Nanodiamonds are Mostly Solar with Some PreSolar
Lewis, J. B.; Isheim, D.; Floss, C.; Gyngard, F.; Seidman, D. N.
2017-07-01
NanoSIMS and atom-probe experiments on different-sized aggregates of meteoritic nanodiamonds show mostly normal C isotopes, with a fraction of 13C-enriched material. The best interpretation is a combination of solar system and supernova formation.
Brouwer-Brolsma, E M; Sluik, D; Singh-Povel, C M; Feskens, E J M
2018-05-01
Previous studies have suggested weight-regulatory properties for several dairy nutrients, but population-based studies on dairy and body weight are inconclusive. We explored cross-sectional associations between dairy consumption and indicators of overweight. We included 114,682 Dutch adults, aged ≥18 years. Dairy consumption was quantified by a food frequency questionnaire. Abdominal overweight was defined as waist circumference (WC) ≥88 cm (women) or ≥102 cm (men) (n = 37,391), overweight as BMI ≥25-30 kg/m 2 (n = 44,772) and obesity as BMI ≥30 kg/m 2 (n = 15,339). Associations were quantified by logistic (abdominal overweight, no/yes), multinomial logistic (BMI-defined overweight and obesity) and linear regression analyses (continuous measures of WC and BMI), and they were adjusted for relevant covariates. Total dairy showed a positive association with abdominal overweight (OR Q1 ref vs. Q5: 1.09; 95% CI: 1.04-1.14) and with BMI-defined overweight (OR Q5 1.13; 95% CI: 1.08-1.18) and obesity (OR Q5 1.09; 95% CI: 1.02-1.16). Skimmed, semi-skimmed and non-fermented dairy also showed positive associations with overweight categories. Full-fat dairy showed an inverse association with overweight and obesity (OR Q5 for obesity: 0.78; 95% CI: 0.73-0.83). Moreover, inverse associations were observed for yoghurt and custard and positive associations for milk, buttermilk, flavoured yoghurt drinks, cheese and cheese snacks. Fermented dairy, curd cheese and Dutch cheese did not show a consistent association with overweight categories. Total, skimmed, semi-skimmed and non-fermented dairy; milk; buttermilk; flavoured yoghurt drinks; total cheese and cheese snacks showed a positive association with overweight categories, whereas full-fat dairy, custard and yoghurt showed an inverse association with overweight categories. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human
Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.
2008-01-01
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742
Directory of Open Access Journals (Sweden)
Aisha Munawar
2014-02-01
Full Text Available Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja, and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis. A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F cytotoxins, bradykinin-potentiating peptides (BPPs and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467 from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.
Hutton, Eileen K; Simioni, Julia C; Thabane, Lehana
2017-08-01
Among women with a fetus with a non-cephalic presentation, external cephalic version (ECV) has been shown to reduce the rate of breech presentation at birth and cesarean birth. Compared with ECV at term, beginning ECV prior to 37 weeks' gestation decreases the number of infants in a non-cephalic presentation at birth. The purpose of this secondary analysis was to investigate factors associated with a successful ECV procedure and to present this in a clinically useful format. Data were collected as part of the Early ECV Pilot and Early ECV2 Trials, which randomized 1776 women with a fetus in breech presentation to either early ECV (34-36 weeks' gestation) or delayed ECV (at or after 37 weeks). The outcome of interest was successful ECV, defined as the fetus being in a cephalic presentation immediately following the procedure, as well as at the time of birth. The importance of several factors in predicting successful ECV was investigated using two statistical methods: logistic regression and classification and regression tree (CART) analyses. Among nulliparas, non-engagement of the presenting part and an easily palpable fetal head were independently associated with success. Among multiparas, non-engagement of the presenting part, gestation less than 37 weeks and an easily palpable fetal head were found to be independent predictors of success. These findings were consistent with results of the CART analyses. Regardless of parity, descent of the presenting part was the most discriminating factor in predicting successful ECV and cephalic presentation at birth. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
DEFF Research Database (Denmark)
Bjelakovic, Goran; Nikolova, Dimitrinka; Gluud, Christian
2013-01-01
Evidence shows that antioxidant supplements may increase mortality. Our aims were to assess whether different doses of beta-carotene, vitamin A, and vitamin E affect mortality in primary and secondary prevention randomized clinical trials with low risk of bias.......Evidence shows that antioxidant supplements may increase mortality. Our aims were to assess whether different doses of beta-carotene, vitamin A, and vitamin E affect mortality in primary and secondary prevention randomized clinical trials with low risk of bias....
Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello
2014-11-05
Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (Pbisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.
Fossati, Andrea; Widiger, Thomas A; Borroni, Serena; Maffei, Cesare; Somma, Antonella
2017-06-01
To extend the evidence on the reliability and construct validity of the Five-Factor Model Rating Form (FFMRF) in its self-report version, two independent samples of Italian participants, which were composed of 510 adolescent high school students and 457 community-dwelling adults, respectively, were administered the FFMRF in its Italian translation. Adolescent participants were also administered the Italian translation of the Borderline Personality Features Scale for Children-11 (BPFSC-11), whereas adult participants were administered the Italian translation of the Triarchic Psychopathy Measure (TriPM). Cronbach α values were consistent with previous findings; in both samples, average interitem r values indicated acceptable internal consistency for all FFMRF scales. A multidimensional graded item response theory model indicated that the majority of FFMRF items had adequate discrimination parameters; information indices supported the reliability of the FFMRF scales. Both categorical (i.e., item-level) and scale-level regression analyses suggested that the FFMRF scores may predict a nonnegligible amount of variance in the BPFSC-11 total score in adolescent participants, and in the TriPM scale scores in adult participants.
Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally
2018-02-01
1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.
Samdal, Gro Beate; Eide, Geir Egil; Barth, Tom; Williams, Geoffrey; Meland, Eivind
2017-03-28
This systematic review aims to explain the heterogeneity in results of interventions to promote physical activity and healthy eating for overweight and obese adults, by exploring the differential effects of behaviour change techniques (BCTs) and other intervention characteristics. The inclusion criteria specified RCTs with ≥ 12 weeks' duration, from January 2007 to October 2014, for adults (mean age ≥ 40 years, mean BMI ≥ 30). Primary outcomes were measures of healthy diet or physical activity. Two reviewers rated study quality, coded the BCTs, and collected outcome results at short (≤6 months) and long term (≥12 months). Meta-analyses and meta-regressions were used to estimate effect sizes (ES), heterogeneity indices (I 2 ) and regression coefficients. We included 48 studies containing a total of 82 outcome reports. The 32 long term reports had an overall ES = 0.24 with 95% confidence interval (CI): 0.15 to 0.33 and I 2 = 59.4%. The 50 short term reports had an ES = 0.37 with 95% CI: 0.26 to 0.48, and I 2 = 71.3%. The number of BCTs unique to the intervention group, and the BCTs goal setting and self-monitoring of behaviour predicted the effect at short and long term. The total number of BCTs in both intervention arms and using the BCTs goal setting of outcome, feedback on outcome of behaviour, implementing graded tasks, and adding objects to the environment, e.g. using a step counter, significantly predicted the effect at long term. Setting a goal for change; and the presence of reporting bias independently explained 58.8% of inter-study variation at short term. Autonomy supportive and person-centred methods as in Motivational Interviewing, the BCTs goal setting of behaviour, and receiving feedback on the outcome of behaviour, explained all of the between study variations in effects at long term. There are similarities, but also differences in effective BCTs promoting change in healthy eating and physical activity and
Wang, Hui; Sui, Weiguo; Xue, Wen; Wu, Junyong; Chen, Jiejing; Dai, Yong
2014-09-01
Immunoglobulin A nephropathy (IgAN) is a complex trait regulated by the interaction among multiple physiologic regulatory systems and probably involving numerous genes, which leads to inconsistent findings in genetic studies. One possibility of failure to replicate some single-locus results is that the underlying genetics of IgAN nephropathy is based on multiple genes with minor effects. To learn the association between 23 single nucleotide polymorphisms (SNPs) in 14 genes predisposing to chronic glomerular diseases and IgAN in Han males, the 23 SNPs genotypes of 21 Han males were detected and analyzed with a BaiO gene chip, and their associations were analyzed with univariate analysis and multiple linear regression analysis. Analysis showed that CTLA4 rs231726 and CR2 rs1048971 revealed a significant association with IgAN. These findings support the multi-gene nature of the etiology of IgAN and propose a potential gene-gene interactive model for future studies.
Spady, Richard; Stouli, Sami
2012-01-01
We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...
Simons, Monique; de Vet, Emely; Chinapaw, Mai Jm; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes
2014-04-04
Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games-active games-seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a correlate of both active and non-active gaming
de Vet, Emely; Chinapaw, Mai JM; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes
2014-01-01
Background Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games—active games—seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. Objective The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. Methods A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Results Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a
Alexeeff, Stacey E; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A
2015-01-01
Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1 km × 1 km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R(2) yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with >0.9 out-of-sample R(2) yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the SEs. Land use regression models performed better in chronic effect simulations. These results can help researchers when interpreting health effect estimates in these types of studies.
Differentiating regressed melanoma from regressed lichenoid keratosis.
Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A
2017-04-01
Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.
2017-01-01
Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...
A.F. Voor (Anne); J.A. Severin (Juliëtte); E.M.E.H. Lesaffre (Emmanuel); M.C. Vos (Margreet)
2014-01-01
textabstractA systematic review and meta-Analyses were performed to identify the risk factors associated with carbapenem-resistant Pseudomonas aeruginosa and to identify sources and reservoirs for the pathogen. A systematic search of PubMed and Embase databases from 1 January 1987 until 27 January
Directory of Open Access Journals (Sweden)
Susanne Unverzagt
Full Text Available This study is an in-depth-analysis to explain statistical heterogeneity in a systematic review of implementation strategies to improve guideline adherence of primary care physicians in the treatment of patients with cardiovascular diseases. The systematic review included randomized controlled trials from a systematic search in MEDLINE, EMBASE, CENTRAL, conference proceedings and registers of ongoing studies. Implementation strategies were shown to be effective with substantial heterogeneity of treatment effects across all investigated strategies. Primary aim of this study was to explain different effects of eligible trials and to identify methodological and clinical effect modifiers. Random effects meta-regression models were used to simultaneously assess the influence of multimodal implementation strategies and effect modifiers on physician adherence. Effect modifiers included the staff responsible for implementation, level of prevention and definition pf the primary outcome, unit of randomization, duration of follow-up and risk of bias. Six clinical and methodological factors were investigated as potential effect modifiers of the efficacy of different implementation strategies on guideline adherence in primary care practices on the basis of information from 75 eligible trials. Five effect modifiers were able to explain a substantial amount of statistical heterogeneity. Physician adherence was improved by 62% (95% confidence interval (95% CI 29 to 104% or 29% (95% CI 5 to 60% in trials where other non-medical professionals or nurses were included in the implementation process. Improvement of physician adherence was more successful in primary and secondary prevention of cardiovascular diseases by around 30% (30%; 95% CI -2 to 71% and 31%; 95% CI 9 to 57%, respectively compared to tertiary prevention. This study aimed to identify effect modifiers of implementation strategies on physician adherence. Especially the cooperation of different health
Duda, David P.; Minnis, Patrick
2009-01-01
Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
Crown, William H
2014-02-01
This paper examines the use of propensity score matching in economic analyses of observational data. Several excellent papers have previously reviewed practical aspects of propensity score estimation and other aspects of the propensity score literature. The purpose of this paper is to compare the conceptual foundation of propensity score models with alternative estimators of treatment effects. References are provided to empirical comparisons among methods that have appeared in the literature. These comparisons are available for a subset of the methods considered in this paper. However, in some cases, no pairwise comparisons of particular methods are yet available, and there are no examples of comparisons across all of the methods surveyed here. Irrespective of the availability of empirical comparisons, the goal of this paper is to provide some intuition about the relative merits of alternative estimators in health economic evaluations where nonlinearity, sample size, availability of pre/post data, heterogeneity, and missing variables can have important implications for choice of methodology. Also considered is the potential combination of propensity score matching with alternative methods such as differences-in-differences and decomposition methods that have not yet appeared in the empirical literature.
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
Better Autologistic Regression
Directory of Open Access Journals (Sweden)
Mark A. Wolters
2017-11-01
Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.
Regression analysis with categorized regression calibrated exposure: some interesting findings
Directory of Open Access Journals (Sweden)
Hjartåker Anette
2006-07-01
Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a
Directory of Open Access Journals (Sweden)
Bruce B.W. Phiri
2016-06-01
Full Text Available Schistosomiasis and soil-transmitted helminth (STH infections constitute a major public health problem in many parts of sub-Saharan Africa. In areas where prevalence of geo-helminths and schistosomes is high, co-infection with multiple parasite species is common, resulting in disproportionately elevated burden compared with single infections. Determining risk factors of co-infection intensity is important for better design of targeted interventions. In this paper, we examined risk factors of hookworm and S. haematobium co-infection intensity, in Chikwawa district, southern Malawi in 2005, using bivariate count models. Results show that hookworm and S. haematobium infections were much localised with small proportion of individuals harbouring more parasites especially among school-aged children. The risk of co-intensity with both hookworm and S. haematobium was high for all ages, although this diminished with increasing age, increased with fishing (hookworm: coefficient. = 12.29; 95% CI = 11.50–13.09; S. haematobium: 0.040; 95% CI = 0.0037, 3.832. Both infections were abundant in those with primary education (hookworm: coef. = 0.072; 95% CI = 0.056, 0.401 and S. haematobium: coef. = 0.286; 95% CI = 0.034, 0.538. However, much lower risk was observed for those who were farmers (hookworm: coef. = −0.349, 95% CI = −0.547,−0.150; S. haematobium: coef. −0.239, 95% CI = −0.406, −0.072. In conclusion, our findings suggest that efforts to control helminths infection should be co-integrated and health promotion campaigns should be aimed at school-going children and adults who are in constant contact with water.
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Freund, Rudolf J; Sa, Ping
2006-01-01
The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design
Primetta, Anja K; Karppinen, Katja; Riihinen, Kaisu R; Jaakola, Laura
2015-09-01
MYBPA1-type R2R3 MYB transcription factor shows down-regulation in white mutant berries of Vaccinium uliginosum deficient in anthocyanins but not proanthocyanidins suggesting a role in the regulation of anthocyanin biosynthesis. Berries of the genus Vaccinium are among the best natural sources of flavonoids. In this study, the expression of structural and regulatory flavonoid biosynthetic genes and the accumulation of flavonoids in white mutant and blue-colored wild-type bog bilberry (V. uliginosum) fruits were measured at different stages of berry development. In contrast to high contents of anthocyanins in ripe blue-colored berries, only traces were detected by HPLC-ESI-MS in ripe white mutant berries. However, similar profile and high levels of flavonol glycosides and proanthocyanidins were quantified in both ripe white and ripe wild-type berries. Analysis with qRT-PCR showed strong down-regulation of structural genes chalcone synthase (VuCHS), dihydroflavonol 4-reductase (VuDFR) and anthocyanidin synthase (VuANS) as well as MYBPA1-type transcription factor VuMYBPA1 in white berries during ripening compared to wild-type berries. The profiles of transcript accumulation of chalcone isomerase (VuCHI), anthocyanidin reductase (VuANR), leucoanthocyanidin reductase (VuLAR) and flavonoid 3'5' hydroxylase (VuF3'5'H) were more similar between the white and the wild-type berries during fruit development, while expression of UDP-glucose: flavonoid 3-O-glucosyltransferase (VuUFGT) showed similar trend but fourfold lower level in white mutant. VuMYBPA1, the R2R3 MYB family member, is a homologue of VmMYB2 of V. myrtillus and VcMYBPA1 of V. corymbosum and belongs to MYBPA1-type MYB family which members are shown in some species to be related with proanthocyanidin biosynthesis in fruits. Our results combined with earlier data of the role of VmMYB2 in white mutant berries of V. myrtillus suggest that the regulation of anthocyanin biosynthesis in Vaccinium species could differ
Directory of Open Access Journals (Sweden)
Fabian Kurth
Full Text Available Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA. Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA. As expected, the redox properties, structure and surface features (from crystal and NMR data of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Mulroy, Sara J; Winstein, Carolee J; Kulig, Kornelia; Beneck, George J; Fowler, Eileen G; DeMuth, Sharon K; Sullivan, Katherine J; Brown, David A; Lane, Christianne J
2011-12-01
Each of the 4 randomized clinical trials (RCTs) hosted by the Physical Therapy Clinical Research Network (PTClinResNet) targeted a different disability group (low back disorder in the Muscle-Specific Strength Training Effectiveness After Lumbar Microdiskectomy [MUSSEL] trial, chronic spinal cord injury in the Strengthening and Optimal Movements for Painful Shoulders in Chronic Spinal Cord Injury [STOMPS] trial, adult stroke in the Strength Training Effectiveness Post-Stroke [STEPS] trial, and pediatric cerebral palsy in the Pediatric Endurance and Limb Strengthening [PEDALS] trial for children with spastic diplegic cerebral palsy) and tested the effectiveness of a muscle-specific or functional activity-based intervention on primary outcomes that captured pain (STOMPS, MUSSEL) or locomotor function (STEPS, PEDALS). The focus of these secondary analyses was to determine causal relationships among outcomes across levels of the International Classification of Functioning, Disability and Health (ICF) framework for the 4 RCTs. With the database from PTClinResNet, we used 2 separate secondary statistical approaches-mediation analysis for the MUSSEL and STOMPS trials and regression analysis for the STEPS and PEDALS trials-to test relationships among muscle performance, primary outcomes (pain related and locomotor related), activity and participation measures, and overall quality of life. Predictive models were stronger for the 2 studies with pain-related primary outcomes. Change in muscle performance mediated or predicted reductions in pain for the MUSSEL and STOMPS trials and, to some extent, walking speed for the STEPS trial. Changes in primary outcome variables were significantly related to changes in activity and participation variables for all 4 trials. Improvement in activity and participation outcomes mediated or predicted increases in overall quality of life for the 3 trials with adult populations. Variables included in the statistical models were limited to those
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Logistic regression applied to natural hazards: rare event logistic regression with replications
Directory of Open Access Journals (Sweden)
M. Guns
2012-06-01
Full Text Available Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Bayesian ARTMAP for regression.
Sasu, L M; Andonie, R
2013-10-01
Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
Steganalysis using logistic regression
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Tumor regression patterns in retinoblastoma
International Nuclear Information System (INIS)
Zafar, S.N.; Siddique, S.N.; Zaheer, N.
2016-01-01
To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)
Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko
2017-11-30
The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Directory of Open Access Journals (Sweden)
F.M.O. Borges
2003-12-01
que significou pouca influência da metodologia sobre essa medida. A FDN não mostrou ser melhor preditor de EM do que a FB.One experiment was run with broiler chickens, to obtain prediction equations for metabolizable energy (ME based on feedstuffs chemical analyses, and determined ME of wheat grain and its by-products, using four different methodologies. Seven wheat grain by-products were used in five treatments: wheat grain, wheat germ, white wheat flour, dark wheat flour, wheat bran for human use, wheat bran for animal use and rough wheat bran. Based on chemical analyses of crude fiber (CF, ether extract (EE, crude protein (CP, ash (AS and starch (ST of the feeds and the determined values of apparent energy (MEA, true energy (MEV, apparent corrected energy (MEAn and true energy corrected by nitrogen balance (MEVn in five treatments, prediction equations were obtained using the stepwise procedure. CF showed the best relationship with metabolizable energy values, however, this variable alone was not enough for a good estimate of the energy values (R² below 0.80. When EE and CP were included in the equations, R² increased to 0.90 or higher in most estimates. When the equations were calculated with all treatments, the equation for MEA were less precise and R² decreased. When ME data of the traditional or force-feeding methods were used separately, the precision of the equations increases (R² higher than 0.85. For MEV and MEVn values, the best multiple linear equations included CF, EE and CP (R²>0.90, independently of using all experimental data or separating by methodology. The estimates of MEVn values showed high precision and the linear coefficients (a of the equations were similar for all treatments or methodologies. Therefore, it explains the small influence of the different methodologies on this parameter. NDF was not a better predictor of ME than CF.
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard
and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...
Regression to Causality : Regression-style presentation influences causal attribution
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.
2014-01-01
Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.
Directory of Open Access Journals (Sweden)
Nicola Döring
2006-05-01
Full Text Available This book deals with the phenomenon of the daytime talk show from a sociological perspective. The author questions the common cultural pessimism of this TV format ("exhibitionist guests," "voyeuristic spectators". He first describes the characteristics of the daytime talk show and summarizes the results of previous surveys that reveal a broad variety of talk show guests' and recipients' motives—beyond pathology. Drawing on concepts like civilization and individualisation, the book outlines the societal functions of the daytime talk show. A participatory observation study in the editorial office of "Hans Meiser" and free interpretations of three series from "Vera am Mittag" are presented as "empirical evidence." Unfortunately the book lacks theoretical and methodological rigor and a sound empirical basis. The bibliography could have been more comprehensive. The work is useful, though, as an inspired, readable introduction into the topic. URN: urn:nbn:de:0114-fqs0603119
Understanding logistic regression analysis
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...
Introduction to regression graphics
Cook, R Dennis
2009-01-01
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava
Alternative Methods of Regression
Birkes, David
2011-01-01
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s
Comparing parametric and nonparametric regression methods for panel data
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...
Estimating the exceedance probability of rain rate by logistic regression
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
A Simulation Investigation of Principal Component Regression.
Allen, David E.
Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Multilingual speaker age recognition: regression analyses on the Lwazi corpus
CSIR Research Space (South Africa)
Feld, M
2009-12-01
Full Text Available Multilinguality represents an area of significant opportunities for automatic speech-processing systems: whereas multilingual societies are commonplace, the majority of speechprocessing systems are developed with a single language in mind. As a step...
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Shafiq, M. Najeeb
2013-01-01
Using quantile regression analyses, this study examines gender gaps in mathematics, science, and reading in Azerbaijan, Indonesia, Jordan, the Kyrgyz Republic, Qatar, Tunisia, and Turkey among 15-year-old students. The analyses show that girls in Azerbaijan achieve as well as boys in mathematics and science and overachieve in reading. In Jordan,…
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
Directory of Open Access Journals (Sweden)
Mok Tik
2014-06-01
Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.
Nasution, Inggrita Gusti Sari; Muchtar, Yasmin Chairunnisa
2013-01-01
This research is to study the factors which influence the business success of small business ‘processed rotan’. The data employed in the study are primary data within the period of July to August 2013, 30 research observations through census method. Method of analysis used in the study is multiple linear regressions. The results of analysis showed that the factors of labor, innovation and promotion have positive and significant influence on the business success of small busine...
Showing/Sharing: Analysing Visual Communication from a Praxeological Perspective
Directory of Open Access Journals (Sweden)
Maria Schreiber
2017-12-01
Full Text Available This contribution proposes a methodological framework for empirical research into visual practices on social media. The framework identifies practices, pictures and platforms as relevant dimensions of analysis. It is mainly developed within, and is compatible with qualitative, interpretive approaches which focus on visual communication as part of everyday personal communicative practices. Two screenshots from Instagram and Facebook are introduced as empirical examples to investigate collaborative practices of meaning-making relating to pictures on social media. While social media seems to augment reflexive, processual practices of negotiating identities, visual media, in particular, amps up aesthetic, ambivalent and embodied dimensions within these practices.
Multicollinearity and Regression Analysis
Daoud, Jamal I.
2017-12-01
In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.
DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....
Prediction, Regression and Critical Realism
DEFF Research Database (Denmark)
Næss, Petter
2004-01-01
This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...
Multiple linear regression analysis
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
and Multinomial Logistic Regression
African Journals Online (AJOL)
This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).
Mechanisms of neuroblastoma regression
Brodeur, Garrett M.; Bagatell, Rochelle
2014-01-01
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Spontaneous regression of a congenital melanocytic nevus
Directory of Open Access Journals (Sweden)
Amiya Kumar Nath
2011-01-01
Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.
Ridge Regression Signal Processing
Kuhl, Mark R.
1990-01-01
The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.
Subset selection in regression
Miller, Alan
2002-01-01
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...
Regression in organizational leadership.
Kernberg, O F
1979-02-01
The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.
Classification and regression trees
Breiman, Leo; Olshen, Richard A; Stone, Charles J
1984-01-01
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
KELEŞ, Taliha; ALTUN, Murat
2016-01-01
Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...
Hilbe, Joseph M
2009-01-01
This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...
SEPARATION PHENOMENA LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
Ikaro Daniel de Carvalho Barreto
2014-03-01
Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
Polylinear regression analysis in radiochemistry
International Nuclear Information System (INIS)
Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.
1995-01-01
A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis
DEFF Research Database (Denmark)
Hansen, Henrik; Tarp, Finn
2001-01-01
This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...
Measurement Error in Education and Growth Regressions
Portela, M.; Teulings, C.N.; Alessie, R.
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Measurement error in education and growth regressions
Portela, Miguel; Teulings, Coen; Alessie, R.
2004-01-01
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Panel data specifications in nonparametric kernel regression
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...
Use of probabilistic weights to enhance linear regression myoelectric control
Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.
2015-12-01
Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
DEFF Research Database (Denmark)
2014-01-01
The anti-reenactment 'Show-Bix &' consists of 5 dias projectors, a dial phone, quintophonic sound, and interactive elements. A responsive interface will enable the Dias projectors to show copies of original dias slides from the Show-Bix piece ”March på Stedet”, 265 images in total. The copies are...
Spontaneous regression of pulmonary bullae
International Nuclear Information System (INIS)
Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.
2002-01-01
The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd
Quantum algorithm for linear regression
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
DEFF Research Database (Denmark)
Andersen, Steffen; Harrison, Glenn W.; Lau, Morten I.
2008-01-01
We review the use of behavior from television game shows to infer risk attitudes. These shows provide evidence when contestants are making decisions over very large stakes, and in a replicated, structured way. Inferences are generally confounded by the subjective assessment of skill in some games......, and the dynamic nature of the task in most games. We consider the game shows Card Sharks, Jeopardy!, Lingo, and finally Deal Or No Deal. We provide a detailed case study of the analyses of Deal Or No Deal, since it is suitable for inference about risk attitudes and has attracted considerable attention....
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Regression in autistic spectrum disorders.
Stefanatos, Gerry A
2008-12-01
A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.
On Weighted Support Vector Regression
DEFF Research Database (Denmark)
Han, Xixuan; Clemmensen, Line Katrine Harder
2014-01-01
We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...
Variable and subset selection in PLS regression
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2001-01-01
The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...
Linear regression in astronomy. I
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
DEFF Research Database (Denmark)
Sandvik, Kjetil; Laursen, Ditte
2014-01-01
User interaction with radio and television programmes is not a new thing. However, with new cross-media production concepts such as X Factor and Voice, this is changing dramatically. The second-screen logic of these productions encourages viewers, along with TV’s traditional one-way communication...... mode, to communicate on interactive (dialogue-enabling) devices such as laptops, smartphones and tablets. Using the TV show Voice as our example, this article shows how the technological and situational set-up of the production invites viewers to engage in new ways of interaction and communication...
Linear regression in astronomy. II
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Time-adaptive quantile regression
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik
2008-01-01
and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....
Moore, Mitzi Ruth
1992-01-01
Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)
Corbee, R J
2014-12-01
Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Honored Teacher Shows Commitment.
Ratte, Kathy
1987-01-01
Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)
Quantile regression theory and applications
Davino, Cristina; Vistocco, Domenico
2013-01-01
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and
International Nuclear Information System (INIS)
1988-01-01
The Energy Show is a new look at the problems of world energy, where our supplies come from, now and in the future. The programme looks at how we need energy to maintain our standards of living. Energy supply is shown as the complicated set of problems it is - that Fossil Fuels are both raw materials and energy sources, that some 'alternatives' so readily suggested as practical options are in reality a long way from being effective. (author)
Panel Smooth Transition Regression Models
DEFF Research Database (Denmark)
González, Andrés; Terasvirta, Timo; Dijk, Dick van
We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Logistic Regression: Concept and Application
Cokluk, Omay
2010-01-01
The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…
Fungible weights in logistic regression.
Jones, Jeff A; Waller, Niels G
2016-06-01
In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
International Nuclear Information System (INIS)
Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei
2007-01-01
Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age
The study of logistic regression of risk factor on the death cause of uranium miners
International Nuclear Information System (INIS)
Wen Jinai; Yuan Liyun; Jiang Ruyi
1999-01-01
Logistic regression model has widely been used in the field of medicine. The computer software on this model is popular, but it is worth to discuss how to use this model correctly. Using SPSS (Statistical Package for the Social Science) software, unconditional logistic regression method was adopted to carry out multi-factor analyses on the cause of total death, cancer death and lung cancer death of uranium miners. The data is from radioepidemiological database of one uranium mine. The result show that attained age is a risk factor in the logistic regression analyses of total death, cancer death and lung cancer death. In the logistic regression analysis of cancer death, there is a negative correlation between the age of exposure and cancer death. This shows that the younger the age at exposure, the bigger the risk of cancer death. In the logistic regression analysis of lung cancer death, there is a positive correlation between the cumulated exposure and lung cancer death, this show that cumulated exposure is a most important risk factor of lung cancer death on uranium miners. It has been documented by many foreign reports that the lung cancer death rate is higher in uranium miners
Directory of Open Access Journals (Sweden)
Denise Koufogiannakis
2009-06-01
Full Text Available When Su Cleyle and I first decided to start Evidence Based Library and Information Practice, one of the things we agreed upon immediately was that the journal be open access. We knew that a major obstacle to librarians using the research literature was that they did not have access to the research literature. Although Su and I are both academic librarians who can access a wide variety of library and information literature from our institutions, we belong to a profession where not everyone has equal access to the research in our field. Without such access to our own body of literature, how can we ever hope for practitioners to use research evidence in their decision making? It would have been contradictory to the principles of evidence based library and information practice to do otherwise.One of the specific groups we thought could use such an open access venue for discovering research literature was school librarians. School librarians are often isolated and lacking access to the research literature that may help them prove to stakeholders the importance of their libraries and their role within schools. Certainly, school libraries have been in decline and the use of evidence to show value is needed. As Ken Haycock noted in his 2003 report, The Crisis in Canada’s School Libraries: The Case for Reform and Reinvestment, “Across the country, teacher-librarians are losing their jobs or being reassigned. Collections are becoming depleted owing to budget cuts. Some principals believe that in the age of the Internet and the classroom workstation, the school library is an artifact” (9. Within this context, school librarians are looking to our research literature for evidence of the impact that school library programs have on learning outcomes and student success. They are integrating that evidence into their practice, and reflecting upon what can be improved locally. They are focusing on students and showing the impact of school libraries and
Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner
Directory of Open Access Journals (Sweden)
Luciano Fanton
2012-01-01
Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...
Augmenting Data with Published Results in Bayesian Linear Regression
de Leeuw, Christiaan; Klugkist, Irene
2012-01-01
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Predicting Word Reading Ability: A Quantile Regression Study
McIlraith, Autumn L.
2018-01-01
Predictors of early word reading are well established. However, it is unclear if these predictors hold for readers across a range of word reading abilities. This study used quantile regression to investigate predictive relationships at different points in the distribution of word reading. Quantile regression analyses used preschool and…
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
National Research Council Canada - National Science Library
Aberg, P
2001-01-01
... before and after application of chemicals on volar forearms of volunteers, Tegobetaine and sodium lauryl sulphate were used to induce the irritations, The spectra were filtered using orthogonal signal correction (OSC...
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Directory of Open Access Journals (Sweden)
Minh Vu Trieu
2017-03-01
Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Abstract Expression Grammar Symbolic Regression
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Quantile Regression With Measurement Error
Wei, Ying; Carroll, Raymond J.
2009-01-01
. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
From Rasch scores to regression
DEFF Research Database (Denmark)
Christensen, Karl Bang
2006-01-01
Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....
Testing Heteroscedasticity in Robust Regression
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2011-01-01
Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf
Regression methods for medical research
Tai, Bee Choo
2013-01-01
Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the
Forecasting with Dynamic Regression Models
Pankratz, Alan
2012-01-01
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
Multiple Linear Regression: A Realistic Reflector.
Nutt, A. T.; Batsell, R. R.
Examples of the use of Multiple Linear Regression (MLR) techniques are presented. This is done to show how MLR aids data processing and decision-making by providing the decision-maker with freedom in phrasing questions and by accurately reflecting the data on hand. A brief overview of the rationale underlying MLR is given, some basic definitions…
Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A
2009-02-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.
International Nuclear Information System (INIS)
Jafri, Y.Z.; Kamal, L.
2007-01-01
Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)
On Solving Lq-Penalized Regressions
Directory of Open Access Journals (Sweden)
Tracy Zhou Wu
2007-01-01
Full Text Available Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the absolute value. We propose a new solution method for the general Lq-penalized regression problem based on space transformation and thus efficient optimization algorithms. The new method has immediate applications in statistics, notably in penalized spline smoothing problems. In particular, the LASSO problem is shown to be polynomial time solvable. Numerical studies show promise of our approach.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Guns, M.; Vanacker, Veerle
2012-01-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logisti...
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Producing The New Regressive Left
DEFF Research Database (Denmark)
Crone, Christine
members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
A Matlab program for stepwise regression
Directory of Open Access Journals (Sweden)
Yanhong Qi
2016-03-01
Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
Regression filter for signal resolution
International Nuclear Information System (INIS)
Matthes, W.
1975-01-01
The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)
Bogetvedt, Ingvild Engen; Hauge, Mari Johnsrud
2017-01-01
This study explores the impact of institutional quality at the municipal level on deforestation in the Legal Amazon. We add to this insufficiently understood topic by implementing a geographic regression discontinuity design. By taking advantage of high-resolution spatial data on deforestation combined with an objective measure of corruption used as a proxy for institutional quality, we analyse 138 Brazilian municipalities in the period of 2002-2004. Our empirical findings show...
Cactus: An Introduction to Regression
Hyde, Hartley
2008-01-01
When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…
Regression Models for Repairable Systems
Czech Academy of Sciences Publication Activity Database
Novák, Petr
2015-01-01
Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf
Survival analysis II: Cox regression
Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.
2011-01-01
In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the
Kernel regression with functional response
Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe
2011-01-01
We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.
Linear regression and the normality assumption.
Schmidt, Amand F; Finan, Chris
2017-12-16
Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.
Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M
2007-09-01
Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.
Controlling attribute effect in linear regression
Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang
2013-01-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Controlling attribute effect in linear regression
Calders, Toon
2013-12-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki
2014-12-01
This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
Multivariate and semiparametric kernel regression
Härdle, Wolfgang; Müller, Marlene
1997-01-01
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...
Regression algorithm for emotion detection
Berthelon , Franck; Sander , Peter
2013-01-01
International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...
Directional quantile regression in R
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2017-01-01
Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Gaussian Process Regression Model in Spatial Logistic Regression
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Polygenic scores via penalized regression on summary statistics.
Mak, Timothy Shin Heng; Porsch, Robert Milan; Choi, Shing Wan; Zhou, Xueya; Sham, Pak Chung
2017-09-01
Polygenic scores (PGS) summarize the genetic contribution of a person's genotype to a disease or phenotype. They can be used to group participants into different risk categories for diseases, and are also used as covariates in epidemiological analyses. A number of possible ways of calculating PGS have been proposed, and recently there is much interest in methods that incorporate information available in published summary statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent question is how we can use LD information available elsewhere to supplement such analyses. To answer this question, we propose a method for constructing PGS using summary statistics and a reference panel in a penalized regression framework, which we call lassosum. We also propose a general method for choosing the value of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We also showed that lassosum achieved better prediction accuracy than simple clumping and P-value thresholding in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred. © 2017 WILEY PERIODICALS, INC.
Tutorial on Using Regression Models with Count Outcomes Using R
Directory of Open Access Journals (Sweden)
A. Alexander Beaujean
2016-02-01
Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.
Selecting a Regression Saturated by Indicators
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....
Selecting a Regression Saturated by Indicators
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest...
Are increases in cigarette taxation regressive?
Borren, P; Sutton, M
1992-12-01
Using the latest published data from Tobacco Advisory Council surveys, this paper re-evaluates the question of whether or not increases in cigarette taxation are regressive in the United Kingdom. The extended data set shows no evidence of increasing price-elasticity by social class as found in a major previous study. To the contrary, there appears to be no clear pattern in the price responsiveness of smoking behaviour across different social classes. Increases in cigarette taxation, while reducing smoking levels in all groups, fall most heavily on men and women in the lowest social class. Men and women in social class five can expect to pay eight and eleven times more of a tax increase respectively, than their social class one counterparts. Taken as a proportion of relative incomes, the regressive nature of increases in cigarette taxation is even more pronounced.
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Keith, Timothy Z
2014-01-01
Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.
Modeling oil production based on symbolic regression
International Nuclear Information System (INIS)
Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju
2015-01-01
Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak
On logistic regression analysis of dichotomized responses.
Lu, Kaifeng
2017-01-01
We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
General regression and representation model for classification.
Directory of Open Access Journals (Sweden)
Jianjun Qian
Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.
Interpreting Bivariate Regression Coefficients: Going beyond the Average
Halcoussis, Dennis; Phillips, G. Michael
2010-01-01
Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…
Statistical analysis of sediment toxicity by additive monotone regression splines
Boer, de W.J.; Besten, den P.J.; Braak, ter C.J.F.
2002-01-01
Modeling nonlinearity and thresholds in dose-effect relations is a major challenge, particularly in noisy data sets. Here we show the utility of nonlinear regression with additive monotone regression splines. These splines lead almost automatically to the estimation of thresholds. We applied this
Competing Risks Quantile Regression at Work
DEFF Research Database (Denmark)
Dlugosz, Stephan; Lo, Simon M. S.; Wilke, Ralf
2017-01-01
large-scale maternity duration data with multiple competing risks derived from German linked social security records to analyse how public policies are related to the length of economic inactivity of young mothers after giving birth. Our results show that the model delivers detailed insights...
An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions
Energy Technology Data Exchange (ETDEWEB)
Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.
2016-07-01
Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)
Quantile regression for the statistical analysis of immunological data with many non-detects.
Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth
2012-07-07
Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.
Conjoined legs: Sirenomelia or caudal regression syndrome?
Directory of Open Access Journals (Sweden)
Sakti Prasad Das
2013-01-01
Full Text Available Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.
Conjoined legs: Sirenomelia or caudal regression syndrome?
Das, Sakti Prasad; Ojha, Niranjan; Ganesh, G Shankar; Mohanty, Ram Narayan
2013-07-01
Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.
Credit Scoring Problem Based on Regression Analysis
Khassawneh, Bashar Suhil Jad Allah
2014-01-01
ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....
Variable selection and model choice in geoadditive regression models.
Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard
2009-06-01
Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.
Regression away from the mean: Theory and examples.
Schwarz, Wolf; Reike, Dennis
2018-02-01
Using a standard repeated measures model with arbitrary true score distribution and normal error variables, we present some fundamental closed-form results which explicitly indicate the conditions under which regression effects towards (RTM) and away from the mean are expected. Specifically, we show that for skewed and bimodal distributions many or even most cases will show a regression effect that is in expectation away from the mean, or that is not just towards but actually beyond the mean. We illustrate our results in quantitative detail with typical examples from experimental and biometric applications, which exhibit a clear regression away from the mean ('egression from the mean') signature. We aim not to repeal cautionary advice against potential RTM effects, but to present a balanced view of regression effects, based on a clear identification of the conditions governing the form that regression effects take in repeated measures designs. © 2017 The British Psychological Society.
An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy
DEFF Research Database (Denmark)
Merlo, Juan; Wagner, Philippe; Ghith, Nermin
2016-01-01
BACKGROUND AND AIM: Many multilevel logistic regression analyses of "neighbourhood and health" focus on interpreting measures of associations (e.g., odds ratio, OR). In contrast, multilevel analysis of variance is rarely considered. We propose an original stepwise analytical approach that disting...
Interpreting Multiple Linear Regression: A Guidebook of Variable Importance
Nathans, Laura L.; Oswald, Frederick L.; Nimon, Kim
2012-01-01
Multiple regression (MR) analyses are commonly employed in social science fields. It is also common for interpretation of results to typically reflect overreliance on beta weights, often resulting in very limited interpretations of variable importance. It appears that few researchers employ other methods to obtain a fuller understanding of what…
Use of probabilistic weights to enhance linear regression myoelectric control.
Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J
2015-12-01
Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts' law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p linear regression control. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
Independent contrasts and PGLS regression estimators are equivalent.
Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary
2012-05-01
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.
A flexible fuzzy regression algorithm for forecasting oil consumption estimation
International Nuclear Information System (INIS)
Azadeh, A.; Khakestani, M.; Saberi, M.
2009-01-01
Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.
Nonparametric additive regression for repeatedly measured data
Carroll, R. J.
2009-05-20
We develop an easily computed smooth backfitting algorithm for additive model fitting in repeated measures problems. Our methodology easily copes with various settings, such as when some covariates are the same over repeated response measurements. We allow for a working covariance matrix for the regression errors, showing that our method is most efficient when the correct covariance matrix is used. The component functions achieve the known asymptotic variance lower bound for the scalar argument case. Smooth backfitting also leads directly to design-independent biases in the local linear case. Simulations show our estimator has smaller variance than the usual kernel estimator. This is also illustrated by an example from nutritional epidemiology. © 2009 Biometrika Trust.
Directory of Open Access Journals (Sweden)
Qiutong Jin
2016-06-01
Full Text Available Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK and geographically weighted regression Kriging (GWRK methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM, normalized difference vegetation index (NDVI, solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan
2011-11-01
To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.
Regression calibration with more surrogates than mismeasured variables
Kipnis, Victor
2012-06-29
In a recent paper (Weller EA, Milton DK, Eisen EA, Spiegelman D. Regression calibration for logistic regression with multiple surrogates for one exposure. Journal of Statistical Planning and Inference 2007; 137: 449-461), the authors discussed fitting logistic regression models when a scalar main explanatory variable is measured with error by several surrogates, that is, a situation with more surrogates than variables measured with error. They compared two methods of adjusting for measurement error using a regression calibration approximate model as if it were exact. One is the standard regression calibration approach consisting of substituting an estimated conditional expectation of the true covariate given observed data in the logistic regression. The other is a novel two-stage approach when the logistic regression is fitted to multiple surrogates, and then a linear combination of estimated slopes is formed as the estimate of interest. Applying estimated asymptotic variances for both methods in a single data set with some sensitivity analysis, the authors asserted superiority of their two-stage approach. We investigate this claim in some detail. A troubling aspect of the proposed two-stage method is that, unlike standard regression calibration and a natural form of maximum likelihood, the resulting estimates are not invariant to reparameterization of nuisance parameters in the model. We show, however, that, under the regression calibration approximation, the two-stage method is asymptotically equivalent to a maximum likelihood formulation, and is therefore in theory superior to standard regression calibration. However, our extensive finite-sample simulations in the practically important parameter space where the regression calibration model provides a good approximation failed to uncover such superiority of the two-stage method. We also discuss extensions to different data structures.
Regression calibration with more surrogates than mismeasured variables
Kipnis, Victor; Midthune, Douglas; Freedman, Laurence S.; Carroll, Raymond J.
2012-01-01
In a recent paper (Weller EA, Milton DK, Eisen EA, Spiegelman D. Regression calibration for logistic regression with multiple surrogates for one exposure. Journal of Statistical Planning and Inference 2007; 137: 449-461), the authors discussed fitting logistic regression models when a scalar main explanatory variable is measured with error by several surrogates, that is, a situation with more surrogates than variables measured with error. They compared two methods of adjusting for measurement error using a regression calibration approximate model as if it were exact. One is the standard regression calibration approach consisting of substituting an estimated conditional expectation of the true covariate given observed data in the logistic regression. The other is a novel two-stage approach when the logistic regression is fitted to multiple surrogates, and then a linear combination of estimated slopes is formed as the estimate of interest. Applying estimated asymptotic variances for both methods in a single data set with some sensitivity analysis, the authors asserted superiority of their two-stage approach. We investigate this claim in some detail. A troubling aspect of the proposed two-stage method is that, unlike standard regression calibration and a natural form of maximum likelihood, the resulting estimates are not invariant to reparameterization of nuisance parameters in the model. We show, however, that, under the regression calibration approximation, the two-stage method is asymptotically equivalent to a maximum likelihood formulation, and is therefore in theory superior to standard regression calibration. However, our extensive finite-sample simulations in the practically important parameter space where the regression calibration model provides a good approximation failed to uncover such superiority of the two-stage method. We also discuss extensions to different data structures.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...
Semiparametric regression during 2003–2007
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2009-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Structural Break Tests Robust to Regression Misspecification
Directory of Open Access Journals (Sweden)
Alaa Abi Morshed
2018-05-01
Full Text Available Structural break tests for regression models are sensitive to model misspecification. We show—analytically and through simulations—that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the conditional mean dynamics are misspecified. We also show that the sup Wald test for breaks in the unconditional mean and variance does not have the same size distortions, yet benefits from similar power to its conditional counterpart in correctly specified models. Hence, we propose using it as an alternative and complementary test for breaks. We apply the unconditional and conditional mean and variance tests to three US series: unemployment, industrial production growth and interest rates. Both the unconditional and the conditional mean tests detect a break in the mean of interest rates. However, for the other two series, the unconditional mean test does not detect a break, while the conditional mean tests based on dynamic regression models occasionally detect a break, with the implied break-point estimator varying across different dynamic specifications. For all series, the unconditional variance does not detect a break while most tests for the conditional variance do detect a break which also varies across specifications.
Regression Analysis by Example. 5th Edition
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Standards for Standardized Logistic Regression Coefficients
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
Mixed Frequency Data Sampling Regression Models: The R Package midasr
Directory of Open Access Journals (Sweden)
Eric Ghysels
2016-08-01
Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa
2008-01-01
This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
BANK FAILURE PREDICTION WITH LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
Taha Zaghdoudi
2013-04-01
Full Text Available In recent years the economic and financial world is shaken by a wave of financial crisis and resulted in violent bank fairly huge losses. Several authors have focused on the study of the crises in order to develop an early warning model. It is in the same path that our work takes its inspiration. Indeed, we have tried to develop a predictive model of Tunisian bank failures with the contribution of the binary logistic regression method. The specificity of our prediction model is that it takes into account microeconomic indicators of bank failures. The results obtained using our provisional model show that a bank's ability to repay its debt, the coefficient of banking operations, bank profitability per employee and leverage financial ratio has a negative impact on the probability of failure.
Robust Mediation Analysis Based on Median Regression
Yuan, Ying; MacKinnon, David P.
2014-01-01
Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925
Entrepreneurial intention modeling using hierarchical multiple regression
Directory of Open Access Journals (Sweden)
Marina Jeger
2014-12-01
Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.
Network class superposition analyses.
Directory of Open Access Journals (Sweden)
Carl A B Pearson
Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.
Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki
2017-05-01
This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Buchner, Florian; Wasem, Jürgen; Schillo, Sonja
2017-01-01
Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Measuring performance at trade shows
DEFF Research Database (Denmark)
Hansen, Kåre
2004-01-01
Trade shows is an increasingly important marketing activity to many companies, but current measures of trade show performance do not adequately capture dimensions important to exhibitors. Based on the marketing literature's outcome and behavior-based control system taxonomy, a model is built...... that captures a outcome-based sales dimension and four behavior-based dimensions (i.e. information-gathering, relationship building, image building, and motivation activities). A 16-item instrument is developed for assessing exhibitors perceptions of their trade show performance. The paper presents evidence...
Analyses of developmental rate isomorphy in ectotherms: Introducing the dirichlet regression
Czech Academy of Sciences Publication Activity Database
Boukal S., David; Ditrich, Tomáš; Kutcherov, D.; Sroka, Pavel; Dudová, Pavla; Papáček, M.
2015-01-01
Roč. 10, č. 6 (2015), e0129341 E-ISSN 1932-6203 R&D Projects: GA ČR GAP505/10/0096 Grant - others:European Fund(CZ) PERG04-GA-2008-239543; GA JU(CZ) 145/2013/P Institutional support: RVO:60077344 Keywords : ectotherms Subject RIV: ED - Physiology Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129341
The benefits of using quantile regression for analysing the effect of weeds on organic winter wheat
Casagrande, M.; Makowski, D.; Jeuffroy, M.H.; Valantin-Morison, M.; David, C.
2010-01-01
P>In organic farming, weeds are one of the threats that limit crop yield. An early prediction of weed effect on yield loss and the size of late weed populations could help farmers and advisors to improve weed management. Numerous studies predicting the effect of weeds on yield have already been
DEFF Research Database (Denmark)
Scott, Neil W.; Fayers, Peter M.; Aaronson, Neil K.
2010-01-01
Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise...
DEFF Research Database (Denmark)
Sharifzadeh, Sara; Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann
2012-01-01
Statistical solutions find wide spread use in food and medicine quality control. We investigate the effect of different regression and sparse regression methods for a viscosity estimation problem using the spectro-temporal features from new Sub-Surface Laser Scattering (SLS) vision system. From...... with sparse LAR, lasso and Elastic Net (EN) sparse regression methods. Due to the inconsistent measurement condition, Locally Weighted Scatter plot Smoothing (Loess) has been employed to alleviate the undesired variation in the estimated viscosity. The experimental results of applying different methods show...
Tokyo Motor Show 2003; Tokyo Motor Show 2003
Energy Technology Data Exchange (ETDEWEB)
Joly, E.
2004-01-01
The text which follows present the different techniques exposed during the 37. Tokyo Motor Show. The report points out the great tendencies of developments of the Japanese automobile industry. The hybrid electric-powered vehicles or those equipped with fuel cells have been highlighted by the Japanese manufacturers which allow considerable budgets in the research of less polluting vehicles. The exposed models, although being all different according to the manufacturer, use always a hybrid system: fuel cell/battery. The manufacturers have stressed too on the intelligent systems for navigation and safety as well as on the design and comfort. (O.M.)
Intermediate and advanced topics in multilevel logistic regression analysis.
Austin, Peter C; Merlo, Juan
2017-09-10
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Pradhan, Biswajeet
2010-05-01
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross
Directory of Open Access Journals (Sweden)
Mukesh Gautam
Full Text Available Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource.Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165.This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance with the testis morphology during these phases. This study will pave
Applied regression analysis a research tool
Pantula, Sastry; Dickey, David
1998-01-01
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2017-03-01
We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
Collaborative regression-based anatomical landmark detection
International Nuclear Information System (INIS)
Gao, Yaozong; Shen, Dinggang
2015-01-01
Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head and neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods. (paper)
Regression models of reactor diagnostic signals
International Nuclear Information System (INIS)
Vavrin, J.
1989-01-01
The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)
Reality show: um paradoxo nietzschiano
Directory of Open Access Journals (Sweden)
Ilana Feldman
2011-01-01
Full Text Available
O fenômeno dos reality shows - e a subseqüente relação entre imagem e verdade - assenta-se sobre uma série de paradoxos. Tais paradoxos podem ser compreendidos à luz do pensamento do filósofo alemão Friedrich Nietzsche, que, através dos usos de formulações paradoxais, concebia a realidade como um mundo de pura aparência e a verdade como um acréscimo ficcional, como um efeito. A ficção é então tomada, na filosofia de Nietzsche, não em seu aspecto falsificante e desrealizador - como sempre pleiteou nossa tradição metafísica -, mas como condição necessária para que certa espécie de invenção possa operar como verdade. Sendo assim, a própria expressão reality show, através de sua formulação paradoxal, engendra explicitamente um mundo de pura aparência, em que a verdade, a parte reality da proposição, é da ordem do suplemento, daquilo que se acrescenta ficcionalmente - como um adjetivo - a show. O ornamento, nesse caso, passa a ocupar o lugar central, apontando para o efeito produzido: o efeito-de-verdade. Seguindo, então, o pensamento nietzschiano e sua atualização na contemporaneidade, investigaremos de que forma os televisivos “shows de realidade” operam paradoxalmente, em consonância com nossas paradoxais práticas culturais.
Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.
2018-01-01
In a number of environmental studies, relationships between natural processes are often assessed through regression analyses, using time series data. Such data are often multi-scale and non-stationary, leading to a poor accuracy of the resulting regression models and therefore to results with moderate reliability. To deal with this issue, the present paper introduces the EMD-regression methodology consisting in applying the empirical mode decomposition (EMD) algorithm on data series and then using the resulting components in regression models. The proposed methodology presents a number of advantages. First, it accounts of the issues of non-stationarity associated to the data series. Second, this approach acts as a scan for the relationship between a response variable and the predictors at different time scales, providing new insights about this relationship. To illustrate the proposed methodology it is applied to study the relationship between weather and cardiovascular mortality in Montreal, Canada. The results shed new knowledge concerning the studied relationship. For instance, they show that the humidity can cause excess mortality at the monthly time scale, which is a scale not visible in classical models. A comparison is also conducted with state of the art methods which are the generalized additive models and distributed lag models, both widely used in weather-related health studies. The comparison shows that EMD-regression achieves better prediction performances and provides more details than classical models concerning the relationship.
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J
2016-04-01
The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.
Length bias correction in gene ontology enrichment analysis using logistic regression.
Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H
2012-01-01
When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.
Regression modeling methods, theory, and computation with SAS
Panik, Michael
2009-01-01
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,
Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso
2015-01-01
Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002
Angstman, Nicholas B.; Frank, Hans-Georg; Schmitz, Christoph
2016-01-01
As a widely used and studied model organism, Caenorhabditis elegans worms offer the ability to investigate implications of behavioral change. Although, investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plate...
Analysis of some methods for reduced rank Gaussian process regression
DEFF Research Database (Denmark)
Quinonero-Candela, J.; Rasmussen, Carl Edward
2005-01-01
While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...
Determinants of LSIL Regression in Women from a Colombian Cohort
International Nuclear Information System (INIS)
Molano, Monica; Gonzalez, Mauricio; Gamboa, Oscar; Ortiz, Natasha; Luna, Joaquin; Hernandez, Gustavo; Posso, Hector; Murillo, Raul; Munoz, Nubia
2010-01-01
Objective: To analyze the role of Human Papillomavirus (HPV) and other risk factors in the regression of cervical lesions in women from the Bogota Cohort. Methods: 200 HPV positive women with abnormal cytology were included for regression analysis. The time of lesion regression was modeled using methods for interval censored survival time data. Median duration of total follow-up was 9 years. Results: 80 (40%) women were diagnosed with Atypical Squamous Cells of Undetermined Significance (ASCUS) or Atypical Glandular Cells of Undetermined Significance (AGUS) while 120 (60%) were diagnosed with Low Grade Squamous Intra-epithelial Lesions (LSIL). Globally, 40% of the lesions were still present at first year of follow up, while 1.5% was still present at 5 year check-up. The multivariate model showed similar regression rates for lesions in women with ASCUS/AGUS and women with LSIL (HR= 0.82, 95% CI 0.59-1.12). Women infected with HR HPV types and those with mixed infections had lower regression rates for lesions than did women infected with LR types (HR=0.526, 95% CI 0.33-0.84, for HR types and HR=0.378, 95% CI 0.20-0.69, for mixed infections). Furthermore, women over 30 years had a higher lesion regression rate than did women under 30 years (HR1.53, 95% CI 1.03-2.27). The study showed that the median time for lesion regression was 9 months while the median time for HPV clearance was 12 months. Conclusions: In the studied population, the type of infection and the age of the women are critical factors for the regression of cervical lesions.
International Nuclear Information System (INIS)
Janssen, I.; Stebbings, J.H.
1990-01-01
In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Categorical regression dose-response modeling
The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...
Variable importance in latent variable regression models
Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.
2014-01-01
The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable
Stepwise versus Hierarchical Regression: Pros and Cons
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
Suppression Situations in Multiple Linear Regression
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Gibrat’s law and quantile regressions
DEFF Research Database (Denmark)
Distante, Roberta; Petrella, Ivan; Santoro, Emiliano
2017-01-01
The nexus between firm growth, size and age in U.S. manufacturing is examined through the lens of quantile regression models. This methodology allows us to overcome serious shortcomings entailed by linear regression models employed by much of the existing literature, unveiling a number of important...
Regression Analysis and the Sociological Imagination
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Repeated Results Analysis for Middleware Regression Benchmarking
Czech Academy of Sciences Publication Activity Database
Bulej, Lubomír; Kalibera, T.; Tůma, P.
2005-01-01
Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005
Principles of Quantile Regression and an Application
Chen, Fang; Chalhoub-Deville, Micheline
2014-01-01
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES
RUSCHENDORF, L; DEVALK, [No Value
We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive
Cancer burden trends in Umbria region using a joinpoint regression
Directory of Open Access Journals (Sweden)
Giuseppe Michele Masanotti
2015-09-01
Full Text Available INTRODUCTION. The analysis of the epidemiological data on cancer is an important tool to control and evaluate the outcomes of primary and secondary prevention, the effectiveness of health care and, in general, all cancer control activities. MATERIALS AND METHODS. The aim of the this paper is to analyze the cancer mortality in the Umbria region from 1978 to 2009 and incidence from 1994-2008. Sex and site-specific trends for standardized rates were analyzed by "joinpoint regression", using the surveillance epidemiology and end results (SEER software. RESULTS. Applying the jointpoint analyses by sex and cancer site, to incidence spanning from 1994 to 2008 and mortality from 1978 to 2009 for all sites, both in males and females, a significant joinpoint for mortality was found; moreover the trend shape was similar and the joinpoint years were very close. In males standardized rate significantly increased up to 1989 by 1.23% per year and significantly decreased thereafter by -1.31%; among females the mortality rate increased in average of 0.78% (not significant per year till 1988 and afterward significantly decreased by -0.92% per year. Incidence rate showed different trends among sexes. In males was practically constant over the period studied (not significant increase 0.14% per year, in females significantly increased by 1.49% per year up to 2001 and afterward slowly decreased (-0.71% n.s. estimated annual percent change − EAPC. CONCLUSIONS. For all sites combined trends for mortality decreased since late '80s, both in males and females; such behaviour is in line with national and European Union data. This work shows that, even compared to health systems that invest more resources, the Umbria public health system achieved good health outcomes.
Regression of environmental noise in LIGO data
International Nuclear Information System (INIS)
Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G
2015-01-01
We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)
Pathological assessment of liver fibrosis regression
Directory of Open Access Journals (Sweden)
WANG Bingqiong
2017-03-01
Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.
National Research Council Canada - National Science Library
Pfleiderer, Elaine M; Scroggins, Cheryl L; Manning, Carol A
2009-01-01
Two separate logistic regression analyses were conducted for low- and high-altitude sectors to determine whether a set of dynamic sector characteristics variables could reliably discriminate between operational error (OE...
Learning a Nonnegative Sparse Graph for Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung
2015-09-01
Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure construction but are not competent in handling new samples. To this end, a novel nonnegative sparse graph (NNSG) learning method was first proposed. Then, both the label prediction and projection learning were integrated into linear regression. Finally, the linear regression and graph structure learning were unified within the same framework to overcome these two drawbacks. Therefore, a novel method, named learning a NNSG for linear regression was presented, in which the linear regression and graph learning were simultaneously performed to guarantee an overall optimum. In the learning process, the label information can be accurately propagated via the graph structure so that the linear regression can learn a discriminative projection to better fit sample labels and accurately classify new samples. An effective algorithm was designed to solve the corresponding optimization problem with fast convergence. Furthermore, NNSG provides a unified perceptiveness for a number of graph-based learning methods and linear regression methods. The experimental results showed that NNSG can obtain very high classification accuracy and greatly outperforms conventional G-SSL methods, especially some conventional graph construction methods.
Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel
Directory of Open Access Journals (Sweden)
Roland Pfister
2013-10-01
Full Text Available Three different methods for extracting coefficientsof linear regression analyses are presented. The focus is on automatic and easy-to-use approaches for common statistical packages: SPSS, R, and MS Excel / LibreOffice Calc. Hands-on examples are included for each analysis, followed by a brief description of how a subsequent regression coefficient analysis is performed.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
FBH1 Catalyzes Regression of Stalled Replication Forks
Directory of Open Access Journals (Sweden)
Kasper Fugger
2015-03-01
Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
Logistic Regression in the Identification of Hazards in Construction
Drozd, Wojciech
2017-10-01
The construction site and its elements create circumstances that are conducive to the formation of risks to safety during the execution of works. Analysis indicates the critical importance of these factors in the set of characteristics that describe the causes of accidents in the construction industry. This article attempts to analyse the characteristics related to the construction site, in order to indicate their importance in defining the circumstances of accidents at work. The study includes sites inspected in 2014 - 2016 by the employees of the District Labour Inspectorate in Krakow (Poland). The analysed set of detailed (disaggregated) data includes both quantitative and qualitative characteristics. The substantive task focused on classification modelling in the identification of hazards in construction and identifying those of the analysed characteristics that are important in an accident. In terms of methodology, resource data analysis using statistical classifiers, in the form of logistic regression, was the method used.
Applied Regression Modeling A Business Approach
Pardoe, Iain
2012-01-01
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hee Mang; Jung, Ah Young; Cho, Young Ah; Yoon, Chong Hyun; Lee, Jin Seong [Asan Medical Center Children' s Hospital, University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Songpa-gu, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Division of Neonatology, Asan Medical Center Children' s Hospital, Seoul (Korea, Republic of); Chung, Sung-Hoon [Kyung Hee University School of Medicine, Department of Pediatrics, Seoul (Korea, Republic of); Kim, Seon-Ok [Asan Medical Center, Department of Clinical Epidemiology and Biostatistics, Seoul (Korea, Republic of)
2017-06-15
To describe the natural course of extralobar pulmonary sequestration (EPS) and identify factors associated with spontaneous regression of EPS. We retrospectively searched for patients diagnosed with EPS on initial contrast CT scan within 1 month after birth and had a follow-up CT scan without treatment. Spontaneous regression of EPS was assessed by percentage decrease in volume (PDV) and percentage decrease in sum of the diameter of systemic feeding arteries (PDD) by comparing initial and follow-up CT scans. Clinical and CT features were analysed to determine factors associated with PDV and PDD rates. Fifty-one neonates were included. The cumulative proportions of patients reaching PDV > 50 % and PDD > 50 % were 93.0 % and 73.3 % at 4 years, respectively. Tissue attenuation was significantly associated with PDV rate (B = -21.78, P <.001). The tissue attenuation (B = -22.62, P =.001) and diameter of the largest systemic feeding arteries (B = -48.31, P =.011) were significant factors associated with PDD rate. The volume and diameter of systemic feeding arteries of EPS spontaneously decreased within 4 years without treatment. EPSs showing a low tissue attenuation and small diameter of the largest systemic feeding arteries on initial contrast-enhanced CT scans were likely to regress spontaneously. (orig.)
Vectors, a tool in statistical regression theory
Corsten, L.C.A.
1958-01-01
Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding
Genetics Home Reference: caudal regression syndrome
... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
International Nuclear Information System (INIS)
Coleman, D.J.; Lizzi, F.L.; Silverman, R.H.; Ellsworth, R.M.; Haik, B.G.; Abramson, D.H.; Smith, M.E.; Rondeau, M.J.
1985-01-01
Parameters derived from computer analysis of digital radio-frequency (rf) ultrasound scan data of untreated uveal malignant melanomas were examined for correlations with tumor regression following cobalt-60 plaque. Parameters included tumor height, normalized power spectrum and acoustic tissue type (ATT). Acoustic tissue type was based upon discriminant analysis of tumor power spectra, with spectra of tumors of known pathology serving as a model. Results showed ATT to be correlated with tumor regression during the first 18 months following treatment. Tumors with ATT associated with spindle cell malignant melanoma showed over twice the percentage reduction in height as those with ATT associated with mixed/epithelioid melanomas. Pre-treatment height was only weakly correlated with regression. Additionally, significant spectral changes were observed following treatment. Ultrasonic spectrum analysis thus provides a noninvasive tool for classification, prediction and monitoring of tumor response to cobalt-60 plaque
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Computing multiple-output regression quantile regions
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2012-01-01
Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf
There is No Quantum Regression Theorem
International Nuclear Information System (INIS)
Ford, G.W.; OConnell, R.F.
1996-01-01
The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society
Caudal regression syndrome : a case report
International Nuclear Information System (INIS)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun
1998-01-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging
Caudal regression syndrome : a case report
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)
1998-07-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.
Spontaneous regression of metastatic Merkel cell carcinoma.
LENUS (Irish Health Repository)
Hassan, S J
2010-01-01
Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.
Forecasting exchange rates: a robust regression approach
Preminger, Arie; Franck, Raphael
2005-01-01
The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.
2010-08-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.; Carroll, R.J.; Wand, M.P.
2010-01-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
Optimal regression for reasoning about knowledge and actions
Ditmarsch, van H.; Herzig, Andreas; Lima, de Tiago
2007-01-01
We show how in the propositional case both Reiter’s and Scherl & Levesque’s solutions to the frame problem can be modelled in dynamic epistemic logic (DEL), and provide an optimal regression algorithm for the latter. Our method is as follows: we extend Reiter’s framework by integrating observation
On the null distribution of Bayes factors in linear regression
We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...
Exact Rational Expectations, Cointegration, and Reduced Rank Regression
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...
Exact rational expectations, cointegration, and reduced rank regression
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...
Exact rational expectations, cointegration, and reduced rank regression
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
2008-01-01
We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...
On the estimation and testing of predictive panel regressions
Karabiyik, H.; Westerlund, Joakim; Narayan, Paresh
2016-01-01
Hjalmarsson (2010) considers an OLS-based estimator of predictive panel regressions that is argued to be mixed normal under very general conditions. In a recent paper, Westerlund et al. (2016) show that while consistent, the estimator is generally not mixed normal, which invalidates standard normal
Post-processing through linear regression
van Schaeybroeck, B.; Vannitsem, S.
2011-03-01
Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
Post-processing through linear regression
Directory of Open Access Journals (Sweden)
B. Van Schaeybroeck
2011-03-01
Full Text Available Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS method, a new time-dependent Tikhonov regularization (TDTR method, the total least-square method, a new geometric-mean regression (GM, a recently introduced error-in-variables (EVMOS method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified.
These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise. At long lead times the regression schemes (EVMOS, TDTR which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
Directory of Open Access Journals (Sweden)
Guan Lian
2018-01-01
Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data
Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.
2014-01-01
In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438
Online and Batch Supervised Background Estimation via L1 Regression
Dutta, Aritra
2017-11-23
We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\\\ell_1$ regression. As existing methods for $\\\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.
Assessment of deforestation using regression; Hodnotenie odlesnenia s vyuzitim regresie
Energy Technology Data Exchange (ETDEWEB)
Juristova, J. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra kartografie, geoinformatiky a DPZ, 84215 Bratislava (Slovakia)
2013-04-16
This work is devoted to the evaluation of deforestation using regression methods through software Idrisi Taiga. Deforestation is evaluated by the method of logistic regression. The dependent variable has discrete values '0' and '1', indicating that the deforestation occurred or not. Independent variables have continuous values, expressing the distance from the edge of the deforested areas of forests from urban areas, the river and the road network. The results were also used in predicting the probability of deforestation in subsequent periods. The result is a map showing the output probability of deforestation for the periods 1990/2000 and 200/2006 in accordance with predetermined coefficients (values of independent variables). (authors)
Online and Batch Supervised Background Estimation via L1 Regression
Dutta, Aritra; Richtarik, Peter
2017-01-01
We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\ell_1$ regression. As existing methods for $\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.
Tax Evasion, Information Reporting, and the Regressive Bias Prediction
DEFF Research Database (Denmark)
Boserup, Simon Halphen; Pinje, Jori Veng
2013-01-01
evasion and audit probabilities once we account for information reporting in the tax compliance game. When conditioning on information reporting, we find that both reduced-form evidence and simulations exhibit the predicted regressive bias. However, in the overall economy, this bias is negated by the tax......Models of rational tax evasion and optimal enforcement invariably predict a regressive bias in the effective tax system, which reduces redistribution in the economy. Using Danish administrative data, we show that a calibrated structural model of this type replicates moments and correlations of tax...
Economic Analyses of Ware Yam Production in Orlu Agricultural ...
African Journals Online (AJOL)
Economic Analyses of Ware Yam Production in Orlu Agricultural Zone of Imo State. ... International Journal of Agriculture and Rural Development ... statistics, gross margin analysis, marginal analysis and multiple regression analysis. Results ...
The best of both worlds: Phylogenetic eigenvector regression and mapping
Directory of Open Access Journals (Sweden)
José Alexandre Felizola Diniz Filho
2015-09-01
Full Text Available Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998 proposed what they called Phylogenetic Eigenvector Regression (PVR, in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses.
Alternative regression models to assess increase in childhood BMI
Directory of Open Access Journals (Sweden)
Mansmann Ulrich
2008-09-01
Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.
Alternative regression models to assess increase in childhood BMI.
Beyerlein, Andreas; Fahrmeir, Ludwig; Mansmann, Ulrich; Toschke, André M
2008-09-08
Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.
Gaussian process regression for tool wear prediction
Kong, Dongdong; Chen, Yongjie; Li, Ning
2018-05-01
To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.
Directory of Open Access Journals (Sweden)
Abdul Ghafoor Memon
2014-03-01
Full Text Available In this study, thermodynamic and statistical analyses were performed on a gas turbine system, to assess the impact of some important operating parameters like CIT (Compressor Inlet Temperature, PR (Pressure Ratio and TIT (Turbine Inlet Temperature on its performance characteristics such as net power output, energy efficiency, exergy efficiency and fuel consumption. Each performance characteristic was enunciated as a function of operating parameters, followed by a parametric study and optimization. The results showed that the performance characteristics increase with an increase in the TIT and a decrease in the CIT, except fuel consumption which behaves oppositely. The net power output and efficiencies increase with the PR up to certain initial values and then start to decrease, whereas the fuel consumption always decreases with an increase in the PR. The results of exergy analysis showed the combustion chamber as a major contributor to the exergy destruction, followed by stack gas. Subsequently, multiple regression models were developed to correlate each of the response variables (performance characteristic with the predictor variables (operating parameters. The regression model equations showed a significant statistical relationship between the predictor and response variables.
Time series regression model for infectious disease and weather.
Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro
2015-10-01
Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Anke Hüls
2017-05-01
Full Text Available Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model and (ii to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Is past life regression therapy ethical?
Andrade, Gabriel
2017-01-01
Past life regression therapy is used by some physicians in cases with some mental diseases. Anxiety disorders, mood disorders, and gender dysphoria have all been treated using life regression therapy by some doctors on the assumption that they reflect problems in past lives. Although it is not supported by psychiatric associations, few medical associations have actually condemned it as unethical. In this article, I argue that past life regression therapy is unethical for two basic reasons. First, it is not evidence-based. Past life regression is based on the reincarnation hypothesis, but this hypothesis is not supported by evidence, and in fact, it faces some insurmountable conceptual problems. If patients are not fully informed about these problems, they cannot provide an informed consent, and hence, the principle of autonomy is violated. Second, past life regression therapy has the great risk of implanting false memories in patients, and thus, causing significant harm. This is a violation of the principle of non-malfeasance, which is surely the most important principle in medical ethics.
Interpret with caution: multicollinearity in multiple regression of cognitive data.
Morrison, Catriona M
2003-08-01
Shibihara and Kondo in 2002 reported a reanalysis of the 1997 Kanji picture-naming data of Yamazaki, Ellis, Morrison, and Lambon-Ralph in which independent variables were highly correlated. Their addition of the variable visual familiarity altered the previously reported pattern of results, indicating that visual familiarity, but not age of acquisition, was important in predicting Kanji naming speed. The present paper argues that caution should be taken when drawing conclusions from multiple regression analyses in which the independent variables are so highly correlated, as such multicollinearity can lead to unreliable output.
Preference learning with evolutionary Multivariate Adaptive Regression Spline model
DEFF Research Database (Denmark)
Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll
2015-01-01
This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...
Nonparametric regression using the concept of minimum energy
International Nuclear Information System (INIS)
Williams, Mike
2011-01-01
It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.
Refractive regression after laser in situ keratomileusis.
Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy
2018-04-26
Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.
Influence diagnostics in meta-regression model.
Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua
2017-09-01
This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.
Principal component regression for crop yield estimation
Suryanarayana, T M V
2016-01-01
This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...
Regression Models for Market-Shares
DEFF Research Database (Denmark)
Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue
2005-01-01
On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....
The analysis of nonstationary time series using regression, correlation and cointegration
DEFF Research Database (Denmark)
Johansen, Søren
2012-01-01
There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference using the cointegrated vector autoregressive model. Finally we...... analyse some monthly data from US on interest rates as an illustration of the methods...
The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration
Directory of Open Access Journals (Sweden)
Søren Johansen
2012-06-01
Full Text Available There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference using the cointegrated vector autoregressive model. Finally we analyse some monthly data from US on interest rates as an illustration of the methods.
On directional multiple-output quantile regression
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2011-01-01
Roč. 102, č. 2 (2011), s. 193-212 ISSN 0047-259X R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:Commision EC(BE) Fonds National de la Recherche Scientifique Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate quantile * quantile regression * multiple-output regression * halfspace depth * portfolio optimization * value-at risk Subject RIV: BA - General Mathematics Impact factor: 0.879, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/siman-0364128.pdf
Removing Malmquist bias from linear regressions
Verter, Frances
1993-01-01
Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.
Robust median estimator in logisitc regression
Czech Academy of Sciences Publication Activity Database
Hobza, T.; Pardo, L.; Vajda, Igor
2008-01-01
Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf
DEFF Research Database (Denmark)
Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove
2007-01-01
the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...
Contesting Citizenship: Comparative Analyses
DEFF Research Database (Denmark)
Siim, Birte; Squires, Judith
2007-01-01
importance of particularized experiences and multiple ineequality agendas). These developments shape the way citizenship is both practiced and analysed. Mapping neat citizenship modles onto distinct nation-states and evaluating these in relation to formal equality is no longer an adequate approach....... Comparative citizenship analyses need to be considered in relation to multipleinequalities and their intersections and to multiple governance and trans-national organisinf. This, in turn, suggests that comparative citizenship analysis needs to consider new spaces in which struggles for equal citizenship occur...
Demonstration of a Fiber Optic Regression Probe
Korman, Valentin; Polzin, Kurt A.
2010-01-01
The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for
Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C
2011-04-01
The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Measurement Error in Education and Growth Regressions
Portela, Miguel; Alessie, Rob; Teulings, Coen
2010-01-01
The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these
The M Word: Multicollinearity in Multiple Regression.
Morrow-Howell, Nancy
1994-01-01
Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…
Regression Discontinuity Designs Based on Population Thresholds
DEFF Research Database (Denmark)
Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica
In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...
Deriving the Regression Line with Algebra
Quintanilla, John A.
2017-01-01
Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…
Piecewise linear regression splines with hyperbolic covariates
International Nuclear Information System (INIS)
Cologne, John B.; Sposto, Richard
1992-09-01
Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)
Targeting: Logistic Regression, Special Cases and Extensions
Directory of Open Access Journals (Sweden)
Helmut Schaeben
2014-12-01
Full Text Available Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variables are discrete and conditionally independent given the target variable. The hypothesis of conditional independence can be tested in terms of log-linear models. If the assumption of conditional independence is violated, the application of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also their rank transform. Logistic regression models, including the interaction terms, can account for the lack of conditional independence, appropriate interaction terms compensate exactly for violations of conditional independence. Multilayer artificial neural nets may be seen as nested regression-like models, with some sigmoidal activation function. Most often, the logistic function is used as the activation function. If the net topology, i.e., its control, is sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for violations of conditional independence and yield very similar results. Weights-of-evidence cannot reasonably include interaction terms; subsequent modifications of the weights, as often suggested, cannot emulate the effect of interaction terms.
Functional data analysis of generalized regression quantiles
Guo, Mengmeng
2013-11-05
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Regression testing Ajax applications : Coping with dynamism
Roest, D.; Mesbah, A.; Van Deursen, A.
2009-01-01
Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.
Group-wise partial least square regression
Camacho, José; Saccenti, Edoardo
2018-01-01
This paper introduces the group-wise partial least squares (GPLS) regression. GPLS is a new sparse PLS technique where the sparsity structure is defined in terms of groups of correlated variables, similarly to what is done in the related group-wise principal component analysis. These groups are
Functional data analysis of generalized regression quantiles
Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl
2013-01-01
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Finite Algorithms for Robust Linear Regression
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun
1990-01-01
The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...
Function approximation with polynomial regression slines
International Nuclear Information System (INIS)
Urbanski, P.
1996-01-01
Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)
Assessing risk factors for periodontitis using regression
Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa
2013-10-01
Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.
Predicting Social Trust with Binary Logistic Regression
Adwere-Boamah, Joseph; Hufstedler, Shirley
2015-01-01
This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…
Yet another look at MIDAS regression
Ph.H.B.F. Franses (Philip Hans)
2016-01-01
textabstractA MIDAS regression involves a dependent variable observed at a low frequency and independent variables observed at a higher frequency. This paper relates a true high frequency data generating process, where also the dependent variable is observed (hypothetically) at the high frequency,
Revisiting Regression in Autism: Heller's "Dementia Infantilis"
Westphal, Alexander; Schelinski, Stefanie; Volkmar, Fred; Pelphrey, Kevin
2013-01-01
Theodor Heller first described a severe regression of adaptive function in normally developing children, something he termed dementia infantilis, over one 100 years ago. Dementia infantilis is most closely related to the modern diagnosis, childhood disintegrative disorder. We translate Heller's paper, Uber Dementia Infantilis, and discuss…
Fast multi-output relevance vector regression
Ha, Youngmin
2017-01-01
This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V
Regression Equations for Birth Weight Estimation using ...
African Journals Online (AJOL)
In this study, Birth Weight has been estimated from anthropometric measurements of hand and foot. Linear regression equations were formed from each of the measured variables. These simple equations can be used to estimate Birth Weight of new born babies, in order to identify those with low birth weight and referred to ...
Superquantile Regression: Theory, Algorithms, and Applications
2014-12-01
Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1...Navy submariners, reliability engineering, uncertainty quantification, and financial risk management . Superquantile, superquantile regression...Royset Carlos F. Borges Associate Professor of Operations Research Dissertation Supervisor Professor of Applied Mathematics Lyn R. Whitaker Javier
transformation of independent variables in polynomial regression ...
African Journals Online (AJOL)
Ada
preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...
Risico-analyse brandstofpontons
Uijt de Haag P; Post J; LSO
2001-01-01
Voor het bepalen van de risico's van brandstofpontons in een jachthaven is een generieke risico-analyse uitgevoerd. Er is een referentiesysteem gedefinieerd, bestaande uit een betonnen brandstofponton met een relatief grote inhoud en doorzet. Aangenomen is dat de ponton gelegen is in een
Energy Technology Data Exchange (ETDEWEB)
Berry, A; Przybylski, M M; Sumner, I [Science Research Council, Daresbury (UK). Daresbury Lab.
1982-10-01
A fast multichannel analyser (MCA) capable of sampling at a rate of 10/sup 7/ s/sup -1/ has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format.
International Nuclear Information System (INIS)
Berry, A.; Przybylski, M.M.; Sumner, I.
1982-01-01
A fast multichannel analyser (MCA) capable of sampling at a rate of 10 7 s -1 has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format. (orig.)
Physics constrained nonlinear regression models for time series
International Nuclear Information System (INIS)
Majda, Andrew J; Harlim, John
2013-01-01
A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)
Recriticality analyses for CAPRA cores
International Nuclear Information System (INIS)
Maschek, W.; Thiem, D.
1995-01-01
The first scoping calculation performed show that the energetics levels from recriticalities in CAPRA cores are in the same range as in conventional cores. However, considerable uncertainties exist and further analyses are necessary. Additional investigations are performed for the separation scenarios of fuel/steel/inert and matrix material as a large influence of these processes on possible ramp rates and kinetics parameters was detected in the calculations. (orig./HP)
Recriticality analyses for CAPRA cores
Energy Technology Data Exchange (ETDEWEB)
Maschek, W.; Thiem, D.
1995-08-01
The first scoping calculation performed show that the energetics levels from recriticalities in CAPRA cores are in the same range as in conventional cores. However, considerable uncertainties exist and further analyses are necessary. Additional investigations are performed for the separation scenarios of fuel/steel/inert and matrix material as a large influence of these processes on possible ramp rates and kinetics parameters was detected in the calculations. (orig./HP)
Tax System in Poland – Progressive or Regressive?
Directory of Open Access Journals (Sweden)
Jacek Tomkiewicz
2016-03-01
Full Text Available Purpose: To analyse the impact of the Polish fiscal regime on the general revenue of the country, and specifically to establish whether the cumulative tax burden borne by Polish households is progressive or regressive.Methodology: On the basis of Eurostat and OECD data, the author has analysed fiscal regimes in EU Member States and in OECD countries. The tax burden of households within different income groups has also been examined pursuant to applicable fiscal laws and data pertaining to the revenue and expenditure of households published by the Central Statistical Office (CSO.Conclusions: The fiscal regime in Poland is regressive; that is, the relative fiscal burden decreases as the taxpayer’s income increases.Research Implications: The article contributes to the on-going discussion on social cohesion, in particular with respect to economic policy instruments aimed at the redistribution of income within the economy.Originality: The author presents an analysis of data pertaining to fiscal policies in EU Member States and OECD countries and assesses the impact of the legal environment (fiscal regime and social security system in Poland on income distribution within the economy. The impact of the total tax burden (direct and indirect taxes, social security contributions on the economic situation of households from different income groups has been calculated using an original formula.
Detecting overdispersion in count data: A zero-inflated Poisson regression analysis
Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Nor, Maria Elena; Mohamed, Maryati; Ismail, Norradihah
2017-09-01
This study focusing on analysing count data of butterflies communities in Jasin, Melaka. In analysing count dependent variable, the Poisson regression model has been known as a benchmark model for regression analysis. Continuing from the previous literature that used Poisson regression analysis, this study comprising the used of zero-inflated Poisson (ZIP) regression analysis to gain acute precision on analysing the count data of butterfly communities in Jasin, Melaka. On the other hands, Poisson regression should be abandoned in the favour of count data models, which are capable of taking into account the extra zeros explicitly. By far, one of the most popular models include ZIP regression model. The data of butterfly communities which had been called as the number of subjects in this study had been taken in Jasin, Melaka and consisted of 131 number of subjects visits Jasin, Melaka. Since the researchers are considering the number of subjects, this data set consists of five families of butterfly and represent the five variables involve in the analysis which are the types of subjects. Besides, the analysis of ZIP used the SAS procedure of overdispersion in analysing zeros value and the main purpose of continuing the previous study is to compare which models would be better than when exists zero values for the observation of the count data. The analysis used AIC, BIC and Voung test of 5% level significance in order to achieve the objectives. The finding indicates that there is a presence of over-dispersion in analysing zero value. The ZIP regression model is better than Poisson regression model when zero values exist.
A method to determine the necessity for global signal regression in resting-state fMRI studies.
Chen, Gang; Chen, Guangyu; Xie, Chunming; Ward, B Douglas; Li, Wenjun; Antuono, Piero; Li, Shi-Jiang
2012-12-01
In resting-state functional MRI studies, the global signal (operationally defined as the global average of resting-state functional MRI time courses) is often considered a nuisance effect and commonly removed in preprocessing. This global signal regression method can introduce artifacts, such as false anticorrelated resting-state networks in functional connectivity analyses. Therefore, the efficacy of this technique as a correction tool remains questionable. In this article, we establish that the accuracy of the estimated global signal is determined by the level of global noise (i.e., non-neural noise that has a global effect on the resting-state functional MRI signal). When the global noise level is low, the global signal resembles the resting-state functional MRI time courses of the largest cluster, but not those of the global noise. Using real data, we demonstrate that the global signal is strongly correlated with the default mode network components and has biological significance. These results call into question whether or not global signal regression should be applied. We introduce a method to quantify global noise levels. We show that a criteria for global signal regression can be found based on the method. By using the criteria, one can determine whether to include or exclude the global signal regression in minimizing errors in functional connectivity measures. Copyright © 2012 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Giovanni Bonaccolto
2016-07-01
Full Text Available Several market and macro-level variables influence the evolution of equity risk in addition to the well-known volatility persistence. However, the impact of those covariates might change depending on the risk level, being different between low and high volatility states. By combining equity risk estimates, obtained from the Realized Range Volatility, corrected for microstructure noise and jumps, and quantile regression methods, we evaluate the forecasting implications of the equity risk determinants in different volatility states and, without distributional assumptions on the realized range innovations, we recover both the points and the conditional distribution forecasts. In addition, we analyse how the the relationships among the involved variables evolve over time, through a rolling window procedure. The results show evidence of the selected variables’ relevant impacts and, particularly during periods of market stress, highlight heterogeneous effects across quantiles.
Analysing and Comparing Encodability Criteria
Directory of Open Access Journals (Sweden)
Kirstin Peters
2015-08-01
Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.
International Nuclear Information System (INIS)
Geiser, Achim
2015-12-01
A variety of possible future analyses of HERA data in the context of the HERA data preservation programme is collected, motivated, and commented. The focus is placed on possible future analyses of the existing ep collider data and their physics scope. Comparisons to the original scope of the HERA pro- gramme are made, and cross references to topics also covered by other participants of the workshop are given. This includes topics on QCD, proton structure, diffraction, jets, hadronic final states, heavy flavours, electroweak physics, and the application of related theory and phenomenology topics like NNLO QCD calculations, low-x related models, nonperturbative QCD aspects, and electroweak radiative corrections. Synergies with other collider programmes are also addressed. In summary, the range of physics topics which can still be uniquely covered using the existing data is very broad and of considerable physics interest, often matching the interest of results from colliders currently in operation. Due to well-established data and MC sets, calibrations, and analysis procedures the manpower and expertise needed for a particular analysis is often very much smaller than that needed for an ongoing experiment. Since centrally funded manpower to carry out such analyses is not available any longer, this contribution not only targets experienced self-funded experimentalists, but also theorists and master-level students who might wish to carry out such an analysis.
Energy Technology Data Exchange (ETDEWEB)
Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies
1996-12-31
The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)
Tracking time-varying parameters with local regression
DEFF Research Database (Denmark)
Joensen, Alfred Karsten; Nielsen, Henrik Aalborg; Nielsen, Torben Skov
2000-01-01
This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe\\$cient model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method which retains the RLS algorithm, bu......, but extends the algorithm by including polynomial approximations. Simulation results are provided, which indicates that this new method is superior to the classical RLS method, if the parameter variations are smooth....
Regression analysis of a chemical reaction fouling model
International Nuclear Information System (INIS)
Vasak, F.; Epstein, N.
1996-01-01
A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs
Complete regression of myocardial involvement associated with lymphoma following chemotherapy.
Vinicki, Juan Pablo; Cianciulli, Tomás F; Farace, Gustavo A; Saccheri, María C; Lax, Jorge A; Kazelian, Lucía R; Wachs, Adolfo
2013-09-26
Cardiac involvement as an initial presentation of malignant lymphoma is a rare occurrence. We describe the case of a 26 year old man who had initially been diagnosed with myocardial infiltration on an echocardiogram, presenting with a testicular mass and unilateral peripheral facial paralysis. On admission, electrocardiograms (ECG) revealed negative T-waves in all leads and ST-segment elevation in the inferior leads. On two-dimensional echocardiography, there was infiltration of the pericardium with mild effusion, infiltrative thickening of the aortic walls, both atria and the interatrial septum and a mildly depressed systolic function of both ventricles. An axillary biopsy was performed and reported as a T-cell lymphoblastic lymphoma (T-LBL). Following the diagnosis and staging, chemotherapy was started. Twenty-two days after finishing the first cycle of chemotherapy, the ECG showed regression of T-wave changes in all leads and normalization of the ST-segment elevation in the inferior leads. A follow-up Two-dimensional echocardiography confirmed regression of the myocardial infiltration. This case report illustrates a lymphoma presenting with testicular mass, unilateral peripheral facial paralysis and myocardial involvement, and demonstrates that regression of infiltration can be achieved by intensive chemotherapy treatment. To our knowledge, there are no reported cases of T-LBL presenting as a testicular mass and unilateral peripheral facial paralysis, with complete regression of myocardial involvement.
Marital status integration and suicide: A meta-analysis and meta-regression.
Kyung-Sook, Woo; SangSoo, Shin; Sangjin, Shin; Young-Jeon, Shin
2018-01-01
Marital status is an index of the phenomenon of social integration within social structures and has long been identified as an important predictor suicide. However, previous meta-analyses have focused only on a particular marital status, or not sufficiently explored moderators. A meta-analysis of observational studies was conducted to explore the relationships between marital status and suicide and to understand the important moderating factors in this association. Electronic databases were searched to identify studies conducted between January 1, 2000 and June 30, 2016. We performed a meta-analysis, subgroup analysis, and meta-regression of 170 suicide risk estimates from 36 publications. Using random effects model with adjustment for covariates, the study found that the suicide risk for non-married versus married was OR = 1.92 (95% CI: 1.75-2.12). The suicide risk was higher for non-married individuals aged analysis by gender, non-married men exhibited a greater risk of suicide than their married counterparts in all sub-analyses, but women aged 65 years or older showed no significant association between marital status and suicide. The suicide risk in divorced individuals was higher than for non-married individuals in both men and women. The meta-regression showed that gender, age, and sample size affected between-study variation. The results of the study indicated that non-married individuals have an aggregate higher suicide risk than married ones. In addition, gender and age were confirmed as important moderating factors in the relationship between marital status and suicide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stochastic development regression using method of moments
DEFF Research Database (Denmark)
Kühnel, Line; Sommer, Stefan Horst
2017-01-01
This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using...... the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using...... the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds....
Beta-binomial regression and bimodal utilization.
Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L
2013-10-01
To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.
Testing homogeneity in Weibull-regression models.
Bolfarine, Heleno; Valença, Dione M
2005-10-01
In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
Model selection in kernel ridge regression
DEFF Research Database (Denmark)
Exterkate, Peter
2013-01-01
Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...
Regressing Atherosclerosis by Resolving Plaque Inflammation
2017-07-01
regression requires the alteration of macrophages in the plaques to a tissue repair “alternatively” activated state. This switch in activation state... tissue repair “alternatively” activated state. This switch in activation state requires the action of TH2 cytokines interleukin (IL)-4 or IL-13. To...regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med. 2011;208(9):1901–1916. 35. Xu H, Exner BG, Chilton PM
Determination of regression laws: Linear and nonlinear
International Nuclear Information System (INIS)
Onishchenko, A.M.
1994-01-01
A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab
Directional quantile regression in Octave (and MATLAB)
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2016-01-01
Roč. 52, č. 1 (2016), s. 28-51 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : quantile regression * multivariate quantile * depth contour * Matlab Subject RIV: IN - Informatics, Computer Science Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/bocek-0458380.pdf
Logistic regression a self-learning text
Kleinbaum, David G
1994-01-01
This textbook provides students and professionals in the health sciences with a presentation of the use of logistic regression in research. The text is self-contained, and designed to be used both in class or as a tool for self-study. It arises from the author's many years of experience teaching this material and the notes on which it is based have been extensively used throughout the world.
Small sample GEE estimation of regression parameters for longitudinal data.
Paul, Sudhir; Zhang, Xuemao
2014-09-28
Longitudinal (clustered) response data arise in many bio-statistical applications which, in general, cannot be assumed to be independent. Generalized estimating equation (GEE) is a widely used method to estimate marginal regression parameters for correlated responses. The advantage of the GEE is that the estimates of the regression parameters are asymptotically unbiased even if the correlation structure is misspecified, although their small sample properties are not known. In this paper, two bias adjusted GEE estimators of the regression parameters in longitudinal data are obtained when the number of subjects is small. One is based on a bias correction, and the other is based on a bias reduction. Simulations show that the performances of both the bias-corrected methods are similar in terms of bias, efficiency, coverage probability, average coverage length, impact of misspecification of correlation structure, and impact of cluster size on bias correction. Both these methods show superior properties over the GEE estimates for small samples. Further, analysis of data involving a small number of subjects also shows improvement in bias, MSE, standard error, and length of the confidence interval of the estimates by the two bias adjusted methods over the GEE estimates. For small to moderate sample sizes (N ≤50), either of the bias-corrected methods GEEBc and GEEBr can be used. However, the method GEEBc should be preferred over GEEBr, as the former is computationally easier. For large sample sizes, the GEE method can be used. Copyright © 2014 John Wiley & Sons, Ltd.
Multitask Quantile Regression under the Transnormal Model.
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2016-01-01
We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.
Complex regression Doppler optical coherence tomography
Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.
2018-04-01
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
Satellite rainfall retrieval by logistic regression
Chiu, Long S.
1986-01-01
The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Face Alignment via Regressing Local Binary Features.
Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian
2016-03-01
This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.
Geographically weighted regression model on poverty indicator
Slamet, I.; Nugroho, N. F. T. A.; Muslich
2017-12-01
In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.
Mixed-effects regression models in linguistics
Heylen, Kris; Geeraerts, Dirk
2018-01-01
When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...
Image superresolution using support vector regression.
Ni, Karl S; Nguyen, Truong Q
2007-06-01
A thorough investigation of the application of support vector regression (SVR) to the superresolution problem is conducted through various frameworks. Prior to the study, the SVR problem is enhanced by finding the optimal kernel. This is done by formulating the kernel learning problem in SVR form as a convex optimization problem, specifically a semi-definite programming (SDP) problem. An additional constraint is added to reduce the SDP to a quadratically constrained quadratic programming (QCQP) problem. After this optimization, investigation of the relevancy of SVR to superresolution proceeds with the possibility of using a single and general support vector regression for all image content, and the results are impressive for small training sets. This idea is improved upon by observing structural properties in the discrete cosine transform (DCT) domain to aid in learning the regression. Further improvement involves a combination of classification and SVR-based techniques, extending works in resolution synthesis. This method, termed kernel resolution synthesis, uses specific regressors for isolated image content to describe the domain through a partitioned look of the vector space, thereby yielding good results.
Bonellie, Sandra R
2012-10-01
To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother. Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.
Workload analyse of assembling process
Ghenghea, L. D.
2015-11-01
The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-04-08
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.
Energy Technology Data Exchange (ETDEWEB)
Lawson, E.M. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Physics Division
1998-03-01
The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with {sup 14}C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for {sup 14}C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent`s indigenous Aboriginal peoples. (author)
International Nuclear Information System (INIS)
Lawson, E.M.
1998-01-01
The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with 14 C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for 14 C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent's indigenous Aboriginal peoples. (author)
Biostatistics Series Module 6: Correlation and Linear Regression.
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.
Ole E. Barndorff-Nielsen; Neil Shephard
2002-01-01
This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...
International Nuclear Information System (INIS)
Takeda, Tatsuoki
1985-01-01
In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)
Uncertainty Analyses and Strategy
International Nuclear Information System (INIS)
Kevin Coppersmith
2001-01-01
The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository
Directory of Open Access Journals (Sweden)
Jingyi Zhang
2018-06-01
Full Text Available This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF method to estimate ground PM2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM2.5 analysis and prediction.
Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng
2018-06-11
This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.
A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Abraham, Simon, E-mail: Simon.Abraham@ulb.ac.be [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium); Raisee, Mehrdad [School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran (Iran, Islamic Republic of); Ghorbaniasl, Ghader; Contino, Francesco; Lacor, Chris [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium)
2017-03-01
Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.
International Nuclear Information System (INIS)
Gupta, N
2008-01-01
3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures
Geodesic least squares regression for scaling studies in magnetic confinement fusion
International Nuclear Information System (INIS)
Verdoolaege, Geert
2015-01-01
In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority of the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices
Finding-equal regression method and its application in predication of U resources
International Nuclear Information System (INIS)
Cao Huimo
1995-03-01
The commonly adopted deposit model method in mineral resources predication has two main part: one is model data that show up geological mineralization law for deposit, the other is statistics predication method that accords with characters of the data namely pretty regression method. This kind of regression method may be called finding-equal regression, which is made of the linear regression and distribution finding-equal method. Because distribution finding-equal method is a data pretreatment which accords with advanced mathematical precondition for the linear regression namely equal distribution theory, and this kind of data pretreatment is possible of realization. Therefore finding-equal regression not only can overcome nonlinear limitations, that are commonly occurred in traditional linear regression or other regression and always have no solution, but also can distinguish outliers and eliminate its weak influence, which would usually appeared when Robust regression possesses outlier in independent variables. Thus this newly finding-equal regression stands the best status in all kind of regression methods. Finally, two good examples of U resource quantitative predication are provided
Automatic selection of indicators in a fully saturated regression
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
2008-01-01
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....
Regression of Cardiac Rhabdomyomas in a Neonate after Everolimus Treatment
Directory of Open Access Journals (Sweden)
Helen Bornaun
2016-01-01
Full Text Available Cardiac rhabdomyoma often shows spontaneous regression and usually requires only close follow-up. However, patients with symptomatic inoperable rhabdomyomas may be candidates for everolimus treatment. Our patient had multiple inoperable cardiac rhabdomyomas causing serious left ventricle outflow-tract obstruction that showed a dramatic reduction in the size after everolimus therapy, a mammalian target of rapamycin (mTOR inhibitor. After discontinuation of therapy, an increase in the diameter of masses occurred and everolimus was restarted. After 6 months of treatment, rhabdomyomas decreased in size and therapy was stopped. In conclusion, everolimus could be a possible novel therapy for neonates with clinically significant rhabdomyomas.
Correlation, regression, and cointegration of nonstationary economic time series
DEFF Research Database (Denmark)
Johansen, Søren
Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974......), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coeffients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coe¢ cients do not converge to the relevant population...
Fault trend prediction of device based on support vector regression
International Nuclear Information System (INIS)
Song Meicun; Cai Qi
2011-01-01
The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)
Directory of Open Access Journals (Sweden)
Mach Łukasz
2017-06-01
Full Text Available The research process aimed at building regression models, which helps to valuate residential real estate, is presented in the following article. Two widely used computational tools i.e. the classical multiple regression and regression models of artificial neural networks were used in order to build models. An attempt to define the utilitarian usefulness of the above-mentioned tools and comparative analysis of them is the aim of the conducted research. Data used for conducting analyses refers to the secondary transactional residential real estate market.
A method for nonlinear exponential regression analysis
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Multinomial logistic regression in workers' health
Grilo, Luís M.; Grilo, Helena L.; Gonçalves, Sónia P.; Junça, Ana
2017-11-01
In European countries, namely in Portugal, it is common to hear some people mentioning that they are exposed to excessive and continuous psychosocial stressors at work. This is increasing in diverse activity sectors, such as, the Services sector. A representative sample was collected from a Portuguese Services' organization, by applying a survey (internationally validated), which variables were measured in five ordered categories in Likert-type scale. A multinomial logistic regression model is used to estimate the probability of each category of the dependent variable general health perception where, among other independent variables, burnout appear as statistically significant.
Three Contributions to Robust Regression Diagnostics
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2015-01-01
Roč. 11, č. 2 (2015), s. 69-78 ISSN 1336-9180 Grant - others:GA ČR(CZ) GA13-01930S; Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985807 Keywords : robust regression * robust econometrics * hypothesis test ing Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT
SDE based regression for random PDEs
Bayer, Christian
2016-01-01
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
Bayesian regression of piecewise homogeneous Poisson processes
Directory of Open Access Journals (Sweden)
Diego Sevilla
2015-12-01
Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015
Mapping geogenic radon potential by regression kriging
Energy Technology Data Exchange (ETDEWEB)
Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)
2016-02-15
Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method
Fixed kernel regression for voltammogram feature extraction
International Nuclear Information System (INIS)
Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N
2009-01-01
Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals
Regression analysis for the social sciences
Gordon, Rachel A
2010-01-01
The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.
SDE based regression for random PDEs
Bayer, Christian
2016-01-06
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
Neutrosophic Correlation and Simple Linear Regression
Directory of Open Access Journals (Sweden)
A. A. Salama
2014-09-01
Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.
Spectral density regression for bivariate extremes
Castro Camilo, Daniela
2016-05-11
We introduce a density regression model for the spectral density of a bivariate extreme value distribution, that allows us to assess how extremal dependence can change over a covariate. Inference is performed through a double kernel estimator, which can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are replaced by mean constrained densities on the unit interval. Numerical experiments with the methods illustrate their resilience in a variety of contexts of practical interest. An extreme temperature dataset is used to illustrate our methods. © 2016 Springer-Verlag Berlin Heidelberg
SPE dose prediction using locally weighted regression
International Nuclear Information System (INIS)
Hines, J. W.; Townsend, L. W.; Nichols, T. F.
2005-01-01
When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used. (authors)
Mapping geogenic radon potential by regression kriging
International Nuclear Information System (INIS)
Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos
2016-01-01
Radon ( 222 Rn) gas is produced in the radioactive decay chain of uranium ( 238 U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method, regression
SPE dose prediction using locally weighted regression
International Nuclear Information System (INIS)
Hines, J. W.; Townsend, L. W.; Nichols, T. F.
2005-01-01
When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. (authors)
AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS
Directory of Open Access Journals (Sweden)
Н. Білак
2012-04-01
Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.
Regression of conjunctival tumor during dietary treatment of celiac disease
Directory of Open Access Journals (Sweden)
Tuncer Samuray
2010-01-01
Full Text Available A 3-year-old girl presented with a hemorrhagic conjunctival lesion in the right eye. The medical history revealed premature cessation of breast feeding, intolerance to the ingestion of baby foods, anorexia, and abdominal distention. Prior to her referral, endoscopic small intestinal biopsy had been carried out under general anesthesia with a possible diagnosis of Celiac Disease (CD. Her parents did not want their child to undergo general anesthesia for the second time for the excisional biopsy. We decided to follow the patient until all systemic investigations were concluded. In evaluation, the case was diagnosed with CD and the conjunctival tumor showed complete regression during gluten-free dietary treatment. The clinical fleshy appearance of the lesion with spider-like vascular extensions and subconjunctival hemorrhagic spots, possible association with an acquired immune system dysfunction due to CD, and spontaneous regression by a gluten-free diet led us to make a presumed diagnosis of conjunctival Kaposi sarcoma.
Modeling and prediction of flotation performance using support vector regression
Directory of Open Access Journals (Sweden)
Despotović Vladimir
2017-01-01
Full Text Available Continuous efforts have been made in recent year to improve the process of paper recycling, as it is of critical importance for saving the wood, water and energy resources. Flotation deinking is considered to be one of the key methods for separation of ink particles from the cellulose fibres. Attempts to model the flotation deinking process have often resulted in complex models that are difficult to implement and use. In this paper a model for prediction of flotation performance based on Support Vector Regression (SVR, is presented. Representative data samples were created in laboratory, under a variety of practical control variables for the flotation deinking process, including different reagents, pH values and flotation residence time. Predictive model was created that was trained on these data samples, and the flotation performance was assessed showing that Support Vector Regression is a promising method even when dataset used for training the model is limited.
Modeling the number of car theft using Poisson regression
Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura
2016-10-01
Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.
International Nuclear Information System (INIS)
Lemarchand, G.
1977-01-01
(ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis
Energy Technology Data Exchange (ETDEWEB)
Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)
2009-02-01
The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.
Kent, Jack W
2016-02-03
New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.
Analysing Access Control Specifications
DEFF Research Database (Denmark)
Probst, Christian W.; Hansen, René Rydhof
2009-01-01
When prosecuting crimes, the main question to answer is often who had a motive and the possibility to commit the crime. When investigating cyber crimes, the question of possibility is often hard to answer, as in a networked system almost any location can be accessed from almost anywhere. The most...... common tool to answer this question, analysis of log files, faces the problem that the amount of logged data may be overwhelming. This problems gets even worse in the case of insider attacks, where the attacker’s actions usually will be logged as permissible, standard actions—if they are logged at all....... Recent events have revealed intimate knowledge of surveillance and control systems on the side of the attacker, making it often impossible to deduce the identity of an inside attacker from logged data. In this work we present an approach that analyses the access control configuration to identify the set...
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak; Ghosh, Malay; Mallick, Bani K.
2012-01-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik's ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Spontaneous regression of intracranial malignant lymphoma
International Nuclear Information System (INIS)
Kojo, Nobuto; Tokutomi, Takashi; Eguchi, Gihachirou; Takagi, Shigeyuki; Matsumoto, Tomie; Sasaguri, Yasuyuki; Shigemori, Minoru.
1988-01-01
In a 46-year-old female with a 1-month history of gait and speech disturbances, computed tomography (CT) demonstrated mass lesions of slightly high density in the left basal ganglia and left frontal lobe. The lesions were markedly enhanced by contrast medium. The patient received no specific treatment, but her clinical manifestations gradually abated and the lesions decreased in size. Five months after her initial examination, the lesions were absent on CT scans; only a small area of low density remained. Residual clinical symptoms included mild right hemiparesis and aphasia. After 14 months the patient again deteriorated, and a CT scan revealed mass lesions in the right frontal lobe and the pons. However, no enhancement was observed in the previously affected regions. A biopsy revealed malignant lymphoma. Despite treatment with steroids and radiation, the patient's clinical status progressively worsened and she died 27 months after initial presentation. Seven other cases of spontaneous regression of primary malignant lymphoma have been reported. In this case, the mechanism of the spontaneous regression was not clear, but changes in immunologic status may have been involved. (author)
Regression testing in the TOTEM DCS
International Nuclear Information System (INIS)
Rodríguez, F Lucas; Atanassov, I; Burkimsher, P; Frost, O; Taskinen, J; Tulimaki, V
2012-01-01
The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarm metainformation, and some other heuristics based on the naming conventions. When those initial parameters and automation code are modified to include new features, the resulting PVSS system can also introduce side-effects. On a daily basis, a custom developed regression testing tool takes the most recent code from a Subversion (SVN) repository and builds a new control system from scratch. This system is exported in plain text format using the PVSS export tool, and compared with a system previously validated by a human. A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance as a new stable version. This regression approach is not dependent on any development framework or methodology. This process has been satisfactory during several months, proving to be a very valuable tool before deploying new versions in the production systems.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak
2012-07-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Hyperspectral Unmixing with Robust Collaborative Sparse Regression
Directory of Open Access Journals (Sweden)
Chang Li
2016-07-01
Full Text Available Recently, sparse unmixing (SU of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM, which ignores the possible nonlinear effects (i.e., nonlinearity. In this paper, we propose a new method named robust collaborative sparse regression (RCSR based on the robust LMM (rLMM for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.
Supporting Regularized Logistic Regression Privately and Efficiently.
Directory of Open Access Journals (Sweden)
Wenfa Li
Full Text Available As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin
2010-05-01
This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.
Approximate analyses of inelastic effects in pipework
International Nuclear Information System (INIS)
Jobson, D.A.
1983-01-01
This presentation shows figures concerned with analyses of inelastic effects in pipework as follows: comparison of experimental and calculated simplified analyses results for free end rotation and for circumferential strain; interrupted stress relaxation; regenerated relaxation caused by reversed yield; buckling of straight pipe under combined bending and torsion; results of fatigues test of pipe bend
CATREG SOFTWARE FOR CATEGORICAL REGRESSION ANALYSIS
CatReg is a computer program, written in the R (r-project.org">http://cran.r-project.org) programming language, to support the conduct of exposure-response analyses by toxicologists and health scientists. CatReg can be used to perform categorical regressi...
Interpreting parameters in the logistic regression model with random effects
DEFF Research Database (Denmark)
Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben
2000-01-01
interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...
Ng, Kar Yong; Awang, Norhashidah
2018-01-06
Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.
Continuous validation of ASTEC containment models and regression testing
International Nuclear Information System (INIS)
Nowack, Holger; Reinke, Nils; Sonnenkalb, Martin
2014-01-01
The focus of the ASTEC (Accident Source Term Evaluation Code) development at GRS is primarily on the containment module CPA (Containment Part of ASTEC), whose modelling is to a large extent based on the GRS containment code COCOSYS (COntainment COde SYStem). Validation is usually understood as the approval of the modelling capabilities by calculations of appropriate experiments done by external users different from the code developers. During the development process of ASTEC CPA, bugs and unintended side effects may occur, which leads to changes in the results of the initially conducted validation. Due to the involvement of a considerable number of developers in the coding of ASTEC modules, validation of the code alone, even if executed repeatedly, is not sufficient. Therefore, a regression testing procedure has been implemented in order to ensure that the initially obtained validation results are still valid with succeeding code versions. Within the regression testing procedure, calculations of experiments and plant sequences are performed with the same input deck but applying two different code versions. For every test-case the up-to-date code version is compared to the preceding one on the basis of physical parameters deemed to be characteristic for the test-case under consideration. In the case of post-calculations of experiments also a comparison to experimental data is carried out. Three validation cases from the regression testing procedure are presented within this paper. The very good post-calculation of the HDR E11.1 experiment shows the high quality modelling of thermal-hydraulics in ASTEC CPA. Aerosol behaviour is validated on the BMC VANAM M3 experiment, and the results show also a very good agreement with experimental data. Finally, iodine behaviour is checked in the validation test-case of the THAI IOD-11 experiment. Within this test-case, the comparison of the ASTEC versions V2.0r1 and V2.0r2 shows how an error was detected by the regression testing
Men and women show similar survival outcome in stage IV breast cancer.
Wu, San-Gang; Zhang, Wen-Wen; Liao, Xu-Lin; Sun, Jia-Yuan; Li, Feng-Yan; Su, Jing-Jun; He, Zhen-Yu
2017-08-01
To evaluate the clinicopathological features, patterns of distant metastases, and survival outcome between stage IV male breast cancer (MBC) and female breast cancer (FBC). Patients diagnosed with stage IV MBC and FBC between 2010 and 2013 were included using the Surveillance, Epidemiology, and End Results program. Univariate and multivariate Cox regression analyses were used to analyze risk factors for overall survival (OS). A total of 4997 patients were identified, including 60 MBC and 4937 FBC. Compared with FBC, patients with MBC were associated with a significantly higher rate of estrogen receptor-positive, progesterone receptor-positive, unmarried, lung metastases, and a lower frequency of liver metastases. Univariate and multivariate analyses showed no significant difference in OS between MBC and FBC. In the propensity score-matched population, there was also no difference in survival between MBC and FBC. Multivariate analysis of MBC showed that OS was longer for patients aged 50-69 years and with estrogen receptor-positive disease. There was no significant difference in survival outcome between stage IV MBC and FBC, but significant differences in clinicopathological features and patterns of metastases between the genders. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Kostov, Marin
2000-01-01
In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The
DEFF Research Database (Denmark)
Thorlacius, Lisbeth
2009-01-01
eller blindgyder, når han/hun besøger sitet. Studier i design og analyse af de visuelle og æstetiske aspekter i planlægning og brug af websites har imidlertid kun i et begrænset omfang været under reflektorisk behandling. Det er baggrunden for dette kapitel, som indleder med en gennemgang af æstetikkens......Websitet er i stigende grad det foretrukne medie inden for informationssøgning,virksomhedspræsentation, e-handel, underholdning, undervisning og social kontakt. I takt med denne voksende mangfoldighed af kommunikationsaktiviteter på nettet, er der kommet mere fokus på at optimere design og...... planlægning af de funktionelle og indholdsmæssige aspekter ved websites. Der findes en stor mængde teori- og metodebøger, som har specialiseret sig i de tekniske problemstillinger i forbindelse med interaktion og navigation, samt det sproglige indhold på websites. Den danske HCI (Human Computer Interaction...
International Nuclear Information System (INIS)
Gobbur, S.G.
1983-01-01
It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)
Analyse van kwalitatief onderzoeksmateriaal
Wester, F.P.J.
2004-01-01
Qualitative research is characterised by its analytical goals: the development of categories, the elaboration of concepts or the formulation of a theory. Because of this analytical openness, the research design shows successive phases, each with its own objective and specific demands for data
Spontaneous regression of a large hepatocellular carcinoma: case report
Directory of Open Access Journals (Sweden)
Alqutub, Adel
2011-01-01
Full Text Available The prognosis of untreated advanced hepatocellular carcinoma (HCC is grim with a median survival of less than 6 months. Spontaneous regression of HCC has been defined as the disappearance of the hepatic lesions in the absence of any specific therapy. The spontaneous regression of a very large HCC is very rare and limited data is available in the English literature. We describe spontaneous regression of hepatocellular carcinoma in a 65-year-old male who presented to our clinic with vague abdominal pain and weight loss of two months duration. He was found to have multiple hepatic lesions with elevation of serum alpha-fetoprotein (AFP level to 6,500 µg/L (normal <20 µg/L. Computed tomography revealed advanced HCC replacing almost 80% of the right hepatic lobe. Without any intervention the patient showed gradual improvement over a period of few months. Follow-up CT scan revealed disappearance of hepatic lesions with progressive decline of AFP levels to normal. Various mechanisms have been postulated to explain this rare phenomenon, but the exact mechanism remains a mystery.
Predicting company growth using logistic regression and neural networks
Directory of Open Access Journals (Sweden)
Marijana Zekić-Sušac
2016-12-01
Full Text Available The paper aims to establish an efficient model for predicting company growth by leveraging the strengths of logistic regression and neural networks. A real dataset of Croatian companies was used which described the relevant industry sector, financial ratios, income, and assets in the input space, with a dependent binomial variable indicating whether a company had high-growth if it had annualized growth in assets by more than 20% a year over a three-year period. Due to a large number of input variables, factor analysis was performed in the pre -processing stage in order to extract the most important input components. Building an efficient model with a high classification rate and explanatory ability required application of two data mining methods: logistic regression as a parametric and neural networks as a non -parametric method. The methods were tested on the models with and without variable reduction. The classification accuracy of the models was compared using statistical tests and ROC curves. The results showed that neural networks produce a significantly higher classification accuracy in the model when incorporating all available variables. The paper further discusses the advantages and disadvantages of both approaches, i.e. logistic regression and neural networks in modelling company growth. The suggested model is potentially of benefit to investors and economic policy makers as it provides support for recognizing companies with growth potential, especially during times of economic downturn.
Estimation of adjusted rate differences using additive negative binomial regression.
Donoghoe, Mark W; Marschner, Ian C
2016-08-15
Rate differences are an important effect measure in biostatistics and provide an alternative perspective to rate ratios. When the data are event counts observed during an exposure period, adjusted rate differences may be estimated using an identity-link Poisson generalised linear model, also known as additive Poisson regression. A problem with this approach is that the assumption of equality of mean and variance rarely holds in real data, which often show overdispersion. An additive negative binomial model is the natural alternative to account for this; however, standard model-fitting methods are often unable to cope with the constrained parameter space arising from the non-negativity restrictions of the additive model. In this paper, we propose a novel solution to this problem using a variant of the expectation-conditional maximisation-either algorithm. Our method provides a reliable way to fit an additive negative binomial regression model and also permits flexible generalisations using semi-parametric regression functions. We illustrate the method using a placebo-controlled clinical trial of fenofibrate treatment in patients with type II diabetes, where the outcome is the number of laser therapy courses administered to treat diabetic retinopathy. An R package is available that implements the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Electricity consumption forecasting in Italy using linear regression models
Energy Technology Data Exchange (ETDEWEB)
Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)
2009-09-15
The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)
Comparing spatial regression to random forests for large ...
Environmental data may be “large” due to number of records, number of covariates, or both. Random forests has a reputation for good predictive performance when using many covariates, whereas spatial regression, when using reduced rank methods, has a reputation for good predictive performance when using many records. In this study, we compare these two techniques using a data set containing the macroinvertebrate multimetric index (MMI) at 1859 stream sites with over 200 landscape covariates. Our primary goal is predicting MMI at over 1.1 million perennial stream reaches across the USA. For spatial regression modeling, we develop two new methods to accommodate large data: (1) a procedure that estimates optimal Box-Cox transformations to linearize covariate relationships; and (2) a computationally efficient covariate selection routine that takes into account spatial autocorrelation. We show that our new methods lead to cross-validated performance similar to random forests, but that there is an advantage for spatial regression when quantifying the uncertainty of the predictions. Simulations are used to clarify advantages for each method. This research investigates different approaches for modeling and mapping national stream condition. We use MMI data from the EPA's National Rivers and Streams Assessment and predictors from StreamCat (Hill et al., 2015). Previous studies have focused on modeling the MMI condition classes (i.e., good, fair, and po
Electricity consumption forecasting in Italy using linear regression models
International Nuclear Information System (INIS)
Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio
2009-01-01
The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)
ANYOLS, Least Square Fit by Stepwise Regression
International Nuclear Information System (INIS)
Atwoods, C.L.; Mathews, S.
1986-01-01
Description of program or function: ANYOLS is a stepwise program which fits data using ordinary or weighted least squares. Variables are selected for the model in a stepwise way based on a user- specified input criterion or a user-written subroutine. The order in which variables are entered can be influenced by user-defined forcing priorities. Instead of stepwise selection, ANYOLS can try all possible combinations of any desired subset of the variables. Automatic output for the final model in a stepwise search includes plots of the residuals, 'studentized' residuals, and leverages; if the model is not too large, the output also includes partial regression and partial leverage plots. A data set may be re-used so that several selection criteria can be tried. Flexibility is increased by allowing the substitution of user-written subroutines for several default subroutines
Logistic regression against a divergent Bayesian network
Directory of Open Access Journals (Sweden)
Noel Antonio Sánchez Trujillo
2015-01-01
Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.