WorldWideScience

Sample records for regression algorithm based

  1. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

    Directory of Open Access Journals (Sweden)

    Zhiming Song

    2015-01-01

    Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.

  2. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    Science.gov (United States)

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  3. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    Directory of Open Access Journals (Sweden)

    Xu Yu

    2018-01-01

    Full Text Available Cross-domain collaborative filtering (CDCF solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR. We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  4. Regression algorithm for emotion detection

    OpenAIRE

    Berthelon , Franck; Sander , Peter

    2013-01-01

    International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...

  5. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  6. Forecasting systems reliability based on support vector regression with genetic algorithms

    International Nuclear Information System (INIS)

    Chen, K.-Y.

    2007-01-01

    This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error

  7. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure

    Science.gov (United States)

    Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.

    2018-06-01

    Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.

  8. A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data

    Directory of Open Access Journals (Sweden)

    Ruzzo Walter L

    2006-03-01

    Full Text Available Abstract Background As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. Methods In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN algorithm. The choice of KNN is motivated by its simplicity, flexibility to incorporate different data types and adaptability to irregular feature spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is that performance is subject to the often ad hoc choice of similarity metric. To address this weakness, we apply regression methods to infer a similarity metric as a weighted combination of a set of base similarity measures, which helps to locate the neighbors that are most likely to be in the same class as the target gene. We also suggest a novel voting scheme to generate confidence scores that estimate the accuracy of predictions. The method gracefully extends to multi-way classification problems. Results We apply this technique to gene function prediction according to three well-known Escherichia coli classification schemes suggested by biologists, using information derived from microarray and genome sequencing data. We demonstrate that our algorithm dramatically outperforms the naive KNN methods and is competitive with support vector machine (SVM algorithms for integrating heterogenous data. We also show that by combining different data sources, prediction accuracy can improve significantly. Conclusion Our extension of KNN with automatic feature weighting, multi-class prediction, and probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive and flexible. This general framework can also be applied to similar classification problems involving heterogeneous datasets.

  9. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  10. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  11. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    Science.gov (United States)

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  12. Comprehensive preference optimization of an irreversible thermal engine using pareto based mutable smart bee algorithm and generalized regression neural network

    DEFF Research Database (Denmark)

    Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar

    2013-01-01

    Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines...... and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...

  13. A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.

    Directory of Open Access Journals (Sweden)

    Daniel Vasiliu

    Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.

  14. A flexible fuzzy regression algorithm for forecasting oil consumption estimation

    International Nuclear Information System (INIS)

    Azadeh, A.; Khakestani, M.; Saberi, M.

    2009-01-01

    Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.

  15. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhongyi Hu

    2013-01-01

    Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

  16. Regression toward the mean – a detection method for unknown population mean based on Mee and Chua's algorithm

    Directory of Open Access Journals (Sweden)

    Lüdtke Rainer

    2008-08-01

    Full Text Available Abstract Background Regression to the mean (RTM occurs in situations of repeated measurements when extreme values are followed by measurements in the same subjects that are closer to the mean of the basic population. In uncontrolled studies such changes are likely to be interpreted as a real treatment effect. Methods Several statistical approaches have been developed to analyse such situations, including the algorithm of Mee and Chua which assumes a known population mean μ. We extend this approach to a situation where μ is unknown and suggest to vary it systematically over a range of reasonable values. Using differential calculus we provide formulas to estimate the range of μ where treatment effects are likely to occur when RTM is present. Results We successfully applied our method to three real world examples denoting situations when (a no treatment effect can be confirmed regardless which μ is true, (b when a treatment effect must be assumed independent from the true μ and (c in the appraisal of results of uncontrolled studies. Conclusion Our method can be used to separate the wheat from the chaff in situations, when one has to interpret the results of uncontrolled studies. In meta-analysis, health-technology reports or systematic reviews this approach may be helpful to clarify the evidence given from uncontrolled observational studies.

  17. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    Science.gov (United States)

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based

  18. Virtual machine consolidation enhancement using hybrid regression algorithms

    Directory of Open Access Journals (Sweden)

    Amany Abdelsamea

    2017-11-01

    Full Text Available Cloud computing data centers are growing rapidly in both number and capacity to meet the increasing demands for highly-responsive computing and massive storage. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. The reason for this extremely high energy consumption is not just the quantity of computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these resources. VM consolidation involves live migration of VMs hence the capability of transferring a VM between physical servers with a close to zero down time. It is an effective way to improve the utilization of resources and increase energy efficiency in cloud data centers. VM consolidation consists of host overload/underload detection, VM selection and VM placement. Most of the current VM consolidation approaches apply either heuristic-based techniques, such as static utilization thresholds, decision-making based on statistical analysis of historical data; or simply periodic adaptation of the VM allocation. Most of those algorithms rely on CPU utilization only for host overload detection. In this paper we propose using hybrid factors to enhance VM consolidation. Specifically we developed a multiple regression algorithm that uses CPU utilization, memory utilization and bandwidth utilization for host overload detection. The proposed algorithm, Multiple Regression Host Overload Detection (MRHOD, significantly reduces energy consumption while ensuring a high level of adherence to Service Level Agreements (SLA since it gives a real indication of host utilization based on three parameters (CPU, Memory, Bandwidth utilizations instead of one parameter only (CPU utilization. Through simulations we show that our approach reduces power consumption by 6 times compared to single factor algorithms using random workload. Also using PlanetLab workload traces we show that MRHOD improves

  19. A Scalable Local Algorithm for Distributed Multivariate Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm can be used for distributed...

  20. An Efficient Local Algorithm for Distributed Multivariate Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm is designed for distributed...

  1. Finite Algorithms for Robust Linear Regression

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun

    1990-01-01

    The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...

  2. Superquantile Regression: Theory, Algorithms, and Applications

    Science.gov (United States)

    2014-12-01

    Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1...Navy submariners, reliability engineering, uncertainty quantification, and financial risk management . Superquantile, superquantile regression...Royset Carlos F. Borges Associate Professor of Operations Research Dissertation Supervisor Professor of Applied Mathematics Lyn R. Whitaker Javier

  3. Improving case-based reasoning systems by combining k-nearest neighbour algorithm with logistic regression in the prediction of patients' registration on the renal transplant waiting list.

    Directory of Open Access Journals (Sweden)

    Boris Campillo-Gimenez

    Full Text Available Case-based reasoning (CBR is an emerging decision making paradigm in medical research where new cases are solved relying on previously solved similar cases. Usually, a database of solved cases is provided, and every case is described through a set of attributes (inputs and a label (output. Extracting useful information from this database can help the CBR system providing more reliable results on the yet to be solved cases.We suggest a general framework where a CBR system, viz. K-Nearest Neighbour (K-NN algorithm, is combined with various information obtained from a Logistic Regression (LR model, in order to improve prediction of access to the transplant waiting list.LR is applied, on the case database, to assign weights to the attributes as well as the solved cases. Thus, five possible decision making systems based on K-NN and/or LR were identified: a standalone K-NN, a standalone LR and three soft K-NN algorithms that rely on the weights based on the results of the LR. The evaluation was performed under two conditions, either using predictive factors known to be related to registration, or using a combination of factors related and not related to registration.The results show that our suggested approach, where the K-NN algorithm relies on both weighted attributes and cases, can efficiently deal with non relevant attributes, whereas the four other approaches suffer from this kind of noisy setups. The robustness of this approach suggests interesting perspectives for medical problem solving tools using CBR methodology.

  4. Design optimization of tailor-rolled blank thin-walled structures based on ɛ-support vector regression technique and genetic algorithm

    Science.gov (United States)

    Duan, Libin; Xiao, Ning-cong; Li, Guangyao; Cheng, Aiguo; Chen, Tao

    2017-07-01

    Tailor-rolled blank thin-walled (TRB-TH) structures have become important vehicle components owing to their advantages of light weight and crashworthiness. The purpose of this article is to provide an efficient lightweight design for improving the energy-absorbing capability of TRB-TH structures under dynamic loading. A finite element (FE) model for TRB-TH structures is established and validated by performing a dynamic axial crash test. Different material properties for individual parts with different thicknesses are considered in the FE model. Then, a multi-objective crashworthiness design of the TRB-TH structure is constructed based on the ɛ-support vector regression (ɛ-SVR) technique and non-dominated sorting genetic algorithm-II. The key parameters (C, ɛ and σ) are optimized to further improve the predictive accuracy of ɛ-SVR under limited sample points. Finally, the technique for order preference by similarity to the ideal solution method is used to rank the solutions in Pareto-optimal frontiers and find the best compromise optima. The results demonstrate that the light weight and crashworthiness performance of the optimized TRB-TH structures are superior to their uniform thickness counterparts. The proposed approach provides useful guidance for designing TRB-TH energy absorbers for vehicle bodies.

  5. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    Science.gov (United States)

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  6. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  7. Prediction of CO2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression

    Directory of Open Access Journals (Sweden)

    Weibo Zhao

    2017-12-01

    Full Text Available Power generation industry is the key industry of carbon dioxide (CO2 emission in China. Assessing its future CO2 emissions is of great significance to the formulation and implementation of energy saving and emission reduction policies. Based on the Stochastic Impacts by Regression on Population, Affluence and Technology model (STIRPAT, the influencing factors analysis model of CO2 emission of power generation industry is established. The ridge regression (RR method is used to estimate the historical data. In addition, a wavelet neural network (WNN prediction model based on Cuckoo Search algorithm optimized by Gauss (GCS is put forward to predict the factors in the STIRPAT model. Then, the predicted values are substituted into the regression model, and the CO2 emission estimation values of the power generation industry in China are obtained. It’s concluded that population, per capita Gross Domestic Product (GDP, standard coal consumption and thermal power specific gravity are the key factors affecting the CO2 emission from the power generation industry. Besides, the GCS-WNN prediction model has higher prediction accuracy, comparing with other models. Moreover, with the development of science and technology in the future, the CO2 emission growth in the power generation industry will gradually slow down according to the prediction results.

  8. Outlier detection algorithms for least squares time series regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Sat...

  9. Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2015-01-01

    Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.

  10. A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover

    Directory of Open Access Journals (Sweden)

    Akpona Okujeni

    2014-07-01

    Full Text Available Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR, kernel ridge regression (KRR, artificial neural networks (NN, random forest regression (RFR and partial least squares regression (PLSR. Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, grass- and tree-covered areas. SVR and KRR models proved to be stable with regard to the spatial and spectral differences between both images and effectively utilized the higher complexity of the synthetic training mixtures for improving estimates for coarser resolution data. Observed deficiencies mainly relate to known problems arising from spectral similarities or shadowing. The remaining regressors either revealed erratic (NN or limited (RFR and PLSR performances when comprehensively mapping urban land cover. Our findings suggest that the combination of kernel-based regression methods, such as SVR and KRR, with synthetically mixed training data is well suited for quantifying urban land cover from imaging spectrometer data at multiple scales.

  11. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  12. A comparison of regression algorithms for wind speed forecasting at Alexander Bay

    CSIR Research Space (South Africa)

    Botha, Nicolene

    2016-12-01

    Full Text Available to forecast 1 to 24 hours ahead, in hourly intervals. Predictions are performed on a wind speed time series with three machine learning regression algorithms, namely support vector regression, ordinary least squares and Bayesian ridge regression. The resulting...

  13. Support Vector Regression and Genetic Algorithm for HVAC Optimal Operation

    Directory of Open Access Journals (Sweden)

    Ching-Wei Chen

    2016-01-01

    Full Text Available This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM, the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found that R2 of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.

  14. Dynamic Heat Supply Prediction Using Support Vector Regression Optimized by Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Meiping Wang

    2016-01-01

    Full Text Available We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR model-optimized particle swarm optimization (PSO algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR, and artificial neural network (ANN through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.

  15. COMPARISON OF PARTIAL LEAST SQUARES REGRESSION METHOD ALGORITHMS: NIPALS AND PLS-KERNEL AND AN APPLICATION

    Directory of Open Access Journals (Sweden)

    ELİF BULUT

    2013-06-01

    Full Text Available Partial Least Squares Regression (PLSR is a multivariate statistical method that consists of partial least squares and multiple linear regression analysis. Explanatory variables, X, having multicollinearity are reduced to components which explain the great amount of covariance between explanatory and response variable. These components are few in number and they don’t have multicollinearity problem. Then multiple linear regression analysis is applied to those components to model the response variable Y. There are various PLSR algorithms. In this study NIPALS and PLS-Kernel algorithms will be studied and illustrated on a real data set.

  16. Modeling oil production based on symbolic regression

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju

    2015-01-01

    Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak

  17. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-01

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  18. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-06

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  19. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  20. Collaborative regression-based anatomical landmark detection

    International Nuclear Information System (INIS)

    Gao, Yaozong; Shen, Dinggang

    2015-01-01

    Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through voting from all image voxels, which is completely different from the classification-based methods that use voxel-wise classification to detect landmarks. Despite their robustness, the accuracy of regression-based landmark detection methods is often limited due to (1) the inclusion of uninformative image voxels in the voting procedure, and (2) the lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. (1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localise landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for informative voxels near the landmark, a spherical sampling strategy is also designed at the training stage to improve their prediction accuracy. (2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of ‘difficult-to-detect’ landmarks by using spatial guidance from ‘easy-to-detect’ landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head and neck landmarks in computed tomography images, and also dental landmarks in cone beam computed tomography images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods. (paper)

  1. A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis

    International Nuclear Information System (INIS)

    Kumar, Akansha; Tsvetkov, Pavel V.

    2015-01-01

    Highlights: • This paper presents a new method useful for the optimization of complex dynamic systems. • The method uses the strengths of; genetic algorithms (GA), and regression splines. • The method is applied to the design of a gas cooled fast breeder reactor design. • Tools like Java, R, and codes like MCNP, Matlab are used in this research. - Abstract: A module based optimization method using genetic algorithms (GA), and multivariate regression analysis has been developed to optimize a set of parameters in the design of a nuclear reactor. GA simulates natural evolution to perform optimization, and is widely used in recent times by the scientific community. The GA fits a population of random solutions to the optimized solution of a specific problem. In this work, we have developed a genetic algorithm to determine the values for a set of nuclear reactor parameters to design a gas cooled fast breeder reactor core including a basis thermal–hydraulics analysis, and energy transfer. Multivariate regression is implemented using regression splines (RS). Reactor designs are usually complex and a simulation needs a significantly large amount of time to execute, hence the implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using RS in conjunction with GA. Due to using RS, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a multivariate regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The reactor parameters are given by the, radius of a fuel pin cell, isotopic enrichment of the fissile material in the fuel, mass flow rate of the coolant, and temperature of the coolant at the core inlet. And, the optimization objectives for the reactor core are, high breeding of U-233 and Pu-239 in

  2. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model

    International Nuclear Information System (INIS)

    Hong, W.-C.

    2009-01-01

    Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. Recently, support vector regression (SVR), with nonlinear mapping capabilities of forecasting, has been successfully employed to solve nonlinear regression and time series problems. However, it is still lack of systematic approaches to determine appropriate parameter combination for a SVR model. This investigation elucidates the feasibility of applying chaotic particle swarm optimization (CPSO) algorithm to choose the suitable parameter combination for a SVR model. The empirical results reveal that the proposed model outperforms the other two models applying other algorithms, genetic algorithm (GA) and simulated annealing algorithm (SA). Finally, it also provides the theoretical exploration of the electric load forecasting support system (ELFSS)

  3. Robust Mediation Analysis Based on Median Regression

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2014-01-01

    Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925

  4. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  5. Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modeling

    Directory of Open Access Journals (Sweden)

    Pooya Najaf

    2013-07-01

    Full Text Available Road freight transportation between provinces of a country has an important effect on the traffic flow of intercity transportation networks. Therefore, an accurate estimation of the road freight transportation for provinces of a country is so crucial to improve the rural traffic operation in a large scale management. Accordingly, the focused case study database in this research is the information related to Iran’s provinces in the year 2008. Correlation between road freight transportation with variables such as transport cost and distance, population, average household income and Gross Domestic Product (GDP of each province is calculated. Results clarify that the population is the most effective factor in the prediction of provinces’ transported freight. Linear Regression Model (LRM is calibrated based on the population variable, and afterwards Fuzzy Regression Algorithm (FRA is generated on the basis of the LRM. The proposed FRA is an intelligent modified algorithm with an accurate prediction and fitting ability. This methodology can be significantly useful in macro-level planning problems where decreasing prediction error values is one of the most important concerns for decision makers. In addition, Back-Propagation Neural Network (BPNN is developed to evaluate the prediction capability of the models and to be compared with FRA. According to the final results, the modified FRA estimates road freight transportation values more accurately than the BPNN and LRM. Finally, in order to predict the road freight transportation values, the reliability of the calibrated models is analyzed using the information of the year 2009. Results show higher reliability for the proposed modified FRA.

  6. Near infrared spectrometric technique for testing fruit quality: optimisation of regression models using genetic algorithms

    Science.gov (United States)

    Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.

    2016-02-01

    Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.

  7. A Comparative Study of Classification and Regression Algorithms for Modelling Students' Academic Performance

    Science.gov (United States)

    Strecht, Pedro; Cruz, Luís; Soares, Carlos; Mendes-Moreira, João; Abreu, Rui

    2015-01-01

    Predicting the success or failure of a student in a course or program is a problem that has recently been addressed using data mining techniques. In this paper we evaluate some of the most popular classification and regression algorithms on this problem. We address two problems: prediction of approval/failure and prediction of grade. The former is…

  8. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  9. Gradient descent for robust kernel-based regression

    Science.gov (United States)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  10. Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting

    Directory of Open Access Journals (Sweden)

    Cheng-Wen Lee

    2017-11-01

    Full Text Available Accurate electricity forecasting is still the critical issue in many energy management fields. The applications of hybrid novel algorithms with support vector regression (SVR models to overcome the premature convergence problem and improve forecasting accuracy levels also deserve to be widely explored. This paper applies chaotic function and quantum computing concepts to address the embedded drawbacks including crossover and mutation operations of genetic algorithms. Then, this paper proposes a novel electricity load forecasting model by hybridizing chaotic function and quantum computing with GA in an SVR model (named SVRCQGA to achieve more satisfactory forecasting accuracy levels. Experimental examples demonstrate that the proposed SVRCQGA model is superior to other competitive models.

  11. Regression Discontinuity Designs Based on Population Thresholds

    DEFF Research Database (Denmark)

    Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica

    In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...

  12. An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm

    Science.gov (United States)

    Zainal, Nurezayana; Zain, Azlan Mohd; Sharif, Safian; Nuzly Abdull Hamed, Haza; Mohamad Yusuf, Suhaila

    2017-09-01

    The aim of this study is to develop an integrated study of surface roughness (Ra) in the die-sinking electrical discharge machining (EDM) process of Ti-6AL-4V titanium alloy with positive polarity of copper-tungsten (Cu-W) electrode. Regression analysis and glowworm swarm optimization (GSO) algorithm were considered for modelling and optimization process. Pulse on time (A), pulse off time (B), peak current (C) and servo voltage (D) were selected as the machining parameters with various levels. The experiments have been conducted based on the two levels of full factorial design with an added center point design of experiments (DOE). Moreover, mathematical models with linear and 2 factor interaction (2FI) effects of the parameters chosen were developed. The validity test of the fit and the adequacy of the developed mathematical models have been carried out by using analysis of variance (ANOVA) and F-test. The statistical analysis showed that the 2FI model outperformed with the most minimal value of Ra compared to the linear model and experimental result.

  13. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    Science.gov (United States)

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  14. Image Jacobian Matrix Estimation Based on Online Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shangqin Mao

    2012-10-01

    Full Text Available Research into robotics visual servoing is an important area in the field of robotics. It has proven difficult to achieve successful results for machine vision and robotics in unstructured environments without using any a priori camera or kinematic models. In uncalibrated visual servoing, image Jacobian matrix estimation methods can be divided into two groups: the online method and the offline method. The offline method is not appropriate for most natural environments. The online method is robust but rough. Moreover, if the images feature configuration changes, it needs to restart the approximating procedure. A novel approach based on an online support vector regression (OL-SVR algorithm is proposed which overcomes the drawbacks and combines the virtues just mentioned.

  15. Pair- ${v}$ -SVR: A Novel and Efficient Pairing nu-Support Vector Regression Algorithm.

    Science.gov (United States)

    Hao, Pei-Yi

    This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory. Moreover, pair--SVR has additional advantage of using parameter for controlling the bounds on fractions of SVs and errors. Furthermore, the upper bound and lower bound functions of the regression model estimated by pair--SVR capture well the characteristics of data distributions, thus facilitating automatic estimation of the conditional mean and predictive variance simultaneously. This may be useful in many cases, especially when the noise is heteroscedastic and depends strongly on the input values. The experimental results validate the superiority of our pair--SVR in both training/prediction speed and generalization ability.This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory

  16. A Trajectory Regression Clustering Technique Combining a Novel Fuzzy C-Means Clustering Algorithm with the Least Squares Method

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2018-04-01

    Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.

  17. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm

    International Nuclear Information System (INIS)

    Hong, Wei-Chiang

    2011-01-01

    Support vector regression (SVR), with hybrid chaotic sequence and evolutionary algorithms to determine suitable values of its three parameters, not only can effectively avoid converging prematurely (i.e., trapping into a local optimum), but also reveals its superior forecasting performance. Electric load sometimes demonstrates a seasonal (cyclic) tendency due to economic activities or climate cyclic nature. The applications of SVR models to deal with seasonal (cyclic) electric load forecasting have not been widely explored. In addition, the concept of recurrent neural networks (RNNs), focused on using past information to capture detailed information, is helpful to be combined into an SVR model. This investigation presents an electric load forecasting model which combines the seasonal recurrent support vector regression model with chaotic artificial bee colony algorithm (namely SRSVRCABC) to improve the forecasting performance. The proposed SRSVRCABC employs the chaotic behavior of honey bees which is with better performance in function optimization to overcome premature local optimum. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SRSVRCABC model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SRSVRCABC model is a promising alternative for electric load forecasting. -- Highlights: → Hybridizing the seasonal adjustment and the recurrent mechanism into an SVR model. → Employing chaotic sequence to improve the premature convergence of artificial bee colony algorithm. → Successfully providing significant accurate monthly load demand forecasting.

  18. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    Science.gov (United States)

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  19. Soft sensor development and optimization of the commercial petrochemical plant integrating support vector regression and genetic algorithm

    Directory of Open Access Journals (Sweden)

    S.K. Lahiri

    2009-09-01

    Full Text Available Soft sensors have been widely used in the industrial process control to improve the quality of the product and assure safety in the production. The core of a soft sensor is to construct a soft sensing model. This paper introduces support vector regression (SVR, a new powerful machine learning methodbased on a statistical learning theory (SLT into soft sensor modeling and proposes a new soft sensing modeling method based on SVR. This paper presents an artificial intelligence based hybrid soft sensormodeling and optimization strategies, namely support vector regression – genetic algorithm (SVR-GA for modeling and optimization of mono ethylene glycol (MEG quality variable in a commercial glycol plant. In the SVR-GA approach, a support vector regression model is constructed for correlating the process data comprising values of operating and performance variables. Next, model inputs describing the process operating variables are optimized using genetic algorithm with a view to maximize the process performance. The SVR-GA is a new strategy for soft sensor modeling and optimization. The major advantage of the strategies is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology (reaction mechanism, kinetics etc. is not required. Using SVR-GA strategy, a number of sets of optimized operating conditions were found. The optimized solutions, when verified in an actual plant, resulted in a significant improvement in the quality.

  20. Sample size calculation to externally validate scoring systems based on logistic regression models.

    Directory of Open Access Journals (Sweden)

    Antonio Palazón-Bru

    Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.

  1. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  2. A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yongquan Dong

    2018-04-01

    Full Text Available Providing accurate electric load forecasting results plays a crucial role in daily energy management of the power supply system. Due to superior forecasting performance, the hybridizing support vector regression (SVR model with evolutionary algorithms has received attention and deserves to continue being explored widely. The cuckoo search (CS algorithm has the potential to contribute more satisfactory electric load forecasting results. However, the original CS algorithm suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of population diversity, and easy trapping in local optima (i.e., premature convergence. Therefore, proposing some critical improvement mechanisms and employing an improved CS algorithm to determine suitable parameter combinations for an SVR model is essential. This paper proposes the SVR with chaotic cuckoo search (SVRCCS model based on using a tent chaotic mapping function to enrich the cuckoo search space and diversify the population to avoid trapping in local optima. In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS model, to produce more accurate forecasting performances. The numerical results, tested by using the datasets from the National Electricity Market (NEM, Queensland, Australia and the New York Independent System Operator (NYISO, NY, USA, show that the proposed SSVRCCS model outperforms other alternative models.

  3. Application of genetic algorithm - multiple linear regressions to predict the activity of RSK inhibitors

    Directory of Open Access Journals (Sweden)

    Avval Zhila Mohajeri

    2015-01-01

    Full Text Available This paper deals with developing a linear quantitative structure-activity relationship (QSAR model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-α] indole, diazepino [1,2-α] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR technique combined with the stepwise (SW and the genetic algorithm (GA methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.

  4. A consensus successive projections algorithm--multiple linear regression method for analyzing near infrared spectra.

    Science.gov (United States)

    Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin

    2015-02-09

    The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Testing the equality of nonparametric regression curves based on ...

    African Journals Online (AJOL)

    Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients of the regression functions f1 and f2 respectively. As our main results we obtain the ...

  6. Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-)ESI/MS and RPLC/UV data: Application on green tea extracts.

    Science.gov (United States)

    Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A

    2016-08-01

    The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data

  7. Time series modeling by a regression approach based on a latent process.

    Science.gov (United States)

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.

  8. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  9. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  10. QSAR study on the histamine (H3 receptor antagonists using the genetic algorithm: Multi parameter linear regression

    Directory of Open Access Journals (Sweden)

    Adimi Maryam

    2012-01-01

    Full Text Available A quantitative structure activity relationship (QSAR model has been produced for predicting antagonist potency of biphenyl derivatives as human histamine (H3 receptors. The molecular structures of the compounds are numerically represented by various kinds of molecular descriptors. The whole data set was divided into training and test sets. Genetic algorithm based multiple linear regression is used to select most statistically effective descriptors. The final QSAR model (N =24, R2=0.916, F = 51.771, Q2 LOO = 0.872, Q2 LGO = 0.847, Q2 BOOT = 0.857 was fully validated employing leaveone- out (LOO cross-validation approach, Fischer statistics (F, Yrandomisation test, and predictions based on the test data set. The test set presented an external prediction power of R2 test=0.855. In conclusion, the QSAR model generated can be used as a valuable tool for designing similar groups of new antagonists of histamine (H3 receptors.

  11. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  12. Opposition-Based Adaptive Fireworks Algorithm

    OpenAIRE

    Chibing Gong

    2016-01-01

    A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...

  13. Demand analysis of flood insurance by using logistic regression model and genetic algorithm

    Science.gov (United States)

    Sidi, P.; Mamat, M. B.; Sukono; Supian, S.; Putra, A. S.

    2018-03-01

    Citarum River floods in the area of South Bandung Indonesia, often resulting damage to some buildings belonging to the people living in the vicinity. One effort to alleviate the risk of building damage is to have flood insurance. The main obstacle is not all people in the Citarum basin decide to buy flood insurance. In this paper, we intend to analyse the decision to buy flood insurance. It is assumed that there are eight variables that influence the decision of purchasing flood assurance, include: income level, education level, house distance with river, building election with road, flood frequency experience, flood prediction, perception on insurance company, and perception towards government effort in handling flood. The analysis was done by using logistic regression model, and to estimate model parameters, it is done with genetic algorithm. The results of the analysis shows that eight variables analysed significantly influence the demand of flood insurance. These results are expected to be considered for insurance companies, to influence the decision of the community to be willing to buy flood insurance.

  14. A hybrid genetic algorithm and linear regression for prediction of NOx emission in power generation plant

    International Nuclear Information System (INIS)

    Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan

    2013-01-01

    This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.

  15. Simple sorting algorithm test based on CUDA

    OpenAIRE

    Meng, Hongyu; Guo, Fangjin

    2015-01-01

    With the development of computing technology, CUDA has become a very important tool. In computer programming, sorting algorithm is widely used. There are many simple sorting algorithms such as enumeration sort, bubble sort and merge sort. In this paper, we test some simple sorting algorithm based on CUDA and draw some useful conclusions.

  16. SIFT based algorithm for point feature tracking

    Directory of Open Access Journals (Sweden)

    Adrian BURLACU

    2007-12-01

    Full Text Available In this paper a tracking algorithm for SIFT features in image sequences is developed. For each point feature extracted using SIFT algorithm a descriptor is computed using information from its neighborhood. Using an algorithm based on minimizing the distance between two descriptors tracking point features throughout image sequences is engaged. Experimental results, obtained from image sequences that capture scaling of different geometrical type object, reveal the performances of the tracking algorithm.

  17. Normalization based K means Clustering Algorithm

    OpenAIRE

    Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika

    2015-01-01

    K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...

  18. Regression-based Multi-View Facial Expression Recognition

    NARCIS (Netherlands)

    Rudovic, Ognjen; Patras, Ioannis; Pantic, Maja

    2010-01-01

    We present a regression-based scheme for multi-view facial expression recognition based on 2蚠D geometric features. We address the problem by mapping facial points (e.g. mouth corners) from non-frontal to frontal view where further recognition of the expressions can be performed using a

  19. Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Directory of Open Access Journals (Sweden)

    Hongjian Wang

    2014-01-01

    Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.

  20. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.

    Science.gov (United States)

    Fisz, Jacek J

    2006-12-07

    The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi

  1. A review and comparison of Bayesian and likelihood-based inferences in beta regression and zero-or-one-inflated beta regression.

    Science.gov (United States)

    Liu, Fang; Eugenio, Evercita C

    2018-04-01

    Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.

  2. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Azadeh, A; Seraj, O [Department of Industrial Engineering and Research Institute of Energy Management and Planning, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran, P.O. Box 11365-4563 (Iran); Saberi, M [Department of Industrial Engineering, University of Tafresh (Iran); Institute for Digital Ecosystems and Business Intelligence, Curtin University of Technology, Perth (Australia)

    2010-06-15

    This study presents an integrated fuzzy regression and time series framework to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption especially in developing countries such as China and Iran with non-stationary data. Furthermore, it is difficult to model uncertain behavior of energy consumption with only conventional fuzzy regression (FR) or time series and the integrated algorithm could be an ideal substitute for such cases. At First, preferred Time series model is selected from linear or nonlinear models. For this, after selecting preferred Auto Regression Moving Average (ARMA) model, Mcleod-Li test is applied to determine nonlinearity condition. When, nonlinearity condition is satisfied, the preferred nonlinear model is selected and defined as preferred time series model. At last, the preferred model from fuzzy regression and time series model is selected by the Granger-Newbold. Also, the impact of data preprocessing on the fuzzy regression performance is considered. Monthly electricity consumption of Iran from March 1994 to January 2005 is considered as the case of this study. The superiority of the proposed algorithm is shown by comparing its results with other intelligent tools such as Genetic Algorithm (GA) and Artificial Neural Network (ANN). (author)

  3. Determinants of Inequality in Cameroon: A Regression-Based ...

    African Journals Online (AJOL)

    This paper applies the regression-based inequality decomposition approach to explore determinants of income inequality in Cameroon using the 2007 Cameroon household consumption survey. The contribution of each source to measured income inequality is the sum of its weighted marginal contributions in all possible ...

  4. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  5. Land Surface Temperature Retrieval from MODIS Data by Integrating Regression Models and the Genetic Algorithm in an Arid Region

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2014-06-01

    Full Text Available The land surface temperature (LST is one of the most important parameters of surface-atmosphere interactions. Methods for retrieving LSTs from satellite remote sensing data are beneficial for modeling hydrological, ecological, agricultural and meteorological processes on Earth’s surface. Many split-window (SW algorithms, which can be applied to satellite sensors with two adjacent thermal channels located in the atmospheric window between 10 μm and 12 μm, require auxiliary atmospheric parameters (e.g., water vapor content. In this research, the Heihe River basin, which is one of the most arid regions in China, is selected as the study area. The Moderate-resolution Imaging Spectroradiometer (MODIS is selected as a test case. The Global Data Assimilation System (GDAS atmospheric profiles of the study area are used to generate the training dataset through radiative transfer simulation. Significant correlations between the atmospheric upwelling radiance in MODIS channel 31 and the other three atmospheric parameters, including the transmittance in channel 31 and the transmittance and upwelling radiance in channel 32, are trained based on the simulation dataset and formulated with three regression models. Next, the genetic algorithm is used to estimate the LST. Validations of the RM-GA method are based on the simulation dataset generated from in situ measured radiosonde profiles and GDAS atmospheric profiles, the in situ measured LSTs, and a pair of daytime and nighttime MOD11A1 products in the study area. The results demonstrate that RM-GA has a good ability to estimate the LSTs directly from the MODIS data without any auxiliary atmospheric parameters. Although this research is for local application in the Heihe River basin, the findings and proposed method can easily be extended to other satellite sensors and regions with arid climates and high elevations.

  6. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  7. Building optimal regression tree by ant colony system-genetic algorithm: Application to modeling of melting points

    Energy Technology Data Exchange (ETDEWEB)

    Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.

  8. Predicting Taxi-Out Time at Congested Airports with Optimization-Based Support Vector Regression Methods

    Directory of Open Access Journals (Sweden)

    Guan Lian

    2018-01-01

    Full Text Available Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial Neural Network method and two improved Support Vector Regression (SVR approaches based on swarm intelligence algorithm optimization, which include Particle Swarm Optimization (PSO and Firefly Algorithm. In order to improve the global searching ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series of specific dynamic analyses, a case study of Beijing International Airport (PEK is tested with historical data. The performance measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA optimization-based SVR method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but also can achieve a better predictive performance when dealing with abnormal taxi-out time states.

  9. THE IMPLEMENTATION OF A SIMPLE LINIER REGRESSIVE ALGORITHM ON DATA FACTORY CASSAVA SINAR LAUT AT THE NORTH OF LAMPUNG

    Directory of Open Access Journals (Sweden)

    Dwi Marisa Efendi

    2018-04-01

    Full Text Available Cassava is one type of plant that can be planted in tropical climates. Cassava commodity is one of the leading sub-sectors in the plantation area. Cassava plant is the main ingredient of sago flour which is now experiencing price decline. The condition of the abundant supply of sago or tapioca flour production is due to the increase of cassava planting in each farmer. With the increasing number of cassava planting in farmer's plantation cause the price of cassava received by farmer is not suitable. So for the need of making sago or tapioca flour often excess in buying raw material of cassava This resulted in a lot of rotten cassava and the factory bought cassava for a low price. Based on the problem, this research is done using data mining modeled with multiple linear regression algorithm which aim to estimate the amount of Sago or Tapioca flour that can be produced, so that the future can improve the balance between the amount of cassava supply and tapioca production. The variables used in linear regression analysis are dependent variable and independent variable . From the data obtained, the dependent variable is the number of Tapioca (kg symbolized by Y while the independent variable is milled cassava symbolized by X. From the results obtained with an accuracy of 95% confidence level, then obtained coefficient of determination (R2 is 1.00. While the estimation results almost closer to the actual data value, with an average error of 0.00.

  10. QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR).

    Science.gov (United States)

    Rafiei, Hamid; Khanzadeh, Marziyeh; Mozaffari, Shahla; Bostanifar, Mohammad Hassan; Avval, Zhila Mohajeri; Aalizadeh, Reza; Pourbasheer, Eslam

    2016-01-01

    Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors . A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method were used to evaluate the internal capability of the derived models. The external prediction ability of the derived models was further analyzed using modified r(2), concordance correlation coefficient values and Golbraikh and Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecular structural requirements for obtaining better inhibitory activity were obtained.

  11. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization.

    Science.gov (United States)

    Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can

    2009-06-08

    A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.

  12. Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC analysis and a support vector regression (SVR model that is coupled with brainstorm optimization (BSO and cuckoo search (CS algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.

  13. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  14. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  15. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  16. Diagnostic Algorithm to Reflect Regressive Changes of Human Papilloma Virus in Tissue Biopsies

    Science.gov (United States)

    Lhee, Min Jin; Cha, Youn Jin; Bae, Jong Man; Kim, Young Tae

    2014-01-01

    Purpose Landmark indicators have not yet to be developed to detect the regression of cervical intraepithelial neoplasia (CIN). We propose that quantitative viral load and indicative histological criteria can be used to differentiate between atypical squamous cells of undetermined significance (ASCUS) and a CIN of grade 1. Materials and Methods We collected 115 tissue biopsies from women who tested positive for the human papilloma virus (HPV). Nine morphological parameters including nuclear size, perinuclear halo, hyperchromasia, typical koilocyte (TK), abortive koilocyte (AK), bi-/multi-nucleation, keratohyaline granules, inflammation, and dyskeratosis were examined for each case. Correlation analyses, cumulative logistic regression, and binary logistic regression were used to determine optimal cut-off values of HPV copy numbers. The parameters TK, perinuclear halo, multi-nucleation, and nuclear size were significantly correlated quantitatively to HPV copy number. Results An HPV loading number of 58.9 and AK number of 20 were optimal to discriminate between negative and subtle findings in biopsies. An HPV loading number of 271.49 and AK of 20 were optimal for discriminating between equivocal changes and obvious koilocytosis. Conclusion We propose that a squamous epithelial lesion with AK of >20 and quantitative HPV copy number between 58.9-271.49 represents a new spectrum of subtle pathological findings, characterized by AK in ASCUS. This can be described as a distinct entity and called "regressing koilocytosis". PMID:24532500

  17. Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.

    Directory of Open Access Journals (Sweden)

    Guangwei Gao

    Full Text Available In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.

  18. Detecting nonsense for Chinese comments based on logistic regression

    Science.gov (United States)

    Zhuolin, Ren; Guang, Chen; Shu, Chen

    2016-07-01

    To understand cyber citizens' opinion accurately from Chinese news comments, the clear definition on nonsense is present, and a detection model based on logistic regression (LR) is proposed. The detection of nonsense can be treated as a binary-classification problem. Besides of traditional lexical features, we propose three kinds of features in terms of emotion, structure and relevance. By these features, we train an LR model and demonstrate its effect in understanding Chinese news comments. We find that each of proposed features can significantly promote the result. In our experiments, we achieve a prediction accuracy of 84.3% which improves the baseline 77.3% by 7%.

  19. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  20. hMuLab: A Biomedical Hybrid MUlti-LABel Classifier Based on Multiple Linear Regression.

    Science.gov (United States)

    Wang, Pu; Ge, Ruiquan; Xiao, Xuan; Zhou, Manli; Zhou, Fengfeng

    2017-01-01

    Many biomedical classification problems are multi-label by nature, e.g., a gene involved in a variety of functions and a patient with multiple diseases. The majority of existing classification algorithms assumes each sample with only one class label, and the multi-label classification problem remains to be a challenge for biomedical researchers. This study proposes a novel multi-label learning algorithm, hMuLab, by integrating both feature-based and neighbor-based similarity scores. The multiple linear regression modeling techniques make hMuLab capable of producing multiple label assignments for a query sample. The comparison results over six commonly-used multi-label performance measurements suggest that hMuLab performs accurately and stably for the biomedical datasets, and may serve as a complement to the existing literature.

  1. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  2. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia; Rue, Haavard

    2018-01-01

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite

  3. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  4. Dynamic Optimization for IPS2 Resource Allocation Based on Improved Fuzzy Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Maokuan Zheng

    2017-01-01

    Full Text Available The study mainly focuses on resource allocation optimization for industrial product-service systems (IPS2. The development of IPS2 leads to sustainable economy by introducing cooperative mechanisms apart from commodity transaction. The randomness and fluctuation of service requests from customers lead to the volatility of IPS2 resource utilization ratio. Three basic rules for resource allocation optimization are put forward to improve system operation efficiency and cut unnecessary costs. An approach based on fuzzy multiple linear regression (FMLR is developed, which integrates the strength and concision of multiple linear regression in data fitting and factor analysis and the merit of fuzzy theory in dealing with uncertain or vague problems, which helps reduce those costs caused by unnecessary resource transfer. The iteration mechanism is introduced in the FMLR algorithm to improve forecasting accuracy. A case study of human resource allocation optimization in construction machinery industry is implemented to test and verify the proposed model.

  5. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  6. Applying Different Independent Component Analysis Algorithms and Support Vector Regression for IT Chain Store Sales Forecasting

    Science.gov (United States)

    Dai, Wensheng

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740

  7. Applying different independent component analysis algorithms and support vector regression for IT chain store sales forecasting.

    Science.gov (United States)

    Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

  8. Applying Different Independent Component Analysis Algorithms and Support Vector Regression for IT Chain Store Sales Forecasting

    Directory of Open Access Journals (Sweden)

    Wensheng Dai

    2014-01-01

    Full Text Available Sales forecasting is one of the most important issues in managing information technology (IT chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR, is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA, temporal ICA (tICA, and spatiotemporal ICA (stICA to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

  9. Tolerance based algorithms for the ATSP

    NARCIS (Netherlands)

    Goldengorin, B; Sierksma, G; Turkensteen, M; Hromkovic, J; Nagl, M; Westfechtel, B

    2004-01-01

    In this paper we use arc tolerances, instead of arc costs, to improve Branch-and-Bound type algorithms for the Asymmetric Traveling Salesman Problem (ATSP). We derive new tighter lower bounds based on exact and approximate bottleneck upper tolerance values of the Assignment Problem (AP). It is shown

  10. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  11. Generating patient specific pseudo-CT of the head from MR using atlas-based regression

    International Nuclear Information System (INIS)

    Sjölund, J; Forsberg, D; Andersson, M; Knutsson, H

    2015-01-01

    Radiotherapy planning and attenuation correction of PET images require simulation of radiation transport. The necessary physical properties are typically derived from computed tomography (CT) images, but in some cases, including stereotactic neurosurgery and combined PET/MR imaging, only magnetic resonance (MR) images are available. With these applications in mind, we describe how a realistic, patient-specific, pseudo-CT of the head can be derived from anatomical MR images. We refer to the method as atlas-based regression, because of its similarity to atlas-based segmentation. Given a target MR and an atlas database comprising MR and CT pairs, atlas-based regression works by registering each atlas MR to the target MR, applying the resulting displacement fields to the corresponding atlas CTs and, finally, fusing the deformed atlas CTs into a single pseudo-CT. We use a deformable registration algorithm known as the Morphon and augment it with a certainty mask that allows a tailoring of the influence certain regions are allowed to have on the registration. Moreover, we propose a novel method of fusion, wherein the collection of deformed CTs is iteratively registered to their joint mean and find that the resulting mean CT becomes more similar to the target CT. However, the voxelwise median provided even better results; at least as good as earlier work that required special MR imaging techniques. This makes atlas-based regression a good candidate for clinical use. (paper)

  12. NLSE: Parameter-Based Inversion Algorithm

    Science.gov (United States)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.

    Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.

  13. A Machine Learning Regression scheme to design a FR-Image Quality Assessment Algorithm

    OpenAIRE

    Charrier , Christophe; Lezoray , Olivier; Lebrun , Gilles

    2012-01-01

    International audience; A crucial step in image compression is the evaluation of its performance, and more precisely available ways to measure the quality of compressed images. In this paper, a machine learning expert, providing a quality score is proposed. This quality measure is based on a learned classification process in order to respect that of human observers. The proposed method namely Machine Learning-based Image Quality Measurment (MLIQM) first classifies the quality using multi Supp...

  14. Robust MST-Based Clustering Algorithm.

    Science.gov (United States)

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  15. A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.

    Science.gov (United States)

    Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem

    2018-06-12

    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.

  16. Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

    Science.gov (United States)

    Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu

    2017-09-01

    Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

  17. Verification-Based Interval-Passing Algorithm for Compressed Sensing

    OpenAIRE

    Wu, Xiaofu; Yang, Zhen

    2013-01-01

    We propose a verification-based Interval-Passing (IP) algorithm for iteratively reconstruction of nonnegative sparse signals using parity check matrices of low-density parity check (LDPC) codes as measurement matrices. The proposed algorithm can be considered as an improved IP algorithm by further incorporation of the mechanism of verification algorithm. It is proved that the proposed algorithm performs always better than either the IP algorithm or the verification algorithm. Simulation resul...

  18. DE and NLP Based QPLS Algorithm

    Science.gov (United States)

    Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo

    As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.

  19. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  20. Ordinary Least Squares and Quantile Regression: An Inquiry-Based Learning Approach to a Comparison of Regression Methods

    Science.gov (United States)

    Helmreich, James E.; Krog, K. Peter

    2018-01-01

    We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…

  1. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.

    2015-01-01

    Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed

  2. Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.

  3. A robust regression based on weighted LSSVM and penalized trimmed squares

    International Nuclear Information System (INIS)

    Liu, Jianyong; Wang, Yong; Fu, Chengqun; Guo, Jie; Yu, Qin

    2016-01-01

    Least squares support vector machine (LS-SVM) for nonlinear regression is sensitive to outliers in the field of machine learning. Weighted LS-SVM (WLS-SVM) overcomes this drawback by adding weight to each training sample. However, as the number of outliers increases, the accuracy of WLS-SVM may decrease. In order to improve the robustness of WLS-SVM, a new robust regression method based on WLS-SVM and penalized trimmed squares (WLSSVM–PTS) has been proposed. The algorithm comprises three main stages. The initial parameters are obtained by least trimmed squares at first. Then, the significant outliers are identified and eliminated by the Fast-PTS algorithm. The remaining samples with little outliers are estimated by WLS-SVM at last. The statistical tests of experimental results carried out on numerical datasets and real-world datasets show that the proposed WLSSVM–PTS is significantly robust than LS-SVM, WLS-SVM and LSSVM–LTS.

  4. Automated Vectorization of Decision-Based Algorithms

    Science.gov (United States)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  5. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  6. LSB Based Quantum Image Steganography Algorithm

    Science.gov (United States)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  7. Aeromagnetic Compensation Algorithm Based on Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Peilin Wu

    2018-01-01

    Full Text Available Aeromagnetic exploration is an important exploration method in geophysics. The data is typically measured by optically pumped magnetometer mounted on an aircraft. But any aircraft produces significant levels of magnetic interference. Therefore, aeromagnetic compensation is important in aeromagnetic exploration. However, multicollinearity of the aeromagnetic compensation model degrades the performance of the compensation. To address this issue, a novel aeromagnetic compensation method based on principal component analysis is proposed. Using the algorithm, the correlation in the feature matrix is eliminated and the principal components are using to construct the hyperplane to compensate the platform-generated magnetic fields. The algorithm was tested using a helicopter, and the obtained improvement ratio is 9.86. The compensated quality is almost the same or slightly better than the ridge regression. The validity of the proposed method was experimentally demonstrated.

  8. An approach of traffic signal control based on NLRSQP algorithm

    Science.gov (United States)

    Zou, Yuan-Yang; Hu, Yu

    2017-11-01

    This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.

  9. Extreme Learning Machine and Moving Least Square Regression Based Solar Panel Vision Inspection

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2017-01-01

    Full Text Available In recent years, learning based machine intelligence has aroused a lot of attention across science and engineering. Particularly in the field of automatic industry inspection, the machine learning based vision inspection plays a more and more important role in defect identification and feature extraction. Through learning from image samples, many features of industry objects, such as shapes, positions, and orientations angles, can be obtained and then can be well utilized to determine whether there is defect or not. However, the robustness and the quickness are not easily achieved in such inspection way. In this work, for solar panel vision inspection, we present an extreme learning machine (ELM and moving least square regression based approach to identify solder joint defect and detect the panel position. Firstly, histogram peaks distribution (HPD and fractional calculus are applied for image preprocessing. Then an ELM-based defective solder joints identification is discussed in detail. Finally, moving least square regression (MLSR algorithm is introduced for solar panel position determination. Experimental results and comparisons show that the proposed ELM and MLSR based inspection method is efficient not only in detection accuracy but also in processing speed.

  10. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  11. Mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images

    Science.gov (United States)

    Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María

    2009-02-01

    Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.

  12. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Geographically weighted regression based methods for merging satellite and gauge precipitation

    Science.gov (United States)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  14. Fruit fly optimization based least square support vector regression for blind image restoration

    Science.gov (United States)

    Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei

    2014-11-01

    The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and

  15. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    Science.gov (United States)

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  16. A regression-based Kansei engineering system based on form feature lines for product form design

    Directory of Open Access Journals (Sweden)

    Yan Xiong

    2016-06-01

    Full Text Available When developing new products, it is important for a designer to understand users’ perceptions and develop product form with the corresponding perceptions. In order to establish the mapping between users’ perceptions and product design features effectively, in this study, we presented a regression-based Kansei engineering system based on form feature lines for product form design. First according to the characteristics of design concept representation, product form features–product form feature lines were defined. Second, Kansei words were chosen to describe image perceptions toward product samples. Then, multiple linear regression and support vector regression were used to construct the models, respectively, that predicted users’ image perceptions. Using mobile phones as experimental samples, Kansei prediction models were established based on the front view form feature lines of the samples. From the experimental results, these two predict models were of good adaptability. But in contrast to multiple linear regression, the predict performance of support vector regression model was better, and support vector regression is more suitable for form regression prediction. The results of the case showed that the proposed method provided an effective means for designers to manipulate product features as a whole, and it can optimize Kansei model and improve practical values.

  17. A hash-based image encryption algorithm

    Science.gov (United States)

    Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul

    2010-03-01

    There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.

  18. On-line mixture-based alternative to logistic regression

    Czech Academy of Sciences Publication Activity Database

    Nagy, Ivan; Suzdaleva, Evgenia

    2016-01-01

    Roč. 26, č. 5 (2016), s. 417-437 ISSN 1210-0552 R&D Projects: GA ČR GA15-03564S Institutional support: RVO:67985556 Keywords : on-line modeling * on-line logistic regression * recursive mixture estimation * data dependent pointer Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.394, year: 2016 http://library.utia.cas.cz/separaty/2016/ZS/suzdaleva-0464463.pdf

  19. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    Science.gov (United States)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  20. Parametric optimization of multiple quality characteristics in laser cutting of Inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm

    Science.gov (United States)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-06-01

    Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.

  1. Algorithm Research of Individualized Travelling Route Recommendation Based on Similarity

    Directory of Open Access Journals (Sweden)

    Xue Shan

    2015-01-01

    Full Text Available Although commercial recommendation system has made certain achievement in travelling route development, the recommendation system is facing a series of challenges because of people’s increasing interest in travelling. It is obvious that the core content of the recommendation system is recommendation algorithm. The advantages of recommendation algorithm can bring great effect to the recommendation system. Based on this, this paper applies traditional collaborative filtering algorithm for analysis. Besides, illustrating the deficiencies of the algorithm, such as the rating unicity and rating matrix sparsity, this paper proposes an improved algorithm combing the multi-similarity algorithm based on user and the element similarity algorithm based on user, so as to compensate for the deficiencies that traditional algorithm has within a controllable range. Experimental results have shown that the improved algorithm has obvious advantages in comparison with the traditional one. The improved algorithm has obvious effect on remedying the rating matrix sparsity and rating unicity.

  2. Research on AHP decision algorithms based on BP algorithm

    Science.gov (United States)

    Ma, Ning; Guan, Jianhe

    2017-10-01

    Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.

  3. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Directory of Open Access Journals (Sweden)

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  4. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  5. Fault trend prediction of device based on support vector regression

    International Nuclear Information System (INIS)

    Song Meicun; Cai Qi

    2011-01-01

    The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)

  6. Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs

    International Nuclear Information System (INIS)

    Seo, In Yong; Ha, Bok Nam; Lee, Sung Woo; Shin, Chang Hoon; Kim, Seong Jun

    2010-01-01

    In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method

  7. Quadratic Regression-based Non-uniform Response Correction for Radiochromic Film Scanners

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Kim, Chan Hyeong; Han, Young Yih; Kum, O Yeon

    2009-01-01

    In recent years, several types of radiochromic films have been extensively used for two-dimensional dose measurements such as dosimetry in radiotherapy as well as imaging and radiation protection applications. One of the critical aspects in radiochromic film dosimetry is the accurate readout of the scanner without dose distortion. However, most of charge-coupled device (CCD) scanners used for the optical density readout of the film employ a fluorescent lamp or a coldcathode lamp as a light source, which leads to a significant amount of light scattering on the active layer of the film. Due to the effect of the light scattering, dose distortions are produced with non-uniform responses, although the dose is uniformly irradiated to the film. In order to correct the distorted doses, a method based on correction factors (CF) has been reported and used. However, the prediction of the real incident doses is difficult when the indiscreet doses are delivered to the film, since the dose correction with the CF-based method is restrictively used in case that the incident doses are already known. In a previous study, therefore, a pixel-based algorithm with linear regression was developed to correct the dose distortion of a flatbed scanner, and to estimate the initial doses. The result, however, was not very good for some cases especially when the incident dose is under approximately 100 cGy. In the present study, the problem was addressed by replacing the linear regression with the quadratic regression. The corrected doses using this method were also compared with the results of other conventional methods

  8. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm.

    Science.gov (United States)

    Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu

    2015-04-01

    An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®

  9. Regression Phalanxes

    OpenAIRE

    Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.

    2017-01-01

    Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...

  10. Dynamic route guidance algorithm based algorithm based on artificial immune system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.

  11. Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling

    International Nuclear Information System (INIS)

    Che Jinxing; Wang Jianzhou

    2010-01-01

    In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.

  12. Genetic algorithm as a variable selection procedure for the simulation of 13C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression.

    Science.gov (United States)

    Ghavami, Raoof; Najafi, Amir; Sajadi, Mohammad; Djannaty, Farhad

    2008-09-01

    In order to accurately simulate (13)C NMR spectra of hydroxy, polyhydroxy and methoxy substituted flavonoid a quantitative structure-property relationship (QSPR) model, relating atom-based calculated descriptors to (13)C NMR chemical shifts (ppm, TMS=0), is developed. A dataset consisting of 50 flavonoid derivatives was employed for the present analysis. A set of 417 topological, geometrical, and electronic descriptors representing various structural characteristics was calculated and separate multilinear QSPR models were developed between each carbon atom of flavonoid and the calculated descriptors. Genetic algorithm (GA) and multiple linear regression analysis (MLRA) were used to select the descriptors and to generate the correlation models. Analysis of the results revealed a correlation coefficient and root mean square error (RMSE) of 0.994 and 2.53ppm, respectively, for the prediction set.

  13. Determinants of Birthweight Outcomes: Quantile Regressions Based on Panel Data

    DEFF Research Database (Denmark)

    Bache, Stefan Holst; Dahl, Christian Møller; Kristensen, Johannes Tang

    to the possibility that smoking habits can be influenced through policy conduct. It is widely believed that maternal smoking reduces birthweight; however, the crucial difficulty in estimating such effects is the unobserved heterogeneity among mothers. We consider extensions of three panel data models to a quantile......Low birthweight outcomes are associated with large social and economic costs, and therefore the possible determinants of low birthweight are of great interest. One such determinant which has received considerable attention is maternal smoking. From an economic perspective this is in part due...... regression framework in order to control for heterogeneity and to infer conclusions about causality across the entire birthweight distribution. We obtain estimation results for maternal smoking and other interesting determinants, applying these to data obtained from Aarhus University Hospital, Skejby...

  14. Forecast Model of Urban Stagnant Water Based on Logistic Regression

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2017-01-01

    Full Text Available With the development of information technology, the construction of water resource system has been gradually carried out. In the background of big data, the work of water information needs to carry out the process of quantitative to qualitative change. Analyzing the correlation of data and exploring the deep value of data which are the key of water information’s research. On the basis of the research on the water big data and the traditional data warehouse architecture, we try to find out the connection of different data source. According to the temporal and spatial correlation of stagnant water and rainfall, we use spatial interpolation to integrate data of stagnant water and rainfall which are from different data source and different sensors, then use logistic regression to find out the relationship between them.

  15. Development of GPT-based optimization algorithm

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1985-01-01

    The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme

  16. Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Haidong Xu; Mingyan Jiang; Kun Xu

    2015-01-01

    The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.

  17. Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network

    International Nuclear Information System (INIS)

    Li Peng; Song Lijun; Han Chao; Zheng Yi; Cao Baofeng; Li Xiaoqiang; Zhang Xueqin; Liang Rui

    2010-01-01

    Auto-regression (AR) model, one power spectrum estimation method of stationary random signals, and artificial neutral network were adopted to recognize nuclear and lightning electromagnetic pulses. Self-correlation function and Burg algorithms were used to acquire the AR model coefficients as eigenvalues, and BP artificial neural network was introduced as the classifier with different numbers of hidden layers and hidden layer nodes. The results show that AR model is effective in those signals, feature extraction, and the Burg algorithm is more effective than the self-correlation function algorithm. (authors)

  18. An assembly sequence planning method based on composite algorithm

    Directory of Open Access Journals (Sweden)

    Enfu LIU

    2016-02-01

    Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.

  19. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed

  20. Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression.

    Science.gov (United States)

    Coelho, Lúcia H G; Gutz, Ivano G R

    2006-03-15

    A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.

  1. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  2. A Trust-region-based Sequential Quadratic Programming Algorithm

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

  3. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  4. Regularized Regression and Density Estimation based on Optimal Transport

    KAUST Repository

    Burger, M.

    2012-03-11

    The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).

  5. A SOCIOLOGICAL ANALYSIS OF THE CHILDBEARING COEFFICIENT IN THE ALTAI REGION BASED ON METHOD OF FUZZY LINEAR REGRESSION

    Directory of Open Access Journals (Sweden)

    Sergei Vladimirovich Varaksin

    2017-06-01

    Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.

  6. MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming

    Directory of Open Access Journals (Sweden)

    Yuteng Xiao

    2017-01-01

    Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.

  7. Generalized phase retrieval algorithm based on information measures

    OpenAIRE

    Shioya, Hiroyuki; Gohara, Kazutoshi

    2006-01-01

    An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.

  8. Algorithm of Particle Data Association for SLAM Based on Improved Ant Algorithm

    Directory of Open Access Journals (Sweden)

    KeKe Gen

    2015-01-01

    Full Text Available The article considers a problem of data association algorithm for simultaneous localization and mapping guidelines in determining the route of unmanned aerial vehicles (UAVs. Currently, these equipments are already widely used, but mainly controlled from the remote operator. An urgent task is to develop a control system that allows for autonomous flight. Algorithm SLAM (simultaneous localization and mapping, which allows to predict the location, speed, the ratio of flight parameters and the coordinates of landmarks and obstacles in an unknown environment, is one of the key technologies to achieve real autonomous UAV flight. The aim of this work is to study the possibility of solving this problem by using an improved ant algorithm.The data association for SLAM algorithm is meant to establish a matching set of observed landmarks and landmarks in the state vector. Ant algorithm is one of the widely used optimization algorithms with positive feedback and the ability to search in parallel, so the algorithm is suitable for solving the problem of data association for SLAM. But the traditional ant algorithm in the process of finding routes easily falls into local optimum. Adding random perturbations in the process of updating the global pheromone to avoid local optima. Setting limits pheromone on the route can increase the search space with a reasonable amount of calculations for finding the optimal route.The paper proposes an algorithm of the local data association for SLAM algorithm based on an improved ant algorithm. To increase the speed of calculation, local data association is used instead of the global data association. The first stage of the algorithm defines targets in the matching space and the observed landmarks with the possibility of association by the criterion of individual compatibility (IC. The second stage defines the matched landmarks and their coordinates using improved ant algorithm. Simulation results confirm the efficiency and

  9. Chaos control of ferroresonance system based on RBF-maximum entropy clustering algorithm

    International Nuclear Information System (INIS)

    Liu Fan; Sun Caixin; Sima Wenxia; Liao Ruijin; Guo Fei

    2006-01-01

    With regards to the ferroresonance overvoltage of neutral grounded power system, a maximum-entropy learning algorithm based on radial basis function neural networks is used to control the chaotic system. The algorithm optimizes the object function to derive learning rule of central vectors, and uses the clustering function of network hidden layers. It improves the regression and learning ability of neural networks. The numerical experiment of ferroresonance system testifies the effectiveness and feasibility of using the algorithm to control chaos in neutral grounded system

  10. Filtered backprojection algorithm in RPCs based PET

    International Nuclear Information System (INIS)

    Cruceru, Ilie; Manea Ioana; Nicorescu, Carmen; Constantin Florin

    2003-01-01

    The basis of PET consists in administration of a radioactive isotope attached to a tracer that permits to reveal its molecular pathways in the human body. A 3-D Whole-Body-Scan is necessary in order to minimize the radiation exposure of the patient and to increase significantly the axial field of view (FOV). A major candidate for gamma pair detection in 3-D Whole-Body-Scan appear to be the RPCs (Resistive Plate Counters). They consist in a longitudinal microstrip grid 15 mm thick, spaced at 1 mm; the grid is placed between a large electric resistive glass anode (ρ = 10 12 Ωcm) and an aluminium cathode; the gap of around 300 μm is filled with a special gas and is polarized at around 6 kV. Several detecting structures based on Resistive Plate Counters (RPCs) are evaluated for use in a positron emission 3-Dimensional Whole-Body-Scan tomograph. The coincidence matrix is built for the specific detecting structure by means of random gamma pair ray generation and then the filtered backprojection algorithm is used to reconstruct the original picture. The accuracy of image reconstruction is examined for the four different detecting structures. (authors)

  11. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.; Secomb, Timothy W.; Pries, Axel R.; Smith, Nicolas P.; Shipley, Rebecca J.

    2015-01-01

    algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules

  12. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Huimin Lu

    2013-01-01

    Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  13. Algorithmic strategies for FPGA-based vision

    OpenAIRE

    Lim, Yoong Kang

    2016-01-01

    As demands for real-time computer vision applications increase, implementations on alternative architectures have been explored. These architectures include Field-Programmable Gate Arrays (FPGAs), which offer a high degree of flexibility and parallelism. A problem with this is that many computer vision algorithms have been optimized for serial processing, and this often does not map well to FPGA implementation. This thesis introduces the concept of FPGA-tailored computer vision algorithms...

  14. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  15. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms.

    Science.gov (United States)

    Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina

    2017-04-01

    The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Estimation of pyrethroid pesticide intake using regression modeling of food groups based on composite dietary samples

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression...

  17. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  18. Star point centroid algorithm based on background forecast

    Science.gov (United States)

    Wang, Jin; Zhao, Rujin; Zhu, Nan

    2014-09-01

    The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.

  19. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    Science.gov (United States)

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  20. Normalization in Unsupervised Segmentation Parameter Optimization: A Solution Based on Local Regression Trend Analysis

    Directory of Open Access Journals (Sweden)

    Stefanos Georganos

    2018-02-01

    Full Text Available In object-based image analysis (OBIA, the appropriate parametrization of segmentation algorithms is crucial for obtaining satisfactory image classification results. One of the ways this can be done is by unsupervised segmentation parameter optimization (USPO. A popular USPO method does this through the optimization of a “global score” (GS, which minimizes intrasegment heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this approach has not been investigated in detail. In the context of a remote sensing very-high-resolution urban application, we show the limitations of the fixed threshold approach, both in a theoretical and applied manner, and instead propose a novel solution to identify the range of candidate segmentations using local regression trend analysis. We found that the proposed approach showed significant improvements over the use of fixed minimum/maximum values, is less subjective than user-defined threshold values and, thus, can be of merit for a fully automated procedure and big data applications.

  1. Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression

    Science.gov (United States)

    Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli

    2018-06-01

    Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.

  2. Predicting number of hospitalization days based on health insurance claims data using bagged regression trees.

    Science.gov (United States)

    Xie, Yang; Schreier, Günter; Chang, David C W; Neubauer, Sandra; Redmond, Stephen J; Lovell, Nigel H

    2014-01-01

    Healthcare administrators worldwide are striving to both lower the cost of care whilst improving the quality of care given. Therefore, better clinical and administrative decision making is needed to improve these issues. Anticipating outcomes such as number of hospitalization days could contribute to addressing this problem. In this paper, a method was developed, using large-scale health insurance claims data, to predict the number of hospitalization days in a population. We utilized a regression decision tree algorithm, along with insurance claim data from 300,000 individuals over three years, to provide predictions of number of days in hospital in the third year, based on medical admissions and claims data from the first two years. Our method performs well in the general population. For the population aged 65 years and over, the predictive model significantly improves predictions over a baseline method (predicting a constant number of days for each patient), and achieved a specificity of 70.20% and sensitivity of 75.69% in classifying these subjects into two categories of 'no hospitalization' and 'at least one day in hospital'.

  3. Fuzzy Rules for Ant Based Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Amira Hamdi

    2016-01-01

    Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.

  4. Parallel image encryption algorithm based on discretized chaotic map

    International Nuclear Information System (INIS)

    Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue

    2008-01-01

    Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms

  5. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  6. Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network for Quadrocopter Control

    Directory of Open Access Journals (Sweden)

    Wodziński Marek

    2017-06-01

    Full Text Available This paper presents an alternative approach to the sequential data classification, based on traditional machine learning algorithms (neural networks, principal component analysis, multivariate Gaussian anomaly detector and finding the shortest path in a directed acyclic graph, using A* algorithm with a regression-based heuristic. Palm gestures were used as an example of the sequential data and a quadrocopter was the controlled object. The study includes creation of a conceptual model and practical construction of a system using the GPU to ensure the realtime operation. The results present the classification accuracy of chosen gestures and comparison of the computation time between the CPU- and GPU-based solutions.

  7. Efficient sampling algorithms for Monte Carlo based treatment planning

    International Nuclear Information System (INIS)

    DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.

    1998-01-01

    Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed

  8. Evidence-based algorithm for heparin dosing before cardiopulmonary bypass. Part 1: Development of the algorithm.

    Science.gov (United States)

    McKinney, Mark C; Riley, Jeffrey B

    2007-12-01

    The incidence of heparin resistance during adult cardiac surgery with cardiopulmonary bypass has been reported at 15%-20%. The consistent use of a clinical decision-making algorithm may increase the consistency of patient care and likely reduce the total required heparin dose and other problems associated with heparin dosing. After a directed survey of practicing perfusionists regarding treatment of heparin resistance and a literature search for high-level evidence regarding the diagnosis and treatment of heparin resistance, an evidence-based decision-making algorithm was constructed. The face validity of the algorithm decisive steps and logic was confirmed by a second survey of practicing perfusionists. The algorithm begins with review of the patient history to identify predictors for heparin resistance. The definition for heparin resistance contained in the algorithm is an activated clotting time 450 IU/kg heparin loading dose. Based on the literature, the treatment for heparin resistance used in the algorithm is anti-thrombin III supplement. The algorithm seems to be valid and is supported by high-level evidence and clinician opinion. The next step is a human randomized clinical trial to test the clinical procedure guideline algorithm vs. current standard clinical practice.

  9. Function-Based Algorithms for Biological Sequences

    Science.gov (United States)

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  10. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    Science.gov (United States)

    Weiss, Brandi A.; Dardick, William

    2016-01-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…

  11. A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map

    Directory of Open Access Journals (Sweden)

    Xizhong Wang

    2013-01-01

    Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.

  12. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    Science.gov (United States)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good

  13. A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management

    Directory of Open Access Journals (Sweden)

    Somaye Yeylaghi

    2017-06-01

    Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.

  14. Human resource recommendation algorithm based on ensemble learning and Spark

    Science.gov (United States)

    Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie

    2017-08-01

    Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.

  15. Seismic active control by a heuristic-based algorithm

    International Nuclear Information System (INIS)

    Tang, Yu.

    1996-01-01

    A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws

  16. Stereo Matching Based On Election Campaign Algorithm

    Directory of Open Access Journals (Sweden)

    Xie Qing Hua

    2016-01-01

    Full Text Available Stereo matching is one of the significant problems in the study of the computer vision. By getting the distance information through pixels, it is possible to reproduce a three-dimensional stereo. In this paper, the edges are the primitives for matching, the grey values of the edges and the magnitude and direction of the edge gradient were figured out as the properties of the edge feature points, according to the constraints for stereo matching, the energy function was built for finding the route minimizing by election campaign optimization algorithm during the process of stereo matching was applied to this problem the energy function. Experiment results show that this algorithm is more stable and it can get the matching result with better accuracy.

  17. Compressive sensing based algorithms for electronic defence

    CERN Document Server

    Mishra, Amit Kumar

    2017-01-01

    This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.

  18. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)

    Science.gov (United States)

    Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; de Araújo, Mário César Ugulino; Di Nezio, María Susana; Pistonesi, Marcelo Fabián; Centurión, María Eugenia

    2018-01-01

    Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg- 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w- 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg- 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis.

  19. Blood glucose level prediction based on support vector regression using mobile platforms.

    Science.gov (United States)

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  20. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  1. Text Clustering Algorithm Based on Random Cluster Core

    Directory of Open Access Journals (Sweden)

    Huang Long-Jun

    2016-01-01

    Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.

  2. Agent-based Algorithm for Spatial Distribution of Objects

    KAUST Repository

    Collier, Nathan

    2012-06-02

    In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.

  3. Optimization algorithm based on densification and dynamic canonical descent

    Science.gov (United States)

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  4. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  5. Teaching learning based optimization algorithm and its engineering applications

    CERN Document Server

    Rao, R Venkata

    2016-01-01

    Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

  6. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  7. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  8. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  9. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  10. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  11. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  12. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.

    2014-01-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  13. A Tomographic method based on genetic algorithms

    International Nuclear Information System (INIS)

    Turcanu, C.; Alecu, L.; Craciunescu, T.; Niculae, C.

    1997-01-01

    Computerized tomography being a non-destructive and non-evasive technique is frequently used in medical application to generate three dimensional images of objects. Genetic algorithms are efficient, domain independent for a large variety of problems. The proposed method produces good quality reconstructions even in case of very small number of projection angles. It requests no a priori knowledge about the solution and takes into account the statistical uncertainties. The main drawback of the method is the amount of computer memory and time needed. (author)

  14. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    Science.gov (United States)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  15. Reliability Based Spare Parts Management Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Rahul Upadhyay

    2015-08-01

    Full Text Available Effective and efficient inventory management is the key to the economic sustainability of capital intensive modern industries. Inventory grows exponentially with complexity and size of the equipment fleet. Substantial amount of capital is required for maintaining an inventory and therefore its optimization is beneficial for smooth operation of the project at minimum cost of inventory. The size and hence the cost of the inventory is influenced by a large no of factors. This makes the optimization problem complex. This work presents a model to solve the problem of optimization of spare parts inventory. The novelty of this study lies with the fact that the developed method could tackle not only the artificial test case but also a real-world industrial problem. Various investigators developed several methods and semi-analytical tools for obtaining optimum solutions for this problem. In this study non-traditional optimization tool namely genetic algorithms GA are utilized. Apart from this Coxs regression analysis is also used to incorporate the effect of some environmental factors on the demand of spares. It shows the efficacy of the applicability of non-traditional optimization tool like GA to solve these problems. This research illustrates the proposed model with the analysis of data taken from a fleet of dumper operated in a large surface coal mine. The optimum time schedules so suggested by this GA-based model are found to be cost effective. A sensitivity analysis is also conducted for this industrial problem. Objective function is developed and the factors like the effect of season and production pressure overloading towards financial year-ending is included in the equations. Statistical analysis of the collected operational and performance data were carried out with the help of Easy-Fit Ver-5.5.The analysis gives the shape and scale parameter of theoretical Weibull distribution. The Coxs regression coefficient corresponding to excessive loading

  16. Fast image matching algorithm based on projection characteristics

    Science.gov (United States)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  17. A transport-based condensed history algorithm

    International Nuclear Information System (INIS)

    Tolar, D. R. Jr.

    1999-01-01

    Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s 0 . This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 le s le s 0 . For example, the PEnELOPE method splits each step into two substeps; one with length ξs 0 and one with length (1 minusξ)s 0 , where ξ is a random number from 0 0 is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power

  18. CUDT: A CUDA Based Decision Tree Algorithm

    Directory of Open Access Journals (Sweden)

    Win-Tsung Lo

    2014-01-01

    Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.

  19. A Meta-Heuristic Regression-Based Feature Selection for Predictive Analytics

    Directory of Open Access Journals (Sweden)

    Bharat Singh

    2014-11-01

    Full Text Available A high-dimensional feature selection having a very large number of features with an optimal feature subset is an NP-complete problem. Because conventional optimization techniques are unable to tackle large-scale feature selection problems, meta-heuristic algorithms are widely used. In this paper, we propose a particle swarm optimization technique while utilizing regression techniques for feature selection. We then use the selected features to classify the data. Classification accuracy is used as a criterion to evaluate classifier performance, and classification is accomplished through the use of k-nearest neighbour (KNN and Bayesian techniques. Various high dimensional data sets are used to evaluate the usefulness of the proposed approach. Results show that our approach gives better results when compared with other conventional feature selection algorithms.

  20. A difference tracking algorithm based on discrete sine transform

    Science.gov (United States)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  1. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  2. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  3. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  4. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Science.gov (United States)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  5. An accurate projection algorithm for array processor based SPECT systems

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Cool, S.L.

    1985-01-01

    A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT

  6. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  7. A SAT-Based Algorithm for Reparameterization in Symbolic Simulation

    National Research Council Canada - National Science Library

    Chauhan, Pankaj; Kroening, Daniel; Clarke, Edmund

    2003-01-01

    .... Efficient SAT solvers have been applied successfully for many verification problems. This paper presents a novel SAT-based reparameterization algorithm that is largely immune to the large number of input variables that need to be quantified...

  8. A novel line segment detection algorithm based on graph search

    Science.gov (United States)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  9. A Chinese text classification system based on Naive Bayes algorithm

    Directory of Open Access Journals (Sweden)

    Cui Wei

    2016-01-01

    Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.

  10. Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network.

    Science.gov (United States)

    Wan, Mengting; Ouyang, Yunbo; Kaplan, Lance; Han, Jiawei

    2015-01-01

    A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model ( Grempt ), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.

  11. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    Science.gov (United States)

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  12. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    Directory of Open Access Journals (Sweden)

    Yuanfu Mo

    Full Text Available In a vehicular ad hoc network (VANET, the periodic exchange of single-hop status information broadcasts (beacon frames produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  13. Minimax Regression Quantiles

    DEFF Research Database (Denmark)

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  14. Cloud Computing Task Scheduling Based on Cultural Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Li Jian-Wen

    2016-01-01

    Full Text Available The task scheduling strategy based on cultural genetic algorithm(CGA is proposed in order to improve the efficiency of task scheduling in the cloud computing platform, which targets at minimizing the total time and cost of task scheduling. The improved genetic algorithm is used to construct the main population space and knowledge space under cultural framework which get independent parallel evolution, forming a mechanism of mutual promotion to dispatch the cloud task. Simultaneously, in order to prevent the defects of the genetic algorithm which is easy to fall into local optimum, the non-uniform mutation operator is introduced to improve the search performance of the algorithm. The experimental results show that CGA reduces the total time and lowers the cost of the scheduling, which is an effective algorithm for the cloud task scheduling.

  15. A novel clustering algorithm based on quantum games

    International Nuclear Information System (INIS)

    Li Qiang; He Yan; Jiang Jingping

    2009-01-01

    Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.

  16. GPU-based fast pencil beam algorithm for proton therapy

    International Nuclear Information System (INIS)

    Fujimoto, Rintaro; Nagamine, Yoshihiko; Kurihara, Tsuneya

    2011-01-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  17. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.

    Science.gov (United States)

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2015-02-01

    A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.

  18. A Cough-Based Algorithm for Automatic Diagnosis of Pertussis

    Science.gov (United States)

    Pramono, Renard Xaviero Adhi; Imtiaz, Syed Anas; Rodriguez-Villegas, Esther

    2016-01-01

    Pertussis is a contagious respiratory disease which mainly affects young children and can be fatal if left untreated. The World Health Organization estimates 16 million pertussis cases annually worldwide resulting in over 200,000 deaths. It is prevalent mainly in developing countries where it is difficult to diagnose due to the lack of healthcare facilities and medical professionals. Hence, a low-cost, quick and easily accessible solution is needed to provide pertussis diagnosis in such areas to contain an outbreak. In this paper we present an algorithm for automated diagnosis of pertussis using audio signals by analyzing cough and whoop sounds. The algorithm consists of three main blocks to perform automatic cough detection, cough classification and whooping sound detection. Each of these extract relevant features from the audio signal and subsequently classify them using a logistic regression model. The output from these blocks is collated to provide a pertussis likelihood diagnosis. The performance of the proposed algorithm is evaluated using audio recordings from 38 patients. The algorithm is able to diagnose all pertussis successfully from all audio recordings without any false diagnosis. It can also automatically detect individual cough sounds with 92% accuracy and PPV of 97%. The low complexity of the proposed algorithm coupled with its high accuracy demonstrates that it can be readily deployed using smartphones and can be extremely useful for quick identification or early screening of pertussis and for infection outbreaks control. PMID:27583523

  19. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2011-01-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal...

  20. A Technique for Estimating Intensity of Emotional Expressions and Speaking Styles in Speech Based on Multiple-Regression HSMM

    Science.gov (United States)

    Nose, Takashi; Kobayashi, Takao

    In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.

  1. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  2. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  3. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  4. A range-based predictive localization algorithm for WSID networks

    Science.gov (United States)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  5. A Novel Image Encryption Algorithm Based on DNA Subsequence Operation

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2012-01-01

    Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

  6. Validation of Agent Based Distillation Movement Algorithms

    National Research Council Canada - National Science Library

    Gill, Andrew

    2003-01-01

    Agent based distillations (ABD) are low-resolution abstract models, which can be used to explore questions associated with land combat operations in a short period of time Movement of agents within the EINSTein and MANA ABDs...

  7. A Modularity Degree Based Heuristic Community Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Dongming Chen

    2014-01-01

    Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.

  8. Research on personalized recommendation algorithm based on spark

    Science.gov (United States)

    Li, Zeng; Liu, Yu

    2018-04-01

    With the increasing amount of data in the past years, the traditional recommendation algorithm has been unable to meet people's needs. Therefore, how to better recommend their products to users of interest, become the opportunities and challenges of the era of big data development. At present, each platform enterprise has its own recommendation algorithm, but how to make efficient and accurate push information is still an urgent problem for personalized recommendation system. In this paper, a hybrid algorithm based on user collaborative filtering and content-based recommendation algorithm is proposed on Spark to improve the efficiency and accuracy of recommendation by weighted processing. The experiment shows that the recommendation under this scheme is more efficient and accurate.

  9. Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. Sri Madhava Raja

    2014-01-01

    Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.

  10. Visual Perception Based Rate Control Algorithm for HEVC

    Science.gov (United States)

    Feng, Zeqi; Liu, PengYu; Jia, Kebin

    2018-01-01

    For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.

  11. A Developed Artificial Bee Colony Algorithm Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Ye Jin

    2018-04-01

    Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.

  12. A new edge detection algorithm based on Canny idea

    Science.gov (United States)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  13. Study on Thermal Degradation Characteristics and Regression Rate Measurement of Paraffin-Based Fuel

    Directory of Open Access Journals (Sweden)

    Songqi Hu

    2015-09-01

    Full Text Available Paraffin fuel has been found to have a regression rate that is higher than conventional HTPB (hydroxyl-terminated polybutadiene fuel and, thus, presents itself as an ideal energy source for a hybrid rocket engine. The energy characteristics of paraffin-based fuel and HTPB fuel have been calculated by the method of minimum free energy. The thermal degradation characteristics were measured for paraffin, pretreated paraffin, HTPB and paraffin-based fuel in different working conditions by the using differential scanning calorimetry (DSC and a thermogravimetric analyzer (TGA. The regression rates of paraffin-based fuel and HTPB fuel were tested by a rectangular solid-gas hybrid engine. The research findings showed that: the specific impulse of paraffin-based fuel is almost the same as that of HTPB fuel; the decomposition temperature of pretreated paraffin is higher than that of the unprocessed paraffin, but lower than that of HTPB; with the increase of paraffin, the initial reaction exothermic peak of paraffin-based fuel is reached in advance, and the initial reaction heat release also increases; the regression rate of paraffin-based fuel is higher than the common HTPB fuel under the same conditions; with the increase of oxidizer mass flow rate, the regression rate of solid fuel increases accordingly for the same fuel formulation.

  14. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  15. Algorithmic Algebraic Combinatorics and Gröbner Bases

    CERN Document Server

    Klin, Mikhail; Jurisic, Aleksandar

    2009-01-01

    This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGM

  16. A Learning Algorithm based on High School Teaching Wisdom

    OpenAIRE

    Philip, Ninan Sajeeth

    2010-01-01

    A learning algorithm based on primary school teaching and learning is presented. The methodology is to continuously evaluate a student and to give them training on the examples for which they repeatedly fail, until, they can correctly answer all types of questions. This incremental learning procedure produces better learning curves by demanding the student to optimally dedicate their learning time on the failed examples. When used in machine learning, the algorithm is found to train a machine...

  17. Quantum signature scheme based on a quantum search algorithm

    International Nuclear Information System (INIS)

    Yoon, Chun Seok; Kang, Min Sung; Lim, Jong In; Yang, Hyung Jin

    2015-01-01

    We present a quantum signature scheme based on a two-qubit quantum search algorithm. For secure transmission of signatures, we use a quantum search algorithm that has not been used in previous quantum signature schemes. A two-step protocol secures the quantum channel, and a trusted center guarantees non-repudiation that is similar to other quantum signature schemes. We discuss the security of our protocol. (paper)

  18. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

    OpenAIRE

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history si...

  19. The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fang Hu

    2014-04-01

    Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.

  20. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  1. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Shi-hua Zhan

    2016-01-01

    Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  2. Approximation Algorithms for Model-Based Diagnosis

    NARCIS (Netherlands)

    Feldman, A.B.

    2010-01-01

    Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation

  3. Electron dose map inversion based on several algorithms

    International Nuclear Information System (INIS)

    Li Gui; Zheng Huaqing; Wu Yican; Fds Team

    2010-01-01

    The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)

  4. Designers' Cognitive Thinking Based on Evolutionary Algorithms

    OpenAIRE

    Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang

    2013-01-01

    The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...

  5. Modeling Personalized Email Prioritization: Classification-based and Regression-based Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yoo S.; Yang, Y.; Carbonell, J.

    2011-10-24

    Email overload, even after spam filtering, presents a serious productivity challenge for busy professionals and executives. One solution is automated prioritization of incoming emails to ensure the most important are read and processed quickly, while others are processed later as/if time permits in declining priority levels. This paper presents a study of machine learning approaches to email prioritization into discrete levels, comparing ordinal regression versus classier cascades. Given the ordinal nature of discrete email priority levels, SVM ordinal regression would be expected to perform well, but surprisingly a cascade of SVM classifiers significantly outperforms ordinal regression for email prioritization. In contrast, SVM regression performs well -- better than classifiers -- on selected UCI data sets. This unexpected performance inversion is analyzed and results are presented, providing core functionality for email prioritization systems.

  6. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  7. Threshold quantum cryptograph based on Grover's algorithm

    International Nuclear Information System (INIS)

    Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen

    2007-01-01

    We propose a threshold quantum protocol based on Grover's operator and permutation operator on one two-qubit signal. The protocol is secure because the dishonest parties can only extract 2 bits from 3 bits information of operation on one two-qubit signal while they have to introduce error probability 3/8. The protocol includes a detection scheme to resist Trojan horse attack. With probability 1/2, the detection scheme can detect a multi-qubit signal that is used to replace a single-qubit signal, while it makes every legitimate qubit invariant

  8. Plagiarism Detection Based on SCAM Algorithm

    DEFF Research Database (Denmark)

    Anzelmi, Daniele; Carlone, Domenico; Rizzello, Fabio

    2011-01-01

    Plagiarism is a complex problem and considered one of the biggest in publishing of scientific, engineering and other types of documents. Plagiarism has also increased with the widespread use of the Internet as large amount of digital data is available. Plagiarism is not just direct copy but also...... paraphrasing, rewording, adapting parts, missing references or wrong citations. This makes the problem more difficult to handle adequately. Plagiarism detection techniques are applied by making a distinction between natural and programming languages. Our proposed detection process is based on natural language...... document. Our plagiarism detection system, like many Information Retrieval systems, is evaluated with metrics of precision and recall....

  9. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  10. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  11. Algorithms and procedures in the model based control of accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.

    1987-10-01

    The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig

  12. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Shih

    2010-01-01

    Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  13. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  14. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  15. Linear regression based on Minimum Covariance Determinant (MCD) and TELBS methods on the productivity of phytoplankton

    Science.gov (United States)

    Gusriani, N.; Firdaniza

    2018-03-01

    The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.

  16. Flowbca : A flow-based cluster algorithm in Stata

    NARCIS (Netherlands)

    Meekes, J.; Hassink, W.H.J.

    In this article, we introduce the Stata implementation of a flow-based cluster algorithm written in Mata. The main purpose of the flowbca command is to identify clusters based on relational data of flows. We illustrate the command by providing multiple applications, from the research fields of

  17. Development of Base Transceiver Station Selection Algorithm for ...

    African Journals Online (AJOL)

    TEMS) equipment was carried out on the existing BTSs, and a linear algorithm optimization program based on the spectral link efficiency of each BTS was developed, the output of this site optimization gives the selected number of base station sites ...

  18. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    Science.gov (United States)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  19. A Turn-Projected State-Based Conflict Resolution Algorithm

    Science.gov (United States)

    Butler, Ricky W.; Lewis, Timothy A.

    2013-01-01

    State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.

  20. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  1. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-03-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  2. Web page sorting algorithm based on query keyword distance relation

    Science.gov (United States)

    Yang, Han; Cui, Hong Gang; Tang, Hao

    2017-08-01

    In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.

  3. Texture orientation-based algorithm for detecting infrared maritime targets.

    Science.gov (United States)

    Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai

    2015-05-20

    Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.

  4. Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life

  5. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  6. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  7. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  8. Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms

    DEFF Research Database (Denmark)

    Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control......This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...

  9. A fast image encryption algorithm based on chaotic map

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  10. Effective ANT based Routing Algorithm for Data Replication in MANETs

    Directory of Open Access Journals (Sweden)

    N.J. Nithya Nandhini

    2013-12-01

    Full Text Available In mobile ad hoc network, the nodes often move and keep on change its topology. Data packets can be forwarded from one node to another on demand. To increase the data accessibility data are replicated at nodes and made as sharable to other nodes. Assuming that all mobile host cooperative to share their memory and allow forwarding the data packets. But in reality, all nodes do not share the resources for the benefits of others. These nodes may act selfishly to share memory and to forward the data packets. This paper focuses on selfishness of mobile nodes in replica allocation and routing protocol based on Ant colony algorithm to improve the efficiency. The Ant colony algorithm is used to reduce the overhead in the mobile network, so that it is more efficient to access the data than with other routing protocols. This result shows the efficiency of ant based routing algorithm in the replication allocation.

  11. Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Ruiyun Yu

    2014-01-01

    Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.

  12. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  13. Image segmentation algorithm based on T-junctions cues

    Science.gov (United States)

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  14. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  15. Accounting for estimated IQ in neuropsychological test performance with regression-based techniques.

    Science.gov (United States)

    Testa, S Marc; Winicki, Jessica M; Pearlson, Godfrey D; Gordon, Barry; Schretlen, David J

    2009-11-01

    Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.

  16. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression.

    Science.gov (United States)

    Fouad, Marwa A; Tolba, Enas H; El-Shal, Manal A; El Kerdawy, Ahmed M

    2018-05-11

    The justified continuous emerging of new β-lactam antibiotics provokes the need for developing suitable analytical methods that accelerate and facilitate their analysis. A face central composite experimental design was adopted using different levels of phosphate buffer pH, acetonitrile percentage at zero time and after 15 min in a gradient program to obtain the optimum chromatographic conditions for the elution of 31 β-lactam antibiotics. Retention factors were used as the target property to build two QSRR models utilizing the conventional forward selection and the advanced nature-inspired firefly algorithm for descriptor selection, coupled with multiple linear regression. The obtained models showed high performance in both internal and external validation indicating their robustness and predictive ability. Williams-Hotelling test and student's t-test showed that there is no statistical significant difference between the models' results. Y-randomization validation showed that the obtained models are due to significant correlation between the selected molecular descriptors and the analytes' chromatographic retention. These results indicate that the generated FS-MLR and FFA-MLR models are showing comparable quality on both the training and validation levels. They also gave comparable information about the molecular features that influence the retention behavior of β-lactams under the current chromatographic conditions. We can conclude that in some cases simple conventional feature selection algorithm can be used to generate robust and predictive models comparable to that are generated using advanced ones. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A Novel Imbalanced Data Classification Approach Based on Logistic Regression and Fisher Discriminant

    Directory of Open Access Journals (Sweden)

    Baofeng Shi

    2015-01-01

    Full Text Available We introduce an imbalanced data classification approach based on logistic regression significant discriminant and Fisher discriminant. First of all, a key indicators extraction model based on logistic regression significant discriminant and correlation analysis is derived to extract features for customer classification. Secondly, on the basis of the linear weighted utilizing Fisher discriminant, a customer scoring model is established. And then, a customer rating model where the customer number of all ratings follows normal distribution is constructed. The performance of the proposed model and the classical SVM classification method are evaluated in terms of their ability to correctly classify consumers as default customer or nondefault customer. Empirical results using the data of 2157 customers in financial engineering suggest that the proposed approach better performance than the SVM model in dealing with imbalanced data classification. Moreover, our approach contributes to locating the qualified customers for the banks and the bond investors.

  18. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Seetharaman

    2015-08-01

    Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

  19. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    Science.gov (United States)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  20. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-01-01

    Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.

  1. RESEARCH ON FOREST FLAME RECOGNITION ALGORITHM BASED ON IMAGE FEATURE

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2017-09-01

    Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  2. Cryptanalysis of a chaos-based image encryption algorithm

    International Nuclear Information System (INIS)

    Cokal, Cahit; Solak, Ercan

    2009-01-01

    A chaos-based image encryption algorithm was proposed in [Z.-H. Guan, F. Huang, W. Guan, Phys. Lett. A 346 (2005) 153]. In this Letter, we analyze the security weaknesses of the proposal. By applying chosen-plaintext and known-plaintext attacks, we show that all the secret parameters can be revealed

  3. Security Analysis of A Chaos-based Image Encryption Algorithm

    OpenAIRE

    Lian, Shiguo; Sun, Jinsheng; Wang, Zhiquan

    2006-01-01

    The security of Fridrich Image Encryption Algorithm against brute-force attack, statistical attack, known-plaintext attack and select-plaintext attack is analyzed by investigating the properties of the involved chaotic maps and diffusion functions. Based on the given analyses, some means are proposed to strengthen the overall performance of the focused cryptosystem.

  4. Security analysis of a chaos-based image encryption algorithm

    Science.gov (United States)

    Lian, Shiguo; Sun, Jinsheng; Wang, Zhiquan

    2005-06-01

    The security of Fridrich's algorithm against brute-force attack, statistical attack, known-plaintext attack and select-plaintext attack is analyzed by investigating the properties of the involved chaotic maps and diffusion functions. Based on the given analyses, some means are proposed to strengthen the overall performance of the focused cryptosystem.

  5. Measuring Disorientation Based on the Needleman-Wunsch Algorithm

    Science.gov (United States)

    Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel

    2015-01-01

    This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…

  6. Resource allocation in smart homes based on Banker's algorithm

    NARCIS (Netherlands)

    Virag, A.; Bogdan, S.

    2011-01-01

    This paper proposes a method for improved energy management in smart homes by means of resource allocation. For this purpose, a Banker's algorithm based strategy has been developed. It is used to control the system and decide which of the given processes should be provided with resources at the

  7. Model-based remote sensing algorithms for particulate organic carbon

    Indian Academy of Sciences (India)

    PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with 2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square ...

  8. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  9. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    Science.gov (United States)

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF

  10. Least square regression based integrated multi-parameteric demand modeling for short term load forecasting

    International Nuclear Information System (INIS)

    Halepoto, I.A.; Uqaili, M.A.

    2014-01-01

    Nowadays, due to power crisis, electricity demand forecasting is deemed an important area for socioeconomic development and proper anticipation of the load forecasting is considered essential step towards efficient power system operation, scheduling and planning. In this paper, we present STLF (Short Term Load Forecasting) using multiple regression techniques (i.e. linear, multiple linear, quadratic and exponential) by considering hour by hour load model based on specific targeted day approach with temperature variant parameter. The proposed work forecasts the future load demand correlation with linear and non-linear parameters (i.e. considering temperature in our case) through different regression approaches. The overall load forecasting error is 2.98% which is very much acceptable. From proposed regression techniques, Quadratic Regression technique performs better compared to than other techniques because it can optimally fit broad range of functions and data sets. The work proposed in this paper, will pave a path to effectively forecast the specific day load with multiple variance factors in a way that optimal accuracy can be maintained. (author)

  11. Model-based Bayesian signal extraction algorithm for peripheral nerves

    Science.gov (United States)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of

  12. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    Science.gov (United States)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  13. Core Business Selection Based on Ant Colony Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2014-01-01

    Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.

  14. Analysis of velocity planning interpolation algorithm based on NURBS curve

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.

  15. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  16. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.

  17. Analog Group Delay Equalizers Design Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    M. Laipert

    2006-04-01

    Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.

  18. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Science.gov (United States)

    Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia

    2016-06-01

    Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  19. The Heeger & Bergen Pyramid Based Texture Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    Thibaud Briand

    2014-11-01

    Full Text Available This contribution deals with the Heeger-Bergen pyramid-based texture analysis/synthesis algorithm. It brings a detailed explanation of the original algorithm tested on many characteristic examples. Our analysis reproduces the original results, but also brings a minor improvement concerning non-periodic textures. Inspired by visual perception theories, Heeger and Bergen proposed to characterize a texture by its first-order statistics of both its color and its responses to multiscale and multi-orientation filters, namely the steerable pyramid. The Heeger-Bergen algorithm consists in the following procedure: starting from a white noise image, histogram matchings are performed to the noise alternatively in both the image domain and steerable pyramid domain, so that the corresponding histograms match the ones of the input texture.

  20. Algorithm of Defect Segmentation for AFP Based on Prepregs

    Directory of Open Access Journals (Sweden)

    CAI Zhiqiang

    2017-04-01

    Full Text Available In order to ensure the performance of the automated fiber placement forming parts, according to the homogeneity of the image of the prepreg surface along the fiber direction, a defect segmentation algorithm which was the combination of gray compensation and substraction algorithm based on image processing technology was proposed. The gray compensation matrix of image was used to compensate the gray image, and the maximum error point of the image matrix was eliminated according to the characteristics that the gray error obeys the normal distribution. The standard image was established, using the allowed deviation coefficient K as a criterion for substraction segmentation. Experiments show that the algorithm has good effect, fast speed in segmenting two kinds of typical laying defect of bubbles or foreign objects, and provides a good theoretical basis to realize automatic laying defect online monitoring.

  1. Design of synthetic biological logic circuits based on evolutionary algorithm.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.

  2. A homology sound-based algorithm for speech signal interference

    Science.gov (United States)

    Jiang, Yi-jiao; Chen, Hou-jin; Li, Ju-peng; Zhang, Zhan-song

    2015-12-01

    Aiming at secure analog speech communication, a homology sound-based algorithm for speech signal interference is proposed in this paper. We first split speech signal into phonetic fragments by a short-term energy method and establish an interference noise cache library with the phonetic fragments. Then we implement the homology sound interference by mixing the randomly selected interferential fragments and the original speech in real time. The computer simulation results indicated that the interference produced by this algorithm has advantages of real time, randomness, and high correlation with the original signal, comparing with the traditional noise interference methods such as white noise interference. After further studies, the proposed algorithm may be readily used in secure speech communication.

  3. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Directory of Open Access Journals (Sweden)

    H. Yue

    2016-06-01

    Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  4. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  5. Dynamic Sensor Management Algorithm Based on Improved Efficacy Function

    Directory of Open Access Journals (Sweden)

    TANG Shujuan

    2016-01-01

    Full Text Available A dynamic sensor management algorithm based on improved efficacy function is proposed to solve the multi-target and multi-sensory management problem. The tracking task precision requirements (TPR, target priority and sensor use cost were considered to establish the efficacy function by weighted sum the normalized value of the three factors. The dynamic sensor management algorithm was accomplished through control the diversities of the desired covariance matrix (DCM and the filtering covariance matrix (FCM. The DCM was preassigned in terms of TPR and the FCM was obtained by the centralized sequential Kalman filtering algorithm. The simulation results prove that the proposed method could meet the requirements of desired tracking precision and adjust sensor selection according to target priority and cost of sensor source usage. This makes sensor management scheme more reasonable and effective.

  6. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    Science.gov (United States)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  7. FACT. New image parameters based on the watershed-algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration

    2016-07-01

    FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.

  8. LAI inversion algorithm based on directional reflectance kernels.

    Science.gov (United States)

    Tang, S; Chen, J M; Zhu, Q; Li, X; Chen, M; Sun, R; Zhou, Y; Deng, F; Xie, D

    2007-11-01

    Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may influence the accuracy are also discussed in this paper.

  9. Kriging-based algorithm for nuclear reactor neutronic design optimization

    International Nuclear Information System (INIS)

    Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen

    2012-01-01

    Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.

  10. Evolving Stochastic Learning Algorithm based on Tsallis entropic index

    Science.gov (United States)

    Anastasiadis, A. D.; Magoulas, G. D.

    2006-03-01

    In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.

  11. Incident Light Frequency-Based Image Defogging Algorithm

    Directory of Open Access Journals (Sweden)

    Wenbo Zhang

    2017-01-01

    Full Text Available To solve the color distortion problem produced by the dark channel prior algorithm, an improved method for calculating transmittance of all channels, respectively, was proposed in this paper. Based on the Beer-Lambert Law, the influence between the frequency of the incident light and the transmittance was analyzed, and the ratios between each channel’s transmittance were derived. Then, in order to increase efficiency, the input image was resized to a smaller size before acquiring the refined transmittance which will be resized to the same size of original image. Finally, all the transmittances were obtained with the help of the proportion between each color channel, and then they were used to restore the defogging image. Experiments suggest that the improved algorithm can produce a much more natural result image in comparison with original algorithm, which means the problem of high color saturation was eliminated. What is more, the improved algorithm speeds up by four to nine times compared to the original algorithm.

  12. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    Science.gov (United States)

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  13. A Plagiarism Detection Algorithm based on Extended Winnowing

    Directory of Open Access Journals (Sweden)

    Duan Xuliang

    2017-01-01

    Full Text Available Plagiarism is a common problem faced by academia and education. Mature commercial plagiarism detection system has the advantages of comprehensive and high accuracy, but the expensive detection costs make it unsuitable for real-time, lightweight application environment such as the student assignments plagiarism detection. This paper introduces the method of extending classic Winnowing plagiarism detection algorithm, expands the algorithm in functionality. The extended algorithm can retain the text location and length information in original document while extracting the fingerprints of a document, so that the locating and marking for plagiarism text fragment are much easier to achieve. The experimental results and several years of running practice show that the expansion of the algorithm has little effect on its performance, normal hardware configuration of PC will be able to meet small and medium-sized applications requirements. Based on the characteristics of lightweight, high efficiency, reliability and flexibility of Winnowing, the extended algorithm further enhances the adaptability and extends the application areas.

  14. An Example-Based Super-Resolution Algorithm for Selfie Images

    Directory of Open Access Journals (Sweden)

    Jino Hans William

    2016-01-01

    Full Text Available A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR rear camera and a low-resolution (LR front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details.

  15. A Greedy Algorithm for Neighborhood Overlap-Based Community Detection

    Directory of Open Access Journals (Sweden)

    Natarajan Meghanathan

    2016-01-01

    Full Text Available The neighborhood overlap (NOVER of an edge u-v is defined as the ratio of the number of nodes who are neighbors for both u and v to that of the number of nodes who are neighbors of at least u or v. In this paper, we hypothesize that an edge u-v with a lower NOVER score bridges two or more sets of vertices, with very few edges (other than u-v connecting vertices from one set to another set. Accordingly, we propose a greedy algorithm of iteratively removing the edges of a network in the increasing order of their neighborhood overlap and calculating the modularity score of the resulting network component(s after the removal of each edge. The network component(s that have the largest cumulative modularity score are identified as the different communities of the network. We evaluate the performance of the proposed NOVER-based community detection algorithm on nine real-world network graphs and compare the performance against the multi-level aggregation-based Louvain algorithm, as well as the original and time-efficient versions of the edge betweenness-based Girvan-Newman (GN community detection algorithm.

  16. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    Directory of Open Access Journals (Sweden)

    Jiayin Liu

    2017-06-01

    Full Text Available Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC, which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF, which is estimated by Kernel Density Estimation (KDE with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  17. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    Science.gov (United States)

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  18. Lagrangian relaxation based algorithm for trigeneration planning with storages

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto; Luh, Peter

    2008-01-01

    of three energy commodities follows a joint characteristic. This paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem...... an effective method for the long-term planning problem based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution. Numerical results based...

  19. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  20. Regression-based model of skin diffuse reflectance for skin color analysis

    Science.gov (United States)

    Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi

    2008-11-01

    A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.

  1. Mass estimation of loose parts in nuclear power plant based on multiple regression

    International Nuclear Information System (INIS)

    He, Yuanfeng; Cao, Yanlong; Yang, Jiangxin; Gan, Chunbiao

    2012-01-01

    According to the application of the Hilbert–Huang transform to the non-stationary signal and the relation between the mass of loose parts in nuclear power plant and corresponding frequency content, a new method for loose part mass estimation based on the marginal Hilbert–Huang spectrum (MHS) and multiple regression is proposed in this paper. The frequency spectrum of a loose part in a nuclear power plant can be expressed by the MHS. The multiple regression model that is constructed by the MHS feature of the impact signals for mass estimation is used to predict the unknown masses of a loose part. A simulated experiment verified that the method is feasible and the errors of the results are acceptable. (paper)

  2. Prediction of monthly electric energy consumption using pattern-based fuzzy nearest neighbour regression

    Directory of Open Access Journals (Sweden)

    Pełka Paweł

    2017-01-01

    Full Text Available Electricity demand forecasting is of important role in power system planning and operation. In this work, fuzzy nearest neighbour regression has been utilised to estimate monthly electricity demands. The forecasting model was based on the pre-processed energy consumption time series, where input and output variables were defined as patterns representing unified fragments of the time series. Relationships between inputs and outputs, which were simplified due to patterns, were modelled using nonparametric regression with weighting function defined as a fuzzy membership of learning points to the neighbourhood of a query point. In an experimental part of the work the model was evaluated using real-world data. The results are encouraging and show high performances of the model and its competitiveness compared to other forecasting models.

  3. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    Science.gov (United States)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  4. A Spline-Based Lack-Of-Fit Test for Independent Variable Effect in Poisson Regression.

    Science.gov (United States)

    Li, Chin-Shang; Tu, Wanzhu

    2007-05-01

    In regression analysis of count data, independent variables are often modeled by their linear effects under the assumption of log-linearity. In reality, the validity of such an assumption is rarely tested, and its use is at times unjustifiable. A lack-of-fit test is proposed for the adequacy of a postulated functional form of an independent variable within the framework of semiparametric Poisson regression models based on penalized splines. It offers added flexibility in accommodating the potentially non-loglinear effect of the independent variable. A likelihood ratio test is constructed for the adequacy of the postulated parametric form, for example log-linearity, of the independent variable effect. Simulations indicate that the proposed model performs well, and misspecified parametric model has much reduced power. An example is given.

  5. Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume

    Science.gov (United States)

    Xiao, Mengting; Li, Cheng

    2018-01-01

    Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.

  6. A similarity based agglomerative clustering algorithm in networks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  7. Learning-based meta-algorithm for MRI brain extraction.

    Science.gov (United States)

    Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2011-01-01

    Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.

  8. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Nearby Search Indekos Based Android Using A Star (A*) Algorithm

    Science.gov (United States)

    Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.

    2018-03-01

    Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.

  10. A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm.

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Ren, Jinchang; Li, Xiaodong; Wang, Zhenjie; Jia, Xiuping

    2018-01-01

    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named , which stores those superior agents after fitness sorting in each iteration. Since the global property of remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA.

  11. A Novel Assembly Line Balancing Method Based on PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2014-01-01

    Full Text Available Assembly line is widely used in manufacturing system. Assembly line balancing problem is a crucial question during design and management of assembly lines since it directly affects the productivity of the whole manufacturing system. The model of assembly line balancing problem is put forward and a general optimization method is proposed. The key data on assembly line balancing problem is confirmed, and the precedence relations diagram is described. A double objective optimization model based on takt time and smoothness index is built, and balance optimization scheme based on PSO algorithm is proposed. Through the simulation experiments of examples, the feasibility and validity of the assembly line balancing method based on PSO algorithm is proved.

  12. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  13. Genetic algorithm based on qubits and quantum gates

    International Nuclear Information System (INIS)

    Silva, Joao Batista Rosa; Ramos, Rubens Viana

    2003-01-01

    Full text: Genetic algorithm, a computational technique based on the evolution of the species, in which a possible solution of the problem is coded in a binary string, called chromosome, has been used successfully in several kinds of problems, where the search of a minimal or a maximal value is necessary, even when local minima are present. A natural generalization of a binary string is a qubit string. Hence, it is possible to use the structure of a genetic algorithm having a sequence of qubits as a chromosome and using quantum operations in the reproduction in order to find the best solution in some problems of quantum information. For example, given a unitary matrix U what is the pair of qubits that, when applied at the input, provides the output state with maximal entanglement? In order to solve this problem, a population of chromosomes of two qubits was created. The crossover was performed applying the quantum gates CNOT and SWAP at the pair of qubits, while the mutation was performed applying the quantum gates Hadamard, Z and Not in a single qubit. The result was compared with a classical genetic algorithm used to solve the same problem. A hundred simulations using the same U matrix was performed. Both algorithms, hereafter named by CGA (classical) and QGA (using qu bits), reached good results close to 1 however, the number of generations needed to find the best result was lower for the QGA. Another problem where the QGA can be useful is in the calculation of the relative entropy of entanglement. We have tested our algorithm using 100 pure states chosen randomly. The stop criterion used was the error lower than 0.01. The main advantages of QGA are its good precision, robustness and very easy implementation. The main disadvantage is its low velocity, as happen for all kind of genetic algorithms. (author)

  14. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    Science.gov (United States)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  15. Particle swarm optimization-based least squares support vector regression for critical heat flux prediction

    International Nuclear Information System (INIS)

    Jiang, B.T.; Zhao, F.Y.

    2013-01-01

    Highlights: ► CHF data are collected from the published literature. ► Less training data are used to train the LSSVR model. ► PSO is adopted to optimize the key parameters to improve the model precision. ► The reliability of LSSVR is proved through parametric trends analysis. - Abstract: In view of practical importance of critical heat flux (CHF) for design and safety of nuclear reactors, accurate prediction of CHF is of utmost significance. This paper presents a novel approach using least squares support vector regression (LSSVR) and particle swarm optimization (PSO) to predict CHF. Two available published datasets are used to train and test the proposed algorithm, in which PSO is employed to search for the best parameters involved in LSSVR model. The CHF values obtained by the LSSVR model are compared with the corresponding experimental values and those of a previous method, adaptive neuro fuzzy inference system (ANFIS). This comparison is also carried out in the investigation of parametric trends of CHF. It is found that the proposed method can achieve the desired performance and yields a more satisfactory fit with experimental results than ANFIS. Therefore, LSSVR method is likely to be suitable for other parameters processing such as CHF

  16. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  17. Squeezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation

    Science.gov (United States)

    Müller, M. S.; Urban, S.; Jutzi, B.

    2017-08-01

    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.

  18. An Allometric Algorithm for Fractal-Based Cobb-Douglas Function of Geographical Systems

    Directory of Open Access Journals (Sweden)

    Hongyu Luo

    2014-01-01

    Full Text Available The generalized Cobb-Douglas production function has been derived from a general input-output relation based on fractality assumptions. It was proved to be a useful self-affine model for geographical analysis. However, the ordinary least square calculation is always an ineffectual method for the Cobb-Douglas modeling because of the multicollinearity in the logarithmic linear regression. In this paper, a novel approach is proposed to build the geographical Cobb-Douglas models. Combining the concept of allometric scaling with the linear regression technique, we obtain a simple algorithm that can be employed to estimate the parameters of the Cobb-Douglas function. As a case, the algorithm and models are applied to the public transportation of China’s cities, and the results validate the allometric algorithm. A conclusion can be drawn that the allometric analysis is an effective way of modeling geographical systems with the general Cobb-Douglas function. This study is significant for integrating the notions of allometry, fractals, and scaling into a new framework to form a quantitative methodology of spatial analysis.

  19. A new JPEG-based steganographic algorithm for mobile devices

    Science.gov (United States)

    Agaian, Sos S.; Cherukuri, Ravindranath C.; Schneider, Erik C.; White, Gregory B.

    2006-05-01

    Currently, cellular phones constitute a significant portion of the global telecommunications market. Modern cellular phones offer sophisticated features such as Internet access, on-board cameras, and expandable memory which provide these devices with excellent multimedia capabilities. Because of the high volume of cellular traffic, as well as the ability of these devices to transmit nearly all forms of data. The need for an increased level of security in wireless communications is becoming a growing concern. Steganography could provide a solution to this important problem. In this article, we present a new algorithm for JPEG-compressed images which is applicable to mobile platforms. This algorithm embeds sensitive information into quantized discrete cosine transform coefficients obtained from the cover JPEG. These coefficients are rearranged based on certain statistical properties and the inherent processing and memory constraints of mobile devices. Based on the energy variation and block characteristics of the cover image, the sensitive data is hidden by using a switching embedding technique proposed in this article. The proposed system offers high capacity while simultaneously withstanding visual and statistical attacks. Based on simulation results, the proposed method demonstrates an improved retention of first-order statistics when compared to existing JPEG-based steganographic algorithms, while maintaining a capacity which is comparable to F5 for certain cover images.

  20. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.

    Science.gov (United States)

    Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek

    2018-03-01

    One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.

  1. A street rubbish detection algorithm based on Sift and RCNN

    Science.gov (United States)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  2. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  3. Historical feature pattern extraction based network attack situation sensing algorithm.

    Science.gov (United States)

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

  4. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Zeng

    2014-01-01

    Full Text Available The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE. First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

  5. Quantum Cryptography Based on the Deutsch-Jozsa Algorithm

    Science.gov (United States)

    Nagata, Koji; Nakamura, Tadao; Farouk, Ahmed

    2017-09-01

    Recently, secure quantum key distribution based on Deutsch's algorithm using the Bell state is reported (Nagata and Nakamura, Int. J. Theor. Phys. doi: 10.1007/s10773-017-3352-4, 2017). Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present sequre quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Bob has promised to use a function f which is of one of two kinds; either the value of f( x) is constant for all values of x, or else the value of f( x) is balanced, that is, equal to 1 for exactly half of the possible x, and 0 for the other half. Here, we introduce an additional condition to the function when it is balanced. Our quantum key distribution overcomes a classical counterpart by a factor O(2 N ).

  6. Memoryless cooperative graph search based on the simulated annealing algorithm

    International Nuclear Information System (INIS)

    Hou Jian; Yan Gang-Feng; Fan Zhen

    2011-01-01

    We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment. (interdisciplinary physics and related areas of science and technology)

  7. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  8. Fuzzy Sets-based Control Rules for Terminating Algorithms

    Directory of Open Access Journals (Sweden)

    Jose L. VERDEGAY

    2002-01-01

    Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.

  9. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...

  10. An Alternative to Chaid Segmentation Algorithm Based on Entropy.

    Directory of Open Access Journals (Sweden)

    María Purificación Galindo Villardón

    2010-07-01

    Full Text Available The CHAID (Chi-Squared Automatic Interaction Detection treebased segmentation technique has been found to be an effective approach for obtaining meaningful segments that are predictive of a K-category (nominal or ordinal criterion variable. CHAID was designed to detect, in an automatic way, the  nteraction between several categorical or ordinal predictors in explaining a categorical response, but, this may not be true when Simpson’s paradox is present. This is due to the fact that CHAID is a forward selection algorithm based on the marginal counts. In this paper we propose a backwards elimination algorithm that starts with the full set of predictors (or full tree and eliminates predictors progressively. The elimination procedure is based on Conditional Independence contrasts using the concept of entropy. The proposed procedure is compared to CHAID.

  11. Time series regression-based pairs trading in the Korean equities market

    Science.gov (United States)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  12. Ordinal Regression Based Subpixel Shift Estimation for Video Super-Resolution

    Directory of Open Access Journals (Sweden)

    Petrovic Nemanja

    2007-01-01

    Full Text Available We present a supervised learning-based approach for subpixel motion estimation which is then used to perform video super-resolution. The novelty of this work is the formulation of the problem of subpixel motion estimation in a ranking framework. The ranking formulation is a variant of classification and regression formulation, in which the ordering present in class labels namely, the shift between patches is explicitly taken into account. Finally, we demonstrate the applicability of our approach on superresolving synthetically generated images with global subpixel shifts and enhancing real video frames by accounting for both local integer and subpixel shifts.

  13. An Application to the Prediction of LOD Change Based on General Regression Neural Network

    Science.gov (United States)

    Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.

    2011-07-01

    Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.

  14. Adaboost-based algorithm for human action recognition

    KAUST Repository

    Zerrouki, Nabil

    2017-11-28

    This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.

  15. Adaboost-based algorithm for human action recognition

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane

    2017-01-01

    This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.

  16. Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2016-04-01

    Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.

  17. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  18. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  19. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  20. Adaptive algorithm for mobile user positioning based on environment estimation

    Directory of Open Access Journals (Sweden)

    Grujović Darko

    2014-01-01

    Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.

  1. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  2. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  3. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    Science.gov (United States)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  4. Cryptographic protocol security analysis based on bounded constructing algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An efficient approach to analyzing cryptographic protocols is to develop automatic analysis tools based on formal methods. However, the approach has encountered the high computational complexity problem due to reasons that participants of protocols are arbitrary, their message structures are complex and their executions are concurrent. We propose an efficient automatic verifying algorithm for analyzing cryptographic protocols based on the Cryptographic Protocol Algebra (CPA) model proposed recently, in which algebraic techniques are used to simplify the description of cryptographic protocols and their executions. Redundant states generated in the analysis processes are much reduced by introducing a new algebraic technique called Universal Polynomial Equation and the algorithm can be used to verify the correctness of protocols in the infinite states space. We have implemented an efficient automatic analysis tool for cryptographic protocols, called ACT-SPA, based on this algorithm, and used the tool to check more than 20 cryptographic protocols. The analysis results show that this tool is more efficient, and an attack instance not offered previously is checked by using this tool.

  5. Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral

    Directory of Open Access Journals (Sweden)

    Wenhui Li

    2014-01-01

    Full Text Available Vision-based multivehicle detection plays an important role in Forward Collision Warning Systems (FCWS and Blind Spot Detection Systems (BSDS. The performance of these systems depends on the real-time capability, accuracy, and robustness of vehicle detection methods. To improve the accuracy of vehicle detection algorithm, we propose a multifeature fusion vehicle detection algorithm based on Choquet integral. This algorithm divides the vehicle detection problem into two phases: feature similarity measure and multifeature fusion. In the feature similarity measure phase, we first propose a taillight-based vehicle detection method, and then vehicle taillight feature similarity measure is defined. Second, combining with the definition of Choquet integral, the vehicle symmetry similarity measure and the HOG + AdaBoost feature similarity measure are defined. Finally, these three features are fused together by Choquet integral. Being evaluated on public test collections and our own test images, the experimental results show that our method has achieved effective and robust multivehicle detection in complicated environments. Our method can not only improve the detection rate but also reduce the false alarm rate, which meets the engineering requirements of Advanced Driving Assistance Systems (ADAS.

  6. Correcting for cryptic relatedness by a regression-based genomic control method

    Directory of Open Access Journals (Sweden)

    Yang Yaning

    2009-12-01

    Full Text Available Abstract Background Genomic control (GC method is a useful tool to correct for the cryptic relatedness in population-based association studies. It was originally proposed for correcting for the variance inflation of Cochran-Armitage's additive trend test by using information from unlinked null markers, and was later generalized to be applicable to other tests with the additional requirement that the null markers are matched with the candidate marker in allele frequencies. However, matching allele frequencies limits the number of available null markers and thus limits the applicability of the GC method. On the other hand, errors in genotype/allele frequencies may cause further bias and variance inflation and thereby aggravate the effect of GC correction. Results In this paper, we propose a regression-based GC method using null markers that are not necessarily matched in allele frequencies with the candidate marker. Variation of allele frequencies of the null markers is adjusted by a regression method. Conclusion The proposed method can be readily applied to the Cochran-Armitage's trend tests other than the additive trend test, the Pearson's chi-square test and other robust efficiency tests. Simulation results show that the proposed method is effective in controlling type I error in the presence of population substructure.

  7. GIS-based rare events logistic regression for mineral prospectivity mapping

    Science.gov (United States)

    Xiong, Yihui; Zuo, Renguang

    2018-02-01

    Mineralization is a special type of singularity event, and can be considered as a rare event, because within a specific study area the number of prospective locations (1s) are considerably fewer than the number of non-prospective locations (0s). In this study, GIS-based rare events logistic regression (RELR) was used to map the mineral prospectivity in the southwestern Fujian Province, China. An odds ratio was used to measure the relative importance of the evidence variables with respect to mineralization. The results suggest that formations, granites, and skarn alterations, followed by faults and aeromagnetic anomaly are the most important indicators for the formation of Fe-related mineralization in the study area. The prediction rate and the area under the curve (AUC) values show that areas with higher probability have a strong spatial relationship with the known mineral deposits. Comparing the results with original logistic regression (OLR) demonstrates that the GIS-based RELR performs better than OLR. The prospectivity map obtained in this study benefits the search for skarn Fe-related mineralization in the study area.

  8. Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data

    International Nuclear Information System (INIS)

    Guikema, S.D.; Quiring, S.M.

    2012-01-01

    Infrastructure disaster risk assessment seeks to estimate the probability of a given customer or area losing service during a disaster, sometimes in conjunction with estimating the duration of each outage. This is often done on the basis of past data about the effects of similar events impacting the same or similar systems. In many situations this past performance data from infrastructure systems is zero-inflated; it has more zeros than can be appropriately modeled with standard probability distributions. The data are also often non-linear and exhibit threshold effects due to the complexities of infrastructure system performance. Standard zero-inflated statistical models such as zero-inflated Poisson and zero-inflated negative binomial regression models do not adequately capture these complexities. In this paper we develop a novel method that is a hybrid classification tree/regression method for complex, zero-inflated data sets. We investigate its predictive accuracy based on a large number of simulated data sets and then demonstrate its practical usefulness with an application to hurricane power outage risk assessment for a large utility based on actual data from the utility. While formulated for infrastructure disaster risk assessment, this method is promising for data-driven analysis for other situations with zero-inflated, complex data exhibiting response thresholds.

  9. Analysis of computational complexity for HT-based fingerprint alignment algorithms on java card environment

    CSIR Research Space (South Africa)

    Mlambo, CS

    2015-01-01

    Full Text Available In this paper, implementations of three Hough Transform based fingerprint alignment algorithms are analyzed with respect to time complexity on Java Card environment. Three algorithms are: Local Match Based Approach (LMBA), Discretized Rotation Based...

  10. A Location-Based Business Information Recommendation Algorithm

    Directory of Open Access Journals (Sweden)

    Shudong Liu

    2015-01-01

    Full Text Available Recently, many researches on information (e.g., POI, ADs recommendation based on location have been done in both research and industry. In this paper, we firstly construct a region-based location graph (RLG, in which region node respectively connects with user node and business information node, and then we propose a location-based recommendation algorithm based on RLG, which can combine with user short-ranged mobility formed by daily activity and long-distance mobility formed by social network ties and sequentially can recommend local business information and long-distance business information to users. Moreover, it can combine user-based collaborative filtering with item-based collaborative filtering, and it can alleviate cold start problem which traditional recommender systems often suffer from. Empirical studies from large-scale real-world data from Yelp demonstrate that our method outperforms other methods on the aspect of recommendation accuracy.

  11. Performance evaluation of PCA-based spike sorting algorithms.

    Science.gov (United States)

    Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George

    2008-09-01

    Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.

  12. Creating Very True Quantum Algorithms for Quantum Energy Based Computing

    Science.gov (United States)

    Nagata, Koji; Nakamura, Tadao; Geurdes, Han; Batle, Josep; Abdalla, Soliman; Farouk, Ahmed; Diep, Do Ngoc

    2018-04-01

    An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f( x) := s. x = s 1 x 1 + s 2 x 2 + ⋯ + s N x N is proposed. Here x = ( x 1, … , x N ), x j ∈ R and the coefficients s = ( s 1, … , s N ), s j ∈ N. Given the interpolation values (f(1), f(2),...,f(N))=ěc {y}, the unknown coefficients s = (s1(ěc {y}),\\dots , sN(ěc {y})) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.

  13. FPGA-Based Implementation of Lithuanian Isolated Word Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Tomyslav Sledevič

    2013-05-01

    Full Text Available The paper describes the FPGA-based implementation of Lithuanian isolated word recognition algorithm. FPGA is selected for parallel process implementation using VHDL to ensure fast signal processing at low rate clock signal. Cepstrum analysis was applied to features extraction in voice. The dynamic time warping algorithm was used to compare the vectors of cepstrum coefficients. A library of 100 words features was created and stored in the internal FPGA BRAM memory. Experimental testing with speaker dependent records demonstrated the recognition rate of 94%. The recognition rate of 58% was achieved for speaker-independent records. Calculation of cepstrum coefficients lasted for 8.52 ms at 50 MHz clock, while 100 DTWs took 66.56 ms at 25 MHz clock.Article in Lithuanian

  14. ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

    Directory of Open Access Journals (Sweden)

    SARACOGLU, O. G.

    2016-08-01

    Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.

  15. Algorithms for MDC-Based Multi-locus Phylogeny Inference

    Science.gov (United States)

    Yu, Yun; Warnow, Tandy; Nakhleh, Luay

    One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this paper, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. Finally, we study the performance of these methods in coalescent-based computer simulations.

  16. An Improved Piecewise Linear Chaotic Map Based Image Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Yuping Hu

    2014-01-01

    Full Text Available An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack.

  17. Image Retrieval Algorithm Based on Discrete Fractional Transforms

    Science.gov (United States)

    Jindal, Neeru; Singh, Kulbir

    2013-06-01

    The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.

  18. Multirobot FastSLAM Algorithm Based on Landmark Consistency Correction

    Directory of Open Access Journals (Sweden)

    Shi-Ming Chen

    2014-01-01

    Full Text Available Considering the influence of uncertain map information on multirobot SLAM problem, a multirobot FastSLAM algorithm based on landmark consistency correction is proposed. Firstly, electromagnetism-like mechanism is introduced to the resampling procedure in single-robot FastSLAM, where we assume that each sampling particle is looked at as a charged electron and attraction-repulsion mechanism in electromagnetism field is used to simulate interactive force between the particles to improve the distribution of particles. Secondly, when multiple robots observe the same landmarks, every robot is regarded as one node and Kalman-Consensus Filter is proposed to update landmark information, which further improves the accuracy of localization and mapping. Finally, the simulation results show that the algorithm is suitable and effective.

  19. Research on Wavelet-Based Algorithm for Image Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    Wu Ying-qian; Du Pei-jun; Shi Peng-fei

    2004-01-01

    A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.

  20. ID card number detection algorithm based on convolutional neural network

    Science.gov (United States)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  1. Genetic algorithm based reactive power dispatch for voltage stability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, D. [Department of Electrical and Electronics, Kalasalingam University, Krishnankoil 626 190 (India); Roselyn, J. Preetha [Department of Electrical and Electronics, SRM University, Kattankulathur 603 203, Chennai (India)

    2010-12-15

    Voltage stability assessment and control form the core function in a modern energy control centre. This paper presents an improved Genetic algorithm (GA) approach for voltage stability enhancement. The proposed technique is based on the minimization of the maximum of L-indices of load buses. Generator voltages, switchable VAR sources and transformer tap changers are used as optimization variables of this problem. The proposed approach permits the optimization variables to be represented in their natural form in the genetic population. For effective genetic processing, the crossover and mutation operators which can directly deal with the floating point numbers and integers are used. The proposed algorithm has been tested on IEEE 30-bus and IEEE 57-bus test systems and successful results have been obtained. (author)

  2. Machine learning based global particle indentification algorithms at LHCb experiment

    CERN Multimedia

    Derkach, Denis; Likhomanenko, Tatiana; Rogozhnikov, Aleksei; Ratnikov, Fedor

    2017-01-01

    One of the most important aspects of data processing at LHC experiments is the particle identification (PID) algorithm. In LHCb, several different sub-detector systems provide PID information: the Ring Imaging CHerenkov (RICH) detector, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, several neural networks including a deep architecture and gradient boosting have been applied to data. These new approaches provide higher identification efficiencies than existing implementations for all charged particle types. It is also necessary to achieve a flat dependency between efficiencies and spectator variables such as particle momentum, in order to reduce systematic uncertainties during later stages of data analysis. For this purpose, "flat” algorithms that guarantee the flatness property for efficiencies have also been developed. This talk presents this new approach based on machine learning and its performance.

  3. Fitchi: haplotype genealogy graphs based on the Fitch algorithm.

    Science.gov (United States)

    Matschiner, Michael

    2016-04-15

    : In population genetics and phylogeography, haplotype genealogy graphs are important tools for the visualization of population structure based on sequence data. In this type of graph, node sizes are often drawn in proportion to haplotype frequencies and edge lengths represent the minimum number of mutations separating adjacent nodes. I here present Fitchi, a new program that produces publication-ready haplotype genealogy graphs based on the Fitch algorithm. http://www.evoinformatics.eu/fitchi.htm : michaelmatschiner@mac.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Research of Video Steganalysis Algorithm Based on H265 Protocol

    Directory of Open Access Journals (Sweden)

    Wu Kaicheng

    2015-01-01

    This paper researches LSB matching VSA based on H265 protocol with the research background of 26 original Video sequences, it firstly extracts classification features out from training samples as input of SVM, and trains in SVM to obtain high-quality category classification model, and then tests whether there is suspicious information in the video sample. The experimental results show that VSA algorithm based on LSB matching can be more practical to obtain all frame embedded secret information and carrier and video of local frame embedded. In addition, VSA adopts the method of frame by frame with a strong robustness in resisting attack in the corresponding time domain.

  5. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  6. Percentile-Based ETCCDI Temperature Extremes Indices for CMIP5 Model Output: New Results through Semiparametric Quantile Regression Approach

    Science.gov (United States)

    Li, L.; Yang, C.

    2017-12-01

    Climate extremes often manifest as rare events in terms of surface air temperature and precipitation with an annual reoccurrence period. In order to represent the manifold characteristics of climate extremes for monitoring and analysis, the Expert Team on Climate Change Detection and Indices (ETCCDI) had worked out a set of 27 core indices based on daily temperature and precipitation data, describing extreme weather and climate events on an annual basis. The CLIMDEX project (http://www.climdex.org) had produced public domain datasets of such indices for data from a variety of sources, including output from global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the 27 ETCCDI indices, there are six percentile-based temperature extremes indices that may fall into two groups: exceedance rates (ER) (TN10p, TN90p, TX10p and TX90p) and durations (CSDI and WSDI). Percentiles must be estimated prior to the calculation of the indices, and could more or less be biased by the adopted algorithm. Such biases will in turn be propagated to the final results of indices. The CLIMDEX used an empirical quantile estimator combined with a bootstrap resampling procedure to reduce the inhomogeneity in the annual series of the ER indices. However, there are still some problems remained in the CLIMDEX datasets, namely the overestimated climate variability due to unaccounted autocorrelation in the daily temperature data, seasonally varying biases and inconsistency between algorithms applied to the ER indices and to the duration indices. We now present new results of the six indices through a semiparametric quantile regression approach for the CMIP5 model output. By using the base-period data as a whole and taking seasonality and autocorrelation into account, this approach successfully addressed the aforementioned issues and came out with consistent results. The new datasets cover the historical and three projected (RCP2.6, RCP4.5 and RCP

  7. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  8. Coarse Alignment Technology on Moving base for SINS Based on the Improved Quaternion Filter Algorithm.

    Science.gov (United States)

    Zhang, Tao; Zhu, Yongyun; Zhou, Feng; Yan, Yaxiong; Tong, Jinwu

    2017-06-17

    Initial alignment of the strapdown inertial navigation system (SINS) is intended to determine the initial attitude matrix in a short time with certain accuracy. The alignment accuracy of the quaternion filter algorithm is remarkable, but the convergence rate is slow. To solve this problem, this paper proposes an improved quaternion filter algorithm for faster initial alignment based on the error model of the quaternion filter algorithm. The improved quaternion filter algorithm constructs the K matrix based on the principle of optimal quaternion algorithm, and rebuilds the measurement model by containing acceleration and velocity errors to make the convergence rate faster. A doppler velocity log (DVL) provides the reference velocity for the improved quaternion filter alignment algorithm. In order to demonstrate the performance of the improved quaternion filter algorithm in the field, a turntable experiment and a vehicle test are carried out. The results of the experiments show that the convergence rate of the proposed improved quaternion filter is faster than that of the tradition quaternion filter algorithm. In addition, the improved quaternion filter algorithm also demonstrates advantages in terms of correctness, effectiveness, and practicability.

  9. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  10. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    Science.gov (United States)

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Screening for ketosis using multiple logistic regression based on milk yield and composition.

    Science.gov (United States)

    Kayano, Mitsunori; Kataoka, Tomoko

    2015-11-01

    Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (Pketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (Pketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively.

  12. Large biases in regression-based constituent flux estimates: causes and diagnostic tools

    Science.gov (United States)

    Hirsch, Robert M.

    2014-01-01

    It has been documented in the literature that, in some cases, widely used regression-based models can produce severely biased estimates of long-term mean river fluxes of various constituents. These models, estimated using sample values of concentration, discharge, and date, are used to compute estimated fluxes for a multiyear period at a daily time step. This study compares results of the LOADEST seven-parameter model, LOADEST five-parameter model, and the Weighted Regressions on Time, Discharge, and Season (WRTDS) model using subsampling of six very large datasets to better understand this bias problem. This analysis considers sample datasets for dissolved nitrate and total phosphorus. The results show that LOADEST-7 and LOADEST-5, although they often produce very nearly unbiased results, can produce highly biased results. This study identifies three conditions that can give rise to these severe biases: (1) lack of fit of the log of concentration vs. log discharge relationship, (2) substantial differences in the shape of this relationship across seasons, and (3) severely heteroscedastic residuals. The WRTDS model is more resistant to the bias problem than the LOADEST models but is not immune to them. Understanding the causes of the bias problem is crucial to selecting an appropriate method for flux computations. Diagnostic tools for identifying the potential for bias problems are introduced, and strategies for resolving bias problems are described.

  13. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    Science.gov (United States)

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  14. Observer-Based and Regression Model-Based Detection of Emerging Faults in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Lin, Bao; Jørgensen, Sten Bay

    2006-01-01

    In order to improve the reliability of power plants it is important to detect fault as fast as possible. Doing this it is interesting to find the most efficient method. Since modeling of large scale systems is time consuming it is interesting to compare a model-based method with data driven ones....

  15. Breast mass detection in mammography and tomosynthesis via fully convolutional network-based heatmap regression

    Science.gov (United States)

    Zhang, Jun; Cain, Elizabeth Hope; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast mass detection in mammography and digital breast tomosynthesis (DBT) is an essential step in computerized breast cancer analysis. Deep learning-based methods incorporate feature extraction and model learning into a unified framework and have achieved impressive performance in various medical applications (e.g., disease diagnosis, tumor detection, and landmark detection). However, these methods require large-scale accurately annotated data. Unfortunately, it is challenging to get precise annotations of breast masses. To address this issue, we propose a fully convolutional network (FCN) based heatmap regression method for breast mass detection, using only weakly annotated mass regions in mammography images. Specifically, we first generate heat maps of masses based on human-annotated rough regions for breast masses. We then develop an FCN model for end-to-end heatmap regression with an F-score loss function, where the mammography images are regarded as the input and heatmaps for breast masses are used as the output. Finally, the probability map of mass locations can be estimated with the trained model. Experimental results on a mammography dataset with 439 subjects demonstrate the effectiveness of our method. Furthermore, we evaluate whether we can use mammography data to improve detection models for DBT, since mammography shares similar structure with tomosynthesis. We propose a transfer learning strategy by fine-tuning the learned FCN model from mammography images. We test this approach on a small tomosynthesis dataset with only 40 subjects, and we show an improvement in the detection performance as compared to training the model from scratch.

  16. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  17. Ship Block Transportation Scheduling Problem Based on Greedy Algorithm

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2016-05-01

    Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.

  18. Time-advance algorithms based on Hamilton's principle

    International Nuclear Information System (INIS)

    Lewis, H.R.; Kostelec, P.J.

    1993-01-01

    Time-advance algorithms based on Hamilton's variational principle are being developed for application to problems in plasma physics and other areas. Hamilton's principle was applied previously to derive a system of ordinary differential equations in time whose solution provides an approximation to the evolution of a plasma described by the Vlasov-Maxwell equations. However, the variational principle was not used to obtain an algorithm for solving the ordinary differential equations numerically. The present research addresses the numerical solution of systems of ordinary differential equations via Hamilton's principle. The basic idea is first to choose a class of functions for approximating the solution of the ordinary differential equations over a specific time interval. Then the parameters in the approximating function are determined by applying Hamilton's principle exactly within the class of approximating functions. For example, if an approximate solution is desired between time t and time t + Δ t, the class of approximating functions could be polynomials in time up to some degree. The issue of how to choose time-advance algorithms is very important for achieving efficient, physically meaningful computer simulations. The objective is to reliably simulate those characteristics of an evolving system that are scientifically most relevant. Preliminary numerical results are presented, including comparisons with other computational methods

  19. Feature extraction algorithm for space targets based on fractal theory

    Science.gov (United States)

    Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin

    2007-11-01

    In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.

  20. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    Directory of Open Access Journals (Sweden)

    Chung-Cheng Chiu

    2016-06-01

    Full Text Available Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA, which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.

  1. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    Science.gov (United States)

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  2. An Efficient Sleepy Algorithm for Particle-Based Fluids

    Directory of Open Access Journals (Sweden)

    Xiao Nie

    2014-01-01

    Full Text Available We present a novel Smoothed Particle Hydrodynamics (SPH based algorithm for efficiently simulating compressible and weakly compressible particle fluids. Prior particle-based methods simulate all fluid particles; however, in many cases some particles appearing to be at rest can be safely ignored without notably affecting the fluid flow behavior. To identify these particles, a novel sleepy strategy is introduced. By utilizing this strategy, only a portion of the fluid particles requires computational resources; thus an obvious performance gain can be achieved. In addition, in order to resolve unphysical clumping issue due to tensile instability in SPH based methods, a new artificial repulsive force is provided. We demonstrate that our approach can be easily integrated with existing SPH based methods to improve the efficiency without sacrificing visual quality.

  3. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  4. Research on Palmprint Identification Method Based on Quantum Algorithms

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-01-01

    Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.

  5. Distance Based Root Cause Analysis and Change Impact Analysis of Performance Regressions

    Directory of Open Access Journals (Sweden)

    Junzan Zhou

    2015-01-01

    Full Text Available Performance regression testing is applied to uncover both performance and functional problems of software releases. A performance problem revealed by performance testing can be high response time, low throughput, or even being out of service. Mature performance testing process helps systematically detect software performance problems. However, it is difficult to identify the root cause and evaluate the potential change impact. In this paper, we present an approach leveraging server side logs for identifying root causes of performance problems. Firstly, server side logs are used to recover call tree of each business transaction. We define a novel distance based metric computed from call trees for root cause analysis and apply inverted index from methods to business transactions for change impact analysis. Empirical studies show that our approach can effectively and efficiently help developers diagnose root cause of performance problems.

  6. Focused information criterion and model averaging based on weighted composite quantile regression

    KAUST Repository

    Xu, Ganggang

    2013-08-13

    We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non-parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR-estimator of a focused parameter is a non-linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non-normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure. © 2013 Board of the Foundation of the Scandinavian Journal of Statistics..

  7. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  8. Financial analysis and forecasting of the results of small businesses performance based on regression model

    Directory of Open Access Journals (Sweden)

    Svetlana O. Musienko

    2017-03-01

    Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small

  9. A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems

    Directory of Open Access Journals (Sweden)

    Ke Niu

    2015-01-01

    Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.

  10. Evaluation of Item-Based Top-N Recommendation Algorithms

    Science.gov (United States)

    2000-09-15

    Furthermore, one of the advantages of the item-based algorithm is that it has much smaller computational require- 11 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ecommerce ...items, utilized by many e-commerce sites, cannot take advantage of pre-computed user-to-user similarities. Consequently, even though the throughput of...Non-Zeros ecommerce 6667 17491 91222 catalog 50918 39080 435524 ccard 42629 68793 398619 skills 4374 2125 82612 movielens 943 1682 100000 Table 1: The

  11. The wind power prediction research based on mind evolutionary algorithm

    Science.gov (United States)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  12. Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm

    Science.gov (United States)

    Yu, Lifang; Zhao, Yao; Ni, Rongrong; Li, Ting

    2010-12-01

    We propose a novel steganographic method in JPEG images with high performance. Firstly, we propose improved adaptive LSB steganography, which can achieve high capacity while preserving the first-order statistics. Secondly, in order to minimize visual degradation of the stego image, we shuffle bits-order of the message based on chaos whose parameters are selected by the genetic algorithm. Shuffling message's bits-order provides us with a new way to improve the performance of steganography. Experimental results show that our method outperforms classical steganographic methods in image quality, while preserving characteristics of histogram and providing high capacity.

  13. Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lifang

    2010-01-01

    Full Text Available We propose a novel steganographic method in JPEG images with high performance. Firstly, we propose improved adaptive LSB steganography, which can achieve high capacity while preserving the first-order statistics. Secondly, in order to minimize visual degradation of the stego image, we shuffle bits-order of the message based on chaos whose parameters are selected by the genetic algorithm. Shuffling message's bits-order provides us with a new way to improve the performance of steganography. Experimental results show that our method outperforms classical steganographic methods in image quality, while preserving characteristics of histogram and providing high capacity.

  14. Entropy-Based Algorithm for Supply-Chain Complexity Assessment

    Directory of Open Access Journals (Sweden)

    Boris Kriheli

    2018-03-01

    Full Text Available This paper considers a graph model of hierarchical supply chains. The goal is to measure the complexity of links between different components of the chain, for instance, between the principal equipment manufacturer (a root node and its suppliers (preceding supply nodes. The information entropy is used to serve as a measure of knowledge about the complexity of shortages and pitfalls in relationship between the supply chain components under uncertainty. The concept of conditional (relative entropy is introduced which is a generalization of the conventional (non-relative entropy. An entropy-based algorithm providing efficient assessment of the supply chain complexity as a function of the SC size is developed.

  15. FPGA based algorithms for data reduction at Belle II

    Energy Technology Data Exchange (ETDEWEB)

    Muenchow, David; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Liu, Ming; Spruck, Bjoern [II. Physikalisches Institut, Universitaet Giessen (Germany)

    2011-07-01

    Belle II, the upgrade of the existing Belle experiment at Super-KEKB in Tsukuba, Japan, is an asymmetric e{sup +}e{sup -} collider with a design luminosity of 8.10{sup 35}cm{sup -2}s{sup -1}. At Belle II the estimated event rate is {<=}30 kHz. The resulting data rate at the Pixel Detector (PXD) will be {<=}7.2 GB/s. This data rate needs to be reduced to be able to process and store the data. A region of interest (ROI) selection is based upon two mechanisms. a.) a tracklet finder using the silicon strip detector and b.) the HLT using all other Belle II subdetectors. These ROIs and the pixel data are forwarded to an FPGA based Compute Node for processing. Here a VHDL based algorithm on FPGA with the benefit of pipelining and parallelisation will be implemented. For a fast data handling we developed a dedicated memory management system for buffering and storing the data. The status of the implementation and performance tests of the memory manager and data reduction algorithm is presented.

  16. Developing a Referral Protocol for Community-Based Occupational Therapy Services in Taiwan: A Logistic Regression Analysis.

    Science.gov (United States)

    Mao, Hui-Fen; Chang, Ling-Hui; Tsai, Athena Yi-Jung; Huang, Wen-Ni; Wang, Jye

    2016-01-01

    Because resources for long-term care services are limited, timely and appropriate referral for rehabilitation services is critical for optimizing clients' functions and successfully integrating them into the community. We investigated which client characteristics are most relevant in predicting Taiwan's community-based occupational therapy (OT) service referral based on experts' beliefs. Data were collected in face-to-face interviews using the Multidimensional Assessment Instrument (MDAI). Community-dwelling participants (n = 221) ≥ 18 years old who reported disabilities in the previous National Survey of Long-term Care Needs in Taiwan were enrolled. The standard for referral was the judgment and agreement of two experienced occupational therapists who reviewed the results of the MDAI. Logistic regressions and Generalized Additive Models were used for analysis. Two predictive models were proposed, one using basic activities of daily living (BADLs) and one using instrumental ADLs (IADLs). Dementia, psychiatric disorders, cognitive impairment, joint range-of-motion limitations, fear of falling, behavioral or emotional problems, expressive deficits (in the BADL-based model), and limitations in IADLs or BADLs were significantly correlated with the need for referral. Both models showed high area under the curve (AUC) values on receiver operating curve testing (AUC = 0.977 and 0.972, respectively). The probability of being referred for community OT services was calculated using the referral algorithm. The referral protocol facilitated communication between healthcare professionals to make appropriate decisions for OT referrals. The methods and findings should be useful for developing referral protocols for other long-term care services.

  17. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    Science.gov (United States)

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing

  18. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    Science.gov (United States)

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  19. Vision-based vehicle detection and tracking algorithm design

    Science.gov (United States)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  20. Calculation of electromagnetic parameter based on interpolation algorithm

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan

    2015-01-01

    Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment

  1. A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform

    Directory of Open Access Journals (Sweden)

    Zhengmin Duan

    2018-02-01

    Full Text Available Using a generalized linear model to determine the claim frequency of auto insurance is a key ingredient in non-life insurance research. Among auto insurance rate-making models, there are very few considering auto types. Therefore, in this paper we are proposing a model that takes auto types into account by making an innovative use of the auto burden index. Based on this model and data from a Chinese insurance company, we built a clustering model that classifies auto insurance rates into three risk levels. The claim frequency and the claim costs are fitted to select a better loss distribution. Then the Logistic Regression model is employed to fit the claim frequency, with the auto burden index considered. Three key findings can be concluded from our study. First, more than 80% of the autos with an auto burden index of 20 or higher belong to the highest risk level. Secondly, the claim frequency is better fitted using the Poisson distribution, however the claim cost is better fitted using the Gamma distribution. Lastly, based on the AIC criterion, the claim frequency is more adequately represented by models that consider the auto burden index than those do not. It is believed that insurance policy recommendations that are based on Generalized linear models (GLM can benefit from our findings.

  2. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R.

    2015-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  3. Bootstrap-based procedures for inference in nonparametric receiver-operating characteristic curve regression analysis.

    Science.gov (United States)

    Rodríguez-Álvarez, María Xosé; Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G

    2018-03-01

    Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation of its diagnostic accuracy is essential. The receiver-operating characteristic curve is the measure of accuracy most widely used for continuous diagnostic tests. However, the possible impact of extra information about the patient (or even the environment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on an estimator for the covariate-specific receiver-operating characteristic curve based on direct regression modelling and nonparametric smoothing techniques. This approach defines the class of generalised additive models for the receiver-operating characteristic curve. The main aim of the paper is to offer new inferential procedures for testing the effect of covariates on the conditional receiver-operating characteristic curve within the above-mentioned class. Specifically, two different bootstrap-based tests are suggested to check (a) the possible effect of continuous covariates on the receiver-operating characteristic curve and (b) the presence of factor-by-curve interaction terms. The validity of the proposed bootstrap-based procedures is supported by simulations. To facilitate the application of these new procedures in practice, an R-package, known as npROCRegression, is provided and briefly described. Finally, data derived from a computer-aided diagnostic system for the automatic detection of tumour masses in breast cancer is analysed.

  4. Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression

    Energy Technology Data Exchange (ETDEWEB)

    Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné [Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Armitage, Paul [The Academic Unit of Radiology, The University of Sheffield, Sheffield S10 2JF (United Kingdom); Whitby, Elspeth [The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield S10 2SF (United Kingdom); King, David [The Academic Unit of Child Health, The University of Sheffield, Sheffield S10 2TH (United Kingdom); Dimitri, Paul [The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield S10 2RX (United Kingdom); Frangi, Alejandro F. [Center for Computational Imaging and Simulation Technologies in Biomedicine, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2016-06-15

    Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by using a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.

  5. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Martinez B, M. R.; Castaneda M, R.; Solis S, L. O. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde 801, Col. Centro, 98000 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. Then derivation of the spectral information is not simple because the unknown is not given directly as result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, as the optimum selection of the network topology and the long training time. Compared to BPNN, is usually much faster to train a generalized regression neural network (GRNN). That is mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum. In addition, often are more accurate than BPNN in prediction. These characteristics make GRNN be of great interest in the neutron spectrometry domain. In this work is presented a computational tool based on GRNN, capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a {sup 6}LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. (Author)

  6. A class of kernel based real-time elastography algorithms.

    Science.gov (United States)

    Kibria, Md Golam; Hasan, Md Kamrul

    2015-08-01

    In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Abstract Expression Grammar Symbolic Regression

    Science.gov (United States)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  8. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  9. A Web-Based Tool to Interpolate Nitrogen Loading Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2014-09-01

    Full Text Available Water quality data may not be collected at a high frequency, nor over the range of streamflow data. For instance, water quality data are often collected monthly, biweekly, or weekly, since collecting and analyzing water quality samples are costly compared to streamflow data. Regression models are often used to interpolate pollutant loads from measurements made intermittently. Web-based Load Interpolation Tool (LOADIN was developed to provide user-friendly interfaces and to allow use of streamflow and water quality data from U.S. Geological Survey (USGS via web access. LOADIN has a regression model assuming that instantaneous load is comprised of the pollutant load based on streamflow and the pollutant load variation within the period. The regression model has eight coefficients determined by a genetic algorithm with measured water quality data. LOADIN was applied to eleven water quality datasets from USGS gage stations located in Illinois, Indiana, Michigan, Minnesota, and Wisconsin states with drainage areas from 44 km2 to 1,847,170 km2. Measured loads were calculated by multiplying nitrogen data by streamflow data associated with measured nitrogen data. The estimated nitrogen loads and measured loads were evaluated using Nash-Sutcliffe Efficiency (NSE and coefficient of determination (R2. NSE ranged from 0.45 to 0.91, and R2 ranged from 0.51 to 0.91 for nitrogen load estimation.

  10. Polychotomization of continuous variables in regression models based on the overall C index

    Directory of Open Access Journals (Sweden)

    Bax Leon

    2006-12-01

    Full Text Available Abstract Background When developing multivariable regression models for diagnosis or prognosis, continuous independent variables can be categorized to make a prediction table instead of a prediction formula. Although many methods have been proposed to dichotomize prognostic variables, to date there has been no integrated method for polychotomization. The latter is necessary when dichotomization results in too much loss of information or when central values refer to normal states and more dispersed values refer to less preferable states, a situation that is not unusual in medical settings (e.g. body temperature, blood pressure. The goal of our study was to develop a theoretical and practical method for polychotomization. Methods We used the overall discrimination index C, introduced by Harrel, as a measure of the predictive ability of an independent regressor variable and derived a method for polychotomization mathematically. Since the naïve application of our method, like some existing methods, gives rise to positive bias, we developed a parametric method that minimizes this bias and assessed its performance by the use of Monte Carlo simulation. Results The overall C is closely related to the area under the ROC curve and the produced di(polychotomized variable's predictive performance is comparable to the original continuous variable. The simulation shows that the parametric method is essentially unbiased for both the estimates of performance and the cutoff points. Application of our method to the predictor variables of a previous study on rhabdomyolysis shows that it can be used to make probability profile tables that are applicable to the diagnosis or prognosis of individual patient status. Conclusion We propose a polychotomization (including dichotomization method for independent continuous variables in regression models based on the overall discrimination index C and clarified its meaning mathematically. To avoid positive bias in

  11. The Parallel Algorithm Based on Genetic Algorithm for Improving the Performance of Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Liu Miao

    2018-01-01

    Full Text Available The intercarrier interference (ICI problem of cognitive radio (CR is severe. In this paper, the machine learning algorithm is used to obtain the optimal interference subcarriers of an unlicensed user (un-LU. Masking the optimal interference subcarriers can suppress the ICI of CR. Moreover, the parallel ICI suppression algorithm is designed to improve the calculation speed and meet the practical requirement of CR. Simulation results show that the data transmission rate threshold of un-LU can be set, the data transmission quality of un-LU can be ensured, the ICI of a licensed user (LU is suppressed, and the bit error rate (BER performance of LU is improved by implementing the parallel suppression algorithm. The ICI problem of CR is solved well by the new machine learning algorithm. The computing performance of the algorithm is improved by designing a new parallel structure and the communication performance of CR is enhanced.

  12. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  13. The Research of Disease Spots Extraction Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Kangshun Li

    2017-01-01

    Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.

  14. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  15. Generalized SMO algorithm for SVM-based multitask learning.

    Science.gov (United States)

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  16. Particle swarm optimization algorithm based low cost magnetometer calibration

    Science.gov (United States)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  17. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Meng Li

    2015-01-01

    Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.

  18. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    Science.gov (United States)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  19. A probabilistic fragment-based protein structure prediction algorithm.

    Directory of Open Access Journals (Sweden)

    David Simoncini

    Full Text Available Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of [Formula: see text] proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold's decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software.html [corrected].

  20. Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2013-01-01

    Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

  1. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    Science.gov (United States)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  2. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  3. Reference Function Based Spatiotemporal Fuzzy Logic Control Design Using Support Vector Regression Learning

    Directory of Open Access Journals (Sweden)

    Xian-Xia Zhang

    2013-01-01

    Full Text Available This paper presents a reference function based 3D FLC design methodology using support vector regression (SVR learning. The concept of reference function is introduced to 3D FLC for the generation of 3D membership functions (MF, which enhance the capability of the 3D FLC to cope with more kinds of MFs. The nonlinear mathematical expression of the reference function based 3D FLC is derived, and spatial fuzzy basis functions are defined. Via relating spatial fuzzy basis functions of a 3D FLC to kernel functions of an SVR, an equivalence relationship between a 3D FLC and an SVR is established. Therefore, a 3D FLC can be constructed using the learned results of an SVR. Furthermore, the universal approximation capability of the proposed 3D fuzzy system is proven in terms of the finite covering theorem. Finally, the proposed method is applied to a catalytic packed-bed reactor and simulation results have verified its effectiveness.

  4. Reducing false-positive incidental findings with ensemble genotyping and logistic regression based variant filtering methods.

    Science.gov (United States)

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won

    2014-08-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.

  5. Model-free prediction and regression a transformation-based approach to inference

    CERN Document Server

    Politis, Dimitris N

    2015-01-01

    The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...

  6. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    Science.gov (United States)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  8. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    Science.gov (United States)

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  9. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    Science.gov (United States)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  10. A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age

    Directory of Open Access Journals (Sweden)

    Marko Wilke

    2018-02-01

    Full Text Available This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1–75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender as well as technical (field strength, data quality predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php. Keywords: MRI template creation, Multivariate adaptive regression splines, DARTEL, Structural MRI

  11. Image Blocking Encryption Algorithm Based on Laser Chaos Synchronization

    Directory of Open Access Journals (Sweden)

    Shu-Ying Wang

    2016-01-01

    Full Text Available In view of the digital image transmission security, based on laser chaos synchronization and Arnold cat map, a novel image encryption scheme is proposed. Based on pixel values of plain image a parameter is generated to influence the secret key. Sequences of the drive system and response system are pretreated by the same method and make image blocking encryption scheme for plain image. Finally, pixels position are scrambled by general Arnold transformation. In decryption process, the chaotic synchronization accuracy is fully considered and the relationship between the effect of synchronization and decryption is analyzed, which has characteristics of high precision, higher efficiency, simplicity, flexibility, and better controllability. The experimental results show that the encryption algorithm image has high security and good antijamming performance.

  12. Optimized Laplacian image sharpening algorithm based on graphic processing unit

    Science.gov (United States)

    Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2014-12-01

    In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.

  13. Retinal biometrics based on Iterative Closest Point algorithm.

    Science.gov (United States)

    Hatanaka, Yuji; Tajima, Mikiya; Kawasaki, Ryo; Saito, Koko; Ogohara, Kazunori; Muramatsu, Chisako; Sunayama, Wataru; Fujita, Hiroshi

    2017-07-01

    The pattern of blood vessels in the eye is unique to each person because it rarely changes over time. Therefore, it is well known that retinal blood vessels are useful for biometrics. This paper describes a biometrics method using the Jaccard similarity coefficient (JSC) based on blood vessel regions in retinal image pairs. The retinal image pairs were rough matched by the center of their optic discs. Moreover, the image pairs were aligned using the Iterative Closest Point algorithm based on detailed blood vessel skeletons. For registration, perspective transform was applied to the retinal images. Finally, the pairs were classified as either correct or incorrect using the JSC of the blood vessel region in the image pairs. The proposed method was applied to temporal retinal images, which were obtained in 2009 (695 images) and 2013 (87 images). The 87 images acquired in 2013 were all from persons already examined in 2009. The accuracy of the proposed method reached 100%.

  14. A dual-adaptive support-based stereo matching algorithm

    Science.gov (United States)

    Zhang, Yin; Zhang, Yun

    2017-07-01

    Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.

  15. Symmetric Stream Cipher using Triple Transposition Key Method and Base64 Algorithm for Security Improvement

    Science.gov (United States)

    Nurdiyanto, Heri; Rahim, Robbi; Wulan, Nur

    2017-12-01

    Symmetric type cryptography algorithm is known many weaknesses in encryption process compared with asymmetric type algorithm, symmetric stream cipher are algorithm that works on XOR process between plaintext and key, to improve the security of symmetric stream cipher algorithm done improvisation by using Triple Transposition Key which developed from Transposition Cipher and also use Base64 algorithm for encryption ending process, and from experiment the ciphertext that produced good enough and very random.

  16. Feature Reduction Based on Genetic Algorithm and Hybrid Model for Opinion Mining

    Directory of Open Access Journals (Sweden)

    P. Kalaivani

    2015-01-01

    Full Text Available With the rapid growth of websites and web form the number of product reviews is available on the sites. An opinion mining system is needed to help the people to evaluate emotions, opinions, attitude, and behavior of others, which is used to make decisions based on the user preference. In this paper, we proposed an optimized feature reduction that incorporates an ensemble method of machine learning approaches that uses information gain and genetic algorithm as feature reduction techniques. We conducted comparative study experiments on multidomain review dataset and movie review dataset in opinion mining. The effectiveness of single classifiers Naïve Bayes, logistic regression, support vector machine, and ensemble technique for opinion mining are compared on five datasets. The proposed hybrid method is evaluated and experimental results using information gain and genetic algorithm with ensemble technique perform better in terms of various measures for multidomain review and movie reviews. Classification algorithms are evaluated using McNemar’s test to compare the level of significance of the classifiers.

  17. A study of Hough Transform-based fingerprint alignment algorithms

    CSIR Research Space (South Africa)

    Mlambo, CS

    2014-10-01

    Full Text Available the implementation of each algorithm. The comparison is performed by considering the alignment results computed using each group of algorithms when varying number of minutiae points, rotation angle, and translation. In addition, the memory usage, computing time...

  18. Packet-Based Control Algorithms for Cooperative Surveillance and Reconnaissance

    National Research Council Canada - National Science Library

    Murray, Richard M

    2007-01-01

    ..., and repeated transmissions. Results include analysis and design of estimation and control algorithms in the presence of packet loss and across multi-hop data networks, distributed estimation and sensor fusion algorithms...

  19. A time domain phase-gradient based ISAR autofocus algorithm

    CSIR Research Space (South Africa)

    Nel, W

    2011-10-01

    Full Text Available . Results on simulated and measured data show that the algorithm performs well. Unlike many other ISAR autofocus techniques, the algorithm does not make use of several computationally intensive iterations between the data and image domains as part...

  20. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  1. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed

    2013-01-07

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  2. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    Science.gov (United States)

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  3. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  4. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    Science.gov (United States)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  5. Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm

    OpenAIRE

    Atighehchi , Kévin; Ballet , Stéphane; Bonnecaze , Alexis; Rolland , Robert

    2016-01-01

    International audience; Thanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized, while maintaining a low number of bilinear multiplications.À partir d'une nouvelle construction de l'algorithme de multiplication de Chudnovsky et Chudnovsky, nous concevons des algorithmes ef...

  6. A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding

    Directory of Open Access Journals (Sweden)

    Saso Koceski

    2014-09-01

    Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.

  7. An Analysis of Bank Service Satisfaction Based on Quantile Regression and Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Wen-Tsao Pan

    2016-01-01

    Full Text Available Bank service satisfaction is vital to the success of a bank. In this paper, we propose to use the grey relational analysis to gauge the levels of service satisfaction of the banks. With the grey relational analysis, we compared the effects of different variables on service satisfaction. We gave ranks to the banks according to their levels of service satisfaction. We further used the quantile regression model to find the variables that affected the satisfaction of a customer at a specific quantile of satisfaction level. The result of the quantile regression analysis provided a bank manager with information to formulate policies to further promote satisfaction of the customers at different quantiles of satisfaction level. We also compared the prediction accuracies of the regression models at different quantiles. The experiment result showed that, among the seven quantile regression models, the median regression model has the best performance in terms of RMSE, RTIC, and CE performance measures.

  8. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Science.gov (United States)

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  9. Algorithm for Stabilizing a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  10. Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-01-01

    Full Text Available The problem of classification in incomplete information system is a hot issue in intelligent information processing. Hypergraph is a new intelligent method for machine learning. However, it is hard to process the incomplete information system by the traditional hypergraph, which is due to two reasons: (1 the hyperedges are generated randomly in traditional hypergraph model; (2 the existing methods are unsuitable to deal with incomplete information system, for the sake of missing values in incomplete information system. In this paper, we propose a novel classification algorithm for incomplete information system based on hypergraph model and rough set theory. Firstly, we initialize the hypergraph. Second, we classify the training set by neighborhood hypergraph. Third, under the guidance of rough set, we replace the poor hyperedges. After that, we can obtain a good classifier. The proposed approach is tested on 15 data sets from UCI machine learning repository. Furthermore, it is compared with some existing methods, such as C4.5, SVM, NavieBayes, and KNN. The experimental results show that the proposed algorithm has better performance via Precision, Recall, AUC, and F-measure.

  11. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Directory of Open Access Journals (Sweden)

    Azmat Ullah

    Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  12. Fractal Complexity-Based Feature Extraction Algorithm of Communication Signals

    Science.gov (United States)

    Wang, Hui; Li, Jingchao; Guo, Lili; Dou, Zheng; Lin, Yun; Zhou, Ruolin

    How to analyze and identify the characteristics of radiation sources and estimate the threat level by means of detecting, intercepting and locating has been the central issue of electronic support in the electronic warfare, and communication signal recognition is one of the key points to solve this issue. Aiming at accurately extracting the individual characteristics of the radiation source for the increasingly complex communication electromagnetic environment, a novel feature extraction algorithm for individual characteristics of the communication radiation source based on the fractal complexity of the signal is proposed. According to the complexity of the received signal and the situation of environmental noise, use the fractal dimension characteristics of different complexity to depict the subtle characteristics of the signal to establish the characteristic database, and then identify different broadcasting station by gray relation theory system. The simulation results demonstrate that the algorithm can achieve recognition rate of 94% even in the environment with SNR of -10dB, and this provides an important theoretical basis for the accurate identification of the subtle features of the signal at low SNR in the field of information confrontation.

  13. Disaster Monitoring using Grid Based Data Fusion Algorithms

    Directory of Open Access Journals (Sweden)

    Cătălin NAE

    2010-12-01

    Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.

  14. Genetic Algorithm-Based Identification of Fractional-Order Systems

    Directory of Open Access Journals (Sweden)

    Shengxi Zhou

    2013-05-01

    Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.

  15. An airport surface surveillance solution based on fusion algorithm

    Science.gov (United States)

    Liu, Jianliang; Xu, Yang; Liang, Xuelin; Yang, Yihuang

    2017-01-01

    In this paper, we propose an airport surface surveillance solution combined with Multilateration (MLAT) and Automatic Dependent Surveillance Broadcast (ADS-B). The moving target to be monitored is regarded as a linear stochastic hybrid system moving freely and each surveillance technology is simplified as a sensor with white Gaussian noise. The dynamic model of target and the observation model of sensor are established in this paper. The measurements of sensors are filtered properly by estimators to get the estimation results for current time. Then, we analysis the characteristics of two fusion solutions proposed, and decide to use the scheme based on sensor estimation fusion for our surveillance solution. In the proposed fusion algorithm, according to the output of estimators, the estimation error is quantified, and the fusion weight of each sensor is calculated. The two estimation results are fused with weights, and the position estimation of target is computed accurately. Finally the proposed solution and algorithm are validated by an illustrative target tracking simulation.

  16. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    Science.gov (United States)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  17. A neutron spectrum unfolding code based on generalized regression artificial neural networks

    International Nuclear Information System (INIS)

    Rosario Martinez-Blanco, Ma. del

    2016-01-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a "6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. - Highlights: • Main drawback of neutron spectrometry with BPNN is network topology optimization. • Compared to BPNN, it’s usually much faster to train a (GRNN). • GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest. • This computational code, automates the pre-processing, training

  18. Design of SVC Controller Based on Improved Biogeography-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Feifei Dong

    2014-01-01

    Full Text Available Considering that common subsynchronous resonance controllers cannot adapt to the characteristics of the time-varying and nonlinear behavior of a power system, the cosine migration model, the improved migration operator, and the mutative scale of chaos and Cauchy mutation strategy are introduced into an improved biogeography-based optimization (IBBO algorithm in order to design an optimal subsynchronous damping controller based on the mechanism of suppressing SSR by static var compensator (SVC. The effectiveness of the improved controller is verified by eigenvalue analysis and electromagnetic simulations. The simulation results of Jinjie plant indicate that the subsynchronous damping controller optimized by the IBBO algorithm can remarkably improve the damping of torsional modes and thus effectively depress SSR, and ensure the safety and stability of units and power grid operation. Moreover, the IBBO algorithm has the merits of a faster searching speed and higher searching accuracy in seeking the optimal control parameters over traditional algorithms, such as BBO algorithm, PSO algorithm, and GA algorithm.

  19. An Isometric Mapping Based Co-Location Decision Tree Algorithm

    Science.gov (United States)

    Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.

    2018-05-01

    Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  20. AN ISOMETRIC MAPPING BASED CO-LOCATION DECISION TREE ALGORITHM

    Directory of Open Access Journals (Sweden)

    G. Zhou

    2018-05-01

    Full Text Available Decision tree (DT induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT, which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1 The extraction method of exposed carbonate rocks is of high accuracy. (2 The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.