WorldWideScience

Sample records for regression analyses predicting

  1. Prediction, Regression and Critical Realism

    DEFF Research Database (Denmark)

    Næss, Petter

    2004-01-01

    This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...

  2. Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data.

    Science.gov (United States)

    Alexeeff, Stacey E; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A

    2015-01-01

    Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1 km × 1 km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R(2) yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with >0.9 out-of-sample R(2) yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the SEs. Land use regression models performed better in chronic effect simulations. These results can help researchers when interpreting health effect estimates in these types of studies.

  3. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part II: Evaluation of Sample Models

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.

  4. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part I: Effects of Random Error

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.

  5. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...

  6. Area under the curve predictions of dalbavancin, a new lipoglycopeptide agent, using the end of intravenous infusion concentration data point by regression analyses such as linear, log-linear and power models.

    Science.gov (United States)

    Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally

    2018-02-01

    1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.

  7. Predicting Word Reading Ability: A Quantile Regression Study

    Science.gov (United States)

    McIlraith, Autumn L.

    2018-01-01

    Predictors of early word reading are well established. However, it is unclear if these predictors hold for readers across a range of word reading abilities. This study used quantile regression to investigate predictive relationships at different points in the distribution of word reading. Quantile regression analyses used preschool and…

  8. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...

  9. Predicting Social Trust with Binary Logistic Regression

    Science.gov (United States)

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  10. SPE dose prediction using locally weighted regression

    International Nuclear Information System (INIS)

    Hines, J. W.; Townsend, L. W.; Nichols, T. F.

    2005-01-01

    When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used. (authors)

  11. SPE dose prediction using locally weighted regression

    International Nuclear Information System (INIS)

    Hines, J. W.; Townsend, L. W.; Nichols, T. F.

    2005-01-01

    When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. (authors)

  12. DNBR Prediction Using a Support Vector Regression

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2008-01-01

    PWRs (Pressurized Water Reactors) generally operate in the nucleate boiling state. However, the conversion of nucleate boiling into film boiling with conspicuously reduced heat transfer induces a boiling crisis that may cause the fuel clad melting in the long run. This type of boiling crisis is called Departure from Nucleate Boiling (DNB) phenomena. Because the prediction of minimum DNBR in a reactor core is very important to prevent the boiling crisis such as clad melting, a lot of research has been conducted to predict DNBR values. The object of this research is to predict minimum DNBR applying support vector regression (SVR) by using the measured signals of a reactor coolant system (RCS). The SVR has extensively and successfully been applied to nonlinear function approximation like the proposed problem for estimating DNBR values that will be a function of various input variables such as reactor power, reactor pressure, core mass flowrate, control rod positions and so on. The minimum DNBR in a reactor core is predicted using these various operating condition data as the inputs to the SVR. The minimum DBNR values predicted by the SVR confirm its correctness compared with COLSS values

  13. BANK FAILURE PREDICTION WITH LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Taha Zaghdoudi

    2013-04-01

    Full Text Available In recent years the economic and financial world is shaken by a wave of financial crisis and resulted in violent bank fairly huge losses. Several authors have focused on the study of the crises in order to develop an early warning model. It is in the same path that our work takes its inspiration. Indeed, we have tried to develop a predictive model of Tunisian bank failures with the contribution of the binary logistic regression method. The specificity of our prediction model is that it takes into account microeconomic indicators of bank failures. The results obtained using our provisional model show that a bank's ability to repay its debt, the coefficient of banking operations, bank profitability per employee and leverage financial ratio has a negative impact on the probability of failure.

  14. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    Science.gov (United States)

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  15. Applications of MIDAS regression in analysing trends in water quality

    Science.gov (United States)

    Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.

    2014-04-01

    We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.

  16. Gaussian process regression for tool wear prediction

    Science.gov (United States)

    Kong, Dongdong; Chen, Yongjie; Li, Ning

    2018-05-01

    To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.

  17. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  18. Linear regression crash prediction models : issues and proposed solutions.

    Science.gov (United States)

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  19. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  20. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  1. Corporate prediction models, ratios or regression analysis?

    NARCIS (Netherlands)

    Bijnen, E.J.; Wijn, M.F.C.M.

    1994-01-01

    The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in

  2. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.

    Science.gov (United States)

    Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H

    2016-04-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.

  3. Gaussian Process Regression for WDM System Performance Prediction

    DEFF Research Database (Denmark)

    Wass, Jesper; Thrane, Jakob; Piels, Molly

    2017-01-01

    Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data.......Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data....

  4. Statistical and regression analyses of detected extrasolar systems

    Czech Academy of Sciences Publication Activity Database

    Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.

    2013-01-01

    Roč. 75, č. 1 (2013), s. 37-45 ISSN 0032-0633 Institutional support: RVO:61389021 Keywords : Exoplanets * Kepler candidates * Regression analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.630, year: 2013 http://www.sciencedirect.com/science/article/pii/S0032063312003066

  5. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies

    OpenAIRE

    Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.

    2016-01-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epide...

  6. Analysing inequalities in Germany a structured additive distributional regression approach

    CERN Document Server

    Silbersdorff, Alexander

    2017-01-01

    This book seeks new perspectives on the growing inequalities that our societies face, putting forward Structured Additive Distributional Regression as a means of statistical analysis that circumvents the common problem of analytical reduction to simple point estimators. This new approach allows the observed discrepancy between the individuals’ realities and the abstract representation of those realities to be explicitly taken into consideration using the arithmetic mean alone. In turn, the method is applied to the question of economic inequality in Germany.

  7. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  8. Sunspot Cycle Prediction Using Multivariate Regression and Binary ...

    Indian Academy of Sciences (India)

    49

    Multivariate regression model has been derived based on the available cycles 1 .... The flare index correlates well with various parameters of the solar activity. ...... 32) Sabarinath A and Anilkumar A K 2011 A stochastic prediction model for the.

  9. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    Science.gov (United States)

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  10. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    Science.gov (United States)

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  11. Fault trend prediction of device based on support vector regression

    International Nuclear Information System (INIS)

    Song Meicun; Cai Qi

    2011-01-01

    The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)

  12. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve fitting,Auto Regressive ...

  13. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Science.gov (United States)

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Prediction of radiation levels in residences: A methodological comparison of CART [Classification and Regression Tree Analysis] and conventional regression

    International Nuclear Information System (INIS)

    Janssen, I.; Stebbings, J.H.

    1990-01-01

    In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs

  15. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  16. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  17. Application of support vector regression (SVR) for stream flow prediction on the Amazon basin

    CSIR Research Space (South Africa)

    Du Toit, Melise

    2016-10-01

    Full Text Available regression technique is used in this study to analyse historical stream flow occurrences and predict stream flow values for the Amazon basin. Up to twelve month predictions are made and the coefficient of determination and root-mean-square error are used...

  18. Tax Evasion, Information Reporting, and the Regressive Bias Prediction

    DEFF Research Database (Denmark)

    Boserup, Simon Halphen; Pinje, Jori Veng

    2013-01-01

    evasion and audit probabilities once we account for information reporting in the tax compliance game. When conditioning on information reporting, we find that both reduced-form evidence and simulations exhibit the predicted regressive bias. However, in the overall economy, this bias is negated by the tax......Models of rational tax evasion and optimal enforcement invariably predict a regressive bias in the effective tax system, which reduces redistribution in the economy. Using Danish administrative data, we show that a calibrated structural model of this type replicates moments and correlations of tax...

  19. Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR).

    Science.gov (United States)

    Morales, Esteban; de Leon, John Mark S; Abdollahi, Niloufar; Yu, Fei; Nouri-Mahdavi, Kouros; Caprioli, Joseph

    2016-03-01

    The study was conducted to evaluate threshold smoothing algorithms to enhance prediction of the rates of visual field (VF) worsening in glaucoma. We studied 798 patients with primary open-angle glaucoma and 6 or more years of follow-up who underwent 8 or more VF examinations. Thresholds at each VF location for the first 4 years or first half of the follow-up time (whichever was greater) were smoothed with clusters defined by the nearest neighbor (NN), Garway-Heath, Glaucoma Hemifield Test (GHT), and weighting by the correlation of rates at all other VF locations. Thresholds were regressed with a pointwise exponential regression (PER) model and a pointwise linear regression (PLR) model. Smaller root mean square error (RMSE) values of the differences between the observed and the predicted thresholds at last two follow-ups indicated better model predictions. The mean (SD) follow-up times for the smoothing and prediction phase were 5.3 (1.5) and 10.5 (3.9) years. The mean RMSE values for the PER and PLR models were unsmoothed data, 6.09 and 6.55; NN, 3.40 and 3.42; Garway-Heath, 3.47 and 3.48; GHT, 3.57 and 3.74; and correlation of rates, 3.59 and 3.64. Smoothed VF data predicted better than unsmoothed data. Nearest neighbor provided the best predictions; PER also predicted consistently more accurately than PLR. Smoothing algorithms should be used when forecasting VF results with PER or PLR. The application of smoothing algorithms on VF data can improve forecasting in VF points to assist in treatment decisions.

  20. Approximating prediction uncertainty for random forest regression models

    Science.gov (United States)

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  1. Predicting Dropouts of University Freshmen: A Logit Regression Analysis.

    Science.gov (United States)

    Lam, Y. L. Jack

    1984-01-01

    Stepwise discriminant analysis coupled with logit regression analysis of freshmen data from Brandon University (Manitoba) indicated that six tested variables drawn from research on university dropouts were useful in predicting attrition: student status, residence, financial sources, distance from home town, goal fulfillment, and satisfaction with…

  2. Prediction of Concrete Mix Cost Using Modified Regression Theory ...

    African Journals Online (AJOL)

    The cost of concrete production which largely depends on the cost of the constituent materials, affects the overall cost of construction. In this paper, a model based on modified regression theory is formulated to optimise concrete mix cost (in Naira). Using the model, one can predict the cost per cubic meter of concrete if the ...

  3. On the estimation and testing of predictive panel regressions

    NARCIS (Netherlands)

    Karabiyik, H.; Westerlund, Joakim; Narayan, Paresh

    2016-01-01

    Hjalmarsson (2010) considers an OLS-based estimator of predictive panel regressions that is argued to be mixed normal under very general conditions. In a recent paper, Westerlund et al. (2016) show that while consistent, the estimator is generally not mixed normal, which invalidates standard normal

  4. Modeling and prediction of flotation performance using support vector regression

    Directory of Open Access Journals (Sweden)

    Despotović Vladimir

    2017-01-01

    Full Text Available Continuous efforts have been made in recent year to improve the process of paper recycling, as it is of critical importance for saving the wood, water and energy resources. Flotation deinking is considered to be one of the key methods for separation of ink particles from the cellulose fibres. Attempts to model the flotation deinking process have often resulted in complex models that are difficult to implement and use. In this paper a model for prediction of flotation performance based on Support Vector Regression (SVR, is presented. Representative data samples were created in laboratory, under a variety of practical control variables for the flotation deinking process, including different reagents, pH values and flotation residence time. Predictive model was created that was trained on these data samples, and the flotation performance was assessed showing that Support Vector Regression is a promising method even when dataset used for training the model is limited.

  5. Predicting Performance on MOOC Assessments using Multi-Regression Models

    OpenAIRE

    Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya

    2016-01-01

    The past few years has seen the rapid growth of data min- ing approaches for the analysis of data obtained from Mas- sive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a stu- dent may achieve on a given grade-related assessment based on information, considered as prior performance or prior ac- tivity in the course. We develop a personalized linear mul- tiple regression (PLMR) model to predict the grade for a student, prior to attempt...

  6. How to deal with continuous and dichotomic outcomes in epidemiological research: linear and logistic regression analyses

    NARCIS (Netherlands)

    Tripepi, Giovanni; Jager, Kitty J.; Stel, Vianda S.; Dekker, Friedo W.; Zoccali, Carmine

    2011-01-01

    Because of some limitations of stratification methods, epidemiologists frequently use multiple linear and logistic regression analyses to address specific epidemiological questions. If the dependent variable is a continuous one (for example, systolic pressure and serum creatinine), the researcher

  7. Intelligent Quality Prediction Using Weighted Least Square Support Vector Regression

    Science.gov (United States)

    Yu, Yaojun

    A novel quality prediction method with mobile time window is proposed for small-batch producing process based on weighted least squares support vector regression (LS-SVR). The design steps and learning algorithm are also addressed. In the method, weighted LS-SVR is taken as the intelligent kernel, with which the small-batch learning is solved well and the nearer sample is set a larger weight, while the farther is set the smaller weight in the history data. A typical machining process of cutting bearing outer race is carried out and the real measured data are used to contrast experiment. The experimental results demonstrate that the prediction accuracy of the weighted LS-SVR based model is only 20%-30% that of the standard LS-SVR based one in the same condition. It provides a better candidate for quality prediction of small-batch producing process.

  8. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  9. Predicting company growth using logistic regression and neural networks

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2016-12-01

    Full Text Available The paper aims to establish an efficient model for predicting company growth by leveraging the strengths of logistic regression and neural networks. A real dataset of Croatian companies was used which described the relevant industry sector, financial ratios, income, and assets in the input space, with a dependent binomial variable indicating whether a company had high-growth if it had annualized growth in assets by more than 20% a year over a three-year period. Due to a large number of input variables, factor analysis was performed in the pre -processing stage in order to extract the most important input components. Building an efficient model with a high classification rate and explanatory ability required application of two data mining methods: logistic regression as a parametric and neural networks as a non -parametric method. The methods were tested on the models with and without variable reduction. The classification accuracy of the models was compared using statistical tests and ROC curves. The results showed that neural networks produce a significantly higher classification accuracy in the model when incorporating all available variables. The paper further discusses the advantages and disadvantages of both approaches, i.e. logistic regression and neural networks in modelling company growth. The suggested model is potentially of benefit to investors and economic policy makers as it provides support for recognizing companies with growth potential, especially during times of economic downturn.

  10. Prediction of hearing outcomes by multiple regression analysis in patients with idiopathic sudden sensorineural hearing loss.

    Science.gov (United States)

    Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki

    2014-12-01

    This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.

  11. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  12. Dynamic prediction of cumulative incidence functions by direct binomial regression.

    Science.gov (United States)

    Grand, Mia K; de Witte, Theo J M; Putter, Hein

    2018-03-25

    In recent years there have been a series of advances in the field of dynamic prediction. Among those is the development of methods for dynamic prediction of the cumulative incidence function in a competing risk setting. These models enable the predictions to be updated as time progresses and more information becomes available, for example when a patient comes back for a follow-up visit after completing a year of treatment, the risk of death, and adverse events may have changed since treatment initiation. One approach to model the cumulative incidence function in competing risks is by direct binomial regression, where right censoring of the event times is handled by inverse probability of censoring weights. We extend the approach by combining it with landmarking to enable dynamic prediction of the cumulative incidence function. The proposed models are very flexible, as they allow the covariates to have complex time-varying effects, and we illustrate how to investigate possible time-varying structures using Wald tests. The models are fitted using generalized estimating equations. The method is applied to bone marrow transplant data and the performance is investigated in a simulation study. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. USE OF THE SIMPLE LINEAR REGRESSION MODEL IN MACRO-ECONOMICAL ANALYSES

    Directory of Open Access Journals (Sweden)

    Constantin ANGHELACHE

    2011-10-01

    Full Text Available The article presents the fundamental aspects of the linear regression, as a toolbox which can be used in macroeconomic analyses. The article describes the estimation of the parameters, the statistical tests used, the homoscesasticity and heteroskedasticity. The use of econometrics instrument in macroeconomics is an important factor that guarantees the quality of the models, analyses, results and possible interpretation that can be drawn at this level.

  14. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  15. Regression Analyses on the Butterfly Ballot Effect: A Statistical Perspective of the US 2000 Election

    Science.gov (United States)

    Wu, Dane W.

    2002-01-01

    The year 2000 US presidential election between Al Gore and George Bush has been the most intriguing and controversial one in American history. The state of Florida was the trigger for the controversy, mainly, due to the use of the misleading "butterfly ballot". Using prediction (or confidence) intervals for least squares regression lines…

  16. An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions

    Energy Technology Data Exchange (ETDEWEB)

    Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.

    2016-07-01

    Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)

  17. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    Science.gov (United States)

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  18. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    Science.gov (United States)

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  19. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  20. Prediction accuracy and stability of regression with optimal scaling transformations

    NARCIS (Netherlands)

    Kooij, van der Anita J.

    2007-01-01

    The central topic of this thesis is the CATREG approach to nonlinear regression. This approach finds optimal quantifications for categorical variables and/or nonlinear transformations for numerical variables in regression analysis. (CATREG is implemented in SPSS Categories by the author of the

  1. Neonatal Sleep-Wake Analyses Predict 18-month Neurodevelopmental Outcomes.

    Science.gov (United States)

    Shellhaas, Renée A; Burns, Joseph W; Hassan, Fauziya; Carlson, Martha D; Barks, John D E; Chervin, Ronald D

    2017-11-01

    The neurological examination of critically ill neonates is largely limited to reflexive behavior. The exam often ignores sleep-wake physiology that may reflect brain integrity and influence long-term outcomes. We assessed whether polysomnography and concurrent cerebral near-infrared spectroscopy (NIRS) might improve prediction of 18-month neurodevelopmental outcomes. Term newborns with suspected seizures underwent standardized neurologic examinations to generate Thompson scores and had 12-hour bedside polysomnography with concurrent cerebral NIRS. For each infant, the distribution of sleep-wake stages and electroencephalogram delta power were computed. NIRS-derived fractional tissue oxygen extraction (FTOE) was calculated across sleep-wake stages. At age 18-22 months, surviving participants were evaluated with Bayley Scales of Infant Development (Bayley-III), 3rd edition. Twenty-nine participants completed Bayley-III. Increased newborn time in quiet sleep predicted worse 18-month cognitive and motor scores (robust regression models, adjusted r2 = 0.22, p = .007, and 0.27, .004, respectively). Decreased 0.5-2 Hz electroencephalograph (EEG) power during quiet sleep predicted worse 18-month language and motor scores (adjusted r2 = 0.25, p = .0005, and 0.33, .001, respectively). Predictive values remained significant after adjustment for neonatal Thompson scores or exposure to phenobarbital. Similarly, an attenuated difference in FTOE, between neonatal wakefulness and quiet sleep, predicted worse 18-month cognitive, language, and motor scores in adjusted analyses (each p sleep-as quantified by increased time in quiet sleep, lower electroencephalogram delta power during that stage, and muted differences in FTOE between quiet sleep and wakefulness-may improve prediction of adverse long-term outcomes for newborns with neurological dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved

  2. Analysing News for Stock Market Prediction

    Science.gov (United States)

    Ramalingam, V. V.; Pandian, A.; Dwivedi, shivam; Bhatt, Jigar P.

    2018-04-01

    Stock market means the aggregation of all sellers and buyers of stocks representing their ownership claims on the business. To be completely absolute about the investment on these stocks, proper knowledge about them as well as their pricing, for both present and future is very essential. Large amount of data is collected and parsed to obtain this essential information regarding the fluctuations in the stock market. This data can be any news or public opinions in general. Recently, many methods have been used, especially big unstructured data methods to predict the stock market values. We introduce another method of focusing on deriving the best statistical learning model for predicting the future values. The data set used is very large unstructured data collected from an online social platform, commonly known as Quindl. The data from this platform is then linked to a csv fie and cleaned to obtain the essential information for stock market prediction. The method consists of carrying out the NLP (Natural Language Processing) of the data and then making it easier for the system to understand, finds and identifies the correlation in between this data and the stock market fluctuations. The model is implemented using Python Programming Language throughout the entire project to obtain flexibility and convenience of the system.

  3. Predicting Taxi-Out Time at Congested Airports with Optimization-Based Support Vector Regression Methods

    Directory of Open Access Journals (Sweden)

    Guan Lian

    2018-01-01

    Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.

  4. Regression formulae for predicting hematologic and liver functions ...

    African Journals Online (AJOL)

    African Journal of Biomedical Research ... On the other hand platelet and white blood cell (WBC) counts in these workers correlated positively with years of service [r = 0.342 (P <0.001) and r = 0.130 (P<0.0001) ... The regression equation defining this relationship is: ALP concentration = 33.68 – 0.075 x years of service.

  5. Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set.

    Science.gov (United States)

    Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun

    2006-01-01

    In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.

  6. Evaluation of random forest regression for prediction of breeding ...

    Indian Academy of Sciences (India)

    have been widely used for prediction of breeding values of genotypes from genomewide association studies. However, appli- ... tolerance to biotic and abiotic stresses. But due to ..... School, IARI, New Delhi, during his Ph.D. References.

  7. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models.

    Science.gov (United States)

    Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E

    2017-12-01

    1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.

  8. Reducing Inter-Laboratory Differences between Semen Analyses Using Z Score and Regression Transformations

    Directory of Open Access Journals (Sweden)

    Esther Leushuis

    2016-12-01

    Full Text Available Background: Standardization of the semen analysis may improve reproducibility. We assessed variability between laboratories in semen analyses and evaluated whether a transformation using Z scores and regression statistics was able to reduce this variability. Materials and Methods: We performed a retrospective cohort study. We calculated between-laboratory coefficients of variation (CVB for sperm concentration and for morphology. Subsequently, we standardized the semen analysis results by calculating laboratory specific Z scores, and by using regression. We used analysis of variance for four semen parameters to assess systematic differences between laboratories before and after the transformations, both in the circulation samples and in the samples obtained in the prospective cohort study in the Netherlands between January 2002 and February 2004. Results: The mean CVB was 7% for sperm concentration (range 3 to 13% and 32% for sperm morphology (range 18 to 51%. The differences between the laboratories were statistically significant for all semen parameters (all P<0.001. Standardization using Z scores did not reduce the differences in semen analysis results between the laboratories (all P<0.001. Conclusion: There exists large between-laboratory variability for sperm morphology and small, but statistically significant, between-laboratory variation for sperm concentration. Standardization using Z scores does not eliminate between-laboratory variability.

  9. Analyses of non-fatal accidents in an opencast mine by logistic regression model - a case study.

    Science.gov (United States)

    Onder, Seyhan; Mutlu, Mert

    2017-09-01

    Accidents cause major damage for both workers and enterprises in the mining industry. To reduce the number of occupational accidents, these incidents should be properly registered and carefully analysed. This study efficiently examines the Aegean Lignite Enterprise (ELI) of Turkish Coal Enterprises (TKI) in Soma between 2006 and 2011, and opencast coal mine occupational accident records were used for statistical analyses. A total of 231 occupational accidents were analysed for this study. The accident records were categorized into seven groups: area, reason, occupation, part of body, age, shift hour and lost days. The SPSS package program was used in this study for logistic regression analyses, which predicted the probability of accidents resulting in greater or less than 3 lost workdays for non-fatal injuries. Social facilities-area of surface installations, workshops and opencast mining areas are the areas with the highest probability for accidents with greater than 3 lost workdays for non-fatal injuries, while the reasons with the highest probability for these types of accidents are transporting and manual handling. Additionally, the model was tested for such reported accidents that occurred in 2012 for the ELI in Soma and estimated the probability of exposure to accidents with lost workdays correctly by 70%.

  10. Regression Trees Identify Relevant Interactions: Can This Improve the Predictive Performance of Risk Adjustment?

    Science.gov (United States)

    Buchner, Florian; Wasem, Jürgen; Schillo, Sonja

    2017-01-01

    Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments

    Directory of Open Access Journals (Sweden)

    Marjan Čeh

    2018-05-01

    Full Text Available The goal of this study is to analyse the predictive performance of the random forest machine learning technique in comparison to commonly used hedonic models based on multiple regression for the prediction of apartment prices. A data set that includes 7407 records of apartment transactions referring to real estate sales from 2008–2013 in the city of Ljubljana, the capital of Slovenia, was used in order to test and compare the predictive performances of both models. Apparent challenges faced during modelling included (1 the non-linear nature of the prediction assignment task; (2 input data being based on transactions occurring over a period of great price changes in Ljubljana whereby a 28% decline was noted in six consecutive testing years; and (3 the complex urban form of the case study area. Available explanatory variables, organised as a Geographic Information Systems (GIS ready dataset, including the structural and age characteristics of the apartments as well as environmental and neighbourhood information were considered in the modelling procedure. All performance measures (R2 values, sales ratios, mean average percentage error (MAPE, coefficient of dispersion (COD revealed significantly better results for predictions obtained by the random forest method, which confirms the prospective of this machine learning technique on apartment price prediction.

  12. Background or Experience? Using Logistic Regression to Predict College Retention

    Science.gov (United States)

    Synco, Tracee M.

    2012-01-01

    Tinto, Astin and countless others have researched the retention and attrition of students from college for more than thirty years. However, the six year graduation rate for all first-time full-time freshmen for the 2002 cohort was 57%. This study sought to determine the retention variables that predicted continued enrollment of entering freshmen…

  13. prediction of concrete mix cost using modified regression theory

    African Journals Online (AJOL)

    Kambula

    2013-07-02

    Jul 2, 2013 ... one can predict the cost per cubic meter of concrete if the mix ratios are given. The model can also give possible mix ratios for a specified cost. Statistical tool was used to verify the adequacy of this model. The concrete cost analysis is based on the current market prices of concrete constituent materials.

  14. Conditional mode regression: Application to functional time series prediction

    OpenAIRE

    Dabo-Niang, Sophie; Laksaci, Ali

    2008-01-01

    We consider $\\alpha$-mixing observations and deal with the estimation of the conditional mode of a scalar response variable $Y$ given a random variable $X$ taking values in a semi-metric space. We provide a convergence rate in $L^p$ norm of the estimator. A useful and typical application to functional times series prediction is given.

  15. Bayesian logistic regression approaches to predict incorrect DRG assignment.

    Science.gov (United States)

    Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural

    2018-05-07

    Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.

  16. Whole-genome regression and prediction methods applied to plant and animal breeding

    NARCIS (Netherlands)

    Los Campos, De G.; Hickey, J.M.; Pong-Wong, R.; Daetwyler, H.D.; Calus, M.P.L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding, and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of

  17. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  18. Logistic regression and multiple classification analyses to explore risk factors of under-5 mortality in bangladesh

    International Nuclear Information System (INIS)

    Bhowmik, K.R.; Islam, S.

    2016-01-01

    Logistic regression (LR) analysis is the most common statistical methodology to find out the determinants of childhood mortality. However, the significant predictors cannot be ranked according to their influence on the response variable. Multiple classification (MC) analysis can be applied to identify the significant predictors with a priority index which helps to rank the predictors. The main objective of the study is to find the socio-demographic determinants of childhood mortality at neonatal, post-neonatal, and post-infant period by fitting LR model as well as to rank those through MC analysis. The study is conducted using the data of Bangladesh Demographic and Health Survey 2007 where birth and death information of children were collected from their mothers. Three dichotomous response variables are constructed from children age at death to fit the LR and MC models. Socio-economic and demographic variables significantly associated with the response variables separately are considered in LR and MC analyses. Both the LR and MC models identified the same significant predictors for specific childhood mortality. For both the neonatal and child mortality, biological factors of children, regional settings, and parents socio-economic status are found as 1st, 2nd, and 3rd significant groups of predictors respectively. Mother education and household environment are detected as major significant predictors of post-neonatal mortality. This study shows that MC analysis with or without LR analysis can be applied to detect determinants with rank which help the policy makers taking initiatives on a priority basis. (author)

  19. TEMPERATURE PREDICTION IN 3013 CONTAINERS IN K AREA MATERIAL STORAGE (KAMS) FACILITY USING REGRESSION METHODS

    International Nuclear Information System (INIS)

    Gupta, N

    2008-01-01

    3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures

  20. The number of subjects per variable required in linear regression analyses

    NARCIS (Netherlands)

    P.C. Austin (Peter); E.W. Steyerberg (Ewout)

    2015-01-01

    textabstractObjectives To determine the number of independent variables that can be included in a linear regression model. Study Design and Setting We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression

  1. Prediction of Vitamin D Deficiency Among Tabriz Elderly and Nursing Home Residents Using Stereotype Regression Model

    Directory of Open Access Journals (Sweden)

    Zohreh Razzaghi

    2011-07-01

    Full Text Available Objectives: Vitamin D deficiency is one of the most important health problems of any society. It is more common in elderly even in those dwelling in rest homes. By now, several studies have been conducted on vitamin D deficiency using current statistical models. In this study, corresponding proportional odds and stereotype regression methods were used to identify threatening factors related to vitamin D deficiency in elderly living in rest homes and comparing them with those who live out of the mentioned places. Methods & Materials: In this case-control study, there were 140 older persons living in rest homes and 140 ones not dwelling in these centers. In the present study, 25(OHD serum level variable and age, sex, body mass index, duration of exposure to sunlight variables were regarded as response and predictive variables to vitamin D deficiency, respectively. The analyses were carried out using corresponding proportional odds and stereotype regression methods and estimating parameters of these two models. Deviation statistics (AIC was used to evaluate and compare the mentioned methods. Stata.9.1 software was elected to conduct the analyses. Results: Average serum level of 25(OHD was 16.10±16.65 ng/ml and 39.62±24.78 ng/ml in individuals living in rest homes and those not living there, respectively (P=0.001. Prevalence of vitamin D deficiency (less than 20 ng/ml was observed in 75% of members of the group consisting of those living in rest homes and 23.78% of members of another group. Using corresponding proportional odds and stereotype regression methods, age, sex, body mass index, duration of exposure to sunlight variables and whether they are member of rest home were fitted. In both models, variables of group and duration of exposure to sunlight were regarded as meaningful (P<0.001. Stereotype regression model included group variable (odd ratio for a group suffering from severe vitamin D deficiency was 42.85, 95%CI:9.93-185.67 and

  2. The number of subjects per variable required in linear regression analyses.

    Science.gov (United States)

    Austin, Peter C; Steyerberg, Ewout W

    2015-06-01

    To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics

    Directory of Open Access Journals (Sweden)

    Ronald de Vlaming

    2015-01-01

    Full Text Available In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i the theoretical foundations of ridge regression, (ii its link to commonly used methods in animal breeding, (iii the computational feasibility, and (iv the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis. Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N<10,000 the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP. However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.

  4. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    Science.gov (United States)

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  5. Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression

    KAUST Repository

    Abdul Jameel, Abdul Gani; Naser, Nimal; Emwas, Abdul-Hamid M.; Dooley, Stephen; Sarathy, Mani

    2016-01-01

    An improved model for the prediction of ignition quality of hydrocarbon fuels has been developed using 1H nuclear magnetic resonance (NMR) spectroscopy and multiple linear regression (MLR) modeling. Cetane number (CN) and derived cetane number (DCN

  6. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    Directory of Open Access Journals (Sweden)

    Ivanka Jerić

    2011-11-01

    Full Text Available Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample.

  7. The current and future use of ridge regression for prediction in quantitative genetics

    OpenAIRE

    Vlaming, Ronald; Groenen, Patrick

    2015-01-01

    textabstractIn recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i) the theoretical foundations of ridge regression, (ii) its link to...

  8. Regression and artificial neural network modeling for the prediction of gray leaf spot of maize.

    Science.gov (United States)

    Paul, P A; Munkvold, G P

    2005-04-01

    ABSTRACT Regression and artificial neural network (ANN) modeling approaches were combined to develop models to predict the severity of gray leaf spot of maize, caused by Cercospora zeae-maydis. In all, 329 cases consisting of environmental, cultural, and location-specific variables were collected for field plots in Iowa between 1998 and 2002. Disease severity on the ear leaf at the dough to dent plant growth stage was used as the response variable. Correlation and regression analyses were performed to select potentially useful predictor variables. Predictors from the best 9 of 80 regression models were used to develop ANN models. A random sample of 60% of the cases was used to train the networks, and 20% each for testing and validation. Model performance was evaluated based on coefficient of determination (R(2)) and mean square error (MSE) for the validation data set. The best models had R(2) ranging from 0.70 to 0.75 and MSE ranging from 174.7 to 202.8. The most useful predictor variables were hours of daily temperatures between 22 and 30 degrees C (85.50 to 230.50 h) and hours of nightly relative humidity >/=90% (122 to 330 h) for the period between growth stages V4 and V12, mean nightly temperature (65.26 to 76.56 degrees C) for the period between growth stages V12 and R2, longitude (90.08 to 95.14 degrees W), maize residue on the soil surface (0 to 100%), planting date (in day of the year; 112 to 182), and gray leaf spot resistance rating (2 to 7; based on a 1-to-9 scale, where 1 = most susceptible to 9 = most resistant).

  9. Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies.

    NARCIS (Netherlands)

    Kromhout, D.

    2009-01-01

    Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the

  10. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  11. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  12. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction

    International Nuclear Information System (INIS)

    Crop, F; Thierens, H; Rompaye, B Van; Paelinck, L; Vakaet, L; Wagter, C De

    2008-01-01

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry

  13. Check-all-that-apply data analysed by Partial Least Squares regression

    DEFF Research Database (Denmark)

    Rinnan, Åsmund; Giacalone, Davide; Frøst, Michael Bom

    2015-01-01

    are analysed by multivariate techniques. CATA data can be analysed both by setting the CATA as the X and the Y. The former is the PLS-Discriminant Analysis (PLS-DA) version, while the latter is the ANOVA-PLS (A-PLS) version. We investigated the difference between these two approaches, concluding...

  14. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    Science.gov (United States)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  15. The benefits of using quantile regression for analysing the effect of weeds on organic winter wheat

    NARCIS (Netherlands)

    Casagrande, M.; Makowski, D.; Jeuffroy, M.H.; Valantin-Morison, M.; David, C.

    2010-01-01

    P>In organic farming, weeds are one of the threats that limit crop yield. An early prediction of weed effect on yield loss and the size of late weed populations could help farmers and advisors to improve weed management. Numerous studies predicting the effect of weeds on yield have already been

  16. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  17. Longitudinal changes in telomere length and associated genetic parameters in dairy cattle analysed using random regression models.

    Directory of Open Access Journals (Sweden)

    Luise A Seeker

    Full Text Available Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1 characterize the change in bovine relative leukocyte TL (RLTL across the lifetime in Holstein Friesian dairy cattle, 2 estimate genetic parameters of RLTL over time and 3 investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08 and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954.

  18. Differential item functioning (DIF) analyses of health-related quality of life instruments using logistic regression

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K

    2010-01-01

    Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise ...... when testing for DIF in HRQoL instruments. We focus on logistic regression methods, which are often used because of their efficiency, simplicity and ease of application....

  19. The prediction of intelligence in preschool children using alternative models to regression.

    Science.gov (United States)

    Finch, W Holmes; Chang, Mei; Davis, Andrew S; Holden, Jocelyn E; Rothlisberg, Barbara A; McIntosh, David E

    2011-12-01

    Statistical prediction of an outcome variable using multiple independent variables is a common practice in the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide predictions of preinjury cognitive functioning for individuals who have suffered a traumatic brain injury. Typically, these predictions are made using standard multiple linear regression models with several demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has shown conflicting evidence regarding the ability of such models to provide accurate predictions of outcome variables such as full-scale intelligence (FSIQ) test scores. The present study had two goals: (1) to demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the natural sciences and business but have not been frequently explored in the social sciences and (2) to develop models that can be used to predict premorbid cognitive functioning in preschool children. Predictions of Stanford-Binet 5 FSIQ scores for preschool-aged children is used to compare the performance of a multiple regression model with several of these alternative methods. Results demonstrate that classification and regression trees provided more accurate predictions of FSIQ scores than does the more traditional regression approach. Implications of these results are discussed.

  20. Analyses of Developmental Rate Isomorphy in Ectotherms: Introducing the Dirichlet Regression.

    Directory of Open Access Journals (Sweden)

    David S Boukal

    Full Text Available Temperature drives development in insects and other ectotherms because their metabolic rate and growth depends directly on thermal conditions. However, relative durations of successive ontogenetic stages often remain nearly constant across a substantial range of temperatures. This pattern, termed 'developmental rate isomorphy' (DRI in insects, appears to be widespread and reported departures from DRI are generally very small. We show that these conclusions may be due to the caveats hidden in the statistical methods currently used to study DRI. Because the DRI concept is inherently based on proportional data, we propose that Dirichlet regression applied to individual-level data is an appropriate statistical method to critically assess DRI. As a case study we analyze data on five aquatic and four terrestrial insect species. We find that results obtained by Dirichlet regression are consistent with DRI violation in at least eight of the studied species, although standard analysis detects significant departure from DRI in only four of them. Moreover, the departures from DRI detected by Dirichlet regression are consistently much larger than previously reported. The proposed framework can also be used to infer whether observed departures from DRI reflect life history adaptations to size- or stage-dependent effects of varying temperature. Our results indicate that the concept of DRI in insects and other ectotherms should be critically re-evaluated and put in a wider context, including the concept of 'equiproportional development' developed for copepods.

  1. Correlation and regression analyses of genetic effects for different types of cells in mammals under radiation and chemical treatment

    International Nuclear Information System (INIS)

    Slutskaya, N.G.; Mosseh, I.B.

    2006-01-01

    Data about genetic mutations under radiation and chemical treatment for different types of cells have been analyzed with correlation and regression analyses. Linear correlation between different genetic effects in sex cells and somatic cells have found. The results may be extrapolated on sex cells of human and mammals. (authors)

  2. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  3. Logistic regression modelling: procedures and pitfalls in developing and interpreting prediction models

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2017-01-01

    Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.

  4. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    Science.gov (United States)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  5. Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies

    DEFF Research Database (Denmark)

    Tybjærg-Hansen, Anne

    2009-01-01

    Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements...... of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study......-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies...

  6. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression

    International Nuclear Information System (INIS)

    Kavaklioglu, Kadir

    2011-01-01

    Support Vector Regression (SVR) methodology is used to model and predict Turkey's electricity consumption. Among various SVR formalisms, ε-SVR method was used since the training pattern set was relatively small. Electricity consumption is modeled as a function of socio-economic indicators such as population, Gross National Product, imports and exports. In order to facilitate future predictions of electricity consumption, a separate SVR model was created for each of the input variables using their current and past values; and these models were combined to yield consumption prediction values. A grid search for the model parameters was performed to find the best ε-SVR model for each variable based on Root Mean Square Error. Electricity consumption of Turkey is predicted until 2026 using data from 1975 to 2006. The results show that electricity consumption can be modeled using Support Vector Regression and the models can be used to predict future electricity consumption. (author)

  7. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  8. Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data

    Directory of Open Access Journals (Sweden)

    Laura Cornejo-Bueno

    2017-11-01

    Full Text Available Wind Power Ramp Events (WPREs are large fluctuations of wind power in a short time interval, which lead to strong, undesirable variations in the electric power produced by a wind farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in the electric system, without affecting considerably its stability, robustness and resilience. In this paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML regression techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive inputs for the learning machine, which opens the possibility of hybridizing numerical-physical weather models with ML techniques for WPREs prediction in real systems. Specifically, we have explored the feasibility of a number of state-of-the-art ML regression techniques, such as support vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasts is the one used in this paper because of its accuracy and high resolution (in both spatial and temporal domains. Aiming at validating the feasibility of our predicting approach, we have carried out an extensive experimental work using real data from three wind farms in Spain, discussing the performance of the different ML regression tested in this wind power ramp event prediction problem.

  9. Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction.

    Science.gov (United States)

    He, Dan; Kuhn, David; Parida, Laxmi

    2016-06-15

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. dhe@us.ibm.com. © The Author 2016. Published by Oxford University Press.

  10. Predicting Jakarta composite index using hybrid of fuzzy time series and support vector regression models

    Science.gov (United States)

    Febrian Umbara, Rian; Tarwidi, Dede; Budi Setiawan, Erwin

    2018-03-01

    The paper discusses the prediction of Jakarta Composite Index (JCI) in Indonesia Stock Exchange. The study is based on JCI historical data for 1286 days to predict the value of JCI one day ahead. This paper proposes predictions done in two stages., The first stage using Fuzzy Time Series (FTS) to predict values of ten technical indicators, and the second stage using Support Vector Regression (SVR) to predict the value of JCI one day ahead, resulting in a hybrid prediction model FTS-SVR. The performance of this combined prediction model is compared with the performance of the single stage prediction model using SVR only. Ten technical indicators are used as input for each model.

  11. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  12. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    Science.gov (United States)

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  14. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis.

    Science.gov (United States)

    Chen, Wei-Hsin; Hsu, Hung-Jen; Kumar, Gopalakrishnan; Budzianowski, Wojciech M; Ong, Hwai Chyuan

    2017-12-01

    This study focuses on the biochar formation and torrefaction performance of sugarcane bagasse, and they are predicted using the bilinear interpolation (BLI), inverse distance weighting (IDW) interpolation, and regression analysis. It is found that the biomass torrefied at 275°C for 60min or at 300°C for 30min or longer is appropriate to produce biochar as alternative fuel to coal with low carbon footprint, but the energy yield from the torrefaction at 300°C is too low. From the biochar yield, enhancement factor of HHV, and energy yield, the results suggest that the three methods are all feasible for predicting the performance, especially for the enhancement factor. The power parameter of unity in the IDW method provides the best predictions and the error is below 5%. The second order in regression analysis gives a more reasonable approach than the first order, and is recommended for the predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Correlation, Regression and Path Analyses of Seed Yield Components in Crambe abyssinica, a Promising Industrial Oil Crop

    OpenAIRE

    Huang, Banglian; Yang, Yiming; Luo, Tingting; Wu, S.; Du, Xuezhu; Cai, Detian; Loo, van, E.N.; Huang Bangquan

    2013-01-01

    In the present study correlation, regression and path analyses were carried out to decide correlations among the agro- nomic traits and their contributions to seed yield per plant in Crambe abyssinica. Partial correlation analysis indicated that plant height (X1) was significantly correlated with branching height and the number of first branches (P <0.01); Branching height (X2) was significantly correlated with pod number of primary inflorescence (P <0.01) and number of secondary branch...

  16. PARAMETRIC AND NON PARAMETRIC (MARS: MULTIVARIATE ADDITIVE REGRESSION SPLINES) LOGISTIC REGRESSIONS FOR PREDICTION OF A DICHOTOMOUS RESPONSE VARIABLE WITH AN EXAMPLE FOR PRESENCE/ABSENCE OF AMPHIBIANS

    Science.gov (United States)

    The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...

  17. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.

    Science.gov (United States)

    Edelman, Eric R; van Kuijk, Sander M J; Hamaekers, Ankie E W; de Korte, Marcel J M; van Merode, Godefridus G; Buhre, Wolfgang F F A

    2017-01-01

    For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.

  18. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Eric R. Edelman

    2017-06-01

    Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related

  19. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  20. Analysing Twitter and web queries for flu trend prediction.

    Science.gov (United States)

    Santos, José Carlos; Matos, Sérgio

    2014-05-07

    Social media platforms encourage people to share diverse aspects of their daily life. Among these, shared health related information might be used to infer health status and incidence rates for specific conditions or symptoms. In this work, we present an infodemiology study that evaluates the use of Twitter messages and search engine query logs to estimate and predict the incidence rate of influenza like illness in Portugal. Based on a manually classified dataset of 2704 tweets from Portugal, we selected a set of 650 textual features to train a Naïve Bayes classifier to identify tweets mentioning flu or flu-like illness or symptoms. We obtained a precision of 0.78 and an F-measure of 0.83, based on cross validation over the complete annotated set. Furthermore, we trained a multiple linear regression model to estimate the health-monitoring data from the Influenzanet project, using as predictors the relative frequencies obtained from the tweet classification results and from query logs, and achieved a correlation ratio of 0.89 (puser-generated content have mostly focused on the english language. Our results further validate those studies and show that by changing the initial steps of data preprocessing and feature extraction and selection, the proposed approaches can be adapted to other languages. Additionally, we investigated whether the predictive model created can be applied to data from the subsequent flu season. In this case, although the prediction result was good, an initial phase to adapt the regression model could be necessary to achieve more robust results.

  1. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    Science.gov (United States)

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  2. Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression

    International Nuclear Information System (INIS)

    Ye Meiying; Wang Xiaodong

    2005-01-01

    A new class of support vector machine, nu-support vector machine, is discussed which can handle both classification and regression. We focus on nu-support vector machine regression and use it for phase space prediction of chaotic time series. The effectiveness of the method is demonstrated by applying it to the Henon map. This study also compares nu-support vector machine with back propagation (BP) networks in order to better evaluate the performance of the proposed methods. The experimental results show that the nu-support vector machine regression obtains lower root mean squared error than the BP networks and provides an accurate chaotic time series prediction. These results can be attributable to the fact that nu-support vector machine implements the structural risk minimization principle and this leads to better generalization than the BP networks.

  3. Generic global regression models for growth prediction of Salmonella in ground pork and pork cuts

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2017-01-01

    Introduction and Objectives Models for the prediction of bacterial growth in fresh pork are primarily developed using two-step regression (i.e. primary models followed by secondary models). These models are also generally based on experiments in liquids or ground meat and neglect surface growth....... It has been shown that one-step global regressions can result in more accurate models and that bacterial growth on intact surfaces can substantially differ from growth in liquid culture. Material and Methods We used a global-regression approach to develop predictive models for the growth of Salmonella....... One part of obtained logtransformed cell counts was used for model development and another for model validation. The Ratkowsky square root model and the relative lag time (RLT) model were integrated into the logistic model with delay. Fitted parameter estimates were compared to investigate the effect...

  4. Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research

    Science.gov (United States)

    He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne

    2018-01-01

    In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…

  5. Genomic prediction based on data from three layer lines using non-linear regression models

    NARCIS (Netherlands)

    Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.

    2014-01-01

    Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate

  6. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    Science.gov (United States)

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  7. A Comparison of Logistic Regression, Neural Networks, and Classification Trees Predicting Success of Actuarial Students

    Science.gov (United States)

    Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard

    2010-01-01

    The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…

  8. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

    International Nuclear Information System (INIS)

    Riaz, Nadeem; Wiersma, Rodney; Mao Weihua; Xing Lei; Shanker, Piyush; Gudmundsson, Olafur; Widrow, Bernard

    2009-01-01

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  9. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Science.gov (United States)

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, PLogarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  10. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Science.gov (United States)

    Saro, Lee; Woo, Jeon Seong; Kwan-Young, Oh; Moung-Jin, Lee

    2016-02-01

    The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, `slope' yielded the highest weight value (1.330), and `aspect' yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  11. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2016-02-01

    Full Text Available The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS. These factors were analysed using artificial neural network (ANN and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50% and a test set (50%. A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10% was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%. Of the weights used in the artificial neural network model, ‘slope’ yielded the highest weight value (1.330, and ‘aspect’ yielded the lowest value (1.000. This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  12. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  13. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  14. Application of General Regression Neural Network to the Prediction of LOD Change

    Science.gov (United States)

    Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao

    2012-01-01

    Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.

  15. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    Science.gov (United States)

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of

  16. Spontaneous regression of retinopathy of prematurity:incidence and predictive factors

    Directory of Open Access Journals (Sweden)

    Rui-Hong Ju

    2013-08-01

    Full Text Available AIM:To evaluate the incidence of spontaneous regression of changes in the retina and vitreous in active stage of retinopathy of prematurity(ROP and identify the possible relative factors during the regression.METHODS: This was a retrospective, hospital-based study. The study consisted of 39 premature infants with mild ROP showed spontaneous regression (Group A and 17 with severe ROP who had been treated before naturally involuting (Group B from August 2008 through May 2011. Data on gender, single or multiple pregnancy, gestational age, birth weight, weight gain from birth to the sixth week of life, use of oxygen in mechanical ventilation, total duration of oxygen inhalation, surfactant given or not, need for and times of blood transfusion, 1,5,10-min Apgar score, presence of bacterial or fungal or combined infection, hyaline membrane disease (HMD, patent ductus arteriosus (PDA, duration of stay in the neonatal intensive care unit (NICU and duration of ROP were recorded.RESULTS: The incidence of spontaneous regression of ROP with stage 1 was 86.7%, and with stage 2, stage 3 was 57.1%, 5.9%, respectively. With changes in zone Ⅲ regression was detected 100%, in zoneⅡ 46.2% and in zoneⅠ 0%. The mean duration of ROP in spontaneous regression group was 5.65±3.14 weeks, lower than that of the treated ROP group (7.34±4.33 weeks, but this difference was not statistically significant (P=0.201. GA, 1min Apgar score, 5min Apgar score, duration of NICU stay, postnatal age of initial screening and oxygen therapy longer than 10 days were significant predictive factors for the spontaneous regression of ROP (P<0.05. Retinal hemorrhage was the only independent predictive factor the spontaneous regression of ROP (OR 0.030, 95%CI 0.001-0.775, P=0.035.CONCLUSION:This study showed most stage 1 and 2 ROP and changes in zone Ⅲ can spontaneously regression in the end. Retinal hemorrhage is weakly inversely associated with the spontaneous regression.

  17. Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kritski Afrânio

    2006-02-01

    Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.

  18. Study (Prediction of Main Pipes Break Rates in Water Distribution Systems Using Intelligent and Regression Methods

    Directory of Open Access Journals (Sweden)

    Massoud Tabesh

    2011-07-01

    Full Text Available Optimum operation of water distribution networks is one of the priorities of sustainable development of water resources, considering the issues of increasing efficiency and decreasing the water losses. One of the key subjects in optimum operational management of water distribution systems is preparing rehabilitation and replacement schemes, prediction of pipes break rate and evaluation of their reliability. Several approaches have been presented in recent years regarding prediction of pipe failure rates which each one requires especial data sets. Deterministic models based on age and deterministic multi variables and stochastic group modeling are examples of the solutions which relate pipe break rates to parameters like age, material and diameters. In this paper besides the mentioned parameters, more factors such as pipe depth and hydraulic pressures are considered as well. Then using multi variable regression method, intelligent approaches (Artificial neural network and neuro fuzzy models and Evolutionary polynomial Regression method (EPR pipe burst rate are predicted. To evaluate the results of different approaches, a case study is carried out in a part ofMashhadwater distribution network. The results show the capability and advantages of ANN and EPR methods to predict pipe break rates, in comparison with neuro fuzzy and multi-variable regression methods.

  19. Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schlattmann, Peter [University Hospital of Friedrich-Schiller University Jena, Department of Medical Statistics, Informatics and Documentation, Jena (Germany); Schuetz, Georg M. [Freie Universitaet Berlin, Charite, Medical School, Department of Radiology, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, Marc [Freie Universitaet Berlin, Charite, Medical School, Department of Radiology, Humboldt-Universitaet zu Berlin, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2011-09-15

    To evaluate the impact of coronary artery disease (CAD) prevalence on the predictive values of coronary CT angiography. We performed a meta-regression based on a generalised linear mixed model using the binomial distribution and a logit link to analyse the influence of the prevalence of CAD in published studies on the per-patient negative and positive predictive values of CT in comparison to conventional coronary angiography as the reference standard. A prevalence range in which the negative predictive value was higher than 90%, while at the same time the positive predictive value was higher than 70% was considered appropriate. The summary negative and positive predictive values of coronary CT angiography were 93.7% (95% confidence interval [CI] 92.8-94.5%) and 87.5% (95% CI, 86.5-88.5%), respectively. With 95% confidence, negative and positive predictive values higher than 90% and 70% were available with CT for a CAD prevalence of 18-63%. CT systems with >16 detector rows met these requirements for the positive (P < 0.01) and negative (P < 0.05) predictive values in a significantly broader range than systems with {<=}16 detector rows. It is reasonable to perform coronary CT angiography as a rule-out test in patients with a low-to-intermediate likelihood of disease. (orig.)

  20. Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis

    International Nuclear Information System (INIS)

    Schlattmann, Peter; Schuetz, Georg M.; Dewey, Marc

    2011-01-01

    To evaluate the impact of coronary artery disease (CAD) prevalence on the predictive values of coronary CT angiography. We performed a meta-regression based on a generalised linear mixed model using the binomial distribution and a logit link to analyse the influence of the prevalence of CAD in published studies on the per-patient negative and positive predictive values of CT in comparison to conventional coronary angiography as the reference standard. A prevalence range in which the negative predictive value was higher than 90%, while at the same time the positive predictive value was higher than 70% was considered appropriate. The summary negative and positive predictive values of coronary CT angiography were 93.7% (95% confidence interval [CI] 92.8-94.5%) and 87.5% (95% CI, 86.5-88.5%), respectively. With 95% confidence, negative and positive predictive values higher than 90% and 70% were available with CT for a CAD prevalence of 18-63%. CT systems with >16 detector rows met these requirements for the positive (P < 0.01) and negative (P < 0.05) predictive values in a significantly broader range than systems with ≤16 detector rows. It is reasonable to perform coronary CT angiography as a rule-out test in patients with a low-to-intermediate likelihood of disease. (orig.)

  1. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    Science.gov (United States)

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have

  2. A computational approach to compare regression modelling strategies in prediction research.

    Science.gov (United States)

    Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H

    2016-08-25

    It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

  3. Fine-Tuning Nonhomogeneous Regression for Probabilistic Precipitation Forecasts: Unanimous Predictions, Heavy Tails, and Link Functions

    DEFF Research Database (Denmark)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.

    2017-01-01

    functions for the optimization of regression coefficients for the scale parameter. These three refinements are tested for 10 stations in a small area of the European Alps for lead times from +24 to +144 h and accumulation periods of 24 and 6 h. Together, they improve probabilistic forecasts...... to obtain automatically corrected weather forecasts. This study applies the nonhomogenous regression framework as a state-of-the-art ensemble postprocessing technique to predict a full forecast distribution and improves its forecast performance with three statistical refinements. First of all, a novel split...... for precipitation amounts as well as the probability of precipitation events over the default postprocessing method. The improvements are largest for the shorter accumulation periods and shorter lead times, where the information of unanimous ensemble predictions is more important....

  4. Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume

    Science.gov (United States)

    Xiao, Mengting; Li, Cheng

    2018-01-01

    Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.

  5. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    Science.gov (United States)

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  6. ENHANCED PREDICTION OF STUDENT DROPOUTS USING FUZZY INFERENCE SYSTEM AND LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    A. Saranya

    2016-01-01

    Full Text Available Predicting college and school dropouts is a major problem in educational system and has complicated challenge due to data imbalance and multi dimensionality, which can affect the low performance of students. In this paper, we have collected different database from various colleges, among these 500 best real attributes are identified in order to identify the factor that affecting dropout students using neural based classification algorithm and different mining technique are implemented for data processing. We also propose a Dropout Prediction Algorithm (DPA using fuzzy logic and Logistic Regression based inference system because the weighted average will improve the performance of whole system. We are experimented our proposed work with all other classification systems and documented as the best outcomes. The aggregated data is given to the decision trees for better dropout prediction. The accuracy of overall system 98.6% it shows the proposed work depicts efficient prediction.

  7. Regression equations to predict 6-minute walk distance in Chinese adults aged 55–85 years

    OpenAIRE

    Shirley P.C. Ngai, PhD; Alice Y.M. Jones, PhD; Sue C. Jenkins, PhD

    2014-01-01

    The 6-minute walk distance (6MWD) is used as a measure of functional exercise capacity in clinical populations and research. Reference equations to predict 6MWD in different populations have been established, however, available equations for Chinese population are scarce. This study aimed to develop regression equations to predict the 6MWD for a Hong Kong Chinese population. Fifty-three healthy individuals (25 men, 28 women; mean age = 69.3 ± 6.5 years) participated in this cross-sectional st...

  8. An Application to the Prediction of LOD Change Based on General Regression Neural Network

    Science.gov (United States)

    Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.

    2011-07-01

    Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.

  9. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    OpenAIRE

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  10. Predicting Student Success on the Texas Chemistry STAAR Test: A Logistic Regression Analysis

    Science.gov (United States)

    Johnson, William L.; Johnson, Annabel M.; Johnson, Jared

    2012-01-01

    Background: The context is the new Texas STAAR end-of-course testing program. Purpose: The authors developed a logistic regression model to predict who would pass-or-fail the new Texas chemistry STAAR end-of-course exam. Setting: Robert E. Lee High School (5A) with an enrollment of 2700 students, Tyler, Texas. Date of the study was the 2011-2012…

  11. Blood glucose level prediction based on support vector regression using mobile platforms.

    Science.gov (United States)

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  12. Using support vector regression to predict PM10 and PM2.5

    International Nuclear Information System (INIS)

    Weizhen, Hou; Zhengqiang, Li; Yuhuan, Zhang; Hua, Xu; Ying, Zhang; Kaitao, Li; Donghui, Li; Peng, Wei; Yan, Ma

    2014-01-01

    Support vector machine (SVM), as a novel and powerful machine learning tool, can be used for the prediction of PM 10 and PM 2.5 (particulate matter less or equal than 10 and 2.5 micrometer) in the atmosphere. This paper describes the development of a successive over relaxation support vector regress (SOR-SVR) model for the PM 10 and PM 2.5 prediction, based on the daily average aerosol optical depth (AOD) and meteorological parameters (atmospheric pressure, relative humidity, air temperature, wind speed), which were all measured in Beijing during the year of 2010–2012. The Gaussian kernel function, as well as the k-fold crosses validation and grid search method, are used in SVR model to obtain the optimal parameters to get a better generalization capability. The result shows that predicted values by the SOR-SVR model agree well with the actual data and have a good generalization ability to predict PM 10 and PM 2.5 . In addition, AOD plays an important role in predicting particulate matter with SVR model, which should be included in the prediction model. If only considering the meteorological parameters and eliminating AOD from the SVR model, the prediction results of predict particulate matter will be not satisfying

  13. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  14. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.

    Science.gov (United States)

    Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won

    2016-07-01

    In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.

  15. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  16. Ridge regression for predicting elastic moduli and hardness of calcium aluminosilicate glasses

    Science.gov (United States)

    Deng, Yifan; Zeng, Huidan; Jiang, Yejia; Chen, Guorong; Chen, Jianding; Sun, Luyi

    2018-03-01

    It is of great significance to design glasses with satisfactory mechanical properties predictively through modeling. Among various modeling methods, data-driven modeling is such a reliable approach that can dramatically shorten research duration, cut research cost and accelerate the development of glass materials. In this work, the ridge regression (RR) analysis was used to construct regression models for predicting the compositional dependence of CaO-Al2O3-SiO2 glass elastic moduli (Shear, Bulk, and Young’s moduli) and hardness based on the ternary diagram of the compositions. The property prediction over a large glass composition space was accomplished with known experimental data of various compositions in the literature, and the simulated results are in good agreement with the measured ones. This regression model can serve as a facile and effective tool for studying the relationship between the compositions and the property, enabling high-efficient design of glasses to meet the requirements for specific elasticity and hardness.

  17. Application of Soft Computing Techniques and Multiple Regression Models for CBR prediction of Soils

    Directory of Open Access Journals (Sweden)

    Fatimah Khaleel Ibrahim

    2017-08-01

    Full Text Available The techniques of soft computing technique such as Artificial Neutral Network (ANN have improved the predicting capability and have actually discovered application in Geotechnical engineering. The aim of this research is to utilize the soft computing technique and Multiple Regression Models (MLR for forecasting the California bearing ratio CBR( of soil from its index properties. The indicator of CBR for soil could be predicted from various soils characterizing parameters with the assist of MLR and ANN methods. The data base that collected from the laboratory by conducting tests on 86 soil samples that gathered from different projects in Basrah districts. Data gained from the experimental result were used in the regression models and soft computing techniques by using artificial neural network. The liquid limit, plastic index , modified compaction test and the CBR test have been determined. In this work, different ANN and MLR models were formulated with the different collection of inputs to be able to recognize their significance in the prediction of CBR. The strengths of the models that were developed been examined in terms of regression coefficient (R2, relative error (RE% and mean square error (MSE values. From the results of this paper, it absolutely was noticed that all the proposed ANN models perform better than that of MLR model. In a specific ANN model with all input parameters reveals better outcomes than other ANN models.

  18. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Using synthetic data to evaluate multiple regression and principal component analyses for statistical modeling of daily building energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, T.A. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States)); Claridge, D.E. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States))

    1994-01-01

    Multiple regression modeling of monitored building energy use data is often faulted as a reliable means of predicting energy use on the grounds that multicollinearity between the regressor variables can lead both to improper interpretation of the relative importance of the various physical regressor parameters and to a model with unstable regressor coefficients. Principal component analysis (PCA) has the potential to overcome such drawbacks. While a few case studies have already attempted to apply this technique to building energy data, the objectives of this study were to make a broader evaluation of PCA and multiple regression analysis (MRA) and to establish guidelines under which one approach is preferable to the other. Four geographic locations in the US with different climatic conditions were selected and synthetic data sequence representative of daily energy use in large institutional buildings were generated in each location using a linear model with outdoor temperature, outdoor specific humidity and solar radiation as the three regression variables. MRA and PCA approaches were then applied to these data sets and their relative performances were compared. Conditions under which PCA seems to perform better than MRA were identified and preliminary recommendations on the use of either modeling approach formulated. (orig.)

  20. Genome-wide prediction of discrete traits using bayesian regressions and machine learning

    Directory of Open Access Journals (Sweden)

    Forni Selma

    2011-02-01

    Full Text Available Abstract Background Genomic selection has gained much attention and the main goal is to increase the predictive accuracy and the genetic gain in livestock using dense marker information. Most methods dealing with the large p (number of covariates small n (number of observations problem have dealt only with continuous traits, but there are many important traits in livestock that are recorded in a discrete fashion (e.g. pregnancy outcome, disease resistance. It is necessary to evaluate alternatives to analyze discrete traits in a genome-wide prediction context. Methods This study shows two threshold versions of Bayesian regressions (Bayes A and Bayesian LASSO and two machine learning algorithms (boosting and random forest to analyze discrete traits in a genome-wide prediction context. These methods were evaluated using simulated and field data to predict yet-to-be observed records. Performances were compared based on the models' predictive ability. Results The simulation showed that machine learning had some advantages over Bayesian regressions when a small number of QTL regulated the trait under pure additivity. However, differences were small and disappeared with a large number of QTL. Bayesian threshold LASSO and boosting achieved the highest accuracies, whereas Random Forest presented the highest classification performance. Random Forest was the most consistent method in detecting resistant and susceptible animals, phi correlation was up to 81% greater than Bayesian regressions. Random Forest outperformed other methods in correctly classifying resistant and susceptible animals in the two pure swine lines evaluated. Boosting and Bayes A were more accurate with crossbred data. Conclusions The results of this study suggest that the best method for genome-wide prediction may depend on the genetic basis of the population analyzed. All methods were less accurate at correctly classifying intermediate animals than extreme animals. Among the different

  1. A review of a priori regression models for warfarin maintenance dose prediction.

    Directory of Open Access Journals (Sweden)

    Ben Francis

    Full Text Available A number of a priori warfarin dosing algorithms, derived using linear regression methods, have been proposed. Although these dosing algorithms may have been validated using patients derived from the same centre, rarely have they been validated using a patient cohort recruited from another centre. In order to undertake external validation, two cohorts were utilised. One cohort formed by patients from a prospective trial and the second formed by patients in the control arm of the EU-PACT trial. Of these, 641 patients were identified as having attained stable dosing and formed the dataset used for validation. Predicted maintenance doses from six criterion fulfilling regression models were then compared to individual patient stable warfarin dose. Predictive ability was assessed with reference to several statistics including the R-square and mean absolute error. The six regression models explained different amounts of variability in the stable maintenance warfarin dose requirements of the patients in the two validation cohorts; adjusted R-squared values ranged from 24.2% to 68.6%. An overview of the summary statistics demonstrated that no one dosing algorithm could be considered optimal. The larger validation cohort from the prospective trial produced more consistent statistics across the six dosing algorithms. The study found that all the regression models performed worse in the validation cohort when compared to the derivation cohort. Further, there was little difference between regression models that contained pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic coefficients. The inconsistency of results between the validation cohorts suggests that unaccounted population specific factors cause variability in dosing algorithm performance. Better methods for dosing that take into account inter- and intra-individual variability, at the initiation and maintenance phases of warfarin treatment, are needed.

  2. A review of a priori regression models for warfarin maintenance dose prediction.

    Science.gov (United States)

    Francis, Ben; Lane, Steven; Pirmohamed, Munir; Jorgensen, Andrea

    2014-01-01

    A number of a priori warfarin dosing algorithms, derived using linear regression methods, have been proposed. Although these dosing algorithms may have been validated using patients derived from the same centre, rarely have they been validated using a patient cohort recruited from another centre. In order to undertake external validation, two cohorts were utilised. One cohort formed by patients from a prospective trial and the second formed by patients in the control arm of the EU-PACT trial. Of these, 641 patients were identified as having attained stable dosing and formed the dataset used for validation. Predicted maintenance doses from six criterion fulfilling regression models were then compared to individual patient stable warfarin dose. Predictive ability was assessed with reference to several statistics including the R-square and mean absolute error. The six regression models explained different amounts of variability in the stable maintenance warfarin dose requirements of the patients in the two validation cohorts; adjusted R-squared values ranged from 24.2% to 68.6%. An overview of the summary statistics demonstrated that no one dosing algorithm could be considered optimal. The larger validation cohort from the prospective trial produced more consistent statistics across the six dosing algorithms. The study found that all the regression models performed worse in the validation cohort when compared to the derivation cohort. Further, there was little difference between regression models that contained pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic coefficients. The inconsistency of results between the validation cohorts suggests that unaccounted population specific factors cause variability in dosing algorithm performance. Better methods for dosing that take into account inter- and intra-individual variability, at the initiation and maintenance phases of warfarin treatment, are needed.

  3. Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression

    Science.gov (United States)

    Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.

    2010-01-01

    In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  4. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    Science.gov (United States)

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  5. Predicting Factors of INSURE Failure in Low Birth Weight Neonates with RDS; A Logistic Regression Model

    Directory of Open Access Journals (Sweden)

    Bita Najafian

    2015-02-01

    Full Text Available Background:Respiratory Distress syndrome is the most common respiratory disease in premature neonate and the most important cause of death among them. We aimed to investigate factors to predict successful or failure of INSURE method as a therapeutic method of RDS.Methods:In a cohort study,45 neonates with diagnosed RDS and birth weight lower than 1500g were included and they underwent INSURE followed by NCPAP(Nasal Continuous Positive Airway Pressure. The patients were divided into failure or successful groups and factors which can predict success of INSURE were investigated by logistic regression in SPSS 16th version.Results:29 and16 neonates were observed in successful and failure groups, respectively. Birth weight was the only variable with significant difference between two groups (P=0.002. Finally logistic regression test showed that birth weight is only predicting factor for success (P: 0.001, EXP[β]: 0.009, CI [95%]: 1.003-0.014 and mortality (P: 0.029, EXP[β]: 0.993, CI [95%]: 0.987-0.999 of neonates treated with INSURE method.Conclusion:Predicting factors which affect on success rate of INSURE can be useful for treating and reducing charge of neonate with RDS and the birth weight is one of the effective factor on INSURE Success in this study.

  6. Predicting Factors of INSURE Failure in Low Birth Weight Neonates with RDS; A Logistic Regression Model

    Directory of Open Access Journals (Sweden)

    Bita Najafian

    2015-02-01

    Full Text Available Background:Respiratory Distress syndrome is the most common respiratory disease in premature neonate and the most important cause of death among them. We aimed to investigate factors to predict successful or failure of INSURE method as a therapeutic method of RDS. Methods:In a cohort study,45 neonates with diagnosed RDS and birth weight lower than 1500g were included and they underwent INSURE followed by NCPAP(Nasal Continuous Positive Airway Pressure. The patients were divided into failure or successful groups and factors which can predict success of INSURE were investigated by logistic regression in SPSS 16th version. Results:29 and16 neonates were observed in successful and failure groups, respectively. Birth weight was the only variable with significant difference between two groups (P=0.002. Finally logistic regression test showed that birth weight is only predicting factor for success (P: 0.001, EXP[β]: 0.009, CI [95%]: 1.003-0.014 and mortality (P: 0.029, EXP[β]: 0.993, CI [95%]: 0.987-0.999 of neonates treated with INSURE method. Conclusion:Predicting factors which affect on success rate of INSURE can be useful for treating and reducing charge of neonate with RDS and the birth weight is one of the effective factor on INSURE Success in this study.

  7. Prediction of beef marblingusing Hyperspectral Imaging (HSI and Partial Least Squares Regression (PLSR

    Directory of Open Access Journals (Sweden)

    Victor Aredo

    2017-01-01

    Full Text Available The aim of this study was to build a model to predict the beef marbling using HSI and Partial Least Squares Regression (PLSR. Totally 58 samples of longissmus dorsi muscle were scanned by a HSI system (400 - 1000 nm in reflectance mode, using 44 samples to build t he PLSR model and 14 samples to model validation. The Japanese Beef Marbling Standard (BMS was used as reference by 15 middle - trained judges for the samples evaluation. The scores were assigned as continuous values and varied from 1.2 to 5.3 BMS. The PLSR model showed a high correlation coefficient in the prediction (r = 0.95, a low Standard Error of Calibration (SEC of 0.2 BMS score, and a low Standard Error of Prediction (SEP of 0.3 BMS score.

  8. Human chorionic gonadotrophin regression rate as a predictive factor of postmolar gestational trophoblastic neoplasm in high-risk hydatidiform mole: a case-control study.

    Science.gov (United States)

    Kim, Bo Wook; Cho, Hanbyoul; Kim, Hyunki; Nam, Eun Ji; Kim, Sang Wun; Kim, Sunghoon; Kim, Young Tae; Kim, Jae-Hoon

    2012-01-01

    The aim of this study was early prediction of postmolar gestational trophoblastic neoplasm (GTN) after evacuation of high-risk mole, by comparison of human chorionic gonadotrophin (hCG) regression rates. Fifty patients with a high-risk mole initially and spontaneously regressing after molar evacuation were selected from January 1, 1996 to May 31, 2010 (spontaneous regression group). Fifty patients with a high-risk mole initially and progressing to postmolar GTN after molar evacuation were selected (postmolar GTN group). hCG regression rates represented as hCG/initial hCG were compared between the two groups. The sensitivity and specificity of these rates for prediction of postmolar GTN were assessed using receiver operating characteristic curves. Multivariate analyses of associations between risk factors and postmolar GTN progression were performed. The mean regression rate of hCG between the two groups was compared. hCG regression rates represented as hCG/initial hCG (%) were 0.36% in the spontaneous regression group and 1.45% in the postmolar GTN group in the second week (p=0.003). Prediction of postmolar GTN by hCG regression rate revealed a sensitivity of 48.0% and specificity of 89.5% with a cut-off value of 0.716% and area under the curve (AUC) of 0.759 in the 2nd week (pfactor for postmolar GTN. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  10. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    Science.gov (United States)

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  11. BFLCRM: A BAYESIAN FUNCTIONAL LINEAR COX REGRESSION MODEL FOR PREDICTING TIME TO CONVERSION TO ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Lee, Eunjee; Zhu, Hongtu; Kong, Dehan; Wang, Yalin; Giovanello, Kelly Sullivan; Ibrahim, Joseph G

    2015-12-01

    The aim of this paper is to develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional and scalar covariates. This new development is motivated by establishing the likelihood of conversion to Alzheimer's disease (AD) in 346 patients with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) and the early markers of conversion. These 346 MCI patients were followed over 48 months, with 161 MCI participants progressing to AD at 48 months. The functional linear Cox regression model was used to establish that functional covariates including hippocampus surface morphology and scalar covariates including brain MRI volumes, cognitive performance (ADAS-Cog), and APOE status can accurately predict time to onset of AD. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFLCRM.

  12. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    Science.gov (United States)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  13. Improved Dietary Guidelines for Vitamin D: Application of Individual Participant Data (IPD-Level Meta-Regression Analyses

    Directory of Open Access Journals (Sweden)

    Kevin D. Cashman

    2017-05-01

    Full Text Available Dietary Reference Values (DRVs for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years of the vitamin D intake–serum 25-hydroxyvitamin D (25(OHD dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OHD concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OHD >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OHD to vitamin D intake.

  14. Exploring the predictive power of interaction terms in a sophisticated risk equalization model using regression trees.

    Science.gov (United States)

    van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A

    2018-02-01

    This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Prediction of hourly PM2.5 using a space-time support vector regression model

    Science.gov (United States)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  16. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Science.gov (United States)

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  17. Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression

    Science.gov (United States)

    Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Cerro-Prada, E.; Salcedo-Sanz, S.

    2017-11-01

    We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is {>}1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions ({algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.

  18. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

    Science.gov (United States)

    Goldstein, Benjamin A; Navar, Ann Marie; Carter, Rickey E

    2017-06-14

    Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  19. Prediction of survival to discharge following cardiopulmonary resuscitation using classification and regression trees.

    Science.gov (United States)

    Ebell, Mark H; Afonso, Anna M; Geocadin, Romergryko G

    2013-12-01

    To predict the likelihood that an inpatient who experiences cardiopulmonary arrest and undergoes cardiopulmonary resuscitation survives to discharge with good neurologic function or with mild deficits (Cerebral Performance Category score = 1). Classification and Regression Trees were used to develop branching algorithms that optimize the ability of a series of tests to correctly classify patients into two or more groups. Data from 2007 to 2008 (n = 38,092) were used to develop candidate Classification and Regression Trees models to predict the outcome of inpatient cardiopulmonary resuscitation episodes and data from 2009 (n = 14,435) to evaluate the accuracy of the models and judge the degree of over fitting. Both supervised and unsupervised approaches to model development were used. 366 hospitals participating in the Get With the Guidelines-Resuscitation registry. Adult inpatients experiencing an index episode of cardiopulmonary arrest and undergoing cardiopulmonary resuscitation in the hospital. The five candidate models had between 8 and 21 nodes and an area under the receiver operating characteristic curve from 0.718 to 0.766 in the derivation group and from 0.683 to 0.746 in the validation group. One of the supervised models had 14 nodes and classified 27.9% of patients as very unlikely to survive neurologically intact or with mild deficits (Tree models that predict survival to discharge with good neurologic function or with mild deficits following in-hospital cardiopulmonary arrest. Models like this can assist physicians and patients who are considering do-not-resuscitate orders.

  20. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

    Science.gov (United States)

    Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen. Fitzgerald

    2012-01-01

    Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...

  1. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis

    Directory of Open Access Journals (Sweden)

    BUDIMAN

    2012-01-01

    Full Text Available Budiman, Arisoesilaningsih E. 2012. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis. Biodiversitas 13: 18-22. The aims of this research was to determine the multiple regression models of vegetative and corm growth of Amorphophallus muelleri Blume in some age variations and habitat conditions of agroforestry in East Java. Descriptive exploratory research method was conducted by systematic random sampling at five agroforestries on four plantations in East Java: Saradan, Bojonegoro, Nganjuk and Blitar. In each agroforestry, we observed A. muelleri vegetative and corm growth on four growing age (1, 2, 3 and 4 years old respectively as well as environmental variables such as altitude, vegetation, climate and soil conditions. Data were analyzed using descriptive statistics to compare A. muelleri habitat in five agroforestries. Meanwhile, the influence and contribution of each environmental variable to the growth of A. muelleri vegetative and corm were determined using multiple regression analysis of SPSS 17.0. The multiple regression models of A. muelleri vegetative and corm growth were generated based on some characteristics of agroforestries and age showed high validity with R2 = 88-99%. Regression model showed that age, monthly temperatures, percentage of radiation and soil calcium (Ca content either simultaneously or partially determined the growth of A. muelleri vegetative and corm. Based on these models, the A. muelleri corm reached the optimal growth after four years of cultivation and they will be ready to be harvested. Additionally, the soil Ca content should reach 25.3 me.hg-1 as Sugihwaras agroforestry, with the maximal radiation of 60%.

  2. Support vector regression to predict porosity and permeability: Effect of sample size

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2012-02-01

    Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function

  3. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  4. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  5. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  6. Predictive densities for day-ahead electricity prices using time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    A large part of the decision-making problems actors of the power system are facing on a daily basis requires scenarios for day-ahead electricity market prices. These scenarios are most likely to be generated based on marginal predictive densities for such prices, then enhanced with a temporal...... dependence structure. A semi-parametric methodology for generating such densities is presented: it includes: (i) a time-adaptive quantile regression model for the 5%–95% quantiles; and (ii) a description of the distribution tails with exponential distributions. The forecasting skill of the proposed model...

  7. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  8. Model-free prediction and regression a transformation-based approach to inference

    CERN Document Server

    Politis, Dimitris N

    2015-01-01

    The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...

  9. Prediction of diffuse solar irradiance using machine learning and multivariable regression

    International Nuclear Information System (INIS)

    Lou, Siwei; Li, Danny H.W.; Lam, Joseph C.; Chan, Wilco W.H.

    2016-01-01

    Highlights: • 54.9% of the annual global irradiance is composed by its diffuse part in HK. • Hourly diffuse irradiance was predicted by accessible variables. • The importance of variable in prediction was assessed by machine learning. • Simple prediction equations were developed with the knowledge of variable importance. - Abstract: The paper studies the horizontal global, direct-beam and sky-diffuse solar irradiance data measured in Hong Kong from 2008 to 2013. A machine learning algorithm was employed to predict the horizontal sky-diffuse irradiance and conduct sensitivity analysis for the meteorological variables. Apart from the clearness index (horizontal global/extra atmospheric solar irradiance), we found that predictors including solar altitude, air temperature, cloud cover and visibility are also important in predicting the diffuse component. The mean absolute error (MAE) of the logistic regression using the aforementioned predictors was less than 21.5 W/m"2 and 30 W/m"2 for Hong Kong and Denver, USA, respectively. With the systematic recording of the five variables for more than 35 years, the proposed model would be appropriate to estimate of long-term diffuse solar radiation, study climate change and develope typical meteorological year in Hong Kong and places with similar climates.

  10. Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).

    Science.gov (United States)

    Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S

    2017-01-01

    This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.

  11. Predicting longitudinal trajectories of health probabilities with random-effects multinomial logit regression.

    Science.gov (United States)

    Liu, Xian; Engel, Charles C

    2012-12-20

    Researchers often encounter longitudinal health data characterized with three or more ordinal or nominal categories. Random-effects multinomial logit models are generally applied to account for potential lack of independence inherent in such clustered data. When parameter estimates are used to describe longitudinal processes, however, random effects, both between and within individuals, need to be retransformed for correctly predicting outcome probabilities. This study attempts to go beyond existing work by developing a retransformation method that derives longitudinal growth trajectories of unbiased health probabilities. We estimated variances of the predicted probabilities by using the delta method. Additionally, we transformed the covariates' regression coefficients on the multinomial logit function, not substantively meaningful, to the conditional effects on the predicted probabilities. The empirical illustration uses the longitudinal data from the Asset and Health Dynamics among the Oldest Old. Our analysis compared three sets of the predicted probabilities of three health states at six time points, obtained from, respectively, the retransformation method, the best linear unbiased prediction, and the fixed-effects approach. The results demonstrate that neglect of retransforming random errors in the random-effects multinomial logit model results in severely biased longitudinal trajectories of health probabilities as well as overestimated effects of covariates on the probabilities. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Predicting number of hospitalization days based on health insurance claims data using bagged regression trees.

    Science.gov (United States)

    Xie, Yang; Schreier, Günter; Chang, David C W; Neubauer, Sandra; Redmond, Stephen J; Lovell, Nigel H

    2014-01-01

    Healthcare administrators worldwide are striving to both lower the cost of care whilst improving the quality of care given. Therefore, better clinical and administrative decision making is needed to improve these issues. Anticipating outcomes such as number of hospitalization days could contribute to addressing this problem. In this paper, a method was developed, using large-scale health insurance claims data, to predict the number of hospitalization days in a population. We utilized a regression decision tree algorithm, along with insurance claim data from 300,000 individuals over three years, to provide predictions of number of days in hospital in the third year, based on medical admissions and claims data from the first two years. Our method performs well in the general population. For the population aged 65 years and over, the predictive model significantly improves predictions over a baseline method (predicting a constant number of days for each patient), and achieved a specificity of 70.20% and sensitivity of 75.69% in classifying these subjects into two categories of 'no hospitalization' and 'at least one day in hospital'.

  13. Prediction of Agriculture Drought Using Support Vector Regression Incorporating with Climatology Indices

    Science.gov (United States)

    Tian, Y.; Xu, Y. P.

    2017-12-01

    In this paper, the Support Vector Regression (SVR) model incorporating climate indices and drought indices are developed to predict agriculture drought in Xiangjiang River basin, Central China. The agriculture droughts are presented with the Precipitation-Evapotranspiration Index (SPEI). According to the analysis of the relationship between SPEI with different time scales and soil moisture, it is found that SPEI of six months time scales (SPEI-6) could reflect the soil moisture better than that of three and one month time scale from the drought features including drought duration, severity and peak. Climate forcing like El Niño Southern Oscillation and western Pacific subtropical high (WPSH) are represented by climate indices such as MEI and series indices of WPSH. Ridge Point of WPSH is found to be the key factor that influences the agriculture drought mainly through the control of temperature. Based on the climate indices analysis, the predictions of SPEI-6 are conducted using the SVR model. The results show that the SVR model incorperating climate indices, especially ridge point of WPSH, could improve the prediction accuracy compared to that using drought index only. The improvement was more significant for the prediction of one month lead time than that of three months lead time. However, it needs to be cautious in selection of the input parameters, since adding more useless information could have a counter effect in attaining a better prediction.

  14. Prediction of Five Softwood Paper Properties from its Density using Support Vector Machine Regression Techniques

    Directory of Open Access Journals (Sweden)

    Esperanza García-Gonzalo

    2016-01-01

    Full Text Available Predicting paper properties based on a limited number of measured variables can be an important tool for the industry. Mathematical models were developed to predict mechanical and optical properties from the corresponding paper density for some softwood papers using support vector machine regression with the Radial Basis Function Kernel. A dataset of different properties of paper handsheets produced from pulps of pine (Pinus pinaster and P. sylvestris and cypress species (Cupressus lusitanica, C. sempervirens, and C. arizonica beaten at 1000, 4000, and 7000 revolutions was used. The results show that it is possible to obtain good models (with high coefficient of determination with two variables: the numerical variable density and the categorical variable species.

  15. Watershed regressions for pesticides (WARP) for predicting atrazine concentration in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2011-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, can be improved for application to the U.S. Corn Belt region by developing region-specific models that include important watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for predicting annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. All streams used in development of WARP-CB models drain watersheds with atrazine use intensity greater than 17 kilograms per square kilometer (kg/km2). The WARP-CB models accounted for 53 to 62 percent of the variability in the various concentration statistics among the model-development sites.

  16. FUZZY REGRESSION MODEL TO PREDICT THE BEAD GEOMETRY IN THE ROBOTIC WELDING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.S. Sung; I.S. Kim; Y. Xue; H.H. Kim; Y.H. Cha

    2007-01-01

    Recently, there has been a rapid development in computer technology, which has in turn led todevelop the fully robotic welding system using artificial intelligence (AI) technology. However, therobotic welding system has not been achieved due to difficulties of the mathematical model andsensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry,such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metalarc) welding process is presented. The approach, a well-known method to deal with the problemswith a high degree of fuzziness, is used to build the relationship between four process variablesand the four quality characteristics, respectively. Using these models, the proper prediction of theprocess variables for obtaining the optimal bead geometry can be determined.

  17. Application of genetic algorithm - multiple linear regressions to predict the activity of RSK inhibitors

    Directory of Open Access Journals (Sweden)

    Avval Zhila Mohajeri

    2015-01-01

    Full Text Available This paper deals with developing a linear quantitative structure-activity relationship (QSAR model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-α] indole, diazepino [1,2-α] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR technique combined with the stepwise (SW and the genetic algorithm (GA methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.

  18. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure

    Science.gov (United States)

    Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.

    2018-06-01

    Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.

  20. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

    Science.gov (United States)

    DeHart, Russell

    2017-01-01

    This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

  1. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients.

    Science.gov (United States)

    Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L

    2012-08-07

    Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in

  2. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    Science.gov (United States)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg

  3. Extralobar pulmonary sequestration in neonates: The natural course and predictive factors associated with spontaneous regression

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hee Mang; Jung, Ah Young; Cho, Young Ah; Yoon, Chong Hyun; Lee, Jin Seong [Asan Medical Center Children' s Hospital, University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Songpa-gu, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Division of Neonatology, Asan Medical Center Children' s Hospital, Seoul (Korea, Republic of); Chung, Sung-Hoon [Kyung Hee University School of Medicine, Department of Pediatrics, Seoul (Korea, Republic of); Kim, Seon-Ok [Asan Medical Center, Department of Clinical Epidemiology and Biostatistics, Seoul (Korea, Republic of)

    2017-06-15

    To describe the natural course of extralobar pulmonary sequestration (EPS) and identify factors associated with spontaneous regression of EPS. We retrospectively searched for patients diagnosed with EPS on initial contrast CT scan within 1 month after birth and had a follow-up CT scan without treatment. Spontaneous regression of EPS was assessed by percentage decrease in volume (PDV) and percentage decrease in sum of the diameter of systemic feeding arteries (PDD) by comparing initial and follow-up CT scans. Clinical and CT features were analysed to determine factors associated with PDV and PDD rates. Fifty-one neonates were included. The cumulative proportions of patients reaching PDV > 50 % and PDD > 50 % were 93.0 % and 73.3 % at 4 years, respectively. Tissue attenuation was significantly associated with PDV rate (B = -21.78, P <.001). The tissue attenuation (B = -22.62, P =.001) and diameter of the largest systemic feeding arteries (B = -48.31, P =.011) were significant factors associated with PDD rate. The volume and diameter of systemic feeding arteries of EPS spontaneously decreased within 4 years without treatment. EPSs showing a low tissue attenuation and small diameter of the largest systemic feeding arteries on initial contrast-enhanced CT scans were likely to regress spontaneously. (orig.)

  4. Esophageal Stenosis Associated With Tumor Regression in Radiotherapy for Esophageal Cancer: Frequency and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Kazushige [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Shioyama, Yoshiyuki, E-mail: shioyama@radiol.med.kyushu-u.ac.jp [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Arimura, Hidetaka [Department of Health Sciences, Kyushu University, Fukuoka (Japan); Terashima, Kotaro [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Matsuki, Takaomi [Department of Health Sciences, Kyushu University, Fukuoka (Japan); Ohga, Saiji; Yoshitake, Tadamasa; Nonoshita, Takeshi; Tsurumaru, Daisuke; Ohnishi, Kayoko; Asai, Kaori; Matsumoto, Keiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Nakamura, Katsumasa [Department of Radiology, Kyushu University Hospital at Beppu, Oita (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-04-01

    Purpose: To determine clinical factors for predicting the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer. Methods and Materials: The study group consisted of 109 patients with esophageal cancer of T1-4 and Stage I-III who were treated with definitive radiotherapy and achieved a complete response of their primary lesion at Kyushu University Hospital between January 1998 and December 2007. Esophageal stenosis was evaluated using esophagographic images within 3 months after completion of radiotherapy. We investigated the correlation between esophageal stenosis after radiotherapy and each of the clinical factors with regard to tumors and therapy. For validation of the correlative factors for esophageal stenosis, an artificial neural network was used to predict the esophageal stenotic ratio. Results: Esophageal stenosis tended to be more severe and more frequent in T3-4 cases than in T1-2 cases. Esophageal stenosis in cases with full circumference involvement tended to be more severe and more frequent than that in cases without full circumference involvement. Increases in wall thickness tended to be associated with increases in esophageal stenosis severity and frequency. In the multivariate analysis, T stage, extent of involved circumference, and wall thickness of the tumor region were significantly correlated to esophageal stenosis (p = 0.031, p < 0.0001, and p = 0.0011, respectively). The esophageal stenotic ratio predicted by the artificial neural network, which learned these three factors, was significantly correlated to the actual observed stenotic ratio, with a correlation coefficient of 0.864 (p < 0.001). Conclusion: Our study suggested that T stage, extent of involved circumference, and esophageal wall thickness of the tumor region were useful to predict the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer.

  5. N-terminal pro-B-type natriuretic peptide measurement is useful in predicting left ventricular hypertrophy regression after aortic valve replacement in patients with severe aortic stenosis.

    Science.gov (United States)

    Lee, Mirae; Choi, Jin-Oh; Park, Sung-Ji; Kim, Eun Young; Park, PyoWon; Oh, Jae K; Jeon, Eun-Seok

    2015-01-01

    The predictive factors for early left ventricular hypertrophy (LVH) regression after aortic valve replacement (AVR) have not been fully elucidated. This study was conducted to investigate which preoperative parameters predict early LVH regression after AVR. 87 consecutive patients who underwent AVR due to isolated severe aortic stenosis (AS) were analysed. Patients with ejection fraction regression of LVH at the midterm follow-up was determined. In multivariate analysis, including preoperative echocardiographic parameters, only E/e' ratio was associated with midterm LVH regression (OR 1.11, 95% CI 1.01 to 1.22; p=0.035). When preoperative NT-proBNP was added to the analysis, logNT-proBNP was found to be the single significant predictor of midterm LVH regression (OR 2.00, 95% CI 1.08 to 3.71; p=0.028). By receiver operating characteristic curve analysis, a cut-off value of 440 pg/mL for NT-proBNP yielded a sensitivity of 72% and a specificity of 77% for the prediction of LVH regression after AVR. Preoperative NT-proBNP was an independent predictor for early LVH regression after AVR in patients with isolated severe AS.

  6. Scaling model for prediction of radionuclide activity in cooling water using a regression triplet technique

    International Nuclear Information System (INIS)

    Silvia Dulanska; Lubomir Matel; Milan Meloun

    2010-01-01

    The decommissioning of the nuclear power plant (NPP) A1 Jaslovske Bohunice (Slovakia) is a complicated set of problems that is highly demanding both technically and financially. The basic goal of the decommissioning process is the total elimination of radioactive materials from the nuclear power plant area, and radwaste treatment to a form suitable for its safe disposal. The initial conditions of decommissioning also include elimination of the operational events, preparation and transport of the fuel from the plant territory, radiochemical and physical-chemical characterization of the radioactive wastes. One of the problems was and still is the processing of the liquid radioactive wastes. Such media is also the cooling water of the long-term storage of spent fuel. A suitable scaling model for predicting the activity of hard-to-detect radionuclides 239,240 Pu, 90 Sr and summary beta in cooling water using a regression triplet technique has been built using the regression triplet analysis and regression diagnostics. (author)

  7. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    Science.gov (United States)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be

  8. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  9. Regression tree analysis for predicting body weight of Nigerian Muscovy duck (Cairina moschata

    Directory of Open Access Journals (Sweden)

    Oguntunji Abel Olusegun

    2017-01-01

    Full Text Available Morphometric parameters and their indices are central to the understanding of the type and function of livestock. The present study was conducted to predict body weight (BWT of adult Nigerian Muscovy ducks from nine (9 morphometric parameters and seven (7 body indices and also to identify the most important predictor of BWT among them using regression tree analysis (RTA. The experimental birds comprised of 1,020 adult male and female Nigerian Muscovy ducks randomly sampled in Rain Forest (203, Guinea Savanna (298 and Derived Savanna (519 agro-ecological zones. Result of RTA revealed that compactness; body girth and massiveness were the most important independent variables in predicting BWT and were used in constructing RT. The combined effect of the three predictors was very high and explained 91.00% of the observed variation of the target variable (BWT. The optimal regression tree suggested that Muscovy ducks with compactness >5.765 would be fleshy and have highest BWT. The result of the present study could be exploited by animal breeders and breeding companies in selection and improvement of BWT of Muscovy ducks.

  10. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  11. Logistic regression analysis to predict Medical Licensing Examination of Thailand (MLET) Step1 success or failure.

    Science.gov (United States)

    Wanvarie, Samkaew; Sathapatayavongs, Boonmee

    2007-09-01

    The aim of this paper was to assess factors that predict students' performance in the Medical Licensing Examination of Thailand (MLET) Step1 examination. The hypothesis was that demographic factors and academic records would predict the students' performance in the Step1 Licensing Examination. A logistic regression analysis of demographic factors (age, sex and residence) and academic records [high school grade point average (GPA), National University Entrance Examination Score and GPAs of the pre-clinical years] with the MLET Step1 outcome was accomplished using the data of 117 third-year Ramathibodi medical students. Twenty-three (19.7%) students failed the MLET Step1 examination. Stepwise logistic regression analysis showed that the significant predictors of MLET Step1 success/failure were residence background and GPAs of the second and third preclinical years. For students whose sophomore and third-year GPAs increased by an average of 1 point, the odds of passing the MLET Step1 examination increased by a factor of 16.3 and 12.8 respectively. The minimum GPAs for students from urban and rural backgrounds to pass the examination were estimated from the equation (2.35 vs 2.65 from 4.00 scale). Students from rural backgrounds and/or low-grade point averages in their second and third preclinical years of medical school are at risk of failing the MLET Step1 examination. They should be given intensive tutorials during the second and third pre-clinical years.

  12. Predictive market segmentation model: An application of logistic regression model and CHAID procedure

    Directory of Open Access Journals (Sweden)

    Soldić-Aleksić Jasna

    2009-01-01

    Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.

  13. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  14. Reservoir rock permeability prediction using support vector regression in an Iranian oil field

    International Nuclear Information System (INIS)

    Saffarzadeh, Sadegh; Shadizadeh, Seyed Reza

    2012-01-01

    Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. It is often measured in the laboratory from reservoir core samples or evaluated from well test data. The prediction of reservoir rock permeability utilizing well log data is important because the core analysis and well test data are usually only available from a few wells in a field and have high coring and laboratory analysis costs. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data; however, these correlation formulae are not universally applicable. Recently, support vector machines (SVMs) have been proposed as a new intelligence technique for both regression and classification tasks. The theory has a strong mathematical foundation for dependence estimation and predictive learning from finite data sets. The ultimate test for any technique that bears the claim of permeability prediction from well log data is the accurate and verifiable prediction of permeability for wells where only the well log data are available. The main goal of this paper is to develop the SVM method to obtain reservoir rock permeability based on well log data. (paper)

  15. Groundwater level prediction of landslide based on classification and regression tree

    Directory of Open Access Journals (Sweden)

    Yannan Zhao

    2016-09-01

    Full Text Available According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree (CART model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15% respectively. To compare the support vector machine (SVM model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides.

  16. Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression

    International Nuclear Information System (INIS)

    Lins, Isis Didier; Droguett, Enrique López; Moura, Márcio das Chagas; Zio, Enrico; Jacinto, Carlos Magno

    2015-01-01

    Data-driven learning methods for predicting the evolution of the degradation processes affecting equipment are becoming increasingly attractive in reliability and prognostics applications. Among these, we consider here Support Vector Regression (SVR), which has provided promising results in various applications. Nevertheless, the predictions provided by SVR are point estimates whereas in order to take better informed decisions, an uncertainty assessment should be also carried out. For this, we apply bootstrap to SVR so as to obtain confidence and prediction intervals, without having to make any assumption about probability distributions and with good performance even when only a small data set is available. The bootstrapped SVR is first verified on Monte Carlo experiments and then is applied to a real case study concerning the prediction of degradation of a component from the offshore oil industry. The results obtained indicate that the bootstrapped SVR is a promising tool for providing reliable point and interval estimates, which can inform maintenance-related decisions on degrading components. - Highlights: • Bootstrap (pairs/residuals) and SVR are used as an uncertainty analysis framework. • Numerical experiments are performed to assess accuracy and coverage properties. • More bootstrap replications does not significantly improve performance. • Degradation of equipment of offshore oil wells is estimated by bootstrapped SVR. • Estimates about the scale growth rate can support maintenance-related decisions

  17. Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2016-02-01

    Full Text Available The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013. In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR method and Artificial Neural Network (ANN. From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF, whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.

  18. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  19. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  20. Predictors of success of external cephalic version and cephalic presentation at birth among 1253 women with non-cephalic presentation using logistic regression and classification tree analyses.

    Science.gov (United States)

    Hutton, Eileen K; Simioni, Julia C; Thabane, Lehana

    2017-08-01

    Among women with a fetus with a non-cephalic presentation, external cephalic version (ECV) has been shown to reduce the rate of breech presentation at birth and cesarean birth. Compared with ECV at term, beginning ECV prior to 37 weeks' gestation decreases the number of infants in a non-cephalic presentation at birth. The purpose of this secondary analysis was to investigate factors associated with a successful ECV procedure and to present this in a clinically useful format. Data were collected as part of the Early ECV Pilot and Early ECV2 Trials, which randomized 1776 women with a fetus in breech presentation to either early ECV (34-36 weeks' gestation) or delayed ECV (at or after 37 weeks). The outcome of interest was successful ECV, defined as the fetus being in a cephalic presentation immediately following the procedure, as well as at the time of birth. The importance of several factors in predicting successful ECV was investigated using two statistical methods: logistic regression and classification and regression tree (CART) analyses. Among nulliparas, non-engagement of the presenting part and an easily palpable fetal head were independently associated with success. Among multiparas, non-engagement of the presenting part, gestation less than 37 weeks and an easily palpable fetal head were found to be independent predictors of success. These findings were consistent with results of the CART analyses. Regardless of parity, descent of the presenting part was the most discriminating factor in predicting successful ECV and cephalic presentation at birth. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Improved Dietary Guidelines for Vitamin D: Application of Individual Participant Data (IPD)-Level Meta-Regression Analyses

    Science.gov (United States)

    Cashman, Kevin D.; Ritz, Christian; Kiely, Mairead

    2017-01-01

    Dietary Reference Values (DRVs) for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs) are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD)-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years) of the vitamin D intake–serum 25-hydroxyvitamin D (25(OH)D) dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OH)D concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years) from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OH)D >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OH)D to vitamin D intake. PMID:28481259

  2. A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data

    Directory of Open Access Journals (Sweden)

    Ruzzo Walter L

    2006-03-01

    Full Text Available Abstract Background As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. Methods In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN algorithm. The choice of KNN is motivated by its simplicity, flexibility to incorporate different data types and adaptability to irregular feature spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is that performance is subject to the often ad hoc choice of similarity metric. To address this weakness, we apply regression methods to infer a similarity metric as a weighted combination of a set of base similarity measures, which helps to locate the neighbors that are most likely to be in the same class as the target gene. We also suggest a novel voting scheme to generate confidence scores that estimate the accuracy of predictions. The method gracefully extends to multi-way classification problems. Results We apply this technique to gene function prediction according to three well-known Escherichia coli classification schemes suggested by biologists, using information derived from microarray and genome sequencing data. We demonstrate that our algorithm dramatically outperforms the naive KNN methods and is competitive with support vector machine (SVM algorithms for integrating heterogenous data. We also show that by combining different data sources, prediction accuracy can improve significantly. Conclusion Our extension of KNN with automatic feature weighting, multi-class prediction, and probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive and flexible. This general framework can also be applied to similar classification problems involving heterogeneous datasets.

  3. A dynamic particle filter-support vector regression method for reliability prediction

    International Nuclear Information System (INIS)

    Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico

    2013-01-01

    Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR

  4. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    Science.gov (United States)

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  5. Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2016-09-14

    An improved model for the prediction of ignition quality of hydrocarbon fuels has been developed using 1H nuclear magnetic resonance (NMR) spectroscopy and multiple linear regression (MLR) modeling. Cetane number (CN) and derived cetane number (DCN) of 71 pure hydrocarbons and 54 hydrocarbon blends were utilized as a data set to study the relationship between ignition quality and molecular structure. CN and DCN are functional equivalents and collectively referred to as D/CN, herein. The effect of molecular weight and weight percent of structural parameters such as paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic CH–CH2 groups, naphthenic CH–CH2 groups, and aromatic C–CH groups on D/CN was studied. A particular emphasis on the effect of branching (i.e., methyl substitution) on the D/CN was studied, and a new parameter denoted as the branching index (BI) was introduced to quantify this effect. A new formula was developed to calculate the BI of hydrocarbon fuels using 1H NMR spectroscopy. Multiple linear regression (MLR) modeling was used to develop an empirical relationship between D/CN and the eight structural parameters. This was then used to predict the DCN of many hydrocarbon fuels. The developed model has a high correlation coefficient (R2 = 0.97) and was validated with experimentally measured DCN of twenty-two real fuel mixtures (e.g., gasolines and diesels) and fifty-nine blends of known composition, and the predicted values matched well with the experimental data.

  6. Quantitative Prediction of Coalbed Gas Content Based on Seismic Multiple-Attribute Analyses

    Directory of Open Access Journals (Sweden)

    Renfang Pan

    2015-09-01

    Full Text Available Accurate prediction of gas planar distribution is crucial to selection and development of new CBM exploration areas. Based on seismic attributes, well logging and testing data we found that seismic absorption attenuation, after eliminating the effects of burial depth, shows an evident correlation with CBM gas content; (positive structure curvature has a negative correlation with gas content; and density has a negative correlation with gas content. It is feasible to use the hydrocarbon index (P*G and pseudo-Poisson ratio attributes for detection of gas enrichment zones. Based on seismic multiple-attribute analyses, a multiple linear regression equation was established between the seismic attributes and gas content at the drilling wells. Application of this equation to the seismic attributes at locations other than the drilling wells yielded a quantitative prediction of planar gas distribution. Prediction calculations were performed for two different models, one using pre-stack inversion and the other one disregarding pre-stack inversion. A comparison of the results indicates that both models predicted a similar trend for gas content distribution, except that the model using pre-stack inversion yielded a prediction result with considerably higher precision than the other model.

  7. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2010-12-01

    In wells with limited log and core data, porosity, a fundamental and essential property to characterize reservoirs, is challenging to estimate by conventional statistical methods from offset well log and core data in heterogeneous formations. Beyond simple regression, neural networks have been used to develop more accurate porosity correlations. Unfortunately, neural network-based correlations have limited generalization ability and global correlations for a field are usually less accurate compared to local correlations for a sub-region of the reservoir. In this paper, support vector machines are explored as an intelligent technique to correlate porosity to well log data. Recently, support vector regression (SVR), based on the statistical learning theory, have been proposed as a new intelligence technique for both prediction and classification tasks. The underlying formulation of support vector machines embodies the structural risk minimization (SRM) principle which has been shown to be superior to the traditional empirical risk minimization (ERM) principle employed by conventional neural networks and classical statistical methods. This new formulation uses margin-based loss functions to control model complexity independently of the dimensionality of the input space, and kernel functions to project the estimation problem to a higher dimensional space, which enables the solution of more complex nonlinear problem optimization methods to exist for a globally optimal solution. SRM minimizes an upper bound on the expected risk using a margin-based loss function ( ɛ-insensitivity loss function for regression) in contrast to ERM which minimizes the error on the training data. Unlike classical learning methods, SRM, indexed by margin-based loss function, can also control model complexity independent of dimensionality. The SRM inductive principle is designed for statistical estimation with finite data where the ERM inductive principle provides the optimal solution (the

  8. Modeling the potential risk factors of bovine viral diarrhea prevalence in Egypt using univariable and multivariable logistic regression analyses

    Directory of Open Access Journals (Sweden)

    Abdelfattah M. Selim

    2018-03-01

    Full Text Available Aim: The present cross-sectional study was conducted to determine the seroprevalence and potential risk factors associated with Bovine viral diarrhea virus (BVDV disease in cattle and buffaloes in Egypt, to model the potential risk factors associated with the disease using logistic regression (LR models, and to fit the best predictive model for the current data. Materials and Methods: A total of 740 blood samples were collected within November 2012-March 2013 from animals aged between 6 months and 3 years. The potential risk factors studied were species, age, sex, and herd location. All serum samples were examined with indirect ELIZA test for antibody detection. Data were analyzed with different statistical approaches such as Chi-square test, odds ratios (OR, univariable, and multivariable LR models. Results: Results revealed a non-significant association between being seropositive with BVDV and all risk factors, except for species of animal. Seroprevalence percentages were 40% and 23% for cattle and buffaloes, respectively. OR for all categories were close to one with the highest OR for cattle relative to buffaloes, which was 2.237. Likelihood ratio tests showed a significant drop of the -2LL from univariable LR to multivariable LR models. Conclusion: There was an evidence of high seroprevalence of BVDV among cattle as compared with buffaloes with the possibility of infection in different age groups of animals. In addition, multivariable LR model was proved to provide more information for association and prediction purposes relative to univariable LR models and Chi-square tests if we have more than one predictor.

  9. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.

    Science.gov (United States)

    Liu, Cong; Wang, Xujun; Genchev, Georgi Z; Lu, Hui

    2017-07-15

    New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes. Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting. We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients' survival in glioblastoma and lung adenocarcinoma. Copyright © 2017. Published by Elsevier

  10. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin.

    Science.gov (United States)

    Tian, Ye; Xu, Yue-Ping; Wang, Guoqing

    2018-05-01

    Drought can have a substantial impact on the ecosystem and agriculture of the affected region and does harm to local economy. This study aims to analyze the relation between soil moisture and drought and predict agricultural drought in Xiangjiang River basin. The agriculture droughts are presented with the Precipitation-Evapotranspiration Index (SPEI). The Support Vector Regression (SVR) model incorporating climate indices is developed to predict the agricultural droughts. Analysis of climate forcing including El Niño Southern Oscillation and western Pacific subtropical high (WPSH) are carried out to select climate indices. The results show that SPEI of six months time scales (SPEI-6) represents the soil moisture better than that of three and one month time scale on drought duration, severity and peaks. The key factor that influences the agriculture drought is the Ridge Point of WPSH, which mainly controls regional temperature. The SVR model incorporating climate indices, especially ridge point of WPSH, could improve the prediction accuracy compared to that solely using drought index by 4.4% in training and 5.1% in testing measured by Nash Sutcliffe efficiency coefficient (NSE) for three month lead time. The improvement is more significant for the prediction with one month lead (15.8% in training and 27.0% in testing) than that with three months lead time. However, it needs to be cautious in selection of the input parameters, since adding redundant information could have a counter effect in attaining a better prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Phenotype prediction using regularized regression on genetic data in the DREAM5 Systems Genetics B Challenge.

    Directory of Open Access Journals (Sweden)

    Po-Ru Loh

    Full Text Available A major goal of large-scale genomics projects is to enable the use of data from high-throughput experimental methods to predict complex phenotypes such as disease susceptibility. The DREAM5 Systems Genetics B Challenge solicited algorithms to predict soybean plant resistance to the pathogen Phytophthora sojae from training sets including phenotype, genotype, and gene expression data. The challenge test set was divided into three subcategories, one requiring prediction based on only genotype data, another on only gene expression data, and the third on both genotype and gene expression data. Here we present our approach, primarily using regularized regression, which received the best-performer award for subchallenge B2 (gene expression only. We found that despite the availability of 941 genotype markers and 28,395 gene expression features, optimal models determined by cross-validation experiments typically used fewer than ten predictors, underscoring the importance of strong regularization in noisy datasets with far more features than samples. We also present substantial analysis of the training and test setup of the challenge, identifying high variance in performance on the gold standard test sets.

  12. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  13. Performance Prediction Modelling for Flexible Pavement on Low Volume Roads Using Multiple Linear Regression Analysis

    Directory of Open Access Journals (Sweden)

    C. Makendran

    2015-01-01

    Full Text Available Prediction models for low volume village roads in India are developed to evaluate the progression of different types of distress such as roughness, cracking, and potholes. Even though the Government of India is investing huge quantum of money on road construction every year, poor control over the quality of road construction and its subsequent maintenance is leading to the faster road deterioration. In this regard, it is essential that scientific maintenance procedures are to be evolved on the basis of performance of low volume flexible pavements. Considering the above, an attempt has been made in this research endeavor to develop prediction models to understand the progression of roughness, cracking, and potholes in flexible pavements exposed to least or nil routine maintenance. Distress data were collected from the low volume rural roads covering about 173 stretches spread across Tamil Nadu state in India. Based on the above collected data, distress prediction models have been developed using multiple linear regression analysis. Further, the models have been validated using independent field data. It can be concluded that the models developed in this study can serve as useful tools for the practicing engineers maintaining flexible pavements on low volume roads.

  14. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  15. Prediction of Depression in Cancer Patients With Different Classification Criteria, Linear Discriminant Analysis versus Logistic Regression.

    Science.gov (United States)

    Shayan, Zahra; Mohammad Gholi Mezerji, Naser; Shayan, Leila; Naseri, Parisa

    2015-11-03

    Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices. This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models. CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model. The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.

  16. A Gaussian process regression based hybrid approach for short-term wind speed prediction

    International Nuclear Information System (INIS)

    Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian

    2016-01-01

    Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.

  17. A hybrid genetic algorithm and linear regression for prediction of NOx emission in power generation plant

    International Nuclear Information System (INIS)

    Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan

    2013-01-01

    This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.

  18. Examining Predictive Validity of Oral Reading Fluency Slope in Upper Elementary Grades Using Quantile Regression.

    Science.gov (United States)

    Cho, Eunsoo; Capin, Philip; Roberts, Greg; Vaughn, Sharon

    2017-07-01

    Within multitiered instructional delivery models, progress monitoring is a key mechanism for determining whether a child demonstrates an adequate response to instruction. One measure commonly used to monitor the reading progress of students is oral reading fluency (ORF). This study examined the extent to which ORF slope predicts reading comprehension outcomes for fifth-grade struggling readers ( n = 102) participating in an intensive reading intervention. Quantile regression models showed that ORF slope significantly predicted performance on a sentence-level fluency and comprehension assessment, regardless of the students' reading skills, controlling for initial ORF performance. However, ORF slope was differentially predictive of a passage-level comprehension assessment based on students' reading skills when controlling for initial ORF status. Results showed that ORF explained unique variance for struggling readers whose posttest performance was at the upper quantiles at the end of the reading intervention, but slope was not a significant predictor of passage-level comprehension for students whose reading problems were the most difficult to remediate.

  19. Bayesian binary regression model: an application to in-hospital death after AMI prediction

    Directory of Open Access Journals (Sweden)

    Aparecida D. P. Souza

    2004-08-01

    Full Text Available A Bayesian binary regression model is developed to predict death of patients after acute myocardial infarction (AMI. Markov Chain Monte Carlo (MCMC methods are used to make inference and to evaluate Bayesian binary regression models. A model building strategy based on Bayes factor is proposed and aspects of model validation are extensively discussed in the paper, including the posterior distribution for the c-index and the analysis of residuals. Risk assessment, based on variables easily available within minutes of the patients' arrival at the hospital, is very important to decide the course of the treatment. The identified model reveals itself strongly reliable and accurate, with a rate of correct classification of 88% and a concordance index of 83%.Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.

  20. Genomic prediction based on data from three layer lines using non-linear regression models.

    Science.gov (United States)

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional

  1. Classification and regression tree (CART model to predict pulmonary tuberculosis in hospitalized patients

    Directory of Open Access Journals (Sweden)

    Aguiar Fabio S

    2012-08-01

    Full Text Available Abstract Background Tuberculosis (TB remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART model was generated and validated. The area under the ROC curve (AUC, sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with

  2. Failure and reliability prediction by support vector machines regression of time series data

    International Nuclear Information System (INIS)

    Chagas Moura, Marcio das; Zio, Enrico; Lins, Isis Didier; Droguett, Enrique

    2011-01-01

    Support Vector Machines (SVMs) are kernel-based learning methods, which have been successfully adopted for regression problems. However, their use in reliability applications has not been widely explored. In this paper, a comparative analysis is presented in order to evaluate the SVM effectiveness in forecasting time-to-failure and reliability of engineered components based on time series data. The performance on literature case studies of SVM regression is measured against other advanced learning methods such as the Radial Basis Function, the traditional MultiLayer Perceptron model, Box-Jenkins autoregressive-integrated-moving average and the Infinite Impulse Response Locally Recurrent Neural Networks. The comparison shows that in the analyzed cases, SVM outperforms or is comparable to other techniques. - Highlights: → Realistic modeling of reliability demands complex mathematical formulations. → SVM is proper when the relation input/output is unknown or very costly to be obtained. → Results indicate the potential of SVM for reliability time series prediction. → Reliability estimates support the establishment of adequate maintenance strategies.

  3. A prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2, based on simple clinical parameters.

    Science.gov (United States)

    Koeneman, Margot M; van Lint, Freyja H M; van Kuijk, Sander M J; Smits, Luc J M; Kooreman, Loes F S; Kruitwagen, Roy F P M; Kruse, Arnold J

    2017-01-01

    This study aims to develop a prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2 (CIN 2) lesions based on simple clinicopathological parameters. The study was conducted at Maastricht University Medical Center, the Netherlands. The prediction model was developed in a retrospective cohort of 129 women with a histologic diagnosis of CIN 2 who were managed by watchful waiting for 6 to 24months. Five potential predictors for spontaneous regression were selected based on the literature and expert opinion and were analyzed in a multivariable logistic regression model, followed by backward stepwise deletion based on the Wald test. The prediction model was internally validated by the bootstrapping method. Discriminative capacity and accuracy were tested by assessing the area under the receiver operating characteristic curve (AUC) and a calibration plot. Disease regression within 24months was seen in 91 (71%) of 129 patients. A prediction model was developed including the following variables: smoking, Papanicolaou test outcome before the CIN 2 diagnosis, concomitant CIN 1 diagnosis in the same biopsy, and more than 1 biopsy containing CIN 2. Not smoking, Papanicolaou class predictive of disease regression. The AUC was 69.2% (95% confidence interval, 58.5%-79.9%), indicating a moderate discriminative ability of the model. The calibration plot indicated good calibration of the predicted probabilities. This prediction model for spontaneous regression of CIN 2 may aid physicians in the personalized management of these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Regression methodology in groundwater composition estimation with composition predictions for Romuvaara borehole KR10

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, A.; Korkealaakso, J.; Pitkaenen, P. [VTT Communities and Infrastructure, Espoo (Finland)

    1997-11-01

    Teollisuuden Voima Oy selected five investigation areas for preliminary site studies (1987Ae1992). The more detailed site investigation project, launched at the beginning of 1993 and presently supervised by Posiva Oy, is concentrated to three investigation areas. Romuvaara at Kuhmo is one of the present target areas, and the geochemical, structural and hydrological data used in this study are extracted from there. The aim of the study is to develop suitable methods for groundwater composition estimation based on a group of known hydrogeological variables. The input variables used are related to the host type of groundwater, hydrological conditions around the host location, mixing potentials between different types of groundwater, and minerals equilibrated with the groundwater. The output variables are electrical conductivity, Ca, Mg, Mn, Na, K, Fe, Cl, S, HS, SO{sub 4}, alkalinity, {sup 3}H, {sup 14}C, {sup 13}C, Al, Sr, F, Br and I concentrations, and pH of the groundwater. The methodology is to associate the known hydrogeological conditions (i.e. input variables), with the known water compositions (output variables), and to evaluate mathematical relations between these groups. Output estimations are done with two separate procedures: partial least squares regressions on the principal components of input variables, and by training neural networks with input-output pairs. Coefficients of linear equations and trained networks are optional methods for actual predictions. The quality of output predictions are monitored with confidence limit estimations, evaluated from input variable covariances and output variances, and with charge balance calculations. Groundwater compositions in Romuvaara borehole KR10 are predicted at 10 metre intervals with both prediction methods. 46 refs.

  5. The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: A meta-analysis and two meta-regression analyses.

    Science.gov (United States)

    Xie, Heping; Wang, Fuxing; Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan

    2017-01-01

    Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = -0.11, 95% CI = [-0.19, -0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = -0.70, 95% CI = [-1.02, -0.38], p < 0.001), as well as dtransfer for cueing (β = -0.60, 95% CI = [-0.92, -0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning.

  6. Comparison of Regression Techniques to Predict Response of Oilseed Rape Yield to Variation in Climatic Conditions in Denmark

    DEFF Research Database (Denmark)

    Sharif, Behzad; Makowski, David; Plauborg, Finn

    2017-01-01

    Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult ...

  7. Climate Prediction Center (CPC) US daily temperature analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. daily temperature analyses are maps depicting various temperature quantities utilizing daily maximum and minimum temperature data across the US. Maps are...

  8. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy.

    Science.gov (United States)

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru

    2017-09-01

    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Survival Prediction and Feature Selection in Patients with Breast Cancer Using Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Goli

    2016-01-01

    Full Text Available The Support Vector Regression (SVR model has been broadly used for response prediction. However, few researchers have used SVR for survival analysis. In this study, a new SVR model is proposed and SVR with different kernels and the traditional Cox model are trained. The models are compared based on different performance measures. We also select the best subset of features using three feature selection methods: combination of SVR and statistical tests, univariate feature selection based on concordance index, and recursive feature elimination. The evaluations are performed using available medical datasets and also a Breast Cancer (BC dataset consisting of 573 patients who visited the Oncology Clinic of Hamadan province in Iran. Results show that, for the BC dataset, survival time can be predicted more accurately by linear SVR than nonlinear SVR. Based on the three feature selection methods, metastasis status, progesterone receptor status, and human epidermal growth factor receptor 2 status are the best features associated to survival. Also, according to the obtained results, performance of linear and nonlinear kernels is comparable. The proposed SVR model performs similar to or slightly better than other models. Also, SVR performs similar to or better than Cox when all features are included in model.

  10. Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models

    Directory of Open Access Journals (Sweden)

    Aeriel Belk

    2018-02-01

    Full Text Available Death investigations often include an effort to establish the postmortem interval (PMI in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head, gene markers (16S ribosomal RNA (rRNA, 18S rRNA, internal transcribed spacer regions (ITS, and taxonomic levels (sequence variants, species, genus, etc.. We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.

  11. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  12. Predicting the "graduate on time (GOT)" of PhD students using binary logistics regression model

    Science.gov (United States)

    Shariff, S. Sarifah Radiah; Rodzi, Nur Atiqah Mohd; Rahman, Kahartini Abdul; Zahari, Siti Meriam; Deni, Sayang Mohd

    2016-10-01

    Malaysian government has recently set a new goal to produce 60,000 Malaysian PhD holders by the year 2023. As a Malaysia's largest institution of higher learning in terms of size and population which offers more than 500 academic programmes in a conducive and vibrant environment, UiTM has taken several initiatives to fill up the gap. Strategies to increase the numbers of graduates with PhD are a process that is challenging. In many occasions, many have already identified that the struggle to get into the target set is even more daunting, and that implementation is far too ideal. This has further being progressing slowly as the attrition rate increases. This study aims to apply the proposed models that incorporates several factors in predicting the number PhD students that will complete their PhD studies on time. Binary Logistic Regression model is proposed and used on the set of data to determine the number. The results show that only 6.8% of the 2014 PhD students are predicted to graduate on time and the results are compared wih the actual number for validation purpose.

  13. Particle swarm optimization-based least squares support vector regression for critical heat flux prediction

    International Nuclear Information System (INIS)

    Jiang, B.T.; Zhao, F.Y.

    2013-01-01

    Highlights: ► CHF data are collected from the published literature. ► Less training data are used to train the LSSVR model. ► PSO is adopted to optimize the key parameters to improve the model precision. ► The reliability of LSSVR is proved through parametric trends analysis. - Abstract: In view of practical importance of critical heat flux (CHF) for design and safety of nuclear reactors, accurate prediction of CHF is of utmost significance. This paper presents a novel approach using least squares support vector regression (LSSVR) and particle swarm optimization (PSO) to predict CHF. Two available published datasets are used to train and test the proposed algorithm, in which PSO is employed to search for the best parameters involved in LSSVR model. The CHF values obtained by the LSSVR model are compared with the corresponding experimental values and those of a previous method, adaptive neuro fuzzy inference system (ANFIS). This comparison is also carried out in the investigation of parametric trends of CHF. It is found that the proposed method can achieve the desired performance and yields a more satisfactory fit with experimental results than ANFIS. Therefore, LSSVR method is likely to be suitable for other parameters processing such as CHF

  14. Predictive factors in patients eligible for pegfilgrastim prophylaxis focusing on RDI using ordered logistic regression analysis.

    Science.gov (United States)

    Kanbayashi, Yuko; Ishikawa, Takeshi; Kanazawa, Motohiro; Nakajima, Yuki; Kawano, Rumi; Tabuchi, Yusuke; Yoshioka, Tomoko; Ihara, Norihiko; Hosokawa, Toyoshi; Takayama, Koichi; Shikata, Keisuke; Taguchi, Tetsuya

    2018-03-16

    Although pegfilgrastim prophylaxis is expected to maintain the relative dose intensity (RDI) of chemotherapy and improve safety, information is limited. However, the optimal selection of patients eligible for pegfilgrastim prophylaxis is an important issue from a medical economics viewpoint. Therefore, this retrospective study identified factors that could predict these eligible patients to maintain the RDI. The participants included 166 cancer patients undergoing pegfilgrastim prophylaxis combined with chemotherapy in our outpatient chemotherapy center between March 2015 and April 2017. Variables were extracted from clinical records for regression analysis of factors related to maintenance of the RDI. RDI was classified into four categories: 100% = 0, 85% or predictive factors in patients eligible for pegfilgrastim prophylaxis to maintain the RDI. Threshold measures were examined using a receiver operating characteristic (ROC) analysis curve. Age [odds ratio (OR) 1.07, 95% confidence interval (CI) 1.04-1.11; P maintenance. ROC curve analysis of the group that failed to maintain the RDI indicated that the threshold for age was 70 years and above, with a sensitivity of 60.0% and specificity of 80.2% (area under the curve: 0.74). In conclusion, younger age, anemia (less), and administration of pegfilgrastim 24-72 h after chemotherapy were significant factors for RDI maintenance.

  15. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    Science.gov (United States)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  16. Logistic Regression for Seismically Induced Landslide Predictions: Using Uniform Hazard and Geophysical Layers as Predictor Variables

    Science.gov (United States)

    Nowicki, M. A.; Hearne, M.; Thompson, E.; Wald, D. J.

    2012-12-01

    Seismically induced landslides present a costly and often fatal threats in many mountainous regions. Substantial effort has been invested to understand where seismically induced landslides may occur in the future. Both slope-stability methods and, more recently, statistical approaches to the problem are described throughout the literature. Though some regional efforts have succeeded, no uniformly agreed-upon method is available for predicting the likelihood and spatial extent of seismically induced landslides. For use in the U. S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, we would like to routinely make such estimates, in near-real time, around the globe. Here we use the recently produced USGS ShakeMap Atlas of historic earthquakes to develop an empirical landslide probability model. We focus on recent events, yet include any digitally-mapped landslide inventories for which well-constrained ShakeMaps are also available. We combine these uniform estimates of the input shaking (e.g., peak acceleration and velocity) with broadly available susceptibility proxies, such as topographic slope and surface geology. The resulting database is used to build a predictive model of the probability of landslide occurrence with logistic regression. The landslide database includes observations from the Northridge, California (1994); Wenchuan, China (2008); ChiChi, Taiwan (1999); and Chuetsu, Japan (2004) earthquakes; we also provide ShakeMaps for moderate-sized events without landslide for proper model testing and training. The performance of the regression model is assessed with both statistical goodness-of-fit metrics and a qualitative review of whether or not the model is able to capture the spatial extent of landslides for each event. Part of our goal is to determine which variables can be employed based on globally-available data or proxies, and whether or not modeling results from one region are transferrable to

  17. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    Science.gov (United States)

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  18. Multiple Linear Regression and Artificial Neural Network to Predict Blood Glucose in Overweight Patients.

    Science.gov (United States)

    Wang, J; Wang, F; Liu, Y; Xu, J; Lin, H; Jia, B; Zuo, W; Jiang, Y; Hu, L; Lin, F

    2016-01-01

    Overweight individuals are at higher risk for developing type II diabetes than the general population. We conducted this study to analyze the correlation between blood glucose and biochemical parameters, and developed a blood glucose prediction model tailored to overweight patients. A total of 346 overweight Chinese people patients ages 18-81 years were involved in this study. Their levels of fasting glucose (fs-GLU), blood lipids, and hepatic and renal functions were measured and analyzed by multiple linear regression (MLR). Based the MLR results, we developed a back propagation artificial neural network (BP-ANN) model by selecting tansig as the transfer function of the hidden layers nodes, and purelin for the output layer nodes, with training goal of 0.5×10(-5). There was significant correlation between fs-GLU with age, BMI, and blood biochemical indexes (P<0.05). The results of MLR analysis indicated that age, fasting alanine transaminase (fs-ALT), blood urea nitrogen (fs-BUN), total protein (fs-TP), uric acid (fs-BUN), and BMI are 6 independent variables related to fs-GLU. Based on these parameters, the BP-ANN model was performed well and reached high prediction accuracy when training 1 000 epoch (R=0.9987). The level of fs-GLU was predictable using the proposed BP-ANN model based on 6 related parameters (age, fs-ALT, fs-BUN, fs-TP, fs-UA and BMI) in overweight patients. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Multinomial Logistic Regression & Bootstrapping for Bayesian Estimation of Vertical Facies Prediction in Heterogeneous Sandstone Reservoirs

    Science.gov (United States)

    Al-Mudhafar, W. J.

    2013-12-01

    Precisely prediction of rock facies leads to adequate reservoir characterization by improving the porosity-permeability relationships to estimate the properties in non-cored intervals. It also helps to accurately identify the spatial facies distribution to perform an accurate reservoir model for optimal future reservoir performance. In this paper, the facies estimation has been done through Multinomial logistic regression (MLR) with respect to the well logs and core data in a well in upper sandstone formation of South Rumaila oil field. The entire independent variables are gamma rays, formation density, water saturation, shale volume, log porosity, core porosity, and core permeability. Firstly, Robust Sequential Imputation Algorithm has been considered to impute the missing data. This algorithm starts from a complete subset of the dataset and estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then, the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values. The MLR has been chosen to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies has been considered as prior knowledge and the resulted predicted probability (posterior) has been estimated from MLR based on Baye's theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge. To assess the statistical accuracy of the model, the bootstrap should be carried out to estimate extra-sample prediction error by randomly

  20. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Science.gov (United States)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  1. SPECIFICS OF THE APPLICATIONS OF MULTIPLE REGRESSION MODEL IN THE ANALYSES OF THE EFFECTS OF GLOBAL FINANCIAL CRISES

    Directory of Open Access Journals (Sweden)

    Željko V. Račić

    2010-12-01

    Full Text Available This paper aims to present the specifics of the application of multiple linear regression model. The economic (financial crisis is analyzed in terms of gross domestic product which is in a function of the foreign trade balance (on one hand and the credit cards, i.e. indebtedness of the population on this basis (on the other hand, in the USA (from 1999. to 2008. We used the extended application model which shows how the analyst should run the whole development process of regression model. This process began with simple statistical features and the application of regression procedures, and ended with residual analysis, intended for the study of compatibility of data and model settings. This paper also analyzes the values of some standard statistics used in the selection of appropriate regression model. Testing of the model is carried out with the use of the Statistics PASW 17 program.

  2. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models.

    Science.gov (United States)

    Aznar, Margarita; López, Ricardo; Cacho, Juan; Ferreira, Vicente

    2003-04-23

    Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances from its chemical composition have been developed. The aromatic sensory characteristics of 57 Spanish aged red wines were determined by 51 experts from the wine industry. The individual descriptions given by the experts were recorded, and the frequency with which a sensory term was used to define a given wine was taken as a measurement of its intensity. The aromatic chemical composition of the wines was determined by already published gas chromatography (GC)-flame ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed. Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit). For this set of terms, the correlation coefficients between the measured and predicted Y (determined by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate relationships between chemicals and odors. In general, pleasant descriptors were positively correlated to chemicals with pleasant aroma, such as vanillin, beta damascenone, or (E)-beta-methyl-gamma-octalactone, and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.

  3. Multi-fidelity Gaussian process regression for prediction of random fields

    Energy Technology Data Exchange (ETDEWEB)

    Parussini, L. [Department of Engineering and Architecture, University of Trieste (Italy); Venturi, D., E-mail: venturi@ucsc.edu [Department of Applied Mathematics and Statistics, University of California Santa Cruz (United States); Perdikaris, P. [Department of Mechanical Engineering, Massachusetts Institute of Technology (United States); Karniadakis, G.E. [Division of Applied Mathematics, Brown University (United States)

    2017-05-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  4. Dynamic Heat Supply Prediction Using Support Vector Regression Optimized by Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Meiping Wang

    2016-01-01

    Full Text Available We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR model-optimized particle swarm optimization (PSO algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR, and artificial neural network (ANN through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.

  5. Multi-fidelity Gaussian process regression for prediction of random fields

    International Nuclear Information System (INIS)

    Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, G.E.

    2017-01-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  6. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Directory of Open Access Journals (Sweden)

    Drzewiecki Wojciech

    2016-12-01

    Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

  7. Comparative and Predictive Multimedia Assessments Using Monte Carlo Uncertainty Analyses

    Science.gov (United States)

    Whelan, G.

    2002-05-01

    Multiple-pathway frameworks (sometimes referred to as multimedia models) provide a platform for combining medium-specific environmental models and databases, such that they can be utilized in a more holistic assessment of contaminant fate and transport in the environment. These frameworks provide a relatively seamless transfer of information from one model to the next and from databases to models. Within these frameworks, multiple models are linked, resulting in models that consume information from upstream models and produce information to be consumed by downstream models. The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is an example, which allows users to link their models to other models and databases. FRAMES is an icon-driven, site-layout platform that is an open-architecture, object-oriented system that interacts with environmental databases; helps the user construct a Conceptual Site Model that is real-world based; allows the user to choose the most appropriate models to solve simulation requirements; solves the standard risk paradigm of release transport and fate; and exposure/risk assessments to people and ecology; and presents graphical packages for analyzing results. FRAMES is specifically designed allow users to link their own models into a system, which contains models developed by others. This paper will present the use of FRAMES to evaluate potential human health exposures using real site data and realistic assumptions from sources, through the vadose and saturated zones, to exposure and risk assessment at three real-world sites, using the Multimedia Environmental Pollutant Assessment System (MEPAS), which is a multimedia model contained within FRAMES. These real-world examples use predictive and comparative approaches coupled with a Monte Carlo analysis. A predictive analysis is where models are calibrated to monitored site data, prior to the assessment, and a comparative analysis is where models are not calibrated but

  8. Seasonal Variability of Aragonite Saturation State in the North Pacific Ocean Predicted by Multiple Linear Regression

    Science.gov (United States)

    Kim, T. W.; Park, G. H.

    2014-12-01

    Seasonal variation of aragonite saturation state (Ωarag) in the North Pacific Ocean (NPO) was investigated, using multiple linear regression (MLR) models produced from the PACIFICA (Pacific Ocean interior carbon) dataset. Data within depth ranges of 50-1200m were used to derive MLR models, and three parameters (potential temperature, nitrate, and apparent oxygen utilization (AOU)) were chosen as predictor variables because these parameters are associated with vertical mixing, DIC (dissolved inorganic carbon) removal and release which all affect Ωarag in water column directly or indirectly. The PACIFICA dataset was divided into 5° × 5° grids, and a MLR model was produced in each grid, giving total 145 independent MLR models over the NPO. Mean RMSE (root mean square error) and r2 (coefficient of determination) of all derived MLR models were approximately 0.09 and 0.96, respectively. Then the obtained MLR coefficients for each of predictor variables and an intercept were interpolated over the study area, thereby making possible to allocate MLR coefficients to data-sparse ocean regions. Predictability from the interpolated coefficients was evaluated using Hawaiian time-series data, and as a result mean residual between measured and predicted Ωarag values was approximately 0.08, which is less than the mean RMSE of our MLR models. The interpolated MLR coefficients were combined with seasonal climatology of World Ocean Atlas 2013 (1° × 1°) to produce seasonal Ωarag distributions over various depths. Large seasonal variability in Ωarag was manifested in the mid-latitude Western NPO (24-40°N, 130-180°E) and low-latitude Eastern NPO (0-12°N, 115-150°W). In the Western NPO, seasonal fluctuations of water column stratification appeared to be responsible for the seasonal variation in Ωarag (~ 0.5 at 50 m) because it closely followed temperature variations in a layer of 0-75 m. In contrast, remineralization of organic matter was the main cause for the seasonal

  9. Multiclass Prediction with Partial Least Square Regression for Gene Expression Data: Applications in Breast Cancer Intrinsic Taxonomy

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Huang

    2013-01-01

    Full Text Available Multiclass prediction remains an obstacle for high-throughput data analysis such as microarray gene expression profiles. Despite recent advancements in machine learning and bioinformatics, most classification tools were limited to the applications of binary responses. Our aim was to apply partial least square (PLS regression for breast cancer intrinsic taxonomy, of which five distinct molecular subtypes were identified. The PAM50 signature genes were used as predictive variables in PLS analysis, and the latent gene component scores were used in binary logistic regression for each molecular subtype. The 139 prototypical arrays for PAM50 development were used as training dataset, and three independent microarray studies with Han Chinese origin were used for independent validation (n=535. The agreement between PAM50 centroid-based single sample prediction (SSP and PLS-regression was excellent (weighted Kappa: 0.988 within the training samples, but deteriorated substantially in independent samples, which could attribute to much more unclassified samples by PLS-regression. If these unclassified samples were removed, the agreement between PAM50 SSP and PLS-regression improved enormously (weighted Kappa: 0.829 as opposed to 0.541 when unclassified samples were analyzed. Our study ascertained the feasibility of PLS-regression in multi-class prediction, and distinct clinical presentations and prognostic discrepancies were observed across breast cancer molecular subtypes.

  10. Item Response Theory Modeling and Categorical Regression Analyses of the Five-Factor Model Rating Form: A Study on Italian Community-Dwelling Adolescent Participants and Adult Participants.

    Science.gov (United States)

    Fossati, Andrea; Widiger, Thomas A; Borroni, Serena; Maffei, Cesare; Somma, Antonella

    2017-06-01

    To extend the evidence on the reliability and construct validity of the Five-Factor Model Rating Form (FFMRF) in its self-report version, two independent samples of Italian participants, which were composed of 510 adolescent high school students and 457 community-dwelling adults, respectively, were administered the FFMRF in its Italian translation. Adolescent participants were also administered the Italian translation of the Borderline Personality Features Scale for Children-11 (BPFSC-11), whereas adult participants were administered the Italian translation of the Triarchic Psychopathy Measure (TriPM). Cronbach α values were consistent with previous findings; in both samples, average interitem r values indicated acceptable internal consistency for all FFMRF scales. A multidimensional graded item response theory model indicated that the majority of FFMRF items had adequate discrimination parameters; information indices supported the reliability of the FFMRF scales. Both categorical (i.e., item-level) and scale-level regression analyses suggested that the FFMRF scores may predict a nonnegligible amount of variance in the BPFSC-11 total score in adolescent participants, and in the TriPM scale scores in adult participants.

  11. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    Science.gov (United States)

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  12. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.; Mai, Paul Martin; Thingbaijam, Kiran Kumar; Razafindrakoto, H. N. T.; Genton, Marc G.

    2014-01-01

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  13. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  14. Prediction of Biomass Production and Nutrient Uptake in Land Application Using Partial Least Squares Regression Analysis

    Directory of Open Access Journals (Sweden)

    Vasileios A. Tzanakakis

    2014-12-01

    Full Text Available Partial Least Squares Regression (PLSR can integrate a great number of variables and overcome collinearity problems, a fact that makes it suitable for intensive agronomical practices such as land application. In the present study a PLSR model was developed to predict important management goals, including biomass production and nutrient recovery (i.e., nitrogen and phosphorus, associated with treatment potential, environmental impacts, and economic benefits. Effluent loading and a considerable number of soil parameters commonly monitored in effluent irrigated lands were considered as potential predictor variables during the model development. All data were derived from a three year field trial including plantations of four different plant species (Acacia cyanophylla, Eucalyptus camaldulensis, Populus nigra, and Arundo donax, irrigated with pre-treated domestic effluent. PLSR method was very effective despite the small sample size and the wide nature of data set (with many highly correlated inputs and several highly correlated responses. Through PLSR method the number of initial predictor variables was reduced and only several variables were remained and included in the final PLSR model. The important input variables maintained were: Effluent loading, electrical conductivity (EC, available phosphorus (Olsen-P, Na+, Ca2+, Mg2+, K2+, SAR, and NO3−-N. Among these variables, effluent loading, EC, and nitrates had the greater contribution to the final PLSR model. PLSR is highly compatible with intensive agronomical practices such as land application, in which a large number of highly collinear and noisy input variables is monitored to assess plant species performance and to detect impacts on the environment.

  15. Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Jun Bi

    2018-04-01

    Full Text Available Battery electric vehicles (BEVs reduce energy consumption and air pollution as compared with conventional vehicles. However, the limited driving range and potential long charging time of BEVs create new problems. Accurate charging time prediction of BEVs helps drivers determine travel plans and alleviate their range anxiety during trips. This study proposed a combined model for charging time prediction based on regression and time-series methods according to the actual data from BEVs operating in Beijing, China. After data analysis, a regression model was established by considering the charged amount for charging time prediction. Furthermore, a time-series method was adopted to calibrate the regression model, which significantly improved the fitting accuracy of the model. The parameters of the model were determined by using the actual data. Verification results confirmed the accuracy of the model and showed that the model errors were small. The proposed model can accurately depict the charging time characteristics of BEVs in Beijing.

  16. Prediction of the temperature of the atmosphere of the primary containment: comparison between neural networks and polynomial regression

    International Nuclear Information System (INIS)

    Alvarez Huerta, A.; Gonzalez Miguelez, R.; Garcia Metola, D.; Noriega Gonzalez, A.

    2011-01-01

    The modelization is carried out through two different techniques, a conventional polynomial regression and other based on an approach by neural networks artificial. He is a comparison between the quality of the forecast would make different models based on the polynomial regression and neural network with generalization by Bayesian regulation, using the indicators of the root of the mean square error and the coefficient of determination, in view of the results, the neural network generates a prediction more accurate and reliable than the polynomial regression.

  17. Effective behaviour change techniques for physical activity and healthy eating in overweight and obese adults; systematic review and meta-regression analyses.

    Science.gov (United States)

    Samdal, Gro Beate; Eide, Geir Egil; Barth, Tom; Williams, Geoffrey; Meland, Eivind

    2017-03-28

    This systematic review aims to explain the heterogeneity in results of interventions to promote physical activity and healthy eating for overweight and obese adults, by exploring the differential effects of behaviour change techniques (BCTs) and other intervention characteristics. The inclusion criteria specified RCTs with ≥ 12 weeks' duration, from January 2007 to October 2014, for adults (mean age ≥ 40 years, mean BMI ≥ 30). Primary outcomes were measures of healthy diet or physical activity. Two reviewers rated study quality, coded the BCTs, and collected outcome results at short (≤6 months) and long term (≥12 months). Meta-analyses and meta-regressions were used to estimate effect sizes (ES), heterogeneity indices (I 2 ) and regression coefficients. We included 48 studies containing a total of 82 outcome reports. The 32 long term reports had an overall ES = 0.24 with 95% confidence interval (CI): 0.15 to 0.33 and I 2  = 59.4%. The 50 short term reports had an ES = 0.37 with 95% CI: 0.26 to 0.48, and I 2  = 71.3%. The number of BCTs unique to the intervention group, and the BCTs goal setting and self-monitoring of behaviour predicted the effect at short and long term. The total number of BCTs in both intervention arms and using the BCTs goal setting of outcome, feedback on outcome of behaviour, implementing graded tasks, and adding objects to the environment, e.g. using a step counter, significantly predicted the effect at long term. Setting a goal for change; and the presence of reporting bias independently explained 58.8% of inter-study variation at short term. Autonomy supportive and person-centred methods as in Motivational Interviewing, the BCTs goal setting of behaviour, and receiving feedback on the outcome of behaviour, explained all of the between study variations in effects at long term. There are similarities, but also differences in effective BCTs promoting change in healthy eating and physical activity and

  18. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Directory of Open Access Journals (Sweden)

    J. Chardon

    2018-01-01

    Full Text Available Statistical downscaling models (SDMs are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  19. Local Prediction Models on Mid-Atlantic Ridge MORB by Principal Component Regression

    Science.gov (United States)

    Ling, X.; Snow, J. E.; Chin, W.

    2017-12-01

    The isotopic compositions of the daughter isotopes of long-lived radioactive systems (Sr, Nd, Hf and Pb ) can be used to map the scale and history of mantle heterogeneities beneath mid-ocean ridges. Our goal is to relate the multidimensional structure in the existing isotopic dataset with an underlying physical reality of mantle sources. The numerical technique of Principal Component Analysis is useful to reduce the linear dependence of the data to a minimum set of orthogonal eigenvectors encapsulating the information contained (cf Agranier et al 2005). The dataset used for this study covers almost all the MORBs along mid-Atlantic Ridge (MAR), from 54oS to 77oN and 8.8oW to -46.7oW, including replicating the dataset of Agranier et al., 2005 published plus 53 basalt samples dredged and analyzed since then (data from PetDB). The principal components PC1 and PC2 account for 61.56% and 29.21%, respectively, of the total isotope ratios variability. The samples with similar compositions to HIMU and EM and DM are identified to better understand the PCs. PC1 and PC2 are accountable for HIMU and EM whereas PC2 has limited control over the DM source. PC3 is more strongly controlled by the depleted mantle source than PC2. What this means is that all three principal components have a high degree of significance relevant to the established mantle sources. We also tested the relationship between mantle heterogeneity and sample locality. K-means clustering algorithm is a type of unsupervised learning to find groups in the data based on feature similarity. The PC factor scores of each sample are clustered into three groups. Cluster one and three are alternating on the north and south MAR. Cluster two exhibits on 45.18oN to 0.79oN and -27.9oW to -30.40oW alternating with cluster one. The ridge has been preliminarily divided into 16 sections considering both the clusters and ridge segments. The principal component regression models the section based on 6 isotope ratios and PCs. The

  20. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  1. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  2. The Prediction Properties of Inverse and Reverse Regression for the Simple Linear Calibration Problem

    Science.gov (United States)

    Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.

    2010-01-01

    The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.

  3. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background RNA interference (RNAi is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid

  4. Regression Phalanxes

    OpenAIRE

    Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.

    2017-01-01

    Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...

  5. Augmented chaos-multiple linear regression approach for prediction of wave parameters

    Directory of Open Access Journals (Sweden)

    M.A. Ghorbani

    2017-06-01

    The inter-comparisons demonstrated that the Chaos-MLR and pure MLR models yield almost the same accuracy in predicting the significant wave heights and the zero-up-crossing wave periods. Whereas, the augmented Chaos-MLR model is performed better results in term of the prediction accuracy vis-a-vis the previous prediction applications of the same case study.

  6. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  7. The N400 as a snapshot of interactive processing: evidence from regression analyses of orthographic neighbor and lexical associate effects

    Science.gov (United States)

    Laszlo, Sarah; Federmeier, Kara D.

    2010-01-01

    Linking print with meaning tends to be divided into subprocesses, such as recognition of an input's lexical entry and subsequent access of semantics. However, recent results suggest that the set of semantic features activated by an input is broader than implied by a view wherein access serially follows recognition. EEG was collected from participants who viewed items varying in number and frequency of both orthographic neighbors and lexical associates. Regression analysis of single item ERPs replicated past findings, showing that N400 amplitudes are greater for items with more neighbors, and further revealed that N400 amplitudes increase for items with more lexical associates and with higher frequency neighbors or associates. Together, the data suggest that in the N400 time window semantic features of items broadly related to inputs are active, consistent with models in which semantic access takes place in parallel with stimulus recognition. PMID:20624252

  8. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  9. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    Science.gov (United States)

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  10. A Predictive Logistic Regression Model of World Conflict Using Open Source Data

    Science.gov (United States)

    2015-03-26

    No correlation between the error terms and the independent variables 9. Absence of perfect multicollinearity (Menard, 2001) When assumptions are...some of the variables before initial model building. Multicollinearity , or near-linear dependence among the variables will cause problems in the...model. High multicollinearity tends to produce unreasonably high logistic regression coefficients and can result in coefficients that are not

  11. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    Science.gov (United States)

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  12. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    Science.gov (United States)

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  13. A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.

    Science.gov (United States)

    Qiu, Shibin; Lane, Terran

    2009-01-01

    The cell defense mechanism of RNA interference has applications in gene function analysis and promising potentials in human disease therapy. To effectively silence a target gene, it is desirable to select appropriate initiator siRNA molecules having satisfactory silencing capabilities. Computational prediction for silencing efficacy of siRNAs can assist this screening process before using them in biological experiments. String kernel functions, which operate directly on the string objects representing siRNAs and target mRNAs, have been applied to support vector regression for the prediction and improved accuracy over numerical kernels in multidimensional vector spaces constructed from descriptors of siRNA design rules. To fully utilize information provided by string and numerical data, we propose to unify the two in a kernel feature space by devising a multiple kernel regression framework where a linear combination of the kernels is used. We formulate the multiple kernel learning into a quadratically constrained quadratic programming (QCQP) problem, which although yields global optimal solution, is computationally demanding and requires a commercial solver package. We further propose three heuristics based on the principle of kernel-target alignment and predictive accuracy. Empirical results demonstrate that multiple kernel regression can improve accuracy, decrease model complexity by reducing the number of support vectors, and speed up computational performance dramatically. In addition, multiple kernel regression evaluates the importance of constituent kernels, which for the siRNA efficacy prediction problem, compares the relative significance of the design rules. Finally, we give insights into the multiple kernel regression mechanism and point out possible extensions.

  14. Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indices

    NARCIS (Netherlands)

    Lazaridis, D.C.; Verbesselt, J.; Robinson, A.P.

    2011-01-01

    Constructing models can be complicated when the available fitting data are highly correlated and of high dimension. However, the complications depend on whether the goal is prediction instead of estimation. We focus on predicting tree mortality (measured as the number of dead trees) from change

  15. Structural vascular disease in Africans: performance of ethnic-specific waist circumference cut points using logistic regression and neural network analyses: the SABPA study

    OpenAIRE

    Botha, J.; De Ridder, J.H.; Potgieter, J.C.; Steyn, H.S.; Malan, L.

    2013-01-01

    A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fa...

  16. Comparison of logistic regression and neural models in predicting the outcome of biopsy in breast cancer from MRI findings

    International Nuclear Information System (INIS)

    Abdolmaleki, P.; Yarmohammadi, M.; Gity, M.

    2004-01-01

    Background: We designed an algorithmic model based on regression analysis and a non-algorithmic model based on the Artificial Neural Network. Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patient's records. Each patient's record consisted of 6 subjective features extracted from MRI appearance. These findings were enclosed as features extracted for an Artificial Neural Network as well as a logistic regression model to predict biopsy outcome. After both models had been trained perfectly on samples (n=100), the validation samples (n=61) were presented to the trained network as well as the established logistic regression models. Finally, the diagnostic performance of models were compared to the that of the radiologist in terms of sensitivity, specificity and accuracy, using receiver operating characteristic curve analysis. Results: The average out put of the Artificial Neural Network yielded a perfect sensitivity (98%) and high accuracy (90%) similar to that one of an expert radiologist (96% and 92%) while specificity was smaller than that (67%) verses 80%). The output of the logistic regression model using significant features showed improvement in specificity from 60% for the logistic regression model using all features to 93% for the reduced logistic regression model, keeping the accuracy around 90%. Conclusion: Results show that Artificial Neural Network and logistic regression model prove the relationship between extracted morphological features and biopsy results. Using statistically significant variables reduced logistic regression model outperformed of Artificial Neural Network with remarkable specificity while keeping high sensitivity is achieved

  17. Prediction of monthly electric energy consumption using pattern-based fuzzy nearest neighbour regression

    Directory of Open Access Journals (Sweden)

    Pełka Paweł

    2017-01-01

    Full Text Available Electricity demand forecasting is of important role in power system planning and operation. In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. The forecasting model was based on the pre-processed energy consumption time series, where input and output variables were defined as patterns representing unified fragments of the time series. Relationships between inputs and outputs, which were simplified due to patterns, were modelled using nonparametric regression with weighting function defined as a fuzzy membership of learning points to the neighbourhood of a query point. In an experimental part of the work the model was evaluated using real-world data. The results are encouraging and show high performances of the model and its competitiveness compared to other forecasting models.

  18. Water demand prediction using artificial neural networks and support vector regression

    CSIR Research Space (South Africa)

    Msiza, IS

    2008-11-01

    Full Text Available Neural Networks and Support Vector Regression Ishmael S. Msiza1, Fulufhelo V. Nelwamondo1,2, Tshilidzi Marwala3 . 1Modelling and Digital Science, CSIR, Johannesburg,SOUTH AFRICA 2Graduate School of Arts and Sciences, Harvard University, Cambridge..., Massachusetts, USA 3School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, SOUTH AFRICA Email: imsiza@csir.co.za, nelwamon@fas.harvard.edu, tshilidzi.marwala@wits.ac.za Abstract— Computational Intelligence techniques...

  19. Predicting Insolvency : A comparison between discriminant analysis and logistic regression using principal components

    OpenAIRE

    Geroukis, Asterios; Brorson, Erik

    2014-01-01

    In this study, we compare the two statistical techniques logistic regression and discriminant analysis to see how well they classify companies based on clusters – made from the solvency ratio ­– using principal components as independent variables. The principal components are made with different financial ratios. We use cluster analysis to find groups with low, medium and high solvency ratio of 1200 different companies found on the NASDAQ stock market and use this as an apriori definition of ...

  20. Seasonal prediction of winter extreme precipitation over Canada by support vector regression

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2011-01-01

    Full Text Available For forecasting the maximum 5-day accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR (nonlinear and linear versions, nonlinear Bayesian neural network (BNN and multiple linear regression (MLR. The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter maximum 5-d accumulated precipitation anomalies were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the Niño-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern. The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN, and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Prairies and the weakest nonlinearity over the Arctic.

  1. A linear regression model for predicting PNW estuarine temperatures in a changing climate

    Science.gov (United States)

    Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...

  2. A Multi-industry Default Prediction Model using Logistic Regression and Decision Tree

    OpenAIRE

    Suresh Ramakrishnan; Maryam Mirzaei; Mahmoud Bekri

    2015-01-01

    The accurate prediction of corporate bankruptcy for the firms in different industries is of a great concern to investors and creditors, as the reduction of creditors’ risk and a considerable amount of saving for an industry economy can be possible. Financial statements vary between industries. Therefore, economic intuition suggests that industry effects should be an important component in bankruptcy prediction. This study attempts to detail the characteristics of each industry using sector in...

  3. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    Science.gov (United States)

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity

  4. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    Science.gov (United States)

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of

  5. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    Science.gov (United States)

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  6. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

    International Nuclear Information System (INIS)

    Chen, Kuilin; Yu, Jie

    2014-01-01

    Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations

  7. Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method

    International Nuclear Information System (INIS)

    Sun Zhong-Hua; Jiang Fan

    2010-01-01

    In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method. (rapid communication)

  8. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

    Directory of Open Access Journals (Sweden)

    Rachid Darnag

    2017-02-01

    Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

  9. Regressive Prediction Approach to Vertical Handover in Fourth Generation Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abubakar M. Miyim

    2014-11-01

    Full Text Available The over increasing demand for deployment of wireless access networks has made wireless mobile devices to face so many challenges in choosing the best suitable network from a set of available access networks. Some of the weighty issues in 4G wireless networks are fastness and seamlessness in handover process. This paper therefore, proposes a handover technique based on movement prediction in wireless mobile (WiMAX and LTE-A environment. The technique enables the system to predict signal quality between the UE and Radio Base Stations (RBS/Access Points (APs in two different networks. Prediction is achieved by employing the Markov Decision Process Model (MDPM where the movement of the UE is dynamically estimated and averaged to keep track of the signal strength of mobile users. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The performances of various handover approaches influenced by different metrics (mobility velocities were evaluated. The results presented demonstrate good accuracy the proposed method was able to achieve in predicting the next signal level by reducing the total handover latency.

  10. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    Science.gov (United States)

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  11. Improving validation methods for molecular diagnostics: application of Bland-Altman, Deming and simple linear regression analyses in assay comparison and evaluation for next-generation sequencing.

    Science.gov (United States)

    Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L

    2018-02-01

    A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Added value of pharmacogenetic testing in predicting statin response: Results from the REGRESS trial

    NARCIS (Netherlands)

    Van Der Baan, F.H.; Knol, M.J.; Maitland-Van Der Zee, A.H.; Regieli, J.J.; Van Iperen, E.P.A.; Egberts, A.C.G.; Klungel, O.H.; Grobbee, D.E.; Jukema, J.W.

    2013-01-01

    It was investigated whether pharmacogenetic factors, both as single polymorphism and as gene-gene interactions, have an added value over non-genetic factors in predicting statin response. Five common polymorphisms were selected in apolipoprotein E, angiotensin-converting enzyme, hepatic lipase and

  13. Predicting forest attributes from climate data using a recursive partitioning and regression tree algorithm

    Science.gov (United States)

    Greg C. Liknes; Christopher W. Woodall; Charles H. Perry

    2009-01-01

    Climate information frequently is included in geospatial modeling efforts to improve the predictive capability of other data sources. The selection of an appropriate climate data source requires consideration given the number of choices available. With regard to climate data, there are a variety of parameters (e.g., temperature, humidity, precipitation), time intervals...

  14. The use of seemingly unrelated regression (SUR) to predict the carcass composition of lambs

    DEFF Research Database (Denmark)

    Cadavez, Vasco A. P.; Henningsen, Arne

    The aim of this study was to develop and evaluate models for predicting the carcass composition of lambs. Forty male lambs of two different breeds were included in our analysis. The lambs were slaughtered and their hot carcass weight was obtained. After cooling for 24 hours, the subcutaneous fat...

  15. The use of seemingly unrelated regression to predict the carcass composition of lambs

    DEFF Research Database (Denmark)

    Cadavez, V.A.P.; Henningsen, Arne

    2012-01-01

    The aim of this study was to develop and evaluate models for predicting the carcass composition of lambs. Forty male lambs were slaughtered and their carcasses were cooled for 24 hours. The subcutaneous fat thickness was measured between the 12th and 13th rib and breast bone tissue thickness...

  16. Predicting macrofaunal species distribution in estuarine gradients using logistic regression and classification systems

    NARCIS (Netherlands)

    Ellis, J.; Ysebaert, T.; Hume, T.; Norkko, A.; Bult, T.; Herman, P.M.J.; Thrush, S.; Oldman, J.

    2006-01-01

    There is a growing need to predict ecological responses to long-term habitat change. However, statistical models for marine soft-substratum ecosystems are limited, and consequently there is a need for the development of such models. In order to assess the utility of statistical modelling approaches

  17. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units

    International Nuclear Information System (INIS)

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien

    2015-01-01

    Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables

  18. A Meta-Heuristic Regression-Based Feature Selection for Predictive Analytics

    Directory of Open Access Journals (Sweden)

    Bharat Singh

    2014-11-01

    Full Text Available A high-dimensional feature selection having a very large number of features with an optimal feature subset is an NP-complete problem. Because conventional optimization techniques are unable to tackle large-scale feature selection problems, meta-heuristic algorithms are widely used. In this paper, we propose a particle swarm optimization technique while utilizing regression techniques for feature selection. We then use the selected features to classify the data. Classification accuracy is used as a criterion to evaluate classifier performance, and classification is accomplished through the use of k-nearest neighbour (KNN and Bayesian techniques. Various high dimensional data sets are used to evaluate the usefulness of the proposed approach. Results show that our approach gives better results when compared with other conventional feature selection algorithms.

  19. On the use of uncertainty analyses to test hypotheses regarding deterministic model predictions of environmental processes

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Bittner, E.A.; Essington, E.H.

    1995-01-01

    This paper illustrates the use of Monte Carlo parameter uncertainty and sensitivity analyses to test hypotheses regarding predictions of deterministic models of environmental transport, dose, risk and other phenomena. The methodology is illustrated by testing whether 238 Pu is transferred more readily than 239+240 Pu from the gastrointestinal (GI) tract of cattle to their tissues (muscle, liver and blood). This illustration is based on a study wherein beef-cattle grazed for up to 1064 days on a fenced plutonium (Pu)-contaminated arid site in Area 13 near the Nevada Test Site in the United States. Periodically, cattle were sacrificed and their tissues analyzed for Pu and other radionuclides. Conditional sensitivity analyses of the model predictions were also conducted. These analyses indicated that Pu cattle tissue concentrations had the largest impact of any model parameter on the pdf of predicted Pu fractional transfers. Issues that arise in conducting uncertainty and sensitivity analyses of deterministic models are discussed. (author)

  20. Straight line fitting and predictions: On a marginal likelihood approach to linear regression and errors-in-variables models

    Science.gov (United States)

    Christiansen, Bo

    2015-04-01

    Linear regression methods are without doubt the most used approaches to describe and predict data in the physical sciences. They are often good first order approximations and they are in general easier to apply and interpret than more advanced methods. However, even the properties of univariate regression can lead to debate over the appropriateness of various models as witnessed by the recent discussion about climate reconstruction methods. Before linear regression is applied important choices have to be made regarding the origins of the noise terms and regarding which of the two variables under consideration that should be treated as the independent variable. These decisions are often not easy to make but they may have a considerable impact on the results. We seek to give a unified probabilistic - Bayesian with flat priors - treatment of univariate linear regression and prediction by taking, as starting point, the general errors-in-variables model (Christiansen, J. Clim., 27, 2014-2031, 2014). Other versions of linear regression can be obtained as limits of this model. We derive the likelihood of the model parameters and predictands of the general errors-in-variables model by marginalizing over the nuisance parameters. The resulting likelihood is relatively simple and easy to analyze and calculate. The well known unidentifiability of the errors-in-variables model is manifested as the absence of a well-defined maximum in the likelihood. However, this does not mean that probabilistic inference can not be made; the marginal likelihoods of model parameters and the predictands have, in general, well-defined maxima. We also include a probabilistic version of classical calibration and show how it is related to the errors-in-variables model. The results are illustrated by an example from the coupling between the lower stratosphere and the troposphere in the Northern Hemisphere winter.

  1. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Science.gov (United States)

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  2. To Set Up a Logistic Regression Prediction Model for Hepatotoxicity of Chinese Herbal Medicines Based on Traditional Chinese Medicine Theory

    Science.gov (United States)

    Liu, Hongjie; Li, Tianhao; Zhan, Sha; Pan, Meilan; Ma, Zhiguo; Li, Chenghua

    2016-01-01

    Aims. To establish a logistic regression (LR) prediction model for hepatotoxicity of Chinese herbal medicines (HMs) based on traditional Chinese medicine (TCM) theory and to provide a statistical basis for predicting hepatotoxicity of HMs. Methods. The correlations of hepatotoxic and nonhepatotoxic Chinese HMs with four properties, five flavors, and channel tropism were analyzed with chi-square test for two-way unordered categorical data. LR prediction model was established and the accuracy of the prediction by this model was evaluated. Results. The hepatotoxic and nonhepatotoxic Chinese HMs were related with four properties (p 0.05). There were totally 12 variables from four properties and five flavors for the LR. Four variables, warm and neutral of the four properties and pungent and salty of five flavors, were selected to establish the LR prediction model, with the cutoff value being 0.204. Conclusions. Warm and neutral of the four properties and pungent and salty of five flavors were the variables to affect the hepatotoxicity. Based on such results, the established LR prediction model had some predictive power for hepatotoxicity of Chinese HMs. PMID:27656240

  3. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    Science.gov (United States)

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.

    Science.gov (United States)

    Yu, Wenbao; Park, Taesung

    2014-01-01

    It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.

  5. PREDICTION OF CORPORATE BANKRUPTCY IN ROMANIA THROUGH THE USE OF LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Brindescu-Olariu Daniel

    2013-07-01

    As theoretical contributions, the research proves that the companies that filed for bankruptcy during the crisis period showed signs of weaknesses before the beginning of the crisis. Financial ratios that show relevance in the prediction of corporate bankruptcy at local level have been identified and their correlation with the bankruptcy probability has been evaluated. The model is expected to maintain its accuracy with minimal or no additional calibration for companies from the entire Romanian economy that fit the profile of the target population.

  6. Predicting Factors of INSURE Failure in Low Birth Weight Neonates with RDS; A Logistic Regression Model

    OpenAIRE

    Bita Najafian; Aminsaburi Aminsaburi; Seyyed Hassan Fakhraei; Abolfazl afjeh; Fatemeh Eghbal; Reza Noroozian

    2015-01-01

    Background:Respiratory Distress syndrome is the most common respiratory disease in premature neonate and the most important cause of death among them. We aimed to investigate factors to predict successful or failure of INSURE method as a therapeutic method of RDS. Methods:In a cohort study,45 neonates with diagnosed RDS and birth weight lower than 1500g were included and they underwent INSURE followed by NCPAP(Nasal Continuous Positive Airway Pressure). The patients were divided into failu...

  7. ENHANCED PREDICTION OF STUDENT DROPOUTS USING FUZZY INFERENCE SYSTEM AND LOGISTIC REGRESSION

    OpenAIRE

    A. Saranya; J. Rajeswari

    2016-01-01

    Predicting college and school dropouts is a major problem in educational system and has complicated challenge due to data imbalance and multi dimensionality, which can affect the low performance of students. In this paper, we have collected different database from various colleges, among these 500 best real attributes are identified in order to identify the factor that affecting dropout students using neural based classification algorithm and different mining technique are implemented for dat...

  8. Modeling and Predicting AD Progression by Regression Analysis of Sequential Clinical Data

    KAUST Repository

    Xie, Qing

    2016-02-23

    Alzheimer\\'s Disease (AD) is currently attracting much attention in elders\\' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD\\'s progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients\\' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer\\'s Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.

  9. Modeling and Predicting AD Progression by Regression Analysis of Sequential Clinical Data

    KAUST Repository

    Xie, Qing; Wang, Su; Zhu, Jia; Zhang, Xiangliang

    2016-01-01

    Alzheimer's Disease (AD) is currently attracting much attention in elders' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD's progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.

  10. Development and evaluation of a regression-based model to predict cesium concentration ratios for freshwater fish

    International Nuclear Information System (INIS)

    Pinder, John E.; Rowan, David J.; Rasmussen, Joseph B.; Smith, Jim T.; Hinton, Thomas G.; Whicker, F.W.

    2014-01-01

    Data from published studies and World Wide Web sources were combined to produce and test a regression model to predict Cs concentration ratios for freshwater fish species. The accuracies of predicted concentration ratios, which were computed using 1) species trophic levels obtained from random resampling of known food items and 2) K concentrations in the water for 207 fish from 44 species and 43 locations, were tested against independent observations of ratios for 57 fish from 17 species from 25 locations. Accuracy was assessed as the percent of observed to predicted ratios within factors of 2 or 3. Conservatism, expressed as the lack of under prediction, was assessed as the percent of observed to predicted ratios that were less than 2 or less than 3. The model's median observed to predicted ratio was 1.26, which was not significantly different from 1, and 50% of the ratios were between 0.73 and 1.85. The percentages of ratios within factors of 2 or 3 were 67 and 82%, respectively. The percentages of ratios that were <2 or <3 were 79 and 88%, respectively. An example for Perca fluviatilis demonstrated that increased prediction accuracy could be obtained when more detailed knowledge of diet was available to estimate trophic level. - Highlights: • We developed a model to predict Cs concentration ratios for freshwater fish species. • The model uses only two variables to predict a species CR for any location. • One variable is the K concentration in the freshwater. • The other is a species mean trophic level measure easily obtained from (fishbase.org). • The median observed to predicted ratio for 57 independent test cases was 1.26

  11. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Wong, Man-Hon; Ballester, Pedro J

    2014-08-27

    State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients. In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study. Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.

  12. Prediction of cannabis and cocaine use in adolescence using decision trees and logistic regression

    Directory of Open Access Journals (Sweden)

    Alfonso L. Palmer

    2010-01-01

    Full Text Available Spain is one of the European countries with the highest prevalence of cannabis and cocaine use among young people. The aim of this study was to investigate the factors related to the consumption of cocaine and cannabis among adolescents. A questionnaire was administered to 9,284 students between 14 and 18 years of age in Palma de Mallorca (47.1% boys and 52.9% girls whose mean age was 15.59 years. Logistic regression and decision trees were carried out in order to model the consumption of cannabis and cocaine. The results show the use of legal substances and committing fraudulence or theft are the main variables that raise the odds of consuming cannabis. In boys, cannabis consumption and a family history of drug use increase the odds of consuming cocaine, whereas in girls the use of alcohol, behaviours of fraudulence or theft and difficulty in some personal skills influence their odds of consuming cocaine. Finally, ease of access to the substance greatly raises the odds of consuming cocaine and cannabis in both genders. Decision trees highlight the role of consuming other substances and committing fraudulence or theft. The results of this study gain importance when it comes to putting into practice effective prevention programmes.

  13. Real-time prediction of respiratory motion using a cascade structure of an extended Kalman filter and support vector regression.

    Science.gov (United States)

    Hong, S-M; Bukhari, W

    2014-07-07

    The motion of thoracic and abdominal tumours induced by respiratory motion often exceeds 20 mm, and can significantly compromise dose conformality. Motion-adaptive radiotherapy aims to deliver a conformal dose distribution to the tumour with minimal normal tissue exposure by compensating for the tumour motion. This adaptive radiotherapy, however, requires the prediction of the tumour movement that can occur over the system latency period. In general, motion prediction approaches can be classified into two groups: model-based and model-free. Model-based approaches utilize a motion model in predicting respiratory motion. These approaches are computationally efficient and responsive to irregular changes in respiratory motion. Model-free approaches do not assume an explicit model of motion dynamics, and predict future positions by learning from previous observations. Artificial neural networks (ANNs) and support vector regression (SVR) are examples of model-free approaches. In this article, we present a prediction algorithm that combines a model-based and a model-free approach in a cascade structure. The algorithm, which we call EKF-SVR, first employs a model-based algorithm (named LCM-EKF) to predict the respiratory motion, and then uses a model-free SVR algorithm to estimate and correct the error of the LCM-EKF prediction. Extensive numerical experiments based on a large database of 304 respiratory motion traces are performed. The experimental results demonstrate that the EKF-SVR algorithm successfully reduces the prediction error of the LCM-EKF, and outperforms the model-free ANN and SVR algorithms in terms of prediction accuracy across lookahead lengths of 192, 384, and 576 ms.

  14. Real-time prediction of respiratory motion using a cascade structure of an extended Kalman filter and support vector regression

    International Nuclear Information System (INIS)

    Hong, S-M; Bukhari, W

    2014-01-01

    The motion of thoracic and abdominal tumours induced by respiratory motion often exceeds 20 mm, and can significantly compromise dose conformality. Motion-adaptive radiotherapy aims to deliver a conformal dose distribution to the tumour with minimal normal tissue exposure by compensating for the tumour motion. This adaptive radiotherapy, however, requires the prediction of the tumour movement that can occur over the system latency period. In general, motion prediction approaches can be classified into two groups: model-based and model-free. Model-based approaches utilize a motion model in predicting respiratory motion. These approaches are computationally efficient and responsive to irregular changes in respiratory motion. Model-free approaches do not assume an explicit model of motion dynamics, and predict future positions by learning from previous observations. Artificial neural networks (ANNs) and support vector regression (SVR) are examples of model-free approaches. In this article, we present a prediction algorithm that combines a model-based and a model-free approach in a cascade structure. The algorithm, which we call EKF–SVR, first employs a model-based algorithm (named LCM–EKF) to predict the respiratory motion, and then uses a model-free SVR algorithm to estimate and correct the error of the LCM–EKF prediction. Extensive numerical experiments based on a large database of 304 respiratory motion traces are performed. The experimental results demonstrate that the EKF–SVR algorithm successfully reduces the prediction error of the LCM–EKF, and outperforms the model-free ANN and SVR algorithms in terms of prediction accuracy across lookahead lengths of 192, 384, and 576 ms. (paper)

  15. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    Directory of Open Access Journals (Sweden)

    Hooshiar Zolfagharnasab

    2018-01-01

    Full Text Available Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained.

  16. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    Science.gov (United States)

    Zolfagharnasab, Hooshiar; Bessa, Sílvia; Oliveira, Sara P.; Faria, Pedro; Teixeira, João F.; Cardoso, Jaime S.

    2018-01-01

    Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS) has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained. PMID:29315279

  17. Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria

    Science.gov (United States)

    Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.

    2008-01-01

    Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742

  18. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  19. Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

    Directory of Open Access Journals (Sweden)

    Paulino Pérez

    2010-09-01

    Full Text Available The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression implements several statistical procedures (e.g., Bayesian Ridge Regression, Bayesian LASSO in a unified framework that allows including marker genotypes and pedigree data jointly. This article describes the classes of models implemented in the BLR package and illustrates their use through examples. Some challenges faced when applying genomic-enabled selection, such as model choice, evaluation of predictive ability through cross-validation, and choice of hyper-parameters, are also addressed.

  20. pKa prediction for acidic phosphorus-containing compounds using multiple linear regression with computational descriptors.

    Science.gov (United States)

    Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang

    2016-07-05

    Ninety-six acidic phosphorus-containing molecules with pKa 1.88 to 6.26 were collected and divided into training and test sets by random sampling. Structural parameters were obtained by density functional theory calculation of the molecules. The relationship between the experimental pKa values and structural parameters was obtained by multiple linear regression fitting for the training set, and tested with the test set; the R(2) values were 0.974 and 0.966 for the training and test sets, respectively. This regression equation, which quantitatively describes the influence of structural parameters on pKa , and can be used to predict pKa values of similar structures, is significant for the design of new acidic phosphorus-containing extractants. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Perioperative factors predicting poor outcome in elderly patients following emergency general surgery: a multivariate regression analysis

    Science.gov (United States)

    Lees, Mackenzie C.; Merani, Shaheed; Tauh, Keerit; Khadaroo, Rachel G.

    2015-01-01

    Background Older adults (≥ 65 yr) are the fastest growing population and are presenting in increasing numbers for acute surgical care. Emergency surgery is frequently life threatening for older patients. Our objective was to identify predictors of mortality and poor outcome among elderly patients undergoing emergency general surgery. Methods We conducted a retrospective cohort study of patients aged 65–80 years undergoing emergency general surgery between 2009 and 2010 at a tertiary care centre. Demographics, comorbidities, in-hospital complications, mortality and disposition characteristics of patients were collected. Logistic regression analysis was used to identify covariate-adjusted predictors of in-hospital mortality and discharge of patients home. Results Our analysis included 257 patients with a mean age of 72 years; 52% were men. In-hospital mortality was 12%. Mortality was associated with patients who had higher American Society of Anesthesiologists (ASA) class (odds ratio [OR] 3.85, 95% confidence interval [CI] 1.43–10.33, p = 0.008) and in-hospital complications (OR 1.93, 95% CI 1.32–2.83, p = 0.001). Nearly two-thirds of patients discharged home were younger (OR 0.92, 95% CI 0.85–0.99, p = 0.036), had lower ASA class (OR 0.45, 95% CI 0.27–0.74, p = 0.002) and fewer in-hospital complications (OR 0.69, 95% CI 0.53–0.90, p = 0.007). Conclusion American Society of Anesthesiologists class and in-hospital complications are perioperative predictors of mortality and disposition in the older surgical population. Understanding the predictors of poor outcome and the importance of preventing in-hospital complications in older patients will have important clinical utility in terms of preoperative counselling, improving health care and discharging patients home. PMID:26204143

  2. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

    Science.gov (United States)

    2017-10-01

    ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...distribution is unlimited. AD U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Munitions Engineering Technology Center Picatinny...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

  3. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  4. A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions.

    Science.gov (United States)

    Georga, Eleni I; Protopappas, Vasilios C; Ardigò, Diego; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2013-08-01

    The prevention of hypoglycemic events is of paramount importance in the daily management of insulin-treated diabetes. The use of short-term prediction algorithms of the subcutaneous (s.c.) glucose concentration may contribute significantly toward this direction. The literature suggests that, although the recent glucose profile is a prominent predictor of hypoglycemia, the overall patient's context greatly impacts its accurate estimation. The objective of this study is to evaluate the performance of a support vector for regression (SVR) s.c. glucose method on hypoglycemia prediction. We extend our SVR model to predict separately the nocturnal events during sleep and the non-nocturnal (i.e., diurnal) ones over 30-min and 60-min horizons using information on recent glucose profile, meals, insulin intake, and physical activities for a hypoglycemic threshold of 70 mg/dL. We also introduce herein additional variables accounting for recurrent nocturnal hypoglycemia due to antecedent hypoglycemia, exercise, and sleep. SVR predictions are compared with those from two other machine learning techniques. The method is assessed on a dataset of 15 patients with type 1 diabetes under free-living conditions. Nocturnal hypoglycemic events are predicted with 94% sensitivity for both horizons and with time lags of 5.43 min and 4.57 min, respectively. As concerns the diurnal events, when physical activities are not considered, the sensitivity is 92% and 96% for a 30-min and 60-min horizon, respectively, with both time lags being less than 5 min. However, when such information is introduced, the diurnal sensitivity decreases by 8% and 3%, respectively. Both nocturnal and diurnal predictions show a high (>90%) precision. Results suggest that hypoglycemia prediction using SVR can be accurate and performs better in most diurnal and nocturnal cases compared with other techniques. It is advised that the problem of hypoglycemia prediction should be handled differently for nocturnal

  5. Limited Sampling Strategy for Accurate Prediction of Pharmacokinetics of Saroglitazar: A 3-point Linear Regression Model Development and Successful Prediction of Human Exposure.

    Science.gov (United States)

    Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V

    2018-03-01

    Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error model predicts the exposure of

  6. Evaluation of heat transfer mathematical models and multiple linear regression to predict the inside variables in semi-solar greenhouse

    Directory of Open Access Journals (Sweden)

    M Taki

    2017-05-01

    Full Text Available Introduction Controlling greenhouse microclimate not only influences the growth of plants, but also is critical in the spread of diseases inside the greenhouse. The microclimate parameters were inside air, greenhouse roof and soil temperature, relative humidity and solar radiation intensity. Predicting the microclimate conditions inside a greenhouse and enabling the use of automatic control systems are the two main objectives of greenhouse climate model. The microclimate inside a greenhouse can be predicted by conducting experiments or by using simulation. Static and dynamic models are used for this purpose as a function of the metrological conditions and the parameters of the greenhouse components. Some works were done in past to 2015 year to simulation and predict the inside variables in different greenhouse structures. Usually simulation has a lot of problems to predict the inside climate of greenhouse and the error of simulation is higher in literature. The main objective of this paper is comparison between heat transfer and regression models to evaluate them to predict inside air and roof temperature in a semi-solar greenhouse in Tabriz University. Materials and Methods In this study, a semi-solar greenhouse was designed and constructed at the North-West of Iran in Azerbaijan Province (geographical location of 38°10′ N and 46°18′ E with elevation of 1364 m above the sea level. In this research, shape and orientation of the greenhouse, selected between some greenhouses common shapes and according to receive maximum solar radiation whole the year. Also internal thermal screen and cement north wall was used to store and prevent of heat lost during the cold period of year. So we called this structure, ‘semi-solar’ greenhouse. It was covered with glass (4 mm thickness. It occupies a surface of approximately 15.36 m2 and 26.4 m3. The orientation of this greenhouse was East–West and perpendicular to the direction of the wind prevailing

  7. The estimation and prediction of the inventories for the liquid and gaseous radwaste systems using the linear regression analysis

    International Nuclear Information System (INIS)

    Kim, J. Y.; Shin, C. H.; Kim, J. K.; Lee, J. K.; Park, Y. J.

    2003-01-01

    The variation transitions of the inventories for the liquid radwaste system and the radioactive gas have being released in containment, and their predictive values according to the operation histories of Yonggwang(YGN) 3 and 4 were analyzed by linear regression analysis methodology. The results show that the variation transitions of the inventories for those systems are linearly increasing according to the operation histories but the inventories released to the environment are considerably lower than the recommended values based on the FSAR suggestions. It is considered that some conservation were presented in the estimation methodology in preparing stage of FSAR

  8. IPF-LASSO: Integrative L1-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data

    Directory of Open Access Journals (Sweden)

    Anne-Laure Boulesteix

    2017-01-01

    Full Text Available As modern biotechnologies advance, it has become increasingly frequent that different modalities of high-dimensional molecular data (termed “omics” data in this paper, such as gene expression, methylation, and copy number, are collected from the same patient cohort to predict the clinical outcome. While prediction based on omics data has been widely studied in the last fifteen years, little has been done in the statistical literature on the integration of multiple omics modalities to select a subset of variables for prediction, which is a critical task in personalized medicine. In this paper, we propose a simple penalized regression method to address this problem by assigning different penalty factors to different data modalities for feature selection and prediction. The penalty factors can be chosen in a fully data-driven fashion by cross-validation or by taking practical considerations into account. In simulation studies, we compare the prediction performance of our approach, called IPF-LASSO (Integrative LASSO with Penalty Factors and implemented in the R package ipflasso, with the standard LASSO and sparse group LASSO. The use of IPF-LASSO is also illustrated through applications to two real-life cancer datasets. All data and codes are available on the companion website to ensure reproducibility.

  9. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic.

    Science.gov (United States)

    Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R

    2016-12-01

    : MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We

  10. Heterogeneity index evaluated by slope of linear regression on 18F-FDG PET/CT as a prognostic marker for predicting tumor recurrence in pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Yong-il; Kim, Yong Joong; Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

    2017-01-01

    18 F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been investigated as a method to predict pancreatic cancer recurrence after pancreatic surgery. We evaluated the recently introduced heterogeneity indices of 18 F-FDG PET/CT used for predicting pancreatic cancer recurrence after surgery and compared them with current clinicopathologic and 18 F-FDG PET/CT parameters. A total of 93 pancreatic ductal adenocarcinoma patients (M:F = 60:33, mean age = 64.2 ± 9.1 years) who underwent preoperative 18 F-FDG PET/CT following pancreatic surgery were retrospectively enrolled. The standardized uptake values (SUVs) and tumor-to-background ratios (TBR) were measured on each 18 F-FDG PET/CT, as metabolic parameters. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were examined as volumetric parameters. The coefficient of variance (heterogeneity index-1; SUVmean divided by the standard deviation) and linear regression slopes (heterogeneity index-2) of the MTV, according to SUV thresholds of 2.0, 2.5 and 3.0, were evaluated as heterogeneity indices. Predictive values of clinicopathologic and 18 F-FDG PET/CT parameters and heterogeneity indices were compared in terms of pancreatic cancer recurrence. Seventy patients (75.3%) showed recurrence after pancreatic cancer surgery (mean recurrence = 9.4 ± 8.4 months). Comparing the recurrence and no recurrence patients, all of the 18 F-FDG PET/CT parameters and heterogeneity indices demonstrated significant differences. In univariate Cox-regression analyses, MTV (P = 0.013), TLG (P = 0.007), and heterogeneity index-2 (P = 0.027) were significant. Among the clinicopathologic parameters, CA19-9 (P = 0.025) and venous invasion (P = 0.002) were selected as significant parameters. In multivariate Cox-regression analyses, MTV (P = 0.005), TLG (P = 0.004), and heterogeneity index-2 (P = 0.016) with venous invasion (P < 0.001, 0.001, and 0.001, respectively) demonstrated significant results

  11. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    Science.gov (United States)

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  12. Development and evaluation of a regression-based model to predict cesium-137 concentration ratios for saltwater fish

    International Nuclear Information System (INIS)

    Pinder, John E.; Rowan, David J.; Smith, Jim T.

    2016-01-01

    Data from published studies and World Wide Web sources were combined to develop a regression model to predict "1"3"7Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. - Highlights: • We developed a model to predict concentration ratios (C_r) for saltwater fish. • The model requires only a single input variable to predict C_r. • That variable is a mean numeric trophic level available at (fishbase.org). • The K concentrations in seawater were not an important predictor variable. • The median-to observed ratio for 56 independently measured C_r was 0.83.

  13. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression

    International Nuclear Information System (INIS)

    Bukhari, W; Hong, S-M

    2015-01-01

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR + , implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR + algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR + implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR + in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR + . The experimental results show that the EKF-GPR + algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR + reduces the patient-wise RMS error to 37%, 39% and 42

  14. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression

    Science.gov (United States)

    Bukhari, W.; Hong, S.-M.

    2015-01-01

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in

  15. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression.

    Science.gov (United States)

    Bukhari, W; Hong, S-M

    2015-01-07

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR(+), implements a gating function without pre-specifying a particular region of the patient's breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR(+) algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR(+) implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR(+) in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR(+). The experimental results show that the EKF-GPR(+) algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR(+) reduces the patient-wise RMS error to 37%, 39% and

  16. Prediction of Compressional Wave Velocity Using Regression and Neural Network Modeling and Estimation of Stress Orientation in Bokaro Coalfield, India

    Science.gov (United States)

    Paul, Suman; Ali, Muhammad; Chatterjee, Rima

    2018-01-01

    Velocity of compressional wave ( V P) of coal and non-coal lithology is predicted from five wells from the Bokaro coalfield (CF), India. Shear sonic travel time logs are not recorded for all wells under the study area. Shear wave velocity ( Vs) is available only for two wells: one from east and other from west Bokaro CF. The major lithologies of this CF are dominated by coal, shaly coal of Barakar formation. This paper focuses on the (a) relationship between Vp and Vs, (b) prediction of Vp using regression and neural network modeling and (c) estimation of maximum horizontal stress from image log. Coal characterizes with low acoustic impedance (AI) as compared to the overlying and underlying strata. The cross-plot between AI and Vp/ Vs is able to identify coal, shaly coal, shale and sandstone from wells in Bokaro CF. The relationship between Vp and Vs is obtained with excellent goodness of fit ( R 2) ranging from 0.90 to 0.93. Linear multiple regression and multi-layered feed-forward neural network (MLFN) models are developed for prediction Vp from two wells using four input log parameters: gamma ray, resistivity, bulk density and neutron porosity. Regression model predicted Vp shows poor fit (from R 2 = 0.28) to good fit ( R 2 = 0.79) with the observed velocity. MLFN model predicted Vp indicates satisfactory to good R2 values varying from 0.62 to 0.92 with the observed velocity. Maximum horizontal stress orientation from a well at west Bokaro CF is studied from Formation Micro-Imager (FMI) log. Breakouts and drilling-induced fractures (DIFs) are identified from the FMI log. Breakout length of 4.5 m is oriented towards N60°W whereas the orientation of DIFs for a cumulative length of 26.5 m is varying from N15°E to N35°E. The mean maximum horizontal stress in this CF is towards N28°E.

  17. Logistic regression models for predicting physical and mental health-related quality of life in rheumatoid arthritis patients.

    Science.gov (United States)

    Alishiri, Gholam Hossein; Bayat, Noushin; Fathi Ashtiani, Ali; Tavallaii, Seyed Abbas; Assari, Shervin; Moharamzad, Yashar

    2008-01-01

    The aim of this work was to develop two logistic regression models capable of predicting physical and mental health related quality of life (HRQOL) among rheumatoid arthritis (RA) patients. In this cross-sectional study which was conducted during 2006 in the outpatient rheumatology clinic of our university hospital, Short Form 36 (SF-36) was used for HRQOL measurements in 411 RA patients. A cutoff point to define poor versus good HRQOL was calculated using the first quartiles of SF-36 physical and mental component scores (33.4 and 36.8, respectively). Two distinct logistic regression models were used to derive predictive variables including demographic, clinical, and psychological factors. The sensitivity, specificity, and accuracy of each model were calculated. Poor physical HRQOL was positively associated with pain score, disease duration, monthly family income below 300 US$, comorbidity, patient global assessment of disease activity or PGA, and depression (odds ratios: 1.1; 1.004; 15.5; 1.1; 1.02; 2.08, respectively). The variables that entered into the poor mental HRQOL prediction model were monthly family income below 300 US$, comorbidity, PGA, and bodily pain (odds ratios: 6.7; 1.1; 1.01; 1.01, respectively). Optimal sensitivity and specificity were achieved at a cutoff point of 0.39 for the estimated probability of poor physical HRQOL and 0.18 for mental HRQOL. Sensitivity, specificity, and accuracy of the physical and mental models were 73.8, 87, 83.7% and 90.38, 70.36, 75.43%, respectively. The results show that the suggested models can be used to predict poor physical and mental HRQOL separately among RA patients using simple variables with acceptable accuracy. These models can be of use in the clinical decision-making of RA patients and to recognize patients with poor physical or mental HRQOL in advance, for better management.

  18. Logistic regression analysis of multiple noninvasive tests for the prediction of the presence and extent of coronary artery disease in men

    International Nuclear Information System (INIS)

    Hung, J.; Chaitman, B.R.; Lam, J.; Lesperance, J.; Dupras, G.; Fines, P.; Cherkaoui, O.; Robert, P.; Bourassa, M.G.

    1985-01-01

    The incremental diagnostic yield of clinical data, exercise ECG, stress thallium scintigraphy, and cardiac fluoroscopy to predict coronary and multivessel disease was assessed in 171 symptomatic men by means of multiple logistic regression analyses. When clinical variables alone were analyzed, chest pain type and age were predictive of coronary disease, whereas chest pain type, age, a family history of premature coronary disease before age 55 years, and abnormal ST-T wave changes on the rest ECG were predictive of multivessel disease. The percentage of patients correctly classified by cardiac fluoroscopy (presence or absence of coronary artery calcification), exercise ECG, and thallium scintigraphy was 9%, 25%, and 50%, respectively, greater than for clinical variables, when the presence or absence of coronary disease was the outcome, and 13%, 25%, and 29%, respectively, when multivessel disease was studied; 5% of patients were misclassified. When the 37 clinical and noninvasive test variables were analyzed jointly, the most significant variable predictive of coronary disease was an abnormal thallium scan and for multivessel disease, the amount of exercise performed. The data from this study provide a quantitative model and confirm previous reports that optimal diagnostic efficacy is obtained when noninvasive tests are ordered sequentially. In symptomatic men, cardiac fluoroscopy is a relatively ineffective test when compared to exercise ECG and thallium scintigraphy

  19. Prediction of coal response to froth flotation based on coal analysis using regression and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jorjani, E.; Poorali, H.A.; Sam, A.; Chelgani, S.C.; Mesroghli, S.; Shayestehfar, M.R. [Islam Azad University, Tehran (Iran). Dept. of Mining Engineering

    2009-10-15

    In this paper, the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate were predicted by regression and artificial neural network based on proximate and group macerals analysis. The regression method shows that the relationships between (a) in (ash), volatile matter and moisture (b) in (ash), in (liptinite), fusinite and vitrinite with combustible value can achieve the correlation coefficients (R{sup 2}) of 0.8 and 0.79, respectively. In addition, the input sets of (c) ash, volatile matter and moisture (d) ash, liptinite and fusinite can predict the combustible recovery with the correlation coefficients of 0.84 and 0.63, respectively. Feed-forward artificial neural network with 6-8-12-11-2-1 arrangement for moisture, ash and volatile matter input set was capable to estimate both combustible value and combustible recovery with correlation of 0.95. It was shown that the proposed neural network model could accurately reproduce all the effects of proximate and group macerals analysis on coal flotation system.

  20. Regression model of support vector machines for least squares prediction of crystallinity of cracking catalysts by infrared spectroscopy

    International Nuclear Information System (INIS)

    Comesanna Garcia, Yumirka; Dago Morales, Angel; Talavera Bustamante, Isneri

    2010-01-01

    The recently introduction of the least squares support vector machines method for regression purposes in the field of Chemometrics has provided several advantages to linear and nonlinear multivariate calibration methods. The objective of the paper was to propose the use of the least squares support vector machine as an alternative multivariate calibration method for the prediction of the percentage of crystallinity of fluidized catalytic cracking catalysts, by means of Fourier transform mid-infrared spectroscopy. A linear kernel was used in the calculations of the regression model. The optimization of its gamma parameter was carried out using the leave-one-out cross-validation procedure. The root mean square error of prediction was used to measure the performance of the model. The accuracy of the results obtained with the application of the method is in accordance with the uncertainty of the X-ray powder diffraction reference method. To compare the generalization capability of the developed method, a comparison study was carried out, taking into account the results achieved with the new model and those reached through the application of linear calibration methods. The developed method can be easily implemented in refinery laboratories

  1. Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees

    Science.gov (United States)

    Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu

    2018-02-01

    A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.

  2. Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

    Directory of Open Access Journals (Sweden)

    Shokri Saeid

    2015-01-01

    Full Text Available An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR was developed and the effects of integrating Vector Quantization (VQ with Principle Component Analysis (PCA were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR was better than (PCA-SVR in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995 in comparison with investigated models.

  3. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    International Nuclear Information System (INIS)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari; Askarian, Mehrdad; Movahedi, Mohammad Mehdi; Hosseini, Somayyeh; Jahandideh, Mina

    2009-01-01

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R 2 were used to evaluate performance of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R 2 confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.

  4. Prediction of Currency Volume Issued in Taiwan Using a Hybrid Artificial Neural Network and Multiple Regression Approach

    Directory of Open Access Journals (Sweden)

    Yuehjen E. Shao

    2013-01-01

    Full Text Available Because the volume of currency issued by a country always affects its interest rate, price index, income levels, and many other important macroeconomic variables, the prediction of currency volume issued has attracted considerable attention in recent years. In contrast to the typical single-stage forecast model, this study proposes a hybrid forecasting approach to predict the volume of currency issued in Taiwan. The proposed hybrid models consist of artificial neural network (ANN and multiple regression (MR components. The MR component of the hybrid models is established for a selection of fewer explanatory variables, wherein the selected variables are of higher importance. The ANN component is then designed to generate forecasts based on those important explanatory variables. Subsequently, the model is used to analyze a real dataset of Taiwan's currency from 1996 to 2011 and twenty associated explanatory variables. The prediction results reveal that the proposed hybrid scheme exhibits superior forecasting performance for predicting the volume of currency issued in Taiwan.

  5. Prediction of spatial patterns of collapsed pipes in loess-derived soils in a temperate humid climate using logistic regression

    Science.gov (United States)

    Verachtert, E.; Den Eeckhaut, M. Van; Poesen, J.; Govers, G.; Deckers, J.

    2011-07-01

    Soil piping (tunnel erosion) has been recognised as an important erosion process in collapsible loess-derived soils of temperate humid climates, which can cause collapse of the topsoil and formation of discontinuous gullies. Information about the spatial patterns of collapsed pipes and regional models describing these patterns is still limited. Therefore, this study aims at better understanding the factors controlling the spatial distribution and predicting pipe collapse. A dataset with parcels suffering from collapsed pipes (n = 560) and parcels without collapsed pipes was obtained through a regional survey in a 236 km² study area in the Flemish Ardennes (Belgium). Logistic regression was applied to find the best model describing the relationship between the presence/absence of a collapsed pipe and a set of independent explanatory variables (i.e. slope gradient, drainage area, distance-to-thalweg, curvature, aspect, soil type and lithology). Special attention was paid to the selection procedure of the grid cells without collapsed pipes. Apart from the first piping susceptibility map created by logistic regression modelling, a second map was made based on topographical thresholds of slope gradient and upslope drainage area. The logistic regression model allowed identification of the most important factors controlling pipe collapse. Pipes are much more likely to occur when a topographical threshold depending on both slope gradient and upslope area is exceeded in zones with a sufficient water supply (due to topographical convergence and/or the presence of a clay-rich lithology). On the other hand, the use of slope-area thresholds only results in reasonable predictions of piping susceptibility, with minimum information.

  6. Retinal microaneurysm count predicts progression and regression of diabetic retinopathy. Post-hoc results from the DIRECT Programme.

    Science.gov (United States)

    Sjølie, A K; Klein, R; Porta, M; Orchard, T; Fuller, J; Parving, H H; Bilous, R; Aldington, S; Chaturvedi, N

    2011-03-01

    To study the association between baseline retinal microaneurysm score and progression and regression of diabetic retinopathy, and response to treatment with candesartan in people with diabetes. This was a multicenter randomized clinical trial. The progression analysis included 893 patients with Type 1 diabetes and 526 patients with Type 2 diabetes with retinal microaneurysms only at baseline. For regression, 438 with Type 1 and 216 with Type 2 diabetes qualified. Microaneurysms were scored from yearly retinal photographs according to the Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. Retinopathy progression and regression was defined as two or more step change on the ETDRS scale from baseline. Patients were normoalbuminuric, and normotensive with Type 1 and Type 2 diabetes or treated hypertensive with Type 2 diabetes. They were randomized to treatment with candesartan 32 mg daily or placebo and followed for 4.6 years. A higher microaneurysm score at baseline predicted an increased risk of retinopathy progression (HR per microaneurysm score 1.08, P diabetes; HR 1.07, P = 0.0174 in Type 2 diabetes) and reduced the likelihood of regression (HR 0.79, P diabetes; HR 0.85, P = 0.0009 in Type 2 diabetes), all adjusted for baseline variables and treatment. Candesartan reduced the risk of microaneurysm score progression. Microaneurysm counts are important prognostic indicators for worsening of retinopathy, thus microaneurysms are not benign. Treatment with renin-angiotensin system inhibitors is effective in the early stages and may improve mild diabetic retinopathy. Microaneurysm scores may be useful surrogate endpoints in clinical trials. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  7. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    Science.gov (United States)

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  8. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.

    Science.gov (United States)

    Fathallah, F A; Marras, W S; Parnianpour, M

    1999-09-01

    Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.

  9. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach

    Science.gov (United States)

    Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal

    2018-06-01

    Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.

  10. Regression models for explaining and predicting concentrations of organochlorine pesticides in fish from streams in the United States

    Science.gov (United States)

    Nowell, Lisa H.; Crawford, Charles G.; Gilliom, Robert J.; Nakagaki, Naomi; Stone, Wesley W.; Thelin, Gail; Wolock, David M.

    2009-01-01

    Empirical regression models were developed for estimating concentrations of dieldrin, total chlordane, and total DDT in whole fish from U.S. streams. Models were based on pesticide concentrations measured in whole fish at 648 stream sites nationwide (1992-2001) as part of the U.S. Geological Survey's National Water Quality Assessment Program. Explanatory variables included fish lipid content, estimates (or surrogates) representing historical agricultural and urban sources, watershed characteristics, and geographic location. Models were developed using Tobit regression methods appropriate for data with censoring. Typically, the models explain approximately 50 to 70% of the variability in pesticide concentrations measured in whole fish. The models were used to predict pesticide concentrations in whole fish for streams nationwide using the U.S. Environmental Protection Agency's River Reach File 1 and to estimate the probability that whole-fish concentrations exceed benchmarks for protection of fish-eating wildlife. Predicted concentrations were highest for dieldrin in the Corn Belt, Texas, and scattered urban areas; for total chlordane in the Corn Belt, Texas, the Southeast, and urbanized Northeast; and for total DDT in the Southeast, Texas, California, and urban areas nationwide. The probability of exceeding wildlife benchmarks for dieldrin and chlordane was predicted to be low for most U.S. streams. The probability of exceeding wildlife benchmarks for total DDT is higher but varies depending on the fish taxon and on the benchmark used. Because the models in the present study are based on fish data collected during the 1990s and organochlorine pesticide residues in the environment continue to decline decades after their uses were discontinued, these models may overestimate present-day pesticide concentrations in fish. ?? 2009 SETAC.

  11. Developing logistic regression models using purchase attributes and demographics to predict the probability of purchases of regular and specialty eggs.

    Science.gov (United States)

    Bejaei, M; Wiseman, K; Cheng, K M

    2015-01-01

    Consumers' interest in specialty eggs appears to be growing in Europe and North America. The objective of this research was to develop logistic regression models that utilise purchaser attributes and demographics to predict the probability of a consumer purchasing a specific type of table egg including regular (white and brown), non-caged (free-run, free-range and organic) or nutrient-enhanced eggs. These purchase prediction models, together with the purchasers' attributes, can be used to assess market opportunities of different egg types specifically in British Columbia (BC). An online survey was used to gather data for the models. A total of 702 completed questionnaires were submitted by BC residents. Selected independent variables included in the logistic regression to develop models for different egg types to predict the probability of a consumer purchasing a specific type of table egg. The variables used in the model accounted for 54% and 49% of variances in the purchase of regular and non-caged eggs, respectively. Research results indicate that consumers of different egg types exhibit a set of unique and statistically significant characteristics and/or demographics. For example, consumers of regular eggs were less educated, older, price sensitive, major chain store buyers, and store flyer users, and had lower awareness about different types of eggs and less concern regarding animal welfare issues. However, most of the non-caged egg consumers were less concerned about price, had higher awareness about different types of table eggs, purchased their eggs from local/organic grocery stores, farm gates or farmers markets, and they were more concerned about care and feeding of hens compared to consumers of other eggs types.

  12. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    Science.gov (United States)

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  13. The predicting ultimate of joint withdrawal resistance constructed of plywood with regression models application according to diameter and penetrating depth

    Directory of Open Access Journals (Sweden)

    Sadegh Maleki

    2013-11-01

    Full Text Available The goal of this study was to present regression models for predicting resistance of joints made with screw and plywood members. Joint members were out of hardwood plywood that were 19 mm in thickness. Two types of screws including coarse and fine thread drywall screw with 3.5, 4 and 5mm in diameter and sheet metal screw with 4 and 5mm were used. Results have shown that withdrawal resistance of screw was increased by increasing of screws, diameter and penetrating depth. Joints fabricated with coarse thread drywall screws were higher than those of fine thread drywall screws. Finally, average joint withdrawal resistance of screwed could be predicted by means of the expressions Wc=2.127×D1.072×P0.520 for coarse thread drywall screws and Wf=1.377×D1.156×P0.581 for fine thread drywall screws by taking account the diameter and penetrating depth. The difference of the observed and predicted data showed that developed models have a good correlation with actual experimental measurements.

  14. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study.

    Science.gov (United States)

    Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y

    2008-02-18

    The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.

  15. Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma.

    Science.gov (United States)

    Huang, Ya-Qin; Liang, He-Yue; Yang, Zhao-Xia; Ding, Ying; Zeng, Meng-Su; Rao, Sheng-Xiang

    2016-06-01

    The objective is to explore the value of preoperative magnetic resonance (MR) histogram analyses in predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC).Fifty-one patients with histologically confirmed HCC who underwent diffusion-weighted and contrast-enhanced MR imaging were included. Histogram analyses were performed and mean, variance, skewness, kurtosis, 1th, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared between HCCs with and without MVI. Receiver operating characteristics (ROC) analyses were generated to compare the diagnostic performance of tumor size, histogram analyses of apparent diffusion coefficient (ADC) maps, and MR enhancement.The mean, 1th, 10th, and 50th percentiles of ADC maps, and the mean, variance. 1th, 10th, 50th, 90th, and 99th percentiles of the portal venous phase (PVP) images were significantly different between the groups with and without MVI (P histogram analyses-in particular for 1th percentile for PVP images-held promise for prediction of MVI of HCC.

  16. Predicting Success in Product Development: The Application of Principal Component Analysis to Categorical Data and Binomial Logistic Regression

    Directory of Open Access Journals (Sweden)

    Glauco H.S. Mendes

    2013-09-01

    Full Text Available Critical success factors in new product development (NPD in the Brazilian small and medium enterprises (SMEs are identified and analyzed. Critical success factors are best practices that can be used to improve NPD management and performance in a company. However, the traditional method for identifying these factors is survey methods. Subsequently, the collected data are reduced through traditional multivariate analysis. The objective of this work is to develop a logistic regression model for predicting the success or failure of the new product development. This model allows for an evaluation and prioritization of resource commitments. The results will be helpful for guiding management actions, as one way to improve NPD performance in those industries.

  17. Prediction Model of Cutting Parameters for Turning High Strength Steel Grade-H: Comparative Study of Regression Model versus ANFIS

    Directory of Open Access Journals (Sweden)

    Adel T. Abbas

    2017-01-01

    Full Text Available The Grade-H high strength steel is used in the manufacturing of many civilian and military products. The procedures of manufacturing these parts have several turning operations. The key factors for the manufacturing of these parts are the accuracy, surface roughness (Ra, and material removal rate (MRR. The production line of these parts contains many CNC turning machines to get good accuracy and repeatability. The manufacturing engineer should fulfill the required surface roughness value according to the design drawing from first trail (otherwise these parts will be rejected as well as keeping his eye on maximum metal removal rate. The rejection of these parts at any processing stage will represent huge problems to any factory because the processing and raw material of these parts are very expensive. In this paper the artificial neural network was used for predicting the surface roughness for different cutting parameters in CNC turning operations. These parameters were investigated to get the minimum surface roughness. In addition, a mathematical model for surface roughness was obtained from the experimental data using a regression analysis method. The experimental data are then compared with both the regression analysis results and ANFIS (Adaptive Network-based Fuzzy Inference System estimations.

  18. Predicting the cross-reactivities of polycyclic aromatic hydrocarbons in ELISA by regression analysis and CoMFA methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-Feng; Dai, Shu-Gui [College of Environmental Science and Engineering, Nankai University, Key Laboratory for Pollution Process and Environmental Criteria of Ministry of Education, Tianjin (China); Ma, Yi [College of Chemistry, Nankai University, Institute of Elemento-Organic Chemistry, Tianjin (China); Gao, Zhi-Xian [Institute of Hygiene and Environmental Medicine, Tianjin (China)

    2010-07-15

    Immunoassays have been regarded as a possible alternative or supplement for measuring polycyclic aromatic hydrocarbons (PAHs) in the environment. Since there are too many potential cross-reactants for PAH immunoassays, it is difficult to determine all the cross-reactivities (CRs) by experimental tests. The relationship between CR and the physical-chemical properties of PAHs and related compounds was investigated using the CR data from a commercial enzyme-linked immunosorbent assay (ELISA) kit test. Two quantitative structure-activity relationship (QSAR) techniques, regression analysis and comparative molecular field analysis (CoMFA), were applied for predicting the CR of PAHs in this ELISA kit. Parabolic regression indicates that the CRs are significantly correlated with the logarithm of the partition coefficient for the octanol-water system (log K{sub ow}) (r{sup 2}=0.643, n=23, P<0.0001), suggesting that hydrophobic interactions play an important role in the antigen-antibody binding and the cross-reactions in this ELISA test. The CoMFA model obtained shows that the CRs of the PAHs are correlated with the 3D structure of the molecules (r{sub cv}{sup 2}=0.663, r{sup 2}=0.873, F{sub 4,32}=55.086). The contributions of the steric and electrostatic fields to CR were 40.4 and 59.6%, respectively. Both of the QSAR models satisfactorily predict the CR in this PAH immunoassay kit, and help in understanding the mechanisms of antigen-antibody interaction. (orig.)

  19. Predictive factors of esophageal stenosis associated with tumor regression in radiation therapy for locally advanced esophageal cancer

    International Nuclear Information System (INIS)

    Atsumi, Kazushige; Shioyama, Yoshiyuki; Nakamura, Katsumasa

    2010-01-01

    The purpose of this retrospective study was to clarify the predictive factors correlated with esophageal stenosis within three months after radiation therapy for locally advanced esophageal cancer. We enrolled 47 patients with advanced esophageal cancer with T2-4 and stage II-III who were treated with definitive radiation therapy and achieving complete response of primary lesion at Kyushu University Hospital between January 1998 and December 2005. Esophagography was performed for all patients before treatment and within three months after completion of the radiation therapy, the esophageal stenotic ratio was evaluated. The stenotic ratio was used to define four levels of stenosis: stenosis level 1, stenotic ratio of 0-25%; 2, 25-50%; 3, 50-75%; 4, 75-100%. We then estimated the correlation between the esophageal stenosis level after radiation therapy and each of numerous factors. The numbers and total percentages of patients at each stenosis level were as follows: level 1: n=14 (30%); level 2: 8 (17%); level 3: 14 (30%); and level 4: 11 (23%). Esophageal stenosis in the case of full circumference involvement tended to be more severe and more frequent. Increases in wall thickness tended to be associated with increases in esophageal stenosis severity and frequency. The extent of involved circumference and wall thickness of tumor region were significantly correlated with esophageal stenosis associated with tumor regression in radiation therapy (p=0.0006, p=0.005). For predicting the possibility of esophageal stenosis with tumor regression within three months in radiation therapy, the extent of involved circumference and esophageal wall thickness of the tumor region may be useful. (author)

  20. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    Science.gov (United States)

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (Plogistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    International Nuclear Information System (INIS)

    Boutilier, J; Chan, T; Lee, T; Craig, T; Sharpe, M

    2014-01-01

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time

  2. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, J; Chan, T; Lee, T [University of Toronto, Toronto, Ontario (Canada); Craig, T; Sharpe, M [University of Toronto, Toronto, Ontario (Canada); The Princess Margaret Cancer Centre - UHN, Toronto, ON (Canada)

    2014-06-15

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time.

  3. Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery.

    Directory of Open Access Journals (Sweden)

    Hon-Yi Shi

    Full Text Available BACKGROUND: Since most published articles comparing the performance of artificial neural network (ANN models and logistic regression (LR models for predicting hepatocellular carcinoma (HCC outcomes used only a single dataset, the essential issue of internal validity (reproducibility of the models has not been addressed. The study purposes to validate the use of ANN model for predicting in-hospital mortality in HCC surgery patients in Taiwan and to compare the predictive accuracy of ANN with that of LR model. METHODOLOGY/PRINCIPAL FINDINGS: Patients who underwent a HCC surgery during the period from 1998 to 2009 were included in the study. This study retrospectively compared 1,000 pairs of LR and ANN models based on initial clinical data for 22,926 HCC surgery patients. For each pair of ANN and LR models, the area under the receiver operating characteristic (AUROC curves, Hosmer-Lemeshow (H-L statistics and accuracy rate were calculated and compared using paired T-tests. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and the relative importance of variables. Compared to the LR models, the ANN models had a better accuracy rate in 97.28% of cases, a better H-L statistic in 41.18% of cases, and a better AUROC curve in 84.67% of cases. Surgeon volume was the most influential (sensitive parameter affecting in-hospital mortality followed by age and lengths of stay. CONCLUSIONS/SIGNIFICANCE: In comparison with the conventional LR model, the ANN model in the study was more accurate in predicting in-hospital mortality and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.

  4. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  5. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Modeling and Predicting the Electrical Conductivity of Composite Cathode for Solid Oxide Fuel Cell by Using Support Vector Regression

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.

  7. Development of ε-insensitive smooth support vector regression for predicting minimum miscibility pressure in CO2 flooding

    Directory of Open Access Journals (Sweden)

    Shahram Mollaiy-Berneti

    2018-02-01

    Full Text Available Successful design of a carbon dioxide (CO2 flooding in enhanced oil recovery projects mostly depends on accurate determination of CO2-crude oil minimum miscibility pressure (MMP. Due to the high expensive and time-consuming of experimental determination of MMP, developing a fast and robust method to predict MMP is necessary. In this study, a new method based on ε-insensitive smooth support vector regression (ε-SSVR is introduced to predict MMP for both pure and impure CO2 gas injection cases. The proposed ε-SSVR is developed using dataset of reservoir temperature, crude oil composition and composition of injected CO2. To serve better understanding of the proposed, feed-forward neural network and radial basis function network applied to denoted dataset. The results show that the suggested ε-SSVR has acceptable reliability and robustness in comparison with two other models. Thus, the proposed method can be considered as an alternative way to monitor the MMP in miscible flooding process.

  8. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    Science.gov (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  9. Analyses of polycyclic aromatic hydrocarbon (PAH) and chiral-PAH analogues-methyl-β-cyclodextrin guest-host inclusion complexes by fluorescence spectrophotometry and multivariate regression analysis.

    Science.gov (United States)

    Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O

    2017-03-05

    The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized

  10. Bisphenol-A exposures and behavioural aberrations: median and linear spline and meta-regression analyses of 12 toxicity studies in rodents.

    Science.gov (United States)

    Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello

    2014-11-05

    Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (Pbisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.

  11. Predictive modelling of chromium removal using multiple linear and nonlinear regression with special emphasis on operating parameters of bioelectrochemical reactor.

    Science.gov (United States)

    More, Anand Govind; Gupta, Sunil Kumar

    2018-03-24

    Bioelectrochemical system (BES) is a novel, self-sustaining metal removal technology functioning on the utilization of chemical energy of organic matter with the help of microorganisms. Experimental trials of two chambered BES reactor were conducted with varying substrate concentration using sodium acetate (500 mg/L to 2000 mg/L COD) and different initial chromium concentration (Cr i ) (10-100 mg/L) at different cathode pH (pH 1-7). In the current study mathematical models based on multiple linear regression (MLR) and non-linear regression (NLR) approach were developed using laboratory experimental data for determining chromium removal efficiency (CRE) in the cathode chamber of BES. Substrate concentration, rate of substrate consumption, Cr i , pH, temperature and hydraulic retention time (HRT) were the operating process parameters of the reactor considered for development of the proposed models. MLR showed a better correlation coefficient (0.972) as compared to NLR (0.952). Validation of the models using t-test analysis revealed unbiasedness of both the models, with t critical value (2.04) greater than t-calculated values for MLR (-0.708) and NLR (-0.86). The root-mean-square error (RMSE) for MLR and NLR were 5.06 % and 7.45 %, respectively. Comparison between both models suggested MLR to be best suited model for predicting the chromium removal behavior using the BES technology to specify a set of operating conditions for BES. Modelling the behavior of CRE will be helpful for scale up of BES technology at industrial level. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Exploring reasons for the observed inconsistent trial reports on intra-articular injections with hyaluronic acid in the treatment of osteoarthritis: Meta-regression analyses of randomized trials.

    Science.gov (United States)

    Johansen, Mette; Bahrt, Henriette; Altman, Roy D; Bartels, Else M; Juhl, Carsten B; Bliddal, Henning; Lund, Hans; Christensen, Robin

    2016-08-01

    The aim was to identify factors explaining inconsistent observations concerning the efficacy of intra-articular hyaluronic acid compared to intra-articular sham/control, or non-intervention control, in patients with symptomatic osteoarthritis, based on randomized clinical trials (RCTs). A systematic review and meta-regression analyses of available randomized trials were conducted. The outcome, pain, was assessed according to a pre-specified hierarchy of potentially available outcomes. Hedges׳s standardized mean difference [SMD (95% CI)] served as effect size. REstricted Maximum Likelihood (REML) mixed-effects models were used to combine study results, and heterogeneity was calculated and interpreted as Tau-squared and I-squared, respectively. Overall, 99 studies (14,804 patients) met the inclusion criteria: Of these, only 71 studies (72%), including 85 comparisons (11,216 patients), had adequate data available for inclusion in the primary meta-analysis. Overall, compared with placebo, intra-articular hyaluronic acid reduced pain with an effect size of -0.39 [-0.47 to -0.31; P hyaluronic acid. Based on available trial data, intra-articular hyaluronic acid showed a better effect than intra-articular saline on pain reduction in osteoarthritis. Publication bias and the risk of selective outcome reporting suggest only small clinical effect compared to saline. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Directory of Open Access Journals (Sweden)

    Pape Sarah A

    2009-02-01

    Full Text Available Abstract Background Laser-Doppler imaging (LDI of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA, site and cause of burn, day of LDI scan, burn center. It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are

  14. Multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines.

    Science.gov (United States)

    DeForest, David K; Brix, Kevin V; Tear, Lucinda M; Adams, William J

    2018-01-01

    The bioavailability of aluminum (Al) to freshwater aquatic organisms varies as a function of several water chemistry parameters, including pH, dissolved organic carbon (DOC), and water hardness. We evaluated the ability of multiple linear regression (MLR) models to predict chronic Al toxicity to a green alga (Pseudokirchneriella subcapitata), a cladoceran (Ceriodaphnia dubia), and a fish (Pimephales promelas) as a function of varying DOC, pH, and hardness conditions. The MLR models predicted toxicity values that were within a factor of 2 of observed values in 100% of the cases for P. subcapitata (10 and 20% effective concentrations [EC10s and EC20s]), 91% of the cases for C. dubia (EC10s and EC20s), and 95% (EC10s) and 91% (EC20s) of the cases for P. promelas. The MLR models were then applied to all species with Al toxicity data to derive species and genus sensitivity distributions that could be adjusted as a function of varying DOC, pH, and hardness conditions (the P. subcapitata model was applied to algae and macrophytes, the C. dubia model was applied to invertebrates, and the P. promelas model was applied to fish). Hazardous concentrations to 5% of the species or genera were then derived in 2 ways: 1) fitting a log-normal distribution to species-mean EC10s for all species (following the European Union methodology), and 2) fitting a triangular distribution to genus-mean EC20s for animals only (following the US Environmental Protection Agency methodology). Overall, MLR-based models provide a viable approach for deriving Al water quality guidelines that vary as a function of DOC, pH, and hardness conditions and are a significant improvement over bioavailability corrections based on single parameters. Environ Toxicol Chem 2018;37:80-90. © 2017 SETAC. © 2017 SETAC.

  15. Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes.

    Science.gov (United States)

    Kononen, Douglas W; Flannagan, Carol A C; Wang, Stewart C

    2011-01-01

    A multivariate logistic regression model, based upon National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data for calendar years 1999-2008, was developed to predict the probability that a crash-involved vehicle will contain one or more occupants with serious or incapacitating injuries. These vehicles were defined as containing at least one occupant coded with an Injury Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), multiple vs. single impacts, belt use, presence of at least one older occupant (≥ 55 years old), presence of at least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model was developed using predictor variables that may be readily available, post-crash, from OnStar-like telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was 0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening algorithm is needed to model injuries associated with this crash mode. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle.

    Science.gov (United States)

    Yin, T; Pinent, T; Brügemann, K; Simianer, H; König, S

    2015-08-01

    This study presents an approach combining phenotypes from novel traits, deterministic equations from cattle nutrition, and stochastic simulation techniques from animal breeding to generate test-day methane emissions (MEm) of dairy cows. Data included test-day production traits (milk yield, fat percentage, protein percentage, milk urea nitrogen), conformation traits (wither height, hip width, body condition score), female fertility traits (days open, calving interval, stillbirth), and health traits (clinical mastitis) from 961 first lactation Brown Swiss cows kept on 41 low-input farms in Switzerland. Test-day MEm were predicted based on the traits from the current data set and 2 deterministic prediction equations, resulting in the traits labeled MEm1 and MEm2. Stochastic simulations were used to assign individual concentrate intake in dependency of farm-type specifications (requirement when calculating MEm2). Genetic parameters for MEm1 and MEm2 were estimated using random regression models. Predicted MEm had moderate heritabilities over lactation and ranged from 0.15 to 0.37, with highest heritabilities around DIM 100. Genetic correlations between MEm1 and MEm2 ranged between 0.91 and 0.94. Antagonistic genetic correlations in the range from 0.70 to 0.92 were found for the associations between MEm2 and milk yield. Genetic correlations between MEm with days open and with calving interval increased from 0.10 at the beginning to 0.90 at the end of lactation. Genetic relationships between MEm2 and stillbirth were negative (0 to -0.24) from the beginning to the peak phase of lactation. Positive genetic relationships in the range from 0.02 to 0.49 were found between MEm2 with clinical mastitis. Interpretation of genetic (co)variance components should also consider the limitations when using data generated by prediction equations. Prediction functions only describe that part of MEm which is dependent on the factors and effects included in the function. With high

  17. Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas

    Science.gov (United States)

    Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.

    2017-10-01

    KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.

  18. Longitudinal strain predicts left ventricular mass regression after aortic valve replacement for severe aortic stenosis and preserved left ventricular function.

    Science.gov (United States)

    Gelsomino, Sandro; Lucà, Fabiana; Parise, Orlando; Lorusso, Roberto; Rao, Carmelo Massimiliano; Vizzardi, Enrico; Gensini, Gian Franco; Maessen, Jos G

    2013-11-01

    We explored the influence of global longitudinal strain (GLS) measured with two-dimensional speckle-tracking echocardiography on left ventricular mass regression (LVMR) in patients with pure aortic stenosis (AS) and normal left ventricular function undergoing aortic valve replacement (AVR). The study population included 83 patients with severe AS (aortic valve area regression (all P regression in patients with pure AS undergoing AVR. Our findings must be confirmed by further larger studies.

  19. Functional enrichment analyses and construction of functional similarity networks with high confidence function prediction by PFP

    Directory of Open Access Journals (Sweden)

    Kihara Daisuke

    2010-05-01

    Full Text Available Abstract Background A new paradigm of biological investigation takes advantage of technologies that produce large high throughput datasets, including genome sequences, interactions of proteins, and gene expression. The ability of biologists to analyze and interpret such data relies on functional annotation of the included proteins, but even in highly characterized organisms many proteins can lack the functional evidence necessary to infer their biological relevance. Results Here we have applied high confidence function predictions from our automated prediction system, PFP, to three genome sequences, Escherichia coli, Saccharomyces cerevisiae, and Plasmodium falciparum (malaria. The number of annotated genes is increased by PFP to over 90% for all of the genomes. Using the large coverage of the function annotation, we introduced the functional similarity networks which represent the functional space of the proteomes. Four different functional similarity networks are constructed for each proteome, one each by considering similarity in a single Gene Ontology (GO category, i.e. Biological Process, Cellular Component, and Molecular Function, and another one by considering overall similarity with the funSim score. The functional similarity networks are shown to have higher modularity than the protein-protein interaction network. Moreover, the funSim score network is distinct from the single GO-score networks by showing a higher clustering degree exponent value and thus has a higher tendency to be hierarchical. In addition, examining function assignments to the protein-protein interaction network and local regions of genomes has identified numerous cases where subnetworks or local regions have functionally coherent proteins. These results will help interpreting interactions of proteins and gene orders in a genome. Several examples of both analyses are highlighted. Conclusion The analyses demonstrate that applying high confidence predictions from PFP

  20. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  1. Use of non-linear mixed-effects modelling and regression analysis to predict the number of somatic coliphages by plaque enumeration after 3 hours of incubation.

    Science.gov (United States)

    Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco

    2017-10-01

    The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.

  2. Predictors of Traditional Medical Practices in Illness Behavior in Northwestern Ethiopia: An Integrated Model of Behavioral Prediction Based Logistic Regression Analysis

    Directory of Open Access Journals (Sweden)

    Abenezer Yared

    2017-01-01

    Full Text Available This study aimed at investigating traditional medical beliefs and practices in illness behavior as well as predictors of the practices in Gondar city, northwestern Ethiopia, by using the integrated model of behavioral prediction. A cross-sectional quantitative survey was conducted to collect data through interviewer administered structured questionnaires from 496 individuals selected by probability proportional to size sampling technique. Unadjusted bivariate and adjusted multivariate logistic regression analyses were performed, and the results indicated that sociocultural predictors of normative response and attitude as well as psychosocial individual difference variables of traditional understanding of illness causation and perceived efficacy had statistically significant associations with traditional medical practices. Due to the influence of these factors, majority of the study population (85% thus relied on both herbal and spiritual varieties of traditional medicine to respond to their perceived illnesses, supporting the conclusion that characterized the illness behavior of the people as mainly involving traditional medical practices. The results implied two-way medicine needs to be developed with ongoing research, and health educations must take the traditional customs into consideration, for integrating interventions in the health care system in ways that the general public accepts yielding a better health outcome.

  3. Personal, social, and game-related correlates of active and non-active gaming among dutch gaming adolescents: survey-based multivariable, multilevel logistic regression analyses.

    Science.gov (United States)

    Simons, Monique; de Vet, Emely; Chinapaw, Mai Jm; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes

    2014-04-04

    Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games-active games-seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a correlate of both active and non-active gaming

  4. Personal, Social, and Game-Related Correlates of Active and Non-Active Gaming Among Dutch Gaming Adolescents: Survey-Based Multivariable, Multilevel Logistic Regression Analyses

    Science.gov (United States)

    de Vet, Emely; Chinapaw, Mai JM; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes

    2014-01-01

    Background Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games—active games—seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. Objective The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. Methods A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Results Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a

  5. An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction

    International Nuclear Information System (INIS)

    Zheng, Xiujuan; Fang, Huajing

    2015-01-01

    The gradual decreasing capacity of lithium-ion batteries can serve as a health indicator for tracking the degradation of lithium-ion batteries. It is important to predict the capacity of a lithium-ion battery for future cycles to assess its health condition and remaining useful life (RUL). In this paper, a novel method is developed using unscented Kalman filter (UKF) with relevance vector regression (RVR) and applied to RUL and short-term capacity prediction of batteries. A RVR model is employed as a nonlinear time-series prediction model to predict the UKF future residuals which otherwise remain zero during the prediction period. Taking the prediction step into account, the predictive value through the RVR method and the latest real residual value constitute the future evolution of the residuals with a time-varying weighting scheme. Next, the future residuals are utilized by UKF to recursively estimate the battery parameters for predicting RUL and short-term capacity. Finally, the performance of the proposed method is validated and compared to other predictors with the experimental data. According to the experimental and analysis results, the proposed approach has high reliability and prediction accuracy, which can be applied to battery monitoring and prognostics, as well as generalized to other prognostic applications. - Highlights: • An integrated method is proposed for RUL prediction as well as short-term capacity prediction. • Relevance vector regression model is employed as a nonlinear time-series prediction model. • Unscented Kalman filter is used to recursively update the states for battery model parameters during the prediction. • A time-varying weighting scheme is utilized to improve the accuracy of the RUL prediction. • The proposed method demonstrates high reliability and prediction accuracy.

  6. Predictive analyses of flow-induced vibration and fretting wear in steam generator tubes

    International Nuclear Information System (INIS)

    Axisa, F.

    1989-01-01

    Maintaining the service life of PWR steam generators under highly reliable conditions requires a complex design to prevent various damaging processes, including those related to flow induced vibration. Predictive analyses have to rely on numerical tools to compute the vibratory response of multi-supported tubes in association with experimental data and semi-empirical relationships for quantifying flow-induced excitation mechanisms and tube damaging processes. In the presence of loose supports tube dynamics becomes highly nonlinear in nature. To deal with such problems CEA and FRAMATOME developed a computer program called GERBOISE. This paper provides a short description of an experimental program currently in progress at CEN Saclay to validate the numerical methods implemented in GERBOISE. According to the results obtained so far reasonable agreement is obtained between experiment and numerical simulation, especially as averaged quantities are concerned

  7. Secondary mediation and regression analyses of the PTClinResNet database: determining causal relationships among the International Classification of Functioning, Disability and Health levels for four physical therapy intervention trials.

    Science.gov (United States)

    Mulroy, Sara J; Winstein, Carolee J; Kulig, Kornelia; Beneck, George J; Fowler, Eileen G; DeMuth, Sharon K; Sullivan, Katherine J; Brown, David A; Lane, Christianne J

    2011-12-01

    Each of the 4 randomized clinical trials (RCTs) hosted by the Physical Therapy Clinical Research Network (PTClinResNet) targeted a different disability group (low back disorder in the Muscle-Specific Strength Training Effectiveness After Lumbar Microdiskectomy [MUSSEL] trial, chronic spinal cord injury in the Strengthening and Optimal Movements for Painful Shoulders in Chronic Spinal Cord Injury [STOMPS] trial, adult stroke in the Strength Training Effectiveness Post-Stroke [STEPS] trial, and pediatric cerebral palsy in the Pediatric Endurance and Limb Strengthening [PEDALS] trial for children with spastic diplegic cerebral palsy) and tested the effectiveness of a muscle-specific or functional activity-based intervention on primary outcomes that captured pain (STOMPS, MUSSEL) or locomotor function (STEPS, PEDALS). The focus of these secondary analyses was to determine causal relationships among outcomes across levels of the International Classification of Functioning, Disability and Health (ICF) framework for the 4 RCTs. With the database from PTClinResNet, we used 2 separate secondary statistical approaches-mediation analysis for the MUSSEL and STOMPS trials and regression analysis for the STEPS and PEDALS trials-to test relationships among muscle performance, primary outcomes (pain related and locomotor related), activity and participation measures, and overall quality of life. Predictive models were stronger for the 2 studies with pain-related primary outcomes. Change in muscle performance mediated or predicted reductions in pain for the MUSSEL and STOMPS trials and, to some extent, walking speed for the STEPS trial. Changes in primary outcome variables were significantly related to changes in activity and participation variables for all 4 trials. Improvement in activity and participation outcomes mediated or predicted increases in overall quality of life for the 3 trials with adult populations. Variables included in the statistical models were limited to those

  8. Interactions between risk factors in the prediction of onset of eating disorders: Exploratory hypothesis generating analyses.

    Science.gov (United States)

    Stice, Eric; Desjardins, Christopher D

    2018-06-01

    Because no study has tested for interactions between risk factors in the prediction of future onset of each eating disorder, this exploratory study addressed this lacuna to generate hypotheses to be tested in future confirmatory studies. Data from three prevention trials that targeted young women at high risk for eating disorders due to body dissatisfaction (N = 1271; M age 18.5, SD 4.2) and collected diagnostic interview data over 3-year follow-up were combined to permit sufficient power to predict onset of anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder (BED), and purging disorder (PD) using classification tree analyses, an analytic technique uniquely suited to detecting interactions. Low BMI was the most potent predictor of AN onset, and body dissatisfaction amplified this relation. Overeating was the most potent predictor of BN onset, and positive expectancies for thinness and body dissatisfaction amplified this relation. Body dissatisfaction was the most potent predictor of BED onset, and overeating, low dieting, and thin-ideal internalization amplified this relation. Dieting was the most potent predictor of PD onset, and negative affect and positive expectancies for thinness amplified this relation. Results provided evidence of amplifying interactions between risk factors suggestive of cumulative risk processes that were distinct for each disorder; future confirmatory studies should test the interactive hypotheses generated by these analyses. If hypotheses are confirmed, results may allow interventionists to target ultra high-risk subpopulations with more intensive prevention programs that are uniquely tailored for each eating disorder, potentially improving the yield of prevention efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Predictive Engineering Tools for Injection-Molded Long-Carbon-Thermoplastic Composites: Weight and Cost Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gandhi, Umesh N. [Toyota Research Inst. North America, Ann Arbor, MI (United States); Mori, Steven [MAGNA Exteriors and Interiors Corporation, Aurora, ON (Canada); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States)

    2016-08-01

    This project proposed to integrate, optimize and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk Simulation Moldflow Insight (ASMI) package for injection-molded long-carbon-fiber thermoplastic composites into a cohesive prediction capability. The current effort focused on rendering the developed models more robust and efficient for automotive industry part design to enable weight savings and cost reduction. The project goal has been achieved by optimizing the developed models, improving and integrating their implementations in ASMI, and validating them for a complex 3D LCF thermoplastic automotive part (Figure 1). Both PP and PA66 were used as resin matrices. After validating ASMI predictions for fiber orientation and fiber length for this complex part against the corresponding measured data, in collaborations with Toyota and Magna PNNL developed a method using the predictive engineering tool to assess LCF/PA66 complex part design in terms of stiffness performance. Structural three-point bending analyses of the complex part and similar parts in steel were then performed for this purpose, and the team has then demonstrated the use of stiffness-based complex part design assessment to evaluate weight savings relative to the body system target (≥ 35%) set in Table 2 of DE-FOA-0000648 (AOI #1). In addition, starting from the part-to-part analysis, the PE tools enabled an estimated weight reduction for the vehicle body system using 50 wt% LCF/PA66 parts relative to the current steel system. Also, from this analysis an estimate of the manufacturing cost including the material cost for making the equivalent part in steel has been determined and compared to the costs for making the LCF/PA66 part to determine the cost per “saved” pound.

  10. Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

    Science.gov (United States)

    Hunter, Jason M.; Maier, Holger R.; Gibbs, Matthew S.; Foale, Eloise R.; Grosvenor, Naomi A.; Harders, Nathan P.; Kikuchi-Miller, Tahali C.

    2018-05-01

    Salinity modelling in river systems is complicated by a number of processes, including in-stream salt transport and various mechanisms of saline accession that vary dynamically as a function of water level and flow, often at different temporal scales. Traditionally, salinity models in rivers have either been process- or data-driven. The primary problem with process-based models is that in many instances, not all of the underlying processes are fully understood or able to be represented mathematically. There are also often insufficient historical data to support model development. The major limitation of data-driven models, such as artificial neural networks (ANNs) in comparison, is that they provide limited system understanding and are generally not able to be used to inform management decisions targeting specific processes, as different processes are generally modelled implicitly. In order to overcome these limitations, a generic framework for developing hybrid process and data-driven models of salinity in river systems is introduced and applied in this paper. As part of the approach, the most suitable sub-models are developed for each sub-process affecting salinity at the location of interest based on consideration of model purpose, the degree of process understanding and data availability, which are then combined to form the hybrid model. The approach is applied to a 46 km reach of the Murray River in South Australia, which is affected by high levels of salinity. In this reach, the major processes affecting salinity include in-stream salt transport, accession of saline groundwater along the length of the reach and the flushing of three waterbodies in the floodplain during overbank flows of various magnitudes. Based on trade-offs between the degree of process understanding and data availability, a process-driven model is developed for in-stream salt transport, an ANN model is used to model saline groundwater accession and three linear regression models are used

  11. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  12. Feature Selection, Flaring Size and Time-to-Flare Prediction Using Support Vector Regression, and Automated Prediction of Flaring Behavior Based on Spatio-Temporal Measures Using Hidden Markov Models

    Science.gov (United States)

    Al-Ghraibah, Amani

    error of approximately 3/4 a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a TPR. of 0.69 and a TNR of 0.86 for flare prediction, consistent with our previous studies of flare prediction using the same magnetic complexity features. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This conjecture is supported by our larger error rates of some 40 hours in the time-to-flare regression problem. The magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem. We also study the prediction of solar flare size and time-to-flare using two temporal features, namely the ▵- and ▵-▵-features, the same average size and time-to-flare regression error are found when these temporal features are used in size and time-to-flare prediction. In the third topic, we study the temporal evolution of active region magnetic fields using Hidden Markov Models (HMMs) which is one of the efficient temporal analyses found in literature. We extracted 38 features which describing the complexity of the photospheric magnetic field. These features are converted into a sequence of symbols using k-nearest neighbor search method. We study many parameters before prediction; like the length of the training window Wtrain which denotes to the number of history images use to train the flare and non-flare HMMs, and number of hidden states Q. In training phase, the model parameters of the HMM of each category are optimized so as to best describe the training symbol sequences. In testing phase, we use the best flare and non-flare models to predict/classify active regions as a flaring or non-flaring region

  13. Comparison of stochastic and regression based methods for quantification of predictive uncertainty of model-simulated wellhead protection zones in heterogeneous aquifers

    DEFF Research Database (Denmark)

    Christensen, Steen; Moore, C.; Doherty, J.

    2006-01-01

    accurate and required a few hundred model calls to be computed. (b) The linearized regression-based interval (Cooley, 2004) required just over a hundred model calls and also appeared to be nearly correct. (c) The calibration-constrained Monte-Carlo interval (Doherty, 2003) was found to be narrower than......For a synthetic case we computed three types of individual prediction intervals for the location of the aquifer entry point of a particle that moves through a heterogeneous aquifer and ends up in a pumping well. (a) The nonlinear regression-based interval (Cooley, 2004) was found to be nearly...... the regression-based intervals but required about half a million model calls. It is unclear whether or not this type of prediction interval is accurate....

  14. Value of the regurgitant volume to end diastolic volume ratio to predict the regression of left ventricular dimensions after valve replacement in aortic insufficiency

    NARCIS (Netherlands)

    P.M. Fioretti (Paolo); C. Tirtaman; E. Bos (Egbert); P.W.J.C. Serruys (Patrick); J.R.T.C. Roelandt (Jos)

    1987-01-01

    textabstractThe aim of this study was to assess the value of regurgitant stroke volume (RSV) to end-diastolic volume (EDV) ratio to predict the regression of left ventricular (LV) dimensions after uncomplicated valve replacement in 34 patients with severe pure aortic insufficiency. The RSV/EDV ratio

  15. Non-destructive and rapid prediction of moisture content in red pepper (Capsicum annuum L.) powder using near-infrared spectroscopy and a partial least squares regression model

    Science.gov (United States)

    Purpose: The aim of this study was to develop a technique for the non-destructive and rapid prediction of the moisture content in red pepper powder using near-infrared (NIR) spectroscopy and a partial least squares regression (PLSR) model. Methods: Three red pepper powder products were separated in...

  16. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  17. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression.

    Directory of Open Access Journals (Sweden)

    Kosuke Yoshida

    Full Text Available In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS regression to resting-state functional magnetic resonance imaging (rs-fMRI data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area.

  18. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes : A random forest regression approach

    NARCIS (Netherlands)

    Van Der Meer, D.; Hoekstra, P. J.; Van Donkelaar, M.; Bralten, J.; Oosterlaan, J.; Heslenfeld, D.; Faraone, S. V.; Franke, B.; Buitelaar, J. K.; Hartman, C. A.

    2017-01-01

    Identifying genetic variants contributing to attention-deficit/hyperactivity disorder (ADHD) is complicated by the involvement of numerous common genetic variants with small effects, interacting with each other as well as with environmental factors, such as stress exposure. Random forest regression

  19. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes : a random forest regression approach

    NARCIS (Netherlands)

    van der Meer, D.; Hoekstra, P. J.; van Donkelaar, Marjolein M. J.; Bralten, Janita; Oosterlaan, J; Heslenfeld, Dirk J.; Faraone, S. V.; Franke, B.; Buitelaar, J. K.; Hartman, C. A.

    2017-01-01

    Identifying genetic variants contributing to attention-deficit/hyperactivity disorder (ADHD) is complicated by the involvement of numerous common genetic variants with small effects, interacting with each other as well as with environmental factors, such as stress exposure. Random forest regression

  20. Monitoring and predicting crop growth and analysing agricultural ecosystems by remote sensing

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Akiyama

    1996-05-01

    Full Text Available LANDSAT/TM data, which are characterized by high spectral/spatial resolutions, are able to contribute to practical agricultural management. In the first part of the paper, the authors review some recent applications of satellite remote sensing in agriculture. Techniques for crop discrimination and mapping have made such rapid progress that we can classify crop types with more than 80% accuracy. The estimation of crop biomass using satellite data, including leaf area, dry and fresh weights, and the prediction of grain yield, has been attempted using various spectral vegetation indices. Plant stresses caused by nutrient deficiency and water deficit have also been analysed successfully. Such information may be useful for farm management. In the latter half of the paper, we introduce the Arctic Science Project, which was carried out under the Science and Technology Agency of Japan collaborating with Finnish scientists. In this project, monitoring of the boreal forest was carried out using LANDSAT data. Changes in the phenology of subarctic ground vegetation, based on spectral properties, were measured by a boom-mounted, four-band spectroradiometer. The turning point dates of the seasonal near-infrared (NIR and red (R reflectance factors might indicate the end of growth and the beginning of autumnal tints, respectively.

  1. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    Science.gov (United States)

    Bukhari, W.; Hong, S.-M.

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit

  2. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    International Nuclear Information System (INIS)

    Bukhari, W; Hong, S-M

    2016-01-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN +  , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN + prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN + implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN +  . The experimental results show that the EKF-GPRN + algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN + algorithm can further reduce the prediction error by employing the gating function

  3. QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna

    International Nuclear Information System (INIS)

    Roy, Kunal; Das, Rudra Narayan

    2013-01-01

    Highlights: • Ionic liquids are not intrinsically ‘green chemicals’ and require toxicological assessment. • Predictive QSTR models have been developed for toxicity of ILs to Daphnia magna. • Simple two dimensional descriptors were used to reduce the computational burden. • Discriminant and regression based models showed appreciable predictivity and reproducibility. • The extracted features can be explored in designing novel environmentally-friendly agents. -- Abstract: Ionic liquids have been judged much with respect to their wide applicability than their considerable harmful effects towards the living ecosystem which has been observed in many instances. Hence, toxicological introspection of these chemicals by the development of predictive mathematical models can be of good help. This study presents an attempt to develop predictive classification and regression models correlating the structurally derived chemical information of a group of 62 diverse ionic liquids with their toxicity towards Daphnia magna and their interpretation. We have principally used the extended topochemical atom (ETA) indices along with various topological non-ETA and thermodynamic parameters as independent variables. The developed quantitative models have been subjected to extensive statistical tests employing multiple validation strategies from which acceptable results have been reported. The best models obtained from classification and regression studies captured necessary structural information on lipophilicity, branching pattern, electronegativity and chain length of the cationic substituents for explaining ecotoxicity of ionic liquids towards D. magna. The derived information can be successfully used to design better ionic liquid analogues acquiring the qualities of a true eco-friendly green chemical

  4. The Prediction of Exchange Rates with the Use of Auto-Regressive Integrated Moving-Average Models

    Directory of Open Access Journals (Sweden)

    Daniela Spiesová

    2014-10-01

    Full Text Available Currency market is recently the largest world market during the existence of which there have been many theories regarding the prediction of the development of exchange rates based on macroeconomic, microeconomic, statistic and other models. The aim of this paper is to identify the adequate model for the prediction of non-stationary time series of exchange rates and then use this model to predict the trend of the development of European currencies against Euro. The uniqueness of this paper is in the fact that there are many expert studies dealing with the prediction of the currency pairs rates of the American dollar with other currency but there is only a limited number of scientific studies concerned with the long-term prediction of European currencies with the help of the integrated ARMA models even though the development of exchange rates has a crucial impact on all levels of economy and its prediction is an important indicator for individual countries, banks, companies and businessmen as well as for investors. The results of this study confirm that to predict the conditional variance and then to estimate the future values of exchange rates, it is adequate to use the ARIMA (1,1,1 model without constant, or ARIMA [(1,7,1,(1,7] model, where in the long-term, the square root of the conditional variance inclines towards stable value.

  5. Application of land use regression to predict the concentration of inhalable particular matter in São Paulo city, Brazil

    OpenAIRE

    Habermann, Mateus; Gouveia, Nelson

    2012-01-01

    O estudo teve por objetivo construir um modelo de regressão baseada no uso do solo para predizer a concentração material particulado inalável (MP10) no município de São Paulo, Brasil. O estudo se baseou na média de MP10 de 2007 de 9 estações de monitoramento. Obtiveram-se dados demográficos, viários e de uso do solo em círculos concêntricos de 250 a 1.000 m para compor o modelo. Calculou-se regressão linear simples para selecionar as variáveis mais robustas e sem colinearidade. Quatro variáve...

  6. Regression analysis with categorized regression calibrated exposure: some interesting findings

    Directory of Open Access Journals (Sweden)

    Hjartåker Anette

    2006-07-01

    Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

  7. Predicting behavior change from persuasive messages using neural representational similarity and social network analyses.

    Science.gov (United States)

    Pegors, Teresa K; Tompson, Steven; O'Donnell, Matthew Brook; Falk, Emily B

    2017-08-15

    Neural activity in medial prefrontal cortex (MPFC), identified as engaging in self-related processing, predicts later health behavior change. However, it is unknown to what extent individual differences in neural representation of content and lived experience influence this brain-behavior relationship. We examined whether the strength of content-specific representations during persuasive messaging relates to later behavior change, and whether these relationships change as a function of individuals' social network composition. In our study, smokers viewed anti-smoking messages while undergoing fMRI and we measured changes in their smoking behavior one month later. Using representational similarity analyses, we found that the degree to which message content (i.e. health, social, or valence information) was represented in a self-related processing MPFC region was associated with later smoking behavior, with increased representations of negatively valenced (risk) information corresponding to greater message-consistent behavior change. Furthermore, the relationship between representations and behavior change depended on social network composition: smokers who had proportionally fewer smokers in their network showed increases in smoking behavior when social or health content was strongly represented in MPFC, whereas message-consistent behavior (i.e., less smoking) was more likely for those with proportionally more smokers in their social network who represented social or health consequences more strongly. These results highlight the dynamic relationship between representations in MPFC and key outcomes such as health behavior change; a complete understanding of the role of MPFC in motivation and action should take into account individual differences in neural representation of stimulus attributes and social context variables such as social network composition. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of a predictive model for distribution coefficient (Kd) of 13'7Cs and 60Co in marine sediments using multiple linear regression analysis

    International Nuclear Information System (INIS)

    Kumar, Ajay; Ravi, P.M.; Guneshwar, S.L.; Rout, Sabyasachi; Mishra, Manish K.; Pulhani, Vandana; Tripathi, R.M.

    2018-01-01

    Numerous common methods (batch laboratory, the column laboratory, field-batch method, field modeling and K 0c method) are used frequently for determination of K d values. Recently, multiple regression models are considered as new best estimates for predicting the K d of radionuclides in the environment. It is also well known fact that the K d value is highly influenced by physico-chemical properties of sediment. Due to the significant variability in influencing parameters, the measured K d values can range over several orders of magnitude under different environmental conditions. The aim of this study is to develop a predictive model for K d values of 137 Cs and 60 Co based on the sediment properties using multiple linear regression analysis

  9. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  10. Implications of Interactions among Society, Education and Technology: A Comparison of Multiple Linear Regression and Multilevel Modeling in Mathematics Achievement Analyses

    Science.gov (United States)

    Deering, Pamela Rose

    2014-01-01

    This research compares and contrasts two approaches to predictive analysis of three years' of school district data to investigate relationships between student and teacher characteristics and math achievement as measured by the state-mandated Maryland School Assessment mathematics exam. The sample for the study consisted of 3,514 students taught…

  11. Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation Holstein and Jersey cows.

    Science.gov (United States)

    Chandler, T L; Pralle, R S; Dórea, J R R; Poock, S E; Oetzel, G R; Fourdraine, R H; White, H M

    2018-03-01

    Although cowside testing strategies for diagnosing hyperketonemia (HYK) are available, many are labor intensive and costly, and some lack sufficient accuracy. Predicting milk ketone bodies by Fourier transform infrared spectrometry during routine milk sampling may offer a more practical monitoring strategy. The objectives of this study were to (1) develop linear and logistic regression models using all available test-day milk and performance variables for predicting HYK and (2) compare prediction methods (Fourier transform infrared milk ketone bodies, linear regression models, and logistic regression models) to determine which is the most predictive of HYK. Given the data available, a secondary objective was to evaluate differences in test-day milk and performance variables (continuous measurements) between Holsteins and Jerseys and between cows with or without HYK within breed. Blood samples were collected on the same day as milk sampling from 658 Holstein and 468 Jersey cows between 5 and 20 d in milk (DIM). Diagnosis of HYK was at a serum β-hydroxybutyrate (BHB) concentration ≥1.2 mmol/L. Concentrations of milk BHB and acetone were predicted by Fourier transform infrared spectrometry (Foss Analytical, Hillerød, Denmark). Thresholds of milk BHB and acetone were tested for diagnostic accuracy, and logistic models were built from continuous variables to predict HYK in primiparous and multiparous cows within breed. Linear models were constructed from continuous variables for primiparous and multiparous cows within breed that were 5 to 11 DIM or 12 to 20 DIM. Milk ketone body thresholds diagnosed HYK with 64.0 to 92.9% accuracy in Holsteins and 59.1 to 86.6% accuracy in Jerseys. Logistic models predicted HYK with 82.6 to 97.3% accuracy. Internally cross-validated multiple linear regression models diagnosed HYK of Holstein cows with 97.8% accuracy for primiparous and 83.3% accuracy for multiparous cows. Accuracy of Jersey models was 81.3% in primiparous and 83

  12. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  13. How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models.

    Science.gov (United States)

    Francq, Bernard G; Govaerts, Bernadette

    2016-06-30

    Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network.

    Science.gov (United States)

    Pralle, R S; Weigel, K W; White, H M

    2018-05-01

    Prediction of postpartum hyperketonemia (HYK) using Fourier transform infrared (FTIR) spectrometry analysis could be a practical diagnostic option for farms because these data are now available from routine milk analysis during Dairy Herd Improvement testing. The objectives of this study were to (1) develop and evaluate blood β-hydroxybutyrate (BHB) prediction models using multivariate linear regression (MLR), partial least squares regression (PLS), and artificial neural network (ANN) methods and (2) evaluate whether milk FTIR spectrum (mFTIR)-based models are improved with the inclusion of test-day variables (mTest; milk composition and producer-reported data). Paired blood and milk samples were collected from multiparous cows 5 to 18 d postpartum at 3 Wisconsin farms (3,629 observations from 1,013 cows). Blood BHB concentration was determined by a Precision Xtra meter (Abbot Diabetes Care, Alameda, CA), and milk samples were analyzed by a privately owned laboratory (AgSource, Menomonie, WI) for components and FTIR spectrum absorbance. Producer-recorded variables were extracted from farm management software. A blood BHB ≥1.2 mmol/L was considered HYK. The data set was divided into a training set (n = 3,020) and an external testing set (n = 609). Model fitting was implemented with JMP 12 (SAS Institute, Cary, NC). A 5-fold cross-validation was performed on the training data set for the MLR, PLS, and ANN prediction methods, with square root of blood BHB as the dependent variable. Each method was fitted using 3 combinations of variables: mFTIR, mTest, or mTest + mFTIR variables. Models were evaluated based on coefficient of determination, root mean squared error, and area under the receiver operating characteristic curve. Four models (PLS-mTest + mFTIR, ANN-mFTIR, ANN-mTest, and ANN-mTest + mFTIR) were chosen for further evaluation in the testing set after fitting to the full training set. In the cross-validation analysis, model fit was greatest for ANN, followed

  15. Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education

    Science.gov (United States)

    Bahadir, Elif

    2016-01-01

    The ability to predict the success of students when they enter a graduate program is critical for educational institutions because it allows them to develop strategic programs that will help improve students' performances during their stay at an institution. In this study, we present the results of an experimental comparison study of Logistic…

  16. Odontometric Data and New Regression Equations for Predicting the Size of Unerupted Permanent Canine and Premolars for Chennai Population

    Directory of Open Access Journals (Sweden)

    S V Soumya

    2013-01-01

    Conclusion: The observations obtained from our study would not only pave the way in predicting the mesiodistal width of unerupted canine and premolar in Chennai population but also give normative odontometric data which can be used for anthropological use and for diagnosis and treatment planning

  17. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    Science.gov (United States)

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  18. An Investigation of the Variables Predicting Faculty of Education Students' Speaking Anxiety through Ordinal Logistic Regression Analysis

    Science.gov (United States)

    Bozpolat, Ebru

    2017-01-01

    The purpose of this study is to determine whether Cumhuriyet University Faculty of Education students' levels of speaking anxiety are predicted by the variables of gender, department, grade, such sub-dimensions of "Speaking Self-Efficacy Scale for Pre-Service Teachers" as "public speaking," "effective speaking,"…

  19. Predicting subject-driven actions and sensory experience in a virtual world with relevance vector machine regression of fMRI data.

    Science.gov (United States)

    Valente, Giancarlo; De Martino, Federico; Esposito, Fabrizio; Goebel, Rainer; Formisano, Elia

    2011-05-15

    In this work we illustrate the approach of the Maastricht Brain Imaging Center to the PBAIC 2007 competition, where participants had to predict, based on fMRI measurements of brain activity, subject driven actions and sensory experience in a virtual world. After standard pre-processing (slice scan time correction, motion correction), we generated rating predictions based on linear Relevance Vector Machine (RVM) learning from all brain voxels. Spatial and temporal filtering of the time series was optimized rating by rating. For some of the ratings (e.g. Instructions, Hits, Faces, Velocity), linear RVM regression was accurate and very consistent within and between subjects. For other ratings (e.g. Arousal, Valence) results were less satisfactory. Our approach ranked overall second. To investigate the role of different brain regions in ratings prediction we generated predictive maps, i.e. maps of the weighted contribution of each voxel to the predicted rating. These maps generally included (but were not limited to) "specialized" regions which are consistent with results from conventional neuroimaging studies and known functional neuroanatomy. In conclusion, Sparse Bayesian Learning models, such as RVM, appear to be a valuable approach to the multivariate regression of fMRI time series. The implementation of the Automatic Relevance Determination criterion is particularly suitable and provides a good generalization, despite the limited number of samples which is typically available in fMRI. Predictive maps allow disclosing multi-voxel patterns of brain activity that predict perceptual and behavioral subjective experience. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Spatial modeling of rat bites and prediction of rat infestation in Peshawar valley using binomial kriging with logistic regression.

    Science.gov (United States)

    Ali, Asad; Zaidi, Farrah; Fatima, Syeda Hira; Adnan, Muhammad; Ullah, Saleem

    2018-03-24

    In this study, we propose to develop a geostatistical computational framework to model the distribution of rat bite infestation of epidemic proportion in Peshawar valley, Pakistan. Two species Rattus norvegicus and Rattus rattus are suspected to spread the infestation. The framework combines strengths of maximum entropy algorithm and binomial kriging with logistic regression to spatially model the distribution of infestation and to determine the individual role of environmental predictors in modeling the distribution trends. Our results demonstrate the significance of a number of social and environmental factors in rat infestations such as (I) high human population density; (II) greater dispersal ability of rodents due to the availability of better connectivity routes such as roads, and (III) temperature and precipitation influencing rodent fecundity and life cycle.

  1. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    Science.gov (United States)

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Univariate and multiple linear regression analyses for 23 single nucleotide polymorphisms in 14 genes predisposing to chronic glomerular diseases and IgA nephropathy in Han Chinese.

    Science.gov (United States)

    Wang, Hui; Sui, Weiguo; Xue, Wen; Wu, Junyong; Chen, Jiejing; Dai, Yong

    2014-09-01

    Immunoglobulin A nephropathy (IgAN) is a complex trait regulated by the interaction among multiple physiologic regulatory systems and probably involving numerous genes, which leads to inconsistent findings in genetic studies. One possibility of failure to replicate some single-locus results is that the underlying genetics of IgAN nephropathy is based on multiple genes with minor effects. To learn the association between 23 single nucleotide polymorphisms (SNPs) in 14 genes predisposing to chronic glomerular diseases and IgAN in Han males, the 23 SNPs genotypes of 21 Han males were detected and analyzed with a BaiO gene chip, and their associations were analyzed with univariate analysis and multiple linear regression analysis. Analysis showed that CTLA4 rs231726 and CR2 rs1048971 revealed a significant association with IgAN. These findings support the multi-gene nature of the etiology of IgAN and propose a potential gene-gene interactive model for future studies.

  3. Relative accuracy of spatial predictive models for lynx Lynx canadensis derived using logistic regression-AIC, multiple criteria evaluation and Bayesian approaches

    Directory of Open Access Journals (Sweden)

    Shelley M. ALEXANDER

    2009-02-01

    Full Text Available We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS-based approaches: logistic regression and Akaike’s Information Criterion (AIC, Multiple Criteria Evaluation (MCE, and Bayesian Analysis (specifically Dempster-Shafer theory. We used lynx Lynx canadensis as our focal species, and developed our environment relationship model using track data collected in Banff National Park, Alberta, Canada, during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy, the failure to predict a species where it occurred (omission error and the prediction of presence where there was absence (commission error. Our overall accuracy showed the logistic regression approach was the most accurate (74.51%. The multiple criteria evaluation was intermediate (39.22%, while the Dempster-Shafer (D-S theory model was the poorest (29.90%. However, omission and commission error tell us a different story: logistic regression had the lowest commission error, while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least, the logistic regression model is optimal. However, where sample size is small or the species is very rare, it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer that would over-predict, protect more sites, and thereby minimize the risk of missing critical habitat in conservation plans[Current Zoology 55(1: 28 – 40, 2009].

  4. A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production

    Directory of Open Access Journals (Sweden)

    Giovanni Leopoldo Rozza

    2015-09-01

    Full Text Available With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB and a statistical analysis software package (SPSS. The models output (predicted caustic concentration were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible.

  5. Prediction of Thermal Properties of Sweet Sorghum Bagasse as a Function of Moisture Content Using Artificial Neural Networks and Regression Models

    Directory of Open Access Journals (Sweden)

    Gosukonda Ramana

    2017-06-01

    Full Text Available Artificial neural networks (ANN and traditional regression models were developed for prediction of thermal properties of sweet sorghum bagasse as a function of moisture content and room temperature. Predictions were made for three thermal properties: 1 thermal conductivity, 2 volumetric specific heat, and 3 thermal diffusivity. Each thermal property had five levels of moisture content (8.52%, 12.93%, 18.94%, 24.63%, and 28.62%, w. b. and room temperature as inputs. Data were sub-partitioned for training, testing, and validation of models. Backpropagation (BP and Kalman Filter (KF learning algorithms were employed to develop nonparametric models between input and output data sets. Statistical indices including correlation coefficient (R between actual and predicted outputs were produced for selecting the suitable models. Prediction plots for thermal properties indicated that the ANN models had better accuracy from unseen patterns as compared to regression models. In general, ANN models were able to strongly generalize and interpolate unseen patterns within the domain of training.

  6. AucPR: An AUC-based approach using penalized regression for disease prediction with high-dimensional omics data

    OpenAIRE

    Yu, Wenbao; Park, Taesung

    2014-01-01

    Motivation It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. Results We propose an AUC-based approach u...

  7. Meta-regression analyses to explain statistical heterogeneity in a systematic review of strategies for guideline implementation in primary health care.

    Directory of Open Access Journals (Sweden)

    Susanne Unverzagt

    Full Text Available This study is an in-depth-analysis to explain statistical heterogeneity in a systematic review of implementation strategies to improve guideline adherence of primary care physicians in the treatment of patients with cardiovascular diseases. The systematic review included randomized controlled trials from a systematic search in MEDLINE, EMBASE, CENTRAL, conference proceedings and registers of ongoing studies. Implementation strategies were shown to be effective with substantial heterogeneity of treatment effects across all investigated strategies. Primary aim of this study was to explain different effects of eligible trials and to identify methodological and clinical effect modifiers. Random effects meta-regression models were used to simultaneously assess the influence of multimodal implementation strategies and effect modifiers on physician adherence. Effect modifiers included the staff responsible for implementation, level of prevention and definition pf the primary outcome, unit of randomization, duration of follow-up and risk of bias. Six clinical and methodological factors were investigated as potential effect modifiers of the efficacy of different implementation strategies on guideline adherence in primary care practices on the basis of information from 75 eligible trials. Five effect modifiers were able to explain a substantial amount of statistical heterogeneity. Physician adherence was improved by 62% (95% confidence interval (95% CI 29 to 104% or 29% (95% CI 5 to 60% in trials where other non-medical professionals or nurses were included in the implementation process. Improvement of physician adherence was more successful in primary and secondary prevention of cardiovascular diseases by around 30% (30%; 95% CI -2 to 71% and 31%; 95% CI 9 to 57%, respectively compared to tertiary prevention. This study aimed to identify effect modifiers of implementation strategies on physician adherence. Especially the cooperation of different health

  8. Using Apparent Density of Paper from Hardwood Kraft Pulps to Predict Sheet Properties, based on Unsupervised Classification and Multivariable Regression Techniques

    Directory of Open Access Journals (Sweden)

    Ofélia Anjos

    2015-07-01

    Full Text Available Paper properties determine the product application potential and depend on the raw material, pulping conditions, and pulp refining. The aim of this study was to construct mathematical models that predict quantitative relations between the paper density and various mechanical and optical properties of the paper. A dataset of properties of paper handsheets produced with pulps of Acacia dealbata, Acacia melanoxylon, and Eucalyptus globulus beaten at 500, 2500, and 4500 revolutions was used. Unsupervised classification techniques were combined to assess the need to perform separated prediction models for each species, and multivariable regression techniques were used to establish such prediction models. It was possible to develop models with a high goodness of fit using paper density as the independent variable (or predictor for all variables except tear index and zero-span tensile strength, both dry and wet.

  9. Using multiple linear regression and physicochemical changes of amino acid mutations to predict antigenic variants of influenza A/H3N2 viruses.

    Science.gov (United States)

    Cui, Haibo; Wei, Xiaomei; Huang, Yu; Hu, Bin; Fang, Yaping; Wang, Jia

    2014-01-01

    Among human influenza viruses, strain A/H3N2 accounts for over a quarter of a million deaths annually. Antigenic variants of these viruses often render current vaccinations ineffective and lead to repeated infections. In this study, a computational model was developed to predict antigenic variants of the A/H3N2 strain. First, 18 critical antigenic amino acids in the hemagglutinin (HA) protein were recognized using a scoring method combining phi (ϕ) coefficient and information entropy. Next, a prediction model was developed by integrating multiple linear regression method with eight types of physicochemical changes in critical amino acid positions. When compared to other three known models, our prediction model achieved the best performance not only on the training dataset but also on the commonly-used testing dataset composed of 31878 antigenic relationships of the H3N2 influenza virus.

  10. Predictability and interpretability of hybrid link-level crash frequency models for urban arterials compared to cluster-based and general negative binomial regression models.

    Science.gov (United States)

    Najaf, Pooya; Duddu, Venkata R; Pulugurtha, Srinivas S

    2018-03-01

    Machine learning (ML) techniques have higher prediction accuracy compared to conventional statistical methods for crash frequency modelling. However, their black-box nature limits the interpretability. The objective of this research is to combine both ML and statistical methods to develop hybrid link-level crash frequency models with high predictability and interpretability. For this purpose, M5' model trees method (M5') is introduced and applied to classify the crash data and then calibrate a model for each homogenous class. The data for 1134 and 345 randomly selected links on urban arterials in the city of Charlotte, North Carolina was used to develop and validate models, respectively. The outputs from the hybrid approach are compared with the outputs from cluster-based negative binomial regression (NBR) and general NBR models. Findings indicate that M5' has high predictability and is very reliable to interpret the role of different attributes on crash frequency compared to other developed models.

  11. Using visible and near-infrared diffuse reflectance spectroscopy for predicting soil properties based on regression with peaks parameters as derived from continuum-removed spectra

    Science.gov (United States)

    Vasat, Radim; Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2014-05-01

    Visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) provides a rapid and inexpensive tool for simultaneous prediction of a variety of soil properties. Usually, some sophisticated multivariate mathematical or statistical methods are employed in order to extract the required information from the raw spectra measurement. For this purpose especially the Partial least squares regression (PLSR) and Support vector machines (SVM) are the most frequently used. These methods generally benefit from the complexity with which the soil spectra are treated. But it is interesting that also techniques that focus only on a single spectral feature, such as a simple linear regression with selected continuum-removed spectra (CRS) characteristic (e.g. peak depth), can often provide competitive results. Therefore, we decided to enhance the potential of CRS taking into account all possible CRS peak parameters (area, width and depth) and develop a comprehensive methodology based on multiple linear regression approach. The eight considered soil properties were oxidizable carbon content (Cox), exchangeable (pHex) and active soil pH (pHa), particle and bulk density, CaCO3 content, crystalline and amorphous (Fed) and amorphous Fe (Feox) forms. In four cases (pHa, bulk density, Fed and Feox), of which two (Fed and Feox) were predicted reliably accurately (0.50 interestingly, in the case of particle density, the presented approach outperformed the PLSR and SVM dramatically offering a fairly accurate prediction (R2cv = 0.827) against two failures (R2cv = 0.034 and 0.121 for PLSR and SVM, resp.). In last two cases (Cox and CaCO3) a slightly worse results were achieved then with PLSR and SVM with overall fairly accurate prediction (R2cv > 0.80). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319).

  12. Development and implementation of a regression model for predicting recreational water quality in the Cuyahoga River, Cuyahoga Valley National Park, Ohio 2009-11

    Science.gov (United States)

    Brady, Amie M.G.; Plona, Meg B.

    2012-01-01

    The Cuyahoga River within Cuyahoga Valley National Park (CVNP) is at times impaired for recreational use due to elevated concentrations of Escherichia coli (E. coli), a fecal-indicator bacterium. During the recreational seasons of mid-May through September during 2009–11, samples were collected 4 days per week and analyzed for E. coli concentrations at two sites within CVNP. Other water-quality and environ-mental data, including turbidity, rainfall, and streamflow, were measured and (or) tabulated for analysis. Regression models developed to predict recreational water quality in the river were implemented during the recreational seasons of 2009–11 for one site within CVNP–Jaite. For the 2009 and 2010 seasons, the regression models were better at predicting exceedances of Ohio's single-sample standard for primary-contact recreation compared to the traditional method of using the previous day's E. coli concentration. During 2009, the regression model was based on data collected during 2005 through 2008, excluding available 2004 data. The resulting model for 2009 did not perform as well as expected (based on the calibration data set) and tended to overestimate concentrations (correct responses at 69 percent). During 2010, the regression model was based on data collected during 2004 through 2009, including all of the available data. The 2010 model performed well, correctly predicting 89 percent of the samples above or below the single-sample standard, even though the predictions tended to be lower than actual sample concentrations. During 2011, the regression model was based on data collected during 2004 through 2010 and tended to overestimate concentrations. The 2011 model did not perform as well as the traditional method or as expected, based on the calibration dataset (correct responses at 56 percent). At a second site—Lock 29, approximately 5 river miles upstream from Jaite, a regression model based on data collected at the site during the recreational

  13. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids.

    Science.gov (United States)

    Fragkaki, A G; Farmaki, E; Thomaidis, N; Tsantili-Kakoulidou, A; Angelis, Y S; Koupparis, M; Georgakopoulos, C

    2012-09-21

    The comparison among different modelling techniques, such as multiple linear regression, partial least squares and artificial neural networks, has been performed in order to construct and evaluate models for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids. The performance of the quantitative structure-retention relationship study, using the multiple linear regression and partial least squares techniques, has been previously conducted. In the present study, artificial neural networks models were constructed and used for the prediction of relative retention times of anabolic androgenic steroids, while their efficiency is compared with that of the models derived from the multiple linear regression and partial least squares techniques. For overall ranking of the models, a novel procedure [Trends Anal. Chem. 29 (2010) 101-109] based on sum of ranking differences was applied, which permits the best model to be selected. The suggested models are considered useful for the estimation of relative retention times of designer steroids for which no analytical data are available. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Prediction of Foreign Object Debris/Damage type based in human factors for aeronautics using logistic regression model

    Science.gov (United States)

    Romo, David Ricardo

    Foreign Object Debris/Damage (FOD) has been an issue for military and commercial aircraft manufacturers since the early ages of aviation and aerospace. Currently, aerospace is growing rapidly and the chances of FOD presence are growing as well. One of the principal causes in manufacturing is the human error. The cost associated with human error in commercial and military aircrafts is approximately accountable for 4 billion dollars per year. This problem is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access, restrictions of personal items entering designated areas, tool accountability, and the use of technology such as Radio Frequency Identification (RFID) tags, etc. All of the efforts mentioned before, have not show a significant occurrence reduction in terms of manufacturing processes. On the contrary, a repetitive path of occurrence is present, and the cost associated has not declined in a significant manner. In order to address the problem, this thesis proposes a new approach using statistical analysis. The effort of this thesis is to create a predictive model using historical categorical data from an aircraft manufacturer only focusing in human error causes. The use of contingency tables, natural logarithm of the odds and probability transformation is used in order to provide the predicted probabilities of each aircraft. A case of study is shown in this thesis in order to show the applied methodology. As a result, this approach is able to predict the possible outcomes of FOD by the workstation/area needed, and monthly predictions per workstation. This thesis is intended to be the starting point of statistical data analysis regarding FOD in human factors. The purpose of this thesis is to identify the areas where human error is the primary cause of FOD occurrence in order to design and implement accurate solutions. The advantages of the proposed methodology can go from the reduction of cost

  15. Speckle tracking echocardiography derived 2-dimensional myocardial strain predicts left ventricular function and mass regression in aortic stenosis patients undergoing aortic valve replacement.

    Science.gov (United States)

    Staron, Adam; Bansal, Manish; Kalakoti, Piyush; Nakabo, Ayumi; Gasior, Zbigniew; Pysz, Piotr; Wita, Krystian; Jasinski, Marek; Sengupta, Partho P

    2013-04-01

    Regression of left ventricular (LV) mass in severe aortic stenosis (AS) following aortic valve replacement (AVR) reduces the potential risk of sudden death and congestive heart failure associated with LV hypertrophy. We investigated whether abnormalities of resting LV deformation in severe AS can predict the lack of regression of LV mass following AVR. Two-dimensional speckle tracking echocardiography (STE) was performed in a total of 100 subjects including 60 consecutive patients with severe AS having normal LV ejection fraction (EF > 50 %) and 40 controls. STE was performed preoperatively and at 4 months following AVR, including longitudinal strain assessed from the apical 4-chamber and 2-chamber views and the circumferential and rotational mechanics measured from the apical short axis view. In comparison with controls, the patients with AS showed a significantly lower LV longitudinal (p regression (>10 %) following AVR. In conclusion, STE can quantify the burden of myocardial dysfunction in patients with severe AS despite the presence of normal LV ejection fraction. Furthermore, resting abnormalities in circumferential strain at LV apex is related with a hemodynamic milieu associated with the lack of LV mass regression during short-term follow up after AVR.

  16. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

    2018-01-01

    Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

  17. Interval ridge regression (iRR) as a fast and robust method for quantitative prediction and variable selection applied to edible oil adulteration.

    Science.gov (United States)

    Jović, Ozren; Smrečki, Neven; Popović, Zora

    2016-04-01

    A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for poil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEPoil (R(2)>0.99). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Predicting drill well direction changes by regression model; Previsao de desvios na coluna de perfuracao via modelo de regressao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Areli Mesquita da [Universidade Federal de Campina Grande, PB (Brazil). Programa de Recursos Humanos 25 da ANP]. E-mail: areli@dme.ufcg.edu.br; Souza, Francisco Antonio Morais de [Universidade Federal de Campina Grande, PB (Brazil)]. E-mail: fsouza@dme.ufcg.edu.br

    2004-07-01

    During the oil well perforation we are in concern to control its upright. Even when a well is projected to be vertical, we must have in mind that does not exist rigorously vertical well, a time that diverse factors contribute for the occurrence of deviance in the drill well. When these deviances exceed certain tolerance limits the well can reach the final depth in a position far away from the desired objective, making difficult its exploration. There are others aggravations for wells that deviate from the vertical line such as consuming for fatigue of the perforation pipes and retention of the commands at the moment of the withdrawal of the column beyond difficulties in the descending of covering columns. In this work, we consider to control the upright of the well through a regression model, having an angular variable as the dependent variable in the model. The objective consists in forecast deviance in the drill well, by using the hardness of the rock, the penetration rate and the weight on the drill. (author)

  19. Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses.

    Science.gov (United States)

    Serbus, Laura R; Rodriguez, Brian Garcia; Sharmin, Zinat; Momtaz, A J M Zehadee; Christensen, Steen

    2017-06-07

    The requirement of vitamins for core metabolic processes creates a unique set of pressures for arthropods subsisting on nutrient-limited diets. While endosymbiotic bacteria carried by arthropods have been widely implicated in vitamin provisioning, the underlying molecular mechanisms are not well understood. To address this issue, standardized predictive assessment of vitamin metabolism was performed in 50 endosymbionts of insects and arachnids. The results predicted that arthropod endosymbionts overall have little capacity for complete de novo biosynthesis of conventional or active vitamin forms. Partial biosynthesis pathways were commonly predicted, suggesting a substantial role in vitamin provisioning. Neither taxonomic relationships between host and symbiont, nor the mode of host-symbiont interaction were clear predictors of endosymbiont vitamin pathway capacity. Endosymbiont genome size and the synthetic capacity of nonsymbiont taxonomic relatives were more reliable predictors. We developed a new software application that also predicted that last-step conversion of intermediates into active vitamin forms may contribute further to vitamin biosynthesis by endosymbionts. Most instances of predicted vitamin conversion were paralleled by predictions of vitamin use. This is consistent with achievement of provisioning in some cases through upregulation of pathways that were retained for endosymbiont benefit. The predicted absence of other enzyme classes further suggests a baseline of vitamin requirement by the majority of endosymbionts, as well as some instances of putative mutualism. Adaptation of this workflow to analysis of other organisms and metabolic pathways will provide new routes for considering the molecular basis for symbiosis on a comprehensive scale. Copyright © 2017 Serbus et al.

  20. Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses

    Directory of Open Access Journals (Sweden)

    Laura R. Serbus

    2017-06-01

    Full Text Available The requirement of vitamins for core metabolic processes creates a unique set of pressures for arthropods subsisting on nutrient-limited diets. While endosymbiotic bacteria carried by arthropods have been widely implicated in vitamin provisioning, the underlying molecular mechanisms are not well understood. To address this issue, standardized predictive assessment of vitamin metabolism was performed in 50 endosymbionts of insects and arachnids. The results predicted that arthropod endosymbionts overall have little capacity for complete de novo biosynthesis of conventional or active vitamin forms. Partial biosynthesis pathways were commonly predicted, suggesting a substantial role in vitamin provisioning. Neither taxonomic relationships between host and symbiont, nor the mode of host-symbiont interaction were clear predictors of endosymbiont vitamin pathway capacity. Endosymbiont genome size and the synthetic capacity of nonsymbiont taxonomic relatives were more reliable predictors. We developed a new software application that also predicted that last-step conversion of intermediates into active vitamin forms may contribute further to vitamin biosynthesis by endosymbionts. Most instances of predicted vitamin conversion were paralleled by predictions of vitamin use. This is consistent with achievement of provisioning in some cases through upregulation of pathways that were retained for endosymbiont benefit. The predicted absence of other enzyme classes further suggests a baseline of vitamin requirement by the majority of endosymbionts, as well as some instances of putative mutualism. Adaptation of this workflow to analysis of other organisms and metabolic pathways will provide new routes for considering the molecular basis for symbiosis on a comprehensive scale.

  1. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    Science.gov (United States)

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  2. Influence of the Human Skin Tumor Type in Photodynamic Therapy Analysed by a Predictive Model

    Directory of Open Access Journals (Sweden)

    I. Salas-García

    2012-01-01

    Full Text Available Photodynamic Therapy (PDT modeling allows the prediction of the treatment results depending on the lesion properties, the photosensitizer distribution, or the optical source characteristics. We employ a predictive PDT model and apply it to different skin tumors. It takes into account optical radiation distribution, a nonhomogeneous topical photosensitizer spatial temporal distribution, and the time-dependent photochemical interaction. The predicted singlet oxygen molecular concentrations with varying optical irradiance are compared and could be directly related with the necrosis area. The results show a strong dependence on the particular lesion. This suggests the need to design optimal PDT treatment protocols adapted to the specific patient and lesion.

  3. Sequence analyses and 3D structure prediction of two Type III ...

    African Journals Online (AJOL)

    Internet

    2012-04-17

    Apr 17, 2012 ... analyses were performed using the sequence data of growth hormone gene (gh) ... used as a phylogenetic marker for different taxonomic ..... structural changes have been observed in some parts of ..... of spatial restraints.

  4. Propensity-score matching in economic analyses: comparison with regression models, instrumental variables, residual inclusion, differences-in-differences, and decomposition methods.

    Science.gov (United States)

    Crown, William H

    2014-02-01

    This paper examines the use of propensity score matching in economic analyses of observational data. Several excellent papers have previously reviewed practical aspects of propensity score estimation and other aspects of the propensity score literature. The purpose of this paper is to compare the conceptual foundation of propensity score models with alternative estimators of treatment effects. References are provided to empirical comparisons among methods that have appeared in the literature. These comparisons are available for a subset of the methods considered in this paper. However, in some cases, no pairwise comparisons of particular methods are yet available, and there are no examples of comparisons across all of the methods surveyed here. Irrespective of the availability of empirical comparisons, the goal of this paper is to provide some intuition about the relative merits of alternative estimators in health economic evaluations where nonlinearity, sample size, availability of pre/post data, heterogeneity, and missing variables can have important implications for choice of methodology. Also considered is the potential combination of propensity score matching with alternative methods such as differences-in-differences and decomposition methods that have not yet appeared in the empirical literature.

  5. Regression and tracing methodology based prediction of oncoming demand and losses in deregulated operation of power systems

    DEFF Research Database (Denmark)

    Nallagownden, P.; Mukerjee, R.N.; Masri, S.

    2010-01-01

    of the transmission services hiring contract, inputs such as extent of use of a transmission circuit for a transaction and the associated power loss in the said transmission circuit are also required. To provide the necessary lead time to frame transaction and transmission contracts for an oncoming operational...... coefficients are used advantageously to predict a generator's contribution to a retailer's demand and power loss for this transaction. This paper proposes a procedure that can be implemented real time, to quantify losses in each transmission circuit used by a specific transaction, based on proportionality......The deregulated electricity market can be thought of as a conglomeration of generation providers, transmission service operators (TSO) and retailers, where both generation and retailing may have open access to the transmission grid for trading electricity. For a transaction contract bid to take...

  6. Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation

    Science.gov (United States)

    Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu

    2016-09-01

    We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1-10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633-0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926-0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation.

  7. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    Science.gov (United States)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    International Nuclear Information System (INIS)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-01-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic

  9. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu [R& D, Safety Science Research, Kao Corporation, Tochigi (Japan); Yoshinari, Kouichi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka (Japan); Honda, Hiroshi, E-mail: honda.hiroshi@kao.co.jp [R& D, Safety Science Research, Kao Corporation, Tochigi (Japan)

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic

  10. Analysing the Relevance of Experience Partitions to the Prediction of Players’ Self-Reports of Affect

    DEFF Research Database (Denmark)

    Martínez, Héctor Pérez; Yannakakis, Georgios N.

    2011-01-01

    A common practice in modeling affect from physiological signals consists of reducing the signals to a set of statistical features that feed predictors of self-reported emotions. This paper analyses the impact of various time-windows, used for the extraction of physiological features, to the accur......A common practice in modeling affect from physiological signals consists of reducing the signals to a set of statistical features that feed predictors of self-reported emotions. This paper analyses the impact of various time-windows, used for the extraction of physiological features...

  11. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. (Argonne National Lab., IL (United States)); Pelton, A.; Eriksson, G. (Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering)

    1992-01-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  12. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1992-07-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  13. Heterogeneity index evaluated by slope of linear regression on {sup 18}F-FDG PET/CT as a prognostic marker for predicting tumor recurrence in pancreatic ductal adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [CHA University, Department of Nuclear Medicine, CHA Bundang Medical Center, Seongnam (Korea, Republic of); Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Yong Joong [Veterans Health Service Medical Center, Seoul (Korea, Republic of); Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-11-15

    {sup 18}F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been investigated as a method to predict pancreatic cancer recurrence after pancreatic surgery. We evaluated the recently introduced heterogeneity indices of {sup 18}F-FDG PET/CT used for predicting pancreatic cancer recurrence after surgery and compared them with current clinicopathologic and {sup 18}F-FDG PET/CT parameters. A total of 93 pancreatic ductal adenocarcinoma patients (M:F = 60:33, mean age = 64.2 ± 9.1 years) who underwent preoperative {sup 18}F-FDG PET/CT following pancreatic surgery were retrospectively enrolled. The standardized uptake values (SUVs) and tumor-to-background ratios (TBR) were measured on each {sup 18}F-FDG PET/CT, as metabolic parameters. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were examined as volumetric parameters. The coefficient of variance (heterogeneity index-1; SUVmean divided by the standard deviation) and linear regression slopes (heterogeneity index-2) of the MTV, according to SUV thresholds of 2.0, 2.5 and 3.0, were evaluated as heterogeneity indices. Predictive values of clinicopathologic and {sup 18}F-FDG PET/CT parameters and heterogeneity indices were compared in terms of pancreatic cancer recurrence. Seventy patients (75.3%) showed recurrence after pancreatic cancer surgery (mean recurrence = 9.4 ± 8.4 months). Comparing the recurrence and no recurrence patients, all of the {sup 18}F-FDG PET/CT parameters and heterogeneity indices demonstrated significant differences. In univariate Cox-regression analyses, MTV (P = 0.013), TLG (P = 0.007), and heterogeneity index-2 (P = 0.027) were significant. Among the clinicopathologic parameters, CA19-9 (P = 0.025) and venous invasion (P = 0.002) were selected as significant parameters. In multivariate Cox-regression analyses, MTV (P = 0.005), TLG (P = 0.004), and heterogeneity index-2 (P = 0.016) with venous invasion (P < 0.001, 0.001, and 0

  14. Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses

    Directory of Open Access Journals (Sweden)

    Arthur C. Oliveira

    2017-05-01

    Full Text Available Target prediction is generally the first step toward recognition of bona fide microRNA (miRNA-target interactions in living cells. Several target prediction tools are now available, which use distinct criteria and stringency to provide the best set of candidate targets for a single miRNA or a subset of miRNAs. However, there are many false-negative predictions, and consensus about the optimum strategy to select and use the output information provided by the target prediction tools is lacking. We compared the performance of four tools cited in literature—TargetScan (TS, miRanda-mirSVR (MR, Pita, and RNA22 (R22, and we determined the most effective approach for analyzing target prediction data (individual, union, or intersection. For this purpose, we calculated the sensitivity, specificity, precision, and correlation of these approaches using 10 miRNAs (miR-1-3p, miR-17-5p, miR-21-5p, miR-24-3p, miR-29a-3p, miR-34a-5p, miR-124-3p, miR-125b-5p, miR-145-5p, and miR-155-5p and 1,400 genes (700 validated and 700 non-validated as targets of these miRNAs. The four tools provided a subset of high-quality predictions and returned few false-positive predictions; however, they could not identify several known true targets. We demonstrate that union of TS/MR and TS/MR/R22 enhanced the quality of in silico prediction analysis of miRNA targets. We conclude that the union rather than the intersection of the aforementioned tools is the best strategy for maximizing performance while minimizing the loss of time and resources in subsequent in vivo and in vitro experiments for functional validation of miRNA-target interactions.

  15. Predicted effect size of lisdexamfetamine treatment of attention deficit/hyperactivity disorder (ADHD) in European adults: Estimates based on indirect analysis using a systematic review and meta-regression analysis.

    Science.gov (United States)

    Fridman, M; Hodgkins, P S; Kahle, J S; Erder, M H

    2015-06-01

    There are few approved therapies for adults with attention-deficit/hyperactivity disorder (ADHD) in Europe. Lisdexamfetamine (LDX) is an effective treatment for ADHD; however, no clinical trials examining the efficacy of LDX specifically in European adults have been conducted. Therefore, to estimate the efficacy of LDX in European adults we performed a meta-regression of existing clinical data. A systematic review identified US- and Europe-based randomized efficacy trials of LDX, atomoxetine (ATX), or osmotic-release oral system methylphenidate (OROS-MPH) in children/adolescents and adults. A meta-regression model was then fitted to the published/calculated effect sizes (Cohen's d) using medication, geographical location, and age group as predictors. The LDX effect size in European adults was extrapolated from the fitted model. Sensitivity analyses performed included using adult-only studies and adding studies with placebo designs other than a stan