WorldWideScience

Sample records for regolith oxygen production

  1. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  2. Multi-Use Solar Thermal System for Oxygen Production from Lunar Regolith [7227-570], Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an innovative solar thermal system for oxygen production from lunar regolith. In this system solar radiation is collected by the concentrator...

  3. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  4. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  5. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  6. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  7. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  8. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers have determined that lunar soil contains approximately 43% oxygen in the lunar soil oxides, which could be extracted to provide breathable oxygen for...

  9. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Dominguez, Jesus A.; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as

  10. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  11. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John

    2006-01-01

    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  12. Evolution of Regolith Feed Systems for Lunar ISRU 02 Production Plants

    Science.gov (United States)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.; Metzger, Philip T.

    2010-01-01

    The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.

  13. RESOLVE: Regolith and Environment Science and Oxygen and Lunar Volatile Extraction

    Science.gov (United States)

    Quinn, Jacqueline; Baird, Scott; Colaprete, Anthony; Larson, William; Sanders, Gerald; Picard, Martin

    2011-01-01

    Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is an internationally developed payload that is intended to prospect for resources on other planetary bodies. RESOLVE is a miniature drilling and chemistry plant packaged onto a medium-sized rover to collect and analyze soil for volatile components such as water or hydrogen that could be used in human exploration efforts.

  14. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    Science.gov (United States)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  15. Spatial Patterns between Regolith Thickness and Forest Productivity in the Southern Sierra CZO

    Science.gov (United States)

    Ferrell, R. M.; Ferrell, D. F.; Hartsough, P. C.; O'Geen, T. T.

    2015-12-01

    Soil in conjunction with underlying weathered bedrock make up what is referred to as regolith, which can be thought of as the substrate that actively contributes water and nutrients to above ground biomass. As a result, regolith thickness is an important regulating factor of forest health and drought tolerance in the Sierra Nevada. Our project examined the relationships between landscape position, regolith thickness, and tree productivity within a sub watershed of the Southern Sierra Critical Zone Observatory. We hypothesized that tree productivity will increase with increasing regolith thickness. Data was collected in the summer of 2015 at sixty-five sites within a 522-ha watershed averaging 1180m in elevation with a MAP of 80cm and a MAT of 11C. Sites were randomly selected from a grid and then stratified in the field to capture representative samples from different landscape positions. Regolith was sampled using a hand auger with attachable extensions. At each site we augered to hard bedrock or a maximum depth of 7.56 m, which ever was shallower. Biomass measurements were made for all conifer species (DBH>20cm) within a 10m radius of the primary auger hole. Tree age was measured from a representative tree for all species in the plots. Preliminary findings suggest that there is a weak correlation between landscape position/slope and regolith thickness, likely due to differences in lithology. It also appears that terrain shape can result in conflicting outcomes: 1. It can focus water to promote physical and chemical weathering and thick regolith; or, 2. water focusing can result in landscape scouring, removing soil and weathered bedrock to create shallow regolith. Productivity appears to be a function of regolith thickness, effective precipitation and landscape position. Water collecting areas in the lower watershed are shallow to bedrock, but typically receive high amounts of effective precipitation resulting in greater tree productivity. Moreover, thick regolith

  16. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  17. Novel Instrumentation for Lunar Regolith Oxygen Production Facilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop, test and deploy three novel compact, rugged and easy-to-use multi-gas analysis instruments, based...

  18. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    Science.gov (United States)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  19. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  20. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    Science.gov (United States)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  1. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    Science.gov (United States)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  2. Mars oxygen production system design

    Science.gov (United States)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  3. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  4. Construction with Regolith

    Science.gov (United States)

    Mueller, Robert P.

    2017-01-01

    CLASS node of SSERVI at FSI, The Technology and Future of In-Situ Resource Utilization (ISRU): ACapstone Graduate Seminar Orlando, FL. This seminar will discuss the use of regolith and robotics in extra terrestrialconstruction.

  5. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  6. Low Temperature Regolith Bricks for In-Situ Structural Material

    Science.gov (United States)

    Grossman, Kevin; Sakthivel, Tamil S.; Mantovani, James; Seal, Sudipta

    2016-01-01

    Current technology for producing in-situ structural materials on future missions to Mars or the moon relies heavily on energy-intensive sintering processes to produce solid bricks from regolith. This process requires heating the material up to temperatures in excess of 1000 C and results in solid regolith pieces with compressive strengths in the range of 14000 to 28000 psi, but are heavily dependent on the porosity of the final material and are brittle. This method is currently preferred over a low temperature cementation process to prevent consumption of precious water and other non-renewable materials. A high strength structural material with low energy requirements is still needed for future colonization of other planets. To fulfill these requirements, a nano-functionalization process has been developed to produce structural bricks from regolith simulant and shows promising mechanical strength results. Functionalization of granular silicate particles into alkoxides using a simple low temperature chemical process produces a high surface area zeolite particles that are held together via inter-particle oxygen bonding. Addition of water in the resulting zeolite particles produces a sol-gel reaction called "inorganic polymerization" which gives a strong solid material after a curing process at 60 C. The aqueous solution by-product of the reaction is currently being investigated for its reusability; an essential component of any ISRU technology. For this study, two batches of regolith bricks are synthesized from JSC-1A; the first batch from fresh solvents and chemicals, the second batch made from the water solution by-product of the first batch. This is done to determine the feasibility of recycling necessary components of the synthesis process, mainly water. Characterization including BET surface area, SEM, and EDS has been done on the regolith bricks as well as the constituent particles,. The specific surface area of 17.53 sq m/g (average) of the granular regolith

  7. Recent advances in oxygen production for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-07-01

    This paper described the Ionic Transport Membrane (ITM) technology that reduces the overall cost of the gasification process by 7 per cent. Gasification is a proven, but expensive technology for producing hydrogen and synthesis gas from low cost hydrocarbon feedstock. Gasification is also an alternative to conventional steam methane reforming based on natural gas. A key cost element in gasification is the production of oxygen. For that reason, Air Products Canada Limited developed a ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates very well with the gasification process and an integrated gasification combined cycle (IGCC) option for production of electrical power from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed how the superior economics of ITM can allow gasification to compete with steam methane reforming and thereby reduce dependency of oil sands development on increasingly scarce and costly natural gas.

  8. In Situ Resource Utilization (ISRU) on the Moon: Moessbauer Spectroscopy as a Process Monitor for Oxygen Production. Results from a Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Morris, R.V.; Schroder, C.; Graff, T.G.; Sanders, G.B.; Lee, K.A.; Simon, T.M.; Larson, W.E.; Quinn, J.W.; Clark, L.D.; Caruso, J.J.

    2009-01-01

    Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of

  9. In-Situ Resource Utilization: Oxygen Production

    Data.gov (United States)

    National Aeronautics and Space Administration — The leading option for extracting oxygen from the Mars atmospheric carbon dioxide is to use a solid oxide electrolyzer, which removes one oxygen atom from the CO2...

  10. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  11. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Science.gov (United States)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  12. Dynamic molecular oxygen production in cometary comae

    Science.gov (United States)

    Yao, Yunxi; Giapis, Konstantinos P.

    2017-05-01

    Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.

  13. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  14. Borehole depth and regolith aquifer hydraulic characteristics of ...

    African Journals Online (AJOL)

    EJIRO

    composition tend to exhibit similar hydraulic characteristics. But the poor performance of ... mum borehole depth in the regolith aquifer for the area and also reveals that ..... most important end products of chemical weathering of rocks of granitic ...

  15. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  16. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  17. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii

    Science.gov (United States)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.

    2010-01-01

    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  18. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  19. Multi-Use Solar Thermal System for Oxygen Production from Lunar Regolith [7227-060], Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI), in collaboration with the Lockheed Martin Space Systems Company (LMSSC) and Orbital Technologies Corporation (Orbitec), proposes to...

  20. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D

    2003-01-01

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  1. Determination of Oxygen Production by Cyanobacteria in Desert Environment Soil

    Science.gov (United States)

    Bueno Prieto, J. E.

    2009-12-01

    The cyanobacteria have been characterized for being precursor in the production of oxygen. By means of photosynthetic reactions, they provide oxygen to the environment that surrounds them and they capture part of surrounding dioxide of carbon. This way it happened since the primitive Earth until today. Besides, these microorganisms can support the harmful effects of ultraviolet radiation. The presence of cyanobacterias in an environment like a dry tropical bioma, such as the geographical location called Desert of The Tatacoa (Huila - Colombia), is determinant to establish parameters in the search of biological origin of atmospheric oxygen detected in Mars. In that case, I work with a random sample of not rhizospheric soil, taken to 15 cm of depth. After determining the presence of cyanobacterias in the sample, this one was in laboratory to stimulate the oxygen production. The presence of oxygen in Mars is very interesting. Since oxygen gas is very reactive, it disappear if it is not renewed; the possibility that this renovation of oxygen has a biological origin is encouraging, bearing in mind that in a dry environment and high radiation such as the studied one, the production of oxygen by cyanobacterias is notable. Also it is necessary to keep in mind that the existence of cyanobacterias would determine water presence in Mars subsoil and the nutrients cycles renovation. An interesting exploration possibility for some future space probe to Mars might be the study of worldwide distribution of oxygen concentration in this planet and this way, indentify zones suitable for microbian life.

  2. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products.

    Science.gov (United States)

    Bernatchez, Stéphanie F; Tucker, Joseph; Chiffoleau, Gwenael

    2017-11-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed.

  3. Production and use of metals and oxygen for lunar propulsion

    Science.gov (United States)

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  4. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  5. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  6. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  7. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Thermal design of a Mars oxygen production plant

    Science.gov (United States)

    Sridhar, K. R.; Iyer, Venkatesh A.

    1991-01-01

    The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.

  9. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  10. Volatiles in the Martian regolith

    International Nuclear Information System (INIS)

    Clark, B.C.; Baird, A.K.

    1979-01-01

    An inventory of released volatiles on Mars has been derived based upon Viking measurements of atmospheric and surface chemical composition, and upon the inferred mineralogy of a ubiquitous regolith, assumed to average 200m in depth. This model is consistent with the relative abundances of volatiles (except for S) on the Earth's surface, but implies one-fifteenth of the volatile release of Earth if starting materials were comparable. All constituents are accommodated as chemical components of, or absorbed phases on, regolith materials--without the necessity of invoking unobservable deposits of carbonates, nitrates, or permafrost ice

  11. Late Quaternary changes in surface productivity and oxygen ...

    Indian Academy of Sciences (India)

    Changes in the abundance of selected planktic foraminiferal species and some sedimentological parameters at ODP site 728A were examined to understand the fluctuations in the surface productivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased relative abundances of high fertility ...

  12. Changes in carbon storage and oxygen production in forest timber ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... treaties and processes, has shown itself around the world and in our country as the concept of planning and ... Key words: Carbon storage, oxygen production, forest management, geographic information systems, land cover change. .... biomass transformation factors developed for the forests in Turkey are ...

  13. Oxygen production processes on the Moon: An overview

    Science.gov (United States)

    Taylor, Lawrence A.; Carrier, W. David, III

    1991-01-01

    The production of oxygen on the Moon utilizing indigenous material is paramount to a successful lunar colonization. Several processes were put forth to accomplish this. The lunar liquid oxygen (LLOX) generation schemes which have received the most study to date are those involving: (1) the reduction of ilmenite (FeTiO3) by H2, C, CO, CH4, CO-Cl2 plasma; (2) magma electrolysis, both unadulterated and fluoride-fluxed, and (3) several others, including carbo-chlorination, HF acid leaching, fluorine extraction, magma oxidation, and vapor pyrolysis. The H2 reduction of ilmenite and magma electrolysis processes have received the most study to date. At this stage of development, they both appear feasible schemes with various pros and cons. However, all processes should be addressed at least at the onset of the considerations. It is ultimatley the energy requirements of the entire process, including the acquisition of feedstock, which will determine the mode of oxygen productions. There is an obvious need for considerably more experimentation and study. Some of these requisite studies are in progress, and several of the most studied and feasible processes for winning oxygen from lunar materials are reviewed.

  14. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  15. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3....

  16. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  17. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable to...

  18. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.

    Directory of Open Access Journals (Sweden)

    Isaac Cano

    Full Text Available The production of reactive oxygen species (ROS from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (PmO2. Because PmO2 depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.

  19. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  20. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  1. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, J.; Schmidt, G. K.

    2016-12-01

    SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.

  2. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  3. Mars Regolith Water Extractor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Regolith Water Extractor (MRWE) is a system for acquiring water from the Martian soil. In the MRWE, a stream of CO2 is heated by solar energy or waste heat...

  4. Decameter-Scale Regolith Textures on Mercury

    Science.gov (United States)

    Kreslavsky, M. A.; Zharkova, A. Yu.; Head, J. W.

    2018-05-01

    Like on the Moon, regolith gardening smooths the surface. Small craters are in equilibrium. “Elephant hide“ typical on the lunar slopes is infrequent on Mercury. Finely Textured Slope Patches have no analog on the Moon.

  5. Controlled temperature expansion in oxygen production by molten alkali metal salts

    Science.gov (United States)

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  6. Exploring Regolith Depth and Cycling on Mars

    Science.gov (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.

    2017-12-01

    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  7. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  8. Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Alena Pecinova

    2017-01-01

    Full Text Available Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases, but only at very high concentrations (10−2–10−1 M that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.

  9. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  10. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  11. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  12. Low Force Penetration of Icy Regolith

    Science.gov (United States)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  13. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  14. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    Science.gov (United States)

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A new look at oxygen production on Mars - In situ propellant production (ISPP)

    Science.gov (United States)

    Frisbee, Robert H.; French, James R., Jr.; Lawton, Emil A.

    1987-01-01

    Consideration is given to the technique of producing oxygen on Mars from CO2 in the Martian atmosphere via in situ propellent production (ISPP). Mission implications of ISPP for both manned and unmanned Mars missions are described as well as ways to improve system reliability. Technology options that improve reliability and reduce power requirements include the use of adsorption pumps and advanced zirconia membranes. It is concluded that both manned and unmanned missions will benefit greatly from ISPP, especially in the context of a permanent manned base on Mars.

  16. Advanced Additive Manufacturing Feedstock from Molten Regolith Electrolysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate the feasibility of Molten Regolith Electrolysis (MRE) Reactor start by initiating resistive-heating of the regolith past its melting point using...

  17. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Changes in carbon storage and oxygen production in forest timber ...

    African Journals Online (AJOL)

    Decrease in forest areas world wide and the damaging of its structures is hazardous to human health, hinders and dries up the spread of oxygen in the air and also destroys carbon storage. In recent years, global warming and changes in climates depending on the increase in the green house gases have been affecting the ...

  19. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  20. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  1. Estimating primary production from oxygen time series: A novel approach in the frequency domain

    NARCIS (Netherlands)

    Cox, T.J.S.; Maris, T.; Soetaert, K.; Kromkamp, J.C.; Meire, P.; Meysman, F.J.R.

    2015-01-01

    Based on an analysis in the frequency domain of the governing equation of oxygen dynamics in aquatic systems, we derive a new method for estimating gross primary production (GPP) from oxygen time series. The central result of this article is a relation between time averaged GPP and the amplitude of

  2. Reactive oxygen species production and discontinuous gas exchange in insects

    OpenAIRE

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2011-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS produ...

  3. The Productivity of Oxygenic Photosynthesis around Cool, M Dwarf Stars

    Science.gov (United States)

    Lehmer, Owen R.; Catling, David C.; Parenteau, Mary N.; Hoehler, Tori M.

    2018-06-01

    In the search for life around cool stars, the presence of atmospheric oxygen is a prominent biosignature, as it may indicate oxygenic photosynthesis (OP) on the planetary surface. On Earth, most oxygenic photosynthesizing organisms (OPOs) use photons between 400 and 750 nm, which have sufficient energy to drive the photosynthetic reaction that generates O2 from H2O and CO2. OPOs around cool stars may evolve similar biological machinery capable of producing oxygen from water. However, in the habitable zones (HZs) of the coolest M dwarf stars, the flux of 400–750 nm photons may be just a few percent that of Earth’s. We show that the reduced flux of 400–750 nm photons around M dwarf stars could result in Earth-like planets being growth limited by light, unlike the terrestrial biosphere, which is limited by nutrient availability. We consider stars with photospheric temperatures between 2300 and 4200 K and show that such light-limited worlds could occur at the outer edge of the HZ around TRAPPIST-1-like stars. We find that even if OP can use photons longer than 750 nm, there would still be insufficient energy to sustain the Earth’s extant biosphere throughout the HZ of the coolest stars. This is because such stars emit largely in the infrared and near-infrared, which provide sufficient energy to make the planet habitable, but limits the energy available for OP. TRAPPIST-1f and g may fall into this category. Biospheres on such planets, potentially limited by photon availability, may generate small biogenic signals, which could be difficult for future observations to detect.

  4. Luna 24 regolith breccias: A possible source of the fine size material of the Luna 24 regolith

    Science.gov (United States)

    Rode, O. D.; Lindstrom, M. M.

    1994-01-01

    The regolith breccias from the Luna 24 core were analyzed. The Luna 24 regolith is a mixture of fine and coarse grain materials. The comparable analysis of the grain size distributions, the modal and chemical compositions of the breccias, and the regolith from the same levels show that the friable slightly litificated breccia with a friable fine grain matrix may be a source of fine grain material of the Luna 24 present day regolith.

  5. Martian regolith geochemistry and sampling techniques

    Science.gov (United States)

    Clark, B. C.

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  6. Martian regolith geochemistry and sampling techniques

    Science.gov (United States)

    Clark, B. C.

    1988-01-01

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  7. Analysis of Water Extraction From Lunar Regolith

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2012-01-01

    Distribution of water concentration on the Moon is currently an area of active research. Recent studies suggest the presence of ice particles, and perhaps even ice blocks and ice-cemented regolith on the Moon. Thermal extraction of the in-situ water is an attractive means of sa tisfying water requirements for a lunar mission. In this paper, a model is presented to analyze the processes occurring during the heat-up of icy regolith and extraction of the evolved water vapor. The wet regolith is assumed to be present in an initially evacuated and sealed cell which is subsequently heated. The first step of the analysis invol ves calculating the gradual increase of vapor pressure in the closed cell as the temperature is raised. Then, in the second step, the cell is evacuated to low pressure (e.g., vacuum), allowing the water vapor to leave the cell and be captured. The parameters affecting water vap or pressure build-up and evacuation for the purpose of extracting water from lunar regolith are discussed in the paper. Some comparisons wi th available experimental measurements are also made.

  8. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  9. The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions

    Science.gov (United States)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2017-02-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for ∼106 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8 - 3.5 ×10-7 kg m-2 yr-1 , which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is conceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  10. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    Science.gov (United States)

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  11. Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide

    Science.gov (United States)

    Howard, David; Abney, Morgan

    2015-01-01

    This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.

  12. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  13. Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production

    DEFF Research Database (Denmark)

    Nielsen, Christian B.; Arnbjerg, Jacob; Johnsen, Mette

    2009-01-01

    Substituent-dependent features and properties of the sensitizer play an important role in the photosensitized production of singlet oxygen, O2(a1Δg). In this work, we systematically examine the effect of molecular changes in the sensitizer on the efficiency of singlet oxygen production using......, as the sensitizer, oligophenylene-vinylene derivatives designed to optimally absorb light in a nonlinear two-photon process. We demonstrate that one cannot always rely on rule-of-thumb guidelines when attempting to construct efficient two-photon singlet oxygen sensitizers. Rather, as a consequence of behavior...... that can deviate from the norm, a full investigation of the photophysical properties of the system is generally required. For example, it is acknowledged that the introduction of a ketone moiety to the sensitizer chromophore often results in more efficient production of singlet oxygen. However, we show...

  14. Oxygen-15 labelled water production for positron emission tomography

    International Nuclear Information System (INIS)

    Janus, A.; Sachinidis, J.I.; Chan, J.G.; Tochon-Danguy, H.J.

    1998-01-01

    Full text: Functional imaging using positron emission tomography (PET) and 15 O-labelled compounds is both scientifically and clinically challenging. The short half-life of oxygen-15 (t 1/2 = 2 min) allows for multiple administration to a patient without exceeding acceptable levels of absorbed radiation dose and without excessive delay between administrations. The clinical usefulness of [ 15 O]-labelled water for cerebral blood flow measurements has been well established. Here we report the development and construction of a [ 15 O]water generator based on an earlier design from Hammersmith Hospital, London. The cyclotron produces a continuous flow of [ 15 O]O 2 gas by the irradiation of a natural nitrogen target (1% O 2 in N 2 ) with a 5 MeV deuteron beam, via the nuclear reaction ( 14 N(d,n) 15 O). The radioactive gas is then mixed with 5% hydrogen in nitrogen and piped to the water generator located in the scanner room. The O 2 /N 2 gas mixture is reacted over a palladium catalyst at 1500 deg C to produce [ 15 O]H 2 O vapour. The vapour passes through an exchanger where it diffuses across a semi-permeable membrane (cellulose acetate) into saline solution. At the optimum gas flow- rate of 500 mL/min, more than 95% of the radioactive oxygen is converted to radioactive water. Waste radioactive gas is piped back to the cyclotron vault to decay before release into the atmosphere. The saline solution (0.9% NaCl) is pumped continuously through the system at 6 mL/min with an infusion pump (3M AVI470). The present system has been in operation for more than a year and has been used for clinical evaluation of stroke patients and for brain activation research studies

  15. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    Science.gov (United States)

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  16. Net community production from autonomous oxygen observations in the Sargasso Sea

    Science.gov (United States)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  17. Detecting Volatiles Deep in the Lunar Regolith

    Science.gov (United States)

    Crotts, A.; Heggy, E.; Ciarletti, V.; Colaprete, A.; Moghaddam, M.; Siegler, M. A.

    2015-12-01

    There is increasing theoretical and empirical evidence, from the Apollo era and after, of volatiles deep in the lunar interior, in the crust and deeper, both hydrogen-rich and otherwise. This comes in the form of fire fountain samples from Apollo 15 and Apollo 17, of hydrated minerals excavated by impacts which reach the base of the lunar crust e.g., crater Bullialdus, of hydration of apatite and other minerals, as well as predictions of a water-concentrated layer along with the KREEP material at the base of the lunar crust. We discuss how the presence of these volatiles might be directly explored. In particular water vapor molecules percolating to the surface through lunar regolith might be expected to stick and freeze into the regolith, at depths of several meters depending on the regolith temperature profile, porosity and particle size distribution, quantities that are not well known beyond two meters depth. To explore these depths in the regolith we use and propose several modes of penetrating radar. We will present results using the SELENE/Kaguya's Lunar Sounding RADAR (LSR) to probe the bulk volatile dielectric and loss structure properties of the regolith in various locations, both within permanently shadowed regions (PSRs) and without, and within neutron suppression regions (NSRs) as traced by epithermal neutrons and without. We also propose installation of ground penetrating RADAR (GPR) on a roving lunar platform that should be able to probe between 0.2 and 1.6 GHz, which will provide a probe of the entire depth of the lunar regolith as well as a high-resolution (about 4 cm FWHM) probe of the upper meter or two of the lunar soil, where other probes of volatiles such as epithermal neutron absorption or drilling might be employed. We discuss predictions for what kinds of volatile density profiles might be distinguished in this way, and whether these will be detected from orbit as NSRs, whether these must be restricted to PSRs, and how these might appear in

  18. BRDF of Salt Pan Regolith Samples

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.

  19. [Possibility of exacerbation of allergy by lunar regolith].

    Science.gov (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  20. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...... and electrochemical ammonia production via the associative mechanism is possible at potentials as low as -0.45 V to -0.7 V. © 2014 Howalt and Vegge........ In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  1. Improvement of lipase production at different stirring speeds and oxygen levels

    Directory of Open Access Journals (Sweden)

    F.O.M. Alonso

    2005-03-01

    Full Text Available Lipase production by a Brazilian wild strain of Yarrowia lipolytica at different stirring speeds and air flow rates was studied. The relationship among lipid consumption, cell growth and lipase production by this microorganism is presented. The most pronounced effect of oxygen on lipase production was determined by stirring speed. Maximum lipase activity was detected in the late stationary phase at 200 rpm and an air flow rate of 1-2 dm³/min (0.8-1.7 vvm when the lipid source had been fully consumed. Higher stirring speeds resulted in mechanical and/or oxidative stress, while lower stirring speeds seemed to limit oxygen levels. An increase in the availability of oxygen at higher air flow rates led to faster lipid uptake and anticipation of enzyme release into the culture medium. The highest lipase production was obtained at 200 rpm and 1 dm³/min (0.8 vvm.

  2. Characterization of reaction products in sodium-oxygen batteries : An electrolyte concentration study

    OpenAIRE

    Hedman, Jonas

    2017-01-01

    In this thesis, the discharge products formed at the cathode and the performance and cell chemistry of sodium-oxygen batteries have been studied. This was carried out using different NaOTf salt concentrations. The influence of different salt concentrations on sodium-oxygen batteries was investigated since it has been shown that increasing the salt concentration beyond conventional concentrations could result in advantages such as increased stability of the electrolytes towards decomposition, ...

  3. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  4. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  5. Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Alena; Drahota, Zdeněk; Kovalčíková, Jana; Kovářová, Nikola; Pecina, Petr; Alán, Lukáš; Zima, Michal; Houštěk, Josef; Mráček, Tomáš

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 7038603. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GA16-12726S; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 Keywords : brown adipose tissue * mitochondria * respiratory chain oxidoreductases * mitochondrial glycerophosphate dehydrogenase * superoxide production * biguanides * metformin Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.593, year: 2016

  6. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  7. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  8. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  9. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  10. Extraction and Capture of Water from Martian Regolith Experimental Proof-of-Concept

    Science.gov (United States)

    Linne, Diane; Kleinhenz, Julie; Bauman, Steve; Johnson, Kyle

    2016-01-01

    Mars Design Reference Architecture 5.0:Lists in-situ resource utilization (ISRU) as enabling for robust human Mars missionsLO2LCH4 ascent propulsion 25,000 kg oxygen from atmosphere for ascent and life support Atmospheric based ISRU processes less operationally complex than surface based limited concept evaluation to date and Mars surface water property and distribution uncertainty would not allow [Mars soil water processing] to be base lined at this time Limited Concept Evaluation to Date Lunar regolith O2 extraction processing experience Lunar regolith is fluidized and heated to high temperatures with H2 to produce H2O from iron-bearing minerals Mars similarity concept: Soil placed in fluidized bed reactor Heated to moderate temperatures Inert gas flow used to fluidize the bed and help with water desorption Challenges: High-temperature dusty seals Working gas requires downstream separation and recycling to reduce consumables loss Batch process heating thermally inefficient.

  11. Enhanced Mesh-Free Simulation of Regolith Flow, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs simulation tools capable of predicting the behavior of regolith in proposed excavation, transport, and handling or sample acquisition systems. For...

  12. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  13. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    International Nuclear Information System (INIS)

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-01-01

    The production of O 2 (a 1 Δ g ) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O 2 (a 1 Δ g ) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O 2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O 2 (a 1 Δ g ) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O 2 (a 1 Δ g ) and the dynamics of its concentration. It is shown that, in the dynamics of O 2 (a 1 Δ g ) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O( 3 P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O 2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a

  14. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  15. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Buntat, Z; Harry, J E; Smith, I R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

    2003-07-07

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  16. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    CERN Document Server

    Buntat, Z; Smith, I R

    2003-01-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  17. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    International Nuclear Information System (INIS)

    Buntat, Z; Harry, J E; Smith, I R

    2003-01-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings

  18. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

    Science.gov (United States)

    Buntat, Z.; Harry, J. E.; Smith, I. R.

    2003-07-01

    This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

  19. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    Science.gov (United States)

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  20. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  1. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  2. Magnetic Sorting of the Regolith on the Moon: Lunar Swirls

    Science.gov (United States)

    Pieters, C. M.; Garrick-Bethell, I.; Hemingway, D.

    2014-12-01

    All of the mysterious albedo features on the Moon called "lunar swirls" are associated with magnetic anomalies, but not all magnetic anomalies are associated with lunar swirls [1]. It is often hypothesized that the albedo markings are tied to immature regolith on the surface, perhaps due to magnetic shielding of the solar wind and prevention of normal space weathering of the soil. Although interaction of the solar wind with the surface at swirls is indeed affected by the local magnetic field [2], this does not appear to result in immature soils on the surface. Calibrated spectra from the Moon Mineralogy Mapper [M3] (in image format) demonstrate that the high albedo markings for swirls are simply not consistent with immature regolith as is now understood from detailed analyses of lunar samples [eg 3]. However, M3 data show that the high albedo features of swirls are distinct and quite different from normal soils (in both the highlands and the mare). They allexhibit a flatter continuum across the near-infrared, but the actual band strength of ferrous minerals shows little (if any) deviation [4]. Recent analyses of magnetic field direction at swirls [5] mimic the observed albedo patterns (horizontal surface fields in bright areas, vertical surface fields in dark lanes). When coupled with the optical properties of magnetic separates of lunar soils [6] and our knowledge that the magnetic component of the soil results from space weathering [3,6], we propose a new and very simple explanation for these enigmatic albedo markings: the lunar swirls result from magnetic sorting of a well developed regolith. With time, normal gardening of the soil over a magnetic anomaly causes some of the dark magnetic component of the soil to be gradually removed from regions (high albedo areas) and accumulated in others (dark lanes). We are modeling predicted sorting rates using realistic rates of dust production. If this mechanism is tenable, only the origin of these magnetic anomalies

  3. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  4. Optical Extinction Measurements of Dust Density in the GMRO Regolith Test Bin

    Science.gov (United States)

    Lane, J.; Mantovani, J.; Mueller, R.; Nugent, M.; Nick, A.; Schuler, J.; Townsend, I.

    2016-01-01

    A regolith simulant test bin was constructed and completed in the Granular Mechanics and Regolith Operations (GMRO) Lab in 2013. This Planetary Regolith Test Bed (PRTB) is a 64 sq m x 1 m deep test bin, is housed in a climate-controlled facility, and contains 120 MT of lunar-regolith simulant, called Black Point-1 or BP-1, from Black Point, AZ. One of the current uses of the test bin is to study the effects of difficult lighting and dust conditions on Telerobotic Perception Systems to better assess and refine regolith operations for asteroid, Mars and polar lunar missions. Low illumination and low angle of incidence lighting pose significant problems to computer vision and human perception. Levitated dust on Asteroids interferes with imaging and degrades depth perception. Dust Storms on Mars pose a significant problem. Due to these factors, the likely performance of telerobotics is poorly understood for future missions. Current space telerobotic systems are only operated in bright lighting and dust-free conditions. This technology development testing will identify: (1) the impact of degraded lighting and environmental dust on computer vision and operator perception, (2) potential methods and procedures for mitigating these impacts, (3) requirements for telerobotic perception systems for asteroid capture, Mars dust storms and lunar regolith ISRU missions. In order to solve some of the Telerobotic Perception system problems, a plume erosion sensor (PES) was developed in the Lunar Regolith Simulant Bin (LRSB), containing 2 MT of JSC-1a lunar simulant. PES is simply a laser and digital camera with a white target. Two modes of operation have been investigated: (1) single laser spot - the brightness of the spot is dependent on the optical extinction due to dust and is thus an indirect measure of particle number density, and (2) side-scatter - the camera images the laser from the side, showing beam entrance into the dust cloud and the boundary between dust and void. Both

  5. Physics and engineering of singlet delta oxygen production in low-temperature plasma

    International Nuclear Information System (INIS)

    Ionin, A A; Kochetov, I V; Napartovich, A P; Yuryshev, N N

    2007-01-01

    An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen-iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen-iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion-molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition a 1 Δ g - X 3 Σ g - and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL

  6. Paraffin as oxygen vector modulates tyrosine phenol lyase production by Citrobacter freundii MTCC 2424.

    Science.gov (United States)

    Azmi, Wamik; Kumar, Ajay; Dev, Varun

    2013-06-01

    The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.

  7. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    Science.gov (United States)

    Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.

    2015-12-01

    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.

  8. Reactive oxygen species production, induced by atmospheric modification, alter conidial quality of Beauveria bassiana.

    Science.gov (United States)

    Pérez-Guzmán, D; Montesinos-Matías, R; Arce-Cervantes, O; Gómez-Quiroz, L E; Loera, O; Garza-López, P M

    2016-08-01

    The aim of this study was to determine the relationship between reactive oxygen species (ROS) production and conidial infectivity in Beauveria bassiana. Beauveria bassiana Bb 882.5 was cultured in solid-state culture (SSC) using rice under three oxygen conditions (21%, or pulses at 16 and 26%). Hydrophobicity was determined using exclusion phase assay. Bioassays with larvae or adults of Tenebrio molitor allowed the measurements of infectivity parameters. A fluorometric method was used for ROS quantification (superoxide and total peroxides). NADPH oxidase (NOX) activity was determined by specific inhibition. Conidial hydrophobicity decreased by O2 pulses. Mortality of larvae was only achieved with conidia harvested from cultures under 21% O2 ; whereas for adult insects, the infectivity parameters deteriorated in conidia obtained after pulses at 16 and 26% O2 . At day 7, ROS production increased after 16 and 26% O2 treatments. NOX activity induced ROS production at early stages of the culture. Modification of atmospheric oxygen increases ROS production, reducing conidial quality and infectivity. This is the first study in which conidial infectivity and ROS production in B. bassiana has been related, enhancing the knowledge of the effect of O2 pulses in B. bassiana. © 2016 The Society for Applied Microbiology.

  9. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    Science.gov (United States)

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  10. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  11. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  12. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats

    Science.gov (United States)

    Plant, Joshua N.; Johnson, Kenneth S.; Sakamoto, Carole M.; Jannasch, Hans W.; Coletti, Luke J.; Riser, Stephen C.; Swift, Dana D.

    2016-06-01

    Six profiling floats equipped with nitrate and oxygen sensors were deployed at Ocean Station P in the Gulf of Alaska. The resulting six calendar years and 10 float years of nitrate and oxygen data were used to determine an average annual cycle for net community production (NCP) in the top 35 m of the water column. NCP became positive in February as soon as the mixing activity in the surface layer began to weaken, but nearly 3 months before the traditionally defined mixed layer began to shoal from its winter time maximum. NCP displayed two maxima, one toward the end of May and another in August with a summertime minimum in June corresponding to the historical peak in mesozooplankton biomass. The average annual NCP was determined to be 1.5 ± 0.6 mol C m-2 yr-1 using nitrate and 1.5 ± 0.7 mol C m-2 yr-1 using oxygen. The results from oxygen data proved to be quite sensitive to the gas exchange model used as well as the accuracy of the oxygen measurement. Gas exchange models optimized for carbon dioxide flux generally ignore transport due to gas exchange through the injection of bubbles, and these models yield NCP values that are two to three time higher than the nitrate-based estimates. If nitrate and oxygen NCP rates are assumed to be related by the Redfield model, we show that the oxygen gas exchange model can be optimized by tuning the exchange terms to reproduce the nitrate NCP annual cycle.

  13. Benefit of Lunar Regolith on Reflector Mass Savings

    International Nuclear Information System (INIS)

    Hatton, Steven A.; El-Genk, Mohamed S.

    2007-01-01

    The 2004 NASA Vision for Space Exploration calls for the return of mankind to the moon by no later than 2020, in preparation for an adventure to Mars and beyond. An envisioned lunar outpost will provide living quarters for initially 5- 10 astronauts for up to 2 weeks, and latter for science experiments, and recovery of mineral and indigenous resources for the day-to-day operation and production of propellant. These activities would require electrical and thermal powers in the order of 10's - 100's of kilowatts 24/7. Potential power options include photovoltaic, requiring massive batteries or fuel cells for energy storage during the long nights on the moon, and nuclear reactor power systems, which are much more compact and operate independent of the sun. This paper examines the benefit of using the lunar regolith as a supplemental neutron reflector on decreasing the launch mass of the Sectored Compact Reactor (SCoRe-S), developed at the Institute for Space and Nuclear Power Studies. In addition to providing at least $2.00 of hot-clean excess reactivity at the beginning of life, various SCoRe-S concepts investigated in this paper are at least $1.00 sub-critical when shutdown, and when the bare reactor cores are submerged in wet sand and flooded with seawater, following a launch abort accident. Design calculations performed using MCNP5 confirmed that using lunar regolith as supplementary reflector reduces the launch mass of the SCoRe-S cores by ∼ 34% - 35%, or 150 - 200 kg, while satisfying the above reactivity requirements

  14. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  15. 2007 Lunar Regolith Simulant Workshop Overview

    Science.gov (United States)

    McLemore, Carole A.; Fikes, John C.; Howell, Joe T.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1 M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the

  16. Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Senol, O.I.

    2007-07-01

    Environmental concerns and diminishing petroleum reserves have increased the importance of biofuels for traffic fuel applications. Second generation biofuels produced from wood, vegetable oils and animal fats have been considered promising for delivering biofuels in large amount with low production cost. The abundance of oxygen in the form of various aliphatic and aromatic oxygenates decreases the quality of biofuels, however, and therefore the oxygen content of biofuels must be reduced. Upgrading of biofuels can be achieved by hydrodeoxygenation (HDO), which is similar to hydrodesulphurisation in oil refining. In HDO, oxygen-containing compounds are converted to hydrocarbons by eliminating oxygen in the form of water in the presence of hydrogen and a sulphided catalyst. Due to the low sulphur content of biofuels, a sulphiding agent is typically added to the HDO feed to maintain activity and stability of the catalyst. The aim of this work was to investigate HDO using aliphatic and aromatic oxygenates as model compounds on sulphided NiMo/gamma-Al{sub 2}O3 and CoMo/gamma-Al{sub 2}O3 catalysts. The effects of side product, water, and of sulphiding agents, H{sub 2}S and CS{sub 2}, on HDO were determined. The primary focus was on the HDO of aliphatic oxygenates, because a reasonable amount of data regarding the HDO of aromatic oxygenates already exists. The HDO of aliphatic esters produced hydrocarbons from intermediate alcohol, carboxylic acid, aldehyde and ether compounds. A few sulphur-containing compounds were also detected in trace amounts, and their formation caused desulphurisation of the catalysts. Hydrogenation reactions and acid-catalysed reactions (dehydration, hydrolysis, esterification, E{sub 2} elimination and SN{sub 2} nucleophilic substitution) played a major role in the HDO of aliphatic oxygenates. The NiMo catalyst showed a higher activity for HDO and hydrogenation reactions than the CoMo catalyst, but both catalysts became deactivated because of

  17. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  18. Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant

    Science.gov (United States)

    Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo

    2009-01-01

    Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.

  19. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Liu, Lifang; Petranovic, Dina

    2015-01-01

    Efficient production of appropriate oxygen carriers for transfusions (blood substitutes or artificial blood) has been pursued for many decades, and to date several strategies have been used, from synthetic polymers to cell-free hemoglobin carriers. The recent advances in the field of metabolic en...... the transcription factor HAP1, which resulted in an increase of the final recombinant active hemoglobin titer exceeding 7% of the total cellular protein....

  20. Influence of Power Modulation on Ozone Production Using an AC Surface Dielectric Barrier Discharge in Oxygen

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pekárek, S.; Prukner, Václav

    2010-01-01

    Roč. 30, č. 5 (2010), s. 607-617 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA202/09/0176 Institutional research plan: CEZ:AV0Z20430508 Keywords : Ozone * Surface DBD * Oxygen * Production efficiency Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.798, year: 2010 http://www.springerlink.com/content/28539775w5243513/

  1. Productivity variations, oxygen minimum zone and their impact on organic enrichment in the sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.

    of Somalia, the Arabian Peninsula, Iran, Pakistan and Eastern and Western shelves of India (except a part of inner shelf), irrespective of primary productivity variation (Fig. 3), is mainly ascribed to decomposition of organic matter in contact.... Nevertheless, moderate to very high concentrations of organic carbon (Fig. 1) are invariably associated with the entire slope sediments, forming a long and wide band in contact with oxygen minima from Saurashtra to the southern tip of India. It may...

  2. Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles

    NARCIS (Netherlands)

    Verschuren, P.G.; Cardona, T.D.; Nout, M.J.R.; Gooijer, de K.D.; Heuvel, van den J.C.

    2000-01-01

    The static fermentation of coconut water sucrose by Acetobacter xylinum was carried out at initial pH's of 3.0, 4.0, 5.0 or 6.0. Cellulose was produced at the surface, and its production was most favourable at pH's 4.0 and 5.0. These pH values also allowed for optimal bacterial growth. Oxygen

  3. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    Science.gov (United States)

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic

  4. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-07-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  5. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    Science.gov (United States)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  6. The Nature of C Asteroid Regolith from Meteorite Observations

    Science.gov (United States)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  7. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  8. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...... production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from...

  9. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    Science.gov (United States)

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  10. Filterability of corrosion products formed between carbon steel and water. Influence of temperature and oxygen content

    International Nuclear Information System (INIS)

    Kelen, T.; Falk, I.

    1975-09-01

    A laboratory investigation has been made for the purpose of studying the influence of temperature and oxygen content on the filterability of corrosion products formed between carbon-steel and water. The experiments were performed in a high temperature loop where the water is initially heated in a pre-heater, then cooled and finally filtered. The corrosion products were transferred to thewater from a carbon-steel surface that had previously been neutron activated and the amount of iron present was determined from measurements of the γ-radiation emitted by Fe-59. Filterability was then computed as the ratio between the total amount of iron in the water phase and the amount of iron retained on the filter. The investigation covers a series of experiments at filtering temperatures of 20, 90 and 160 dec G, pre-heater temperatures up to 300 deg C and oxygen contents of 10 and 300 ppb O 2 . In addition the extent of iron deposition in the pre-heater and heat regulator has been determined after each series of experiments. Filterability exhibited a pronounced dependence upon both the filter and pre-heater temperatures and also upon the oxygen content. Among the conclusions to which the results lead is the observation that a strict comparison of filterability values for the fraction of corrosion products in cooled water samples is impossible when these are taken from 1) different sections of a high temperature system 2) a single sampling point while the system is being run up 3) two separate systems (e.g. steam boilers) operated at different temperatures 4) two separate systems operated at different oxygen contents. It accordingly appears advizable to restrict the use of cold-filtered samples from conventional steam-raising plants to the comparison of values relating to a single sampling point under constant operating conditions. (author)

  11. Cosmogenic nuclide depth-profiles and geochemical analysis of mountain regolith aimed at quantifying rates of glacial and periglacial erosion

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    Clay minerals such as kaolinite and gibbsite in mountain regolith in present-day cold environments are often, without further age-constraint, interpreted as products of weathering in a warmer climate (e.g. Rea, 1996; Strømsøe, 2011). This reasoning has, in turn, been used to infer long residence...

  12. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    Science.gov (United States)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  13. 3D Additive Construction with Regolith for Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of...

  14. High Fidelity Regolith Simulation Tool for ISRU Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  15. Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed effort is to use vibration to propel a small, self-contained device through unconsolidated (loose, granular) material, such as regolith. Small scale robotic...

  16. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  17. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  18. Rates and products of degradation for MTBE and other oxygenate fuel additives in the subsurface environment

    International Nuclear Information System (INIS)

    Tratnyek, P.G.; Church, C.D.; Pankow, J.F.

    1995-01-01

    The recent realization that oxygenated fuel additives such as MTBE are becoming widely distributed groundwater contaminants has created a sudden and pressing demand for data on the processes that control their environmental fate. Explaining and predicting the subsequent environmental fate of these compounds is going to require extrapolations over long time frames that will be very sensitive to the quality of input data on each compound. To provide such data, they have initiated a systematic study of the pathways and kinetics of fuel oxygenate degradation under subsurface conditions. Batch experiments in simplified model systems are being performed to isolate specific processes that may contribute to MTBE degradation. A variety of degradation pathways can be envisioned that lead to t-butyl alcohol (TBA) as the primary or secondary product. However, experiments to date with a facultative iron reducing bacteria showed no evidence for TBA formation. Continuing experiments include mixed cultures from a range of aquifer materials representative of NAWQA study sites

  19. Study and development of a fluorescence based sensor system for monitoring oxygen in wine production : the WOW project

    NARCIS (Netherlands)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of

  20. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  1. 3D Additive Construction with Regolith for Surface Systems

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  2. Production of alkyl-aromatics from light oxygenates over zeolite catalysts for bio-oil refining

    Science.gov (United States)

    Hoang, Trung Q.

    Upgrading of light oxygenates derived from biomass conversion, such as propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated on zeolite catalysts. Aromatics with a high ratio of C 9/(C8+C7) and little benzene are produced at much higher yield from oxygenates than from olefins at mild conditions over HZSM-5. It is proposed that C9 aromatics are predominantly produced via acid-catalyzed aldol condensation. This reaction pathway is different from the pathway of propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at more severe conditions with major aromatic products C6 and C7. In fact, investigation on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C 7) aromatics on small crystallite. This is due to faster removal of products from the shorter diffusion path length. As a result, a longer catalyst lifetime, less isomerization, and less cracking were observed on small crystallites. Beside crystallite size, pore geometry of zeolites was also found to significantly affect aromatic production for both conversion of propanal and glycerol. It is shown that the structure of the HZSM-22, with a one-dimensional and narrower channel system, restricts the formation of aromatics. In contrast, a higher yield of aromatic products is observed over HZSM-5 with its three-dimensional channel system. By increasing channel dimension and connectivity of the channels, increasing catalyst activity was also observed due to more accessible acid sites. It was also found that glycerol is highly active for dehydration on zeolites to produce high yields of acrolein (propenal), a high value chemical. To maximize aromatics from glycerol conversion, HZSM-5 and HY were found to be effective. A two-bed reactor of Pd/ZnO and HZSM-5 was used to first deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can further aromatize on HZSM-5. The end results are very promising with significant improvement

  3. Designing the Lunar Regolith Excavation Competition

    Science.gov (United States)

    Le, Christopher

    2009-01-01

    The project assigned this summer involves designing a lunar regolith mining robotics competition. This process involves consulting several assets available at the Kennedy Space Center. The process involves several steps. The first step is to determine the requirements for the competition. Once these requirements are determined, the dimensions of the playing field are drawn up, first by hand, and then using computer models. After these drawings are tentatively decided upon, the cost of materials must be determined, so as to fit within the allotted budget for the project. The materials are to then be ordered, assembled, broken down, and stored throughout the duration of the competition. We must also design the advertisements and logos for the competition. This is to market and publicize the competition to college level teams. We must also determine the rules for the competition so as to have uniform requirements for all teams. Once these processes are completed, the competition can be finalized and publicized for the public. The contributing parties are Greg Galloway, Robert Mueller, Susan Sawyer, Gloria Murphy, Julia Nething, and Cassandra Liles.

  4. The extent of lunar regolith mixing

    International Nuclear Information System (INIS)

    Nishiizumi, K.; Imamura, M.; Kohl, C.P.; Murrell, M.T.; Arnold, J.R.; Russ, G.P. III

    1979-01-01

    The activity of solar cosmic-ray-produced 53 Mn has been measured as a function of depth in the upper 100 g/cm 2 (approximately 55 cm) of lunar cores 60009-60010 and 12025-12028. Additional samples which supplement earlier work were analyzed from the Apollo 15 and 16 drill stems. These data, taken in conjunction with previously published results and the 22 Na and 26 Al data of the Battelle Northwest group, indicate that in at least three of the four cases studied the regolith has been measureably disturbed within the last 10 m.y. In one case gardening to > 19 g/cm 2 is required. Activities measured in the uppermost 2 g/cm 2 indicate frequent mixing within this depth range. No undisturbed profiles were observed nor were any major discontinuities observed in the profiles. The Monte Carlo gardening model of Arnold has been used to derive profiles for the gardened moon-wide average of 53 Mn and 26 Al as a function of depth. The 53 Mn and 26 Al experimental results are compared with these theoretical predictions. Agreement is good in several respects, but the calculated depth of disturbance appears to be too low. (Auth.)

  5. Measurement of ozone production scaling in a helium plasma jet with oxygen admixture

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa

    2012-10-01

    Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.

  6. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  7. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    Science.gov (United States)

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  8. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.

    Science.gov (United States)

    Hu, Junlang; Lei, Pan; Mohsin, Ali; Liu, Xiaoyun; Huang, Mingzhi; Li, Liang; Hu, Jianhua; Hang, Haifeng; Zhuang, Yingping; Guo, Meijin

    2017-09-12

    Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13 C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden-Meyerhof-Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD + ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. This study shows that integration of transcriptomics, 13 C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin's regulatory mechanisms in

  9. Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †

    Science.gov (United States)

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256

  10. Experimental Measurements of Heat Transfer through a Lunar Regolith Simulant in a Vibro-Fluidized Reactor Oven

    Science.gov (United States)

    Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron

    2012-01-01

    Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.

  11. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    Science.gov (United States)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  12. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation.

    Science.gov (United States)

    Yang, Jian; Chen, Qi; Wang, Weiping; Hu, Jiajun; Hu, Chuan

    2015-05-01

    The influence of oxygen supply on Monascus pigments and citrinin production by Monascus ruber HS.4000 in submerged fermentation was studied. For Monascus cultivation with high pigments and low citrinin production, the initial growth phase, mid-stage phase, and later-stage production phase were separated by shifting oxygen supply. The optimal condition for the fermentation process in shake-flask fermentation was a three-stage rotating rate controlled strategy (0-48 h at 150 rpm, 48-108 h at 250 rpm, 108-120 h at 200 rpm) with medium volume of 100 mL added to 250 mL Erlenmeyer flasks at 30°C for 120 h cultivation. Compared to constant one-stage cultivation (medium volume of 100 mL, rotating rate of 250 rpm), the pigments were reduced by 40.4%, but citrinin was reduced by 64.2%. The most appropriate condition for the fermentation process in a 10 L fermentor is also a three-stage aeration process (0-48 h at 300 L/h, 48-96 h at 500 L/h, 96-120 h at 200 L/h) with agitation of 300 rpm at 30°C for 120 h cultivation, and 237.3 ± 5.7 U/mL pigments were produced in 120 h with 6.05 ± 0.19 mg/L citrinin in a 10 L fermentor. Compared to aeration-constant (500 L/h) cultivation, pigment production was increased by 29.6% and citrinin concentration was reduced by 79.5%. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  15. Biphasic effect of oxygen radicals on prostaglandin production by rat mesangial cells

    International Nuclear Information System (INIS)

    Adler, S.; Stahl, R.A.K.; Baker, P.J.; Chen, Y.P.; Pritzl, P.M.; Couser, W.G.

    1987-01-01

    Cultured rat mesangial cells were exposed to a reactive oxygen species (ROS) generating system (xanthine plus xanthine oxidase) to explore the effect of ROS on their metabolism of arachidonic acid (AA). Cell viability, as assessed by 51 Cr release, was not affected by the concentrations of xanthine plus xanthine oxidase used. Prostaglandin E 2 (PGE 2 ) production following exposure to increasing quantities of xanthine plus xanthine oxidase was significantly decreased when cells were stimulated with the calcium ionophore A23187 or AA. Maximum suppression of production was seen within 10 min of ROS exposure. Thromboxane B 2 production was similarly decreased. This effect was reversed by addition of catalase to the ROS generating system but not by superoxide dismutase or mannitol, which suggested that H 2 O 2 was the responsible metabolite. High levels of H 2 O 2 suppressed PGE 2 production. Lower levels of H 2 O 2 resulted in significant stimulation of base-line PGE 2 production. Analysis of release of 3 H]AA-labeled metabolites from A23187-stimulated cells showed no effect of H 2 O 2 on phospholipase activity. Thus ROS can stimulate or inhibitor AA metabolism in the glomerular mesangium, which may have important effects on glomerular hemodynamics during glomerular injury

  16. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  17. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  18. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    Science.gov (United States)

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  19. Fetal programming alters reactive oxygen species production in sheep cardiac mitochondria.

    Science.gov (United States)

    von Bergen, Nicholas H; Koppenhafer, Stacia L; Spitz, Douglas R; Volk, Kenneth A; Patel, Sonali S; Roghair, Robert D; Lamb, Fred S; Segar, Jeffrey L; Scholz, Thomas D

    2009-04-01

    Exposure to an adverse intrauterine environment is recognized as an important risk factor for the development of cardiovascular disease later in life. Although oxidative stress has been proposed as a mechanism for the fetal programming phenotype, the role of mitochondrial O(2)(*-) (superoxide radical) production has not been explored. To determine whether mitochondrial ROS (reactive oxygen species) production is altered by in utero programming, pregnant ewes were given a 48-h dexamethasone (dexamethasone-exposed, 0.28 mg.kg(-1) of body weight.day(-1)) or saline (control) infusion at 27-28 days gestation (term=145 days). Intact left ventricular mitochondria and freeze-thaw mitochondrial membranes were studied from offspring at 4-months of age. AmplexRed was used to measure H(2)O(2) production. Activities of the antioxidant enzymes Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and catalase were measured. Compared with controls, a significant increase in Complex I H(2)O(2) production was found in intact mitochondria from dexamethasone-exposed animals. The treatment differences in Complex I-driven H(2)O(2) production were not seen in mitochondrial membranes. Consistent changes in H(2)O(2) production from Complex III in programmed animals were not found. Despite the increase in H(2)O(2) production in intact mitochondria from programmed animals, dexamethasone exposure significantly increased mitochondrial catalase activity, whereas Mn-SOD and GPx activities were unchanged. The results of the present study point to an increase in the rate of release of H(2)O(2) from programmed mitochondria despite an increase in catalase activity. Greater mitochondrial H(2)O(2) release into the cell may play a role in the development of adult disease following exposure to an adverse intrauterine environment.

  20. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses.

    Science.gov (United States)

    Czarnocka, Weronika; Karpiński, Stanisław

    2018-01-10

    In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca 2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions. Copyright © 2018. Published by Elsevier Inc.

  1. Influence of Vitamins on Secondary Reactive Oxygen Species Production in Sera of Patients with Resectable NSCLC

    Directory of Open Access Journals (Sweden)

    Thierry Patrice

    2016-07-01

    Full Text Available Background: Singlet oxygen (1O2 oxidizes targets through the production of secondary reactive oxygen species (SOS. Cancers induce oxidative stress changing with progression, the resulting antioxidant status differing from one patient to the other. The aim of this study was to determine the oxidative status of patients with resectable Non-Small cell lung cancers (NSCLC and the potential influence of antioxidants, compared to sera from healthy donors. Materials and Methods: Serum samples from 10 women and 28 men, 19 adenocarcinomas (ADK, 15 patients N1 or M1 were submitted to a photoreaction producing 1O2. Then, samples were supplemented with vitamins (Vit C, Vit E, or glutathione (GSH. Results: Squamous cell carcinomas (SCC and metastatic SCCs induced a lower SOS rate. While Vit C increased SOS in controls as in patients with metastases, Vit E or the combination of Vit E and C strongly reduced SOS. GSH alone lightly decreased SOS in controls but had no effect in patients either alone or combined with Vit C. Conclusion: In “early” lung cancers, SOS are comparable or lower than for healthy persons. The role of Vitamins varies with gender, cancer type, and metastases. This suggests that an eventual supplementation should be performed on a per-patient basis to evidence any effect.

  2. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms.

    Science.gov (United States)

    Lin, M Y; Yen, C L

    1999-08-01

    The antioxidative activity of the intracellular extracts of yogurt organisms was investigated. All 11 strains tested, including five strains of Streptococcus thermophilus and six strains of Lactobacillus delbrueckii ssp. bulgaricus, demonstrated an antioxidative effect on the inhibition of linoleic acid peroxidation. The antioxidative effect of intracellular extracts of 10(8) cells of yogurt organisms was equivalent to 25 to 96 ppm butylated hydroxytoluene, which indicated that all strains demonstrated excellent antioxidative activity. The scavenging of reactive oxygen species, hydroxyl radical, and hydrogen peroxide was studied for intracellular extracts of yogurt organisms. All strains showed reactive oxygen species-scavenging ability. Lactobacillus delbrueckii ssp. bulgaricus Lb demonstrated the highest hydroxyl radical-scavenging ability at 234 microM. Streptococcus thermophilus MC and 821 and L. delbrueckii ssp. bulgaricus 448 and 449 scavenged the most hydrogen peroxide at approximately 50 microM. The scavenging ability of lipid peroxidation products, t-butylhydroperoxide and malondialdehyde, was also evaluated. Results showed that the extracts were not able to scavenge the t-butylhydroperoxide. Nevertheless, malondialdehyde was scavenged well by most strains.

  3. Characterization of Adipose Tissue Product Quality Using Measurements of Oxygen Consumption Rate.

    Science.gov (United States)

    Suszynski, Thomas M; Sieber, David A; Mueller, Kathryn; Van Beek, Allen L; Cunningham, Bruce L; Kenkel, Jeffrey M

    2018-03-14

    Fat grafting is a common procedure in plastic surgery but associated with unpredictable graft retention. Adipose tissue (AT) "product" quality is affected by the methods used for harvest, processing and transfer, which vary widely amongst surgeons. Currently, there is no method available to accurately assess the quality of AT. In this study, we present a novel method for the assessment of AT product quality through direct measurements of oxygen consumption rate (OCR). OCR has exhibited potential in predicting outcomes following pancreatic islet transplant. Our study aim was to reapportion existing technology for its use with AT preparations and to confirm that these measurements are feasible. OCR was successfully measured for en bloc and postprocessed AT using a stirred microchamber system. OCR was then normalized to DNA content (OCR/DNA), which represents the AT product quality. Mean (±SE) OCR/DNA values for fresh en bloc and post-processed AT were 149.8 (± 9.1) and 61.1 (± 6.1) nmol/min/mg DNA, respectively. These preliminary data suggest that: (1) OCR and OCR/DNA measurements of AT harvested using conventional protocol are feasible; and (2) standard AT processing results in a decrease in overall AT product quality. OCR measurements of AT using existing technology can be done and enables accurate, real-time, quantitative assessment of the quality of AT product prior to transfer. The availability and further validation of this type of assay could enable optimization of fat grafting protocol by providing a tool for the more detailed study of procedural variables that affect AT product quality.

  4. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  5. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.

    Science.gov (United States)

    Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping

    2017-05-08

    Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in

  6. A simulated regolith medium for multi-wavelength studies

    Science.gov (United States)

    Wilkman, O.; Muinonen, K.; Parviainen, H.; Näränen, J.

    2012-04-01

    Effects arising from the small-scale surface structure are significant in remote studies of regolith surfaces on atmosphereless solar system bodies, such as the Moon, Mercury and the asteroids. The important properties determining these effects are the porosity of the regolith and the roughness of the interface between the bulk material and empty space. We concentrate on the regolith effects in visible light photometry and X-ray spectrometry. The fluorescent X-ray spectrum induced by solar X-rays contains information about the elemental abundances of the surface material, while the photometry can be used to constrain surface properties such as porosity. We have developed a computer model simulating a regolith medium consisting of spherical particles with variable size distribution and properties. The bulk properties of the medium, such as porosity and surface roughness, can be varied. The model can then be used in ray-tracing simulations of the regolith effects in both visible light scattering and X-ray fluorescence. In photometric studies the scattering law of the constituent particles can be chosen to take into account scattering phenomena such as coherent backscattering. In the X-ray simulations, we can choose the elemental abundances of the material and the spectrum of the incident X-ray radiation. The ray-tracing simulations then allow us to determine the characteristics of the emitted radiation in different observational geometries. We present results from various studies which have been based on our regolith model. The model has been used to simulate the regolith effects on X-ray fluorescence spectra under specific situations. These can be compared to laboratory measurements. The visible light simulations have been applied in a study of the shadowing effects in photometry. The model was also used in a study of lunar photometry from SMART-1/AMIE data. Applications in the analysis of X-ray spectrometry from the BepiColombo MIXS/SIXS instruments are planned. An

  7. Calibrating the Regolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    McIntosh, Missy; Hong, Jaesub; Allen, Branden; Grindlay, Jonathan

    2014-01-01

    This paper describes the onboard calibration process of REXIS (the Regolith X-ray Imaging Spectrometer), an instrument on OSIRIS-REx. OSIRIS-REx, scheduled to be launched in 2016, is a planetary mission intending to return a regolith sample from a near Earth asteroid called Bennu. REXIS, a student-led collaboration between Harvard and MIT, is a soft X-ray (0.5-7.5 keV) coded-aperture telescope with four X-ray CCDs and a gold coated stainless steel mask. REXIS will measure the surface elementa...

  8. [Comparison of reactive oxygen species production in neat semen and washed spermatozoa].

    Science.gov (United States)

    Svobodová, M; Oborná, I; Fingerová, H; Novotný, J; Brezinová, J; Radová, L; Vyslouzilová, J; Horáková, J; Grohmannová, J

    2009-12-01

    To determine Reactive Oxygen Species (ROS) production in neat semen and spermatozoa suspension using chemiluminescence and to examine correlation between both methods. Prospective laboratory study. Department of Obstetric and Gynecology, University Hospital, Olomouc. The study included fertile volunteers (FV, n = 17), men from infertile couples (NM, n = 19) and men with idiopathic infertility (NMI, n = 15). ROS levels were determined by the same method in neat and washed semen samples. The ROS production in neat semen was lower than that in spermatozoa suspension. There was no significant diference in ROS production between volunteers and males from infertile couples. There was a significant correlation between log ROS in neat semen and in spermatozoa suspension in studied groups (FV r = 0.85, p = 1.5 x 10(-5); NM r = 0.76, p neat semen is simpler, faster and better reflecting the actual level of oxidative stress than the same measurement in spermatozoa suspension. The implementation of this method can complement the algorithm of diagnostics and treatment of male infertility and be helpful in selection of patients for antioxidant or antibiotic treatment.

  9. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress.

    Directory of Open Access Journals (Sweden)

    Ricardo Jasso-Chávez

    Full Text Available Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4-1% O2 (atmospheric for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells. In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii the thiol-molecules (cysteine + coenzyme M-SH + sulfide and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.

  10. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    Science.gov (United States)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  11. Singlet Oxygen Production by Illuminated Road Dust and Winter Street Sweepings

    Science.gov (United States)

    Schneider, S.; Gan, L.; Gao, S.; Hoy, K. S.; Kwasny, J. R.; Styler, S. A.

    2017-12-01

    Road dust is an important urban source of primary particulate matter, especially in cities where sand and other traction materials are applied to roadways in winter. Although the composition and detrimental health effects of road dust are reasonably well characterized, little is currently known regarding its chemical behaviour. Motivated by our previous work, in which we showed that road dust is a photochemical source of singlet oxygen (1O2), we investigated 1O2 production by bulk winter street sweepings and by road dust collected in a variety of urban, industrial, and suburban locations in both autumn and spring. In all cases, the production of 1O2 by road dust was greater than that by Arizona test dust and desert-sourced dust, which highlights the unique photochemical environment afforded by this substrate. Mechanistically, we observed correlations between 1O2 production and the UV absorbance properties of dust extracts, which suggests the involvement of chromophoric dissolved organic matter in the observed photochemistry. Taken together, this work provides evidence that road dust-mediated photochemistry may influence the environmental lifetime of pollutants that react via 1O2-mediated pathways, including polycyclic aromatic hydrocarbons.

  12. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  13. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  14. Effect of magnesium on reactive oxygen species production in the thigh muscles of broiler chickens.

    Science.gov (United States)

    Liu, Y X; Guo, Y M; Wang, Z

    2007-02-01

    1. The objective of the present study was to investigate the effect of magnesium (Mg) on reactive oxygen species (ROS) production in the thigh muscles of broiler chickens. A total of 96 1-d-old male Arbor Acre broiler chickens were randomly allocated into two groups, fed either on low-Mg or control diets containing about 1.2 g/kg or 2.4 g Mg/kg dry matter. 2. The low-Mg diet significantly increased malondialdehyde (MDA) concentration and decreased glutathione (GSH) in the thigh muscles of broiler chickens. ROS production in the thigh muscle homogenate was significantly higher in the low-Mg group than in the control group. Compared with the control, muscle Mg concentration of broiler chickens from the low-Mg group decreased by 9.5%. 3. Complex II and III activities of the mitochondrial electron transport chain in broilers on low-Mg diet increased by 23 and 35%, respectively. Significant negative correlations between ROS production and the activities of mitochondrial electron transport chain (ETC) complexes were observed. 4. The low-Mg diet did not influence contents of iron (Fe) or calcium (Ca) in the thigh muscles of broiler chickens and did not influence unsaturated fatty acid composition (except C18:2) in the thigh muscles. 5. A low-Mg diet decreased Mg concentration in the thigh muscles of broiler chickens and then induced higher activities of mitochondrial ETC, consequently increasing ROS production. These results suggest that Mg modulates the oxidation-anti-oxidation system of the thigh muscles at least partly through affecting ROS production.

  15. Data processing of the active neutron experiment DAN for a Martian regolith investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sanin, A.B., E-mail: sanin@mx.iki.rssi.ru [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Mitrofanov, I.G.; Litvak, M.L.; Lisov, D.I. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Starr, R. [Catholic University of America, Washington, DC (United States); Boynton, W. [University of Arizona, Tucson, AZ (United States); Behar, A.; DeFlores, L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Fedosov, F.; Golovin, D. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Hardgrove, C. [University of Tennessee, Knoxville, TN (United States); Harshman, K. [University of Arizona, Tucson, AZ (United States); Jun, I. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Kozyrev, A.S. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Kuzmin, R.O. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Vernadsky Institute for Geochemistry and Analytical Chemistry, Moscow (Russian Federation); Malakhov, A. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Milliken, R. [Brown University, Providence, RI (United States); Mischna, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Moersch, J. [University of Tennessee, Knoxville, TN (United States); Mokrousov, M.I. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); and others

    2015-07-21

    Searching for water in the soil of Gale Crater is one of the primary tasks for the NASA Mars Science Laboratory rover named Curiosity. The primary task of the Dynamic Albedo of Neutrons (DAN) experiment on board the rover is to investigate and qualitatively characterize the presence of water along the rover’s traverse across Gale Crater. The water depth distribution may be found from measurements of neutrons generated by the Pulsing Neutron Generator (PNG) included in the DAN instrument, scattered by the regolith and returned back to the detectors. This paper provides a description of the data processing of such measurements and data products of DAN investigation.

  16. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    Science.gov (United States)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo

  17. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  18. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  19. Tailoring nanomaterial products through electrode material and oxygen partial pressure in a mini-arc plasma reactor

    International Nuclear Information System (INIS)

    Cui Shumao; Mattson, Eric C.; Lu, Ganhua; Hirschmugl, Carol; Gajdardziska-Josifovska, Marija; Chen Junhong

    2012-01-01

    Nanomaterials with controllable morphology and composition are synthesized by a simple one-step vapor condensation process using a mini-arc plasma source. Through systematic investigation of mini-arc reactor parameters, the roles of carrier gas, electrode material, and precursor on producing diverse nanomaterial products are revealed. Desired nanomaterial products, including tungsten oxide nanoparticles (NPs), tungsten oxide nanorods (NRs), tungsten oxide and tin oxide NP mixtures and pure tin dioxide NPs can thus be obtained by tailoring reaction conditions. The amount of oxygen in the reactor is critical to determining the final nanomaterial product. Without any precursor material present, a lower level of oxygen in the reactor favors the production of W 18 O 49 NRs with tungsten as cathode, while a high level of oxygen produces more round WO 3 NPs. With the presence of a precursor material, amorphous particles are favored with a high ratio of argon:oxygen. Oxygen is also found to affect tin oxide crystallization from its amorphous phase in the thermal annealing. Results from this study can be used for guiding gas phase nanomaterial synthesis in the future.

  20. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    Science.gov (United States)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  1. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    Science.gov (United States)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  2. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  3. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications.

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    Full Text Available BACKGROUND: Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC/smooth muscle cells (SMC crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone. METHODOLOGY/PRINCIPAL FINDINGS: In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 ((37,43Gap27 (1 reduced contractile and calcium responses to serotonin (5-HT simultaneously recorded in pulmonary arteries and (2 abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H(2O(2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.

  4. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.

    2012-10-01

    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  5. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  6. The radiolysis of uracil in oxygenated aqueous solutions. A study by product analysis and pulse radiolysis

    International Nuclear Information System (INIS)

    Schuchnmann, M.N.; Sonntag, C. von

    1983-01-01

    Hydroxyl radicals are generated by the radiolysis of N 2 O-O 2 (4:1 v/v)-saturated aqueous solutions of uracil. They add to the 5,6-double bond of the substrate. These radicals are converted by oxygen into the corresponding peroxyl radicals (I) and (II), respectively. Peroxyl radical (I) undergoes a base-induced O 2 - elimination. As an intermediate 5-hydroxyisopyrimidine is formed which rearranges into isobarbituric acid and adds water forming 5,6-dihydro-5,6-dihydroxyuracil. Competing with this base-induced reaction of radical (I) there is a bimolecular decay of radicals (I) and (II). These processes become predominant at low pH. For this reason a strong pH dependence of G (products) is observed. The major products are (G values at pH 3 and 10 in parentheses) 5,6-dihydroxy-5,6-dihydrouracil (1.1; 2.4), isobarbituric acid (0; 1.2), N-formyl-5-hydroxyhydantoin (1.6; 0.2), 5-hydroxybarbituric acid (0.9; 0.2). 5-Hydroxybarbituric acid is formed in its keto form. Its deprotonation has been followed by pulse conductometry. Details of the reaction mechanism, e.g. the involvement of oxyl radicals in the bimolecular decay of (I) and (II), are discussed. (author)

  7. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morikawa, Yoshifumi; Shibata, Akinobu; Okumura, Naoko; Ikari, Akira; Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji; El-Kabbani, Ossama; Matsunaga, Toshiyuki

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with >10μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Moessbauer mineralogy on the Moon: The lunar regolith

    International Nuclear Information System (INIS)

    Morris, Richard V.; Klingelhoefer, Goestar; Korotev, Randy L.; Shelfer, Tad D.

    1998-01-01

    A first-order requirement for spacecraft missions that land on solid planetary objects is instrumentation for mineralogical analyses. For purposes of providing diagnostic information about naturally-occurring materials, the element iron is particularly important because it is abundant and multivalent. Knowledge of the oxidation state of iron and its distribution among iron-bearing mineralogies tightly constrains the types of materials present and provides information about formation and modification (weathering) processes. Because Moessbauer spectroscopy is sensitive to both the valence of iron and its local chemical environment, the technique is unique in providing information about both the relative abundance of iron-bearing phases and oxidation state of the iron. The Moessbauer mineralogy of lunar regolith samples (primarily soils from the Apollo 16 and 17 missions to the Moon) were measured in the laboratory to demonstrate the strength of the technique for in-situ mineralogical exploration of the Moon. The regolith samples were modeled as mixtures of five iron-bearing phases: olivine, pyroxene, glass, ilmenite, and metal. Based on differences in relative proportions of iron associated with these phases, volcanic-ash regolith can be distinguished from impact-derived regolith, impact-derived soils of different geologic affinity (e.g., highlands and maria) can be distinguished on the basis of their constituent minerals, and soil maturity can be estimated. The total resonant absorption area of the Moessbauer spectrum can be used to estimate total FeO concentrations

  9. Three-Dimensional (3D) Additive Construction: Printing with Regolith

    Science.gov (United States)

    Tsoras, Alexandra

    2013-01-01

    Three dimensional (3D) printing is a new and booming topic in many realms of research and engineering technology. When it comes to space science and aerospace engineering, it can be useful in numerous ways. As humans travel deeper into space and farther from Earth, sending large quantities of needed supplies from Earth for a mission becomes astronomically expensive and less plausible. In order to reach further to new places, In Situ Resource Utilization (ISRU), a project that pushes for technologies to use materials already present in the destination's environment, is necessary. By using materials already available in space such as regolith from the Moon, Mars, or an asteroid's surface, fewer materials need to be brought into space on a launched vehicle. This allows a vehicle to be filled with more necessary supplies for a deep space mission that may not be found in space, like food and fuel. This project's main objective was to develop a 3D printer that uses regolith to "print" large structures, such as a dome, to be used as a heat shield upon a vehicle's reentry into the atmosphere or even a habitat. 3D printing is a growing technology that uses many different methods to mix, heat, and mold a material into a specific shape. In order to heat the regolith enough to stick together into a solid shape, it must be sintered at each layer of material that is laid. Sintering is a process that heats and compresses a powdered material until it fuses into a solid, which requires a lot of energy input. As an alternative, a polymer can be mixed with the regolith before or as it is sent to the 3D printer head to be placed in the specific shape. The addition of the polymer, which melts and binds at much lower temperatures than sintering temperatures, greatly decreases the required heating temperature and energy input. The main task of the project was to identify a functional material for the printer. The first step was to find a miscible. polymer/solvent solution. This solution

  10. The Lunar Regolith as a Recorder of Cosmic History

    Science.gov (United States)

    Cooper, Bonnie; McKay, D.; Riofrio, L.

    2012-01-01

    The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.

  11. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle

    Directory of Open Access Journals (Sweden)

    Lilian Wiens

    2017-09-01

    Full Text Available Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively, the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL, was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss, common carp (Cyprinus carpio, and the lake sturgeon (Acipenser fulvescens] and the rat. At a common assay temperature (25°C rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.

  12. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

  13. Workshop on past and present solar radiation: the record in meteoritic and lunar regolith material

    International Nuclear Information System (INIS)

    Pepin, R.O.; Mckay, D.S.

    1986-01-01

    The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6) Future research directions

  14. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  15. Direct measurement of oxygen in brown coals and carbochemical products by means of fast neutron analysis

    International Nuclear Information System (INIS)

    Raeppel, P.; Foerster, H.

    1990-01-01

    Analyses of elemental oxygen by means of fast neutron activation permit high-accuracy measurements of oxygen concentrations in East German brown coal; this applies to run-of-mine brown coal as well as to demineralized brown coal. The relative error was 4% in the first case and 2% in the latter case. Pre-washing with 1n ammonium acetate solution permits direct analyses of the oxygen bonded to the coal minerals. The method is applicable to other carbonaceous materials, e.g. coal ashes, solid hydrogenation residues, cokes, coal extracts, asphaltenes, oils, etc., at oxygen concentrations of 1-50%. (orig.) [de

  16. Oxygen as a product of water radiolysis in high-LET tracks. II. Radiobiological implications

    International Nuclear Information System (INIS)

    Baverstock, K.F.; Burns, W.G.

    1981-01-01

    Consideration is given to the possibility that molecular oxygen generated in the tracks of energetic heavy ions is responsible for the reduction in oxygen enhancement ratio (OER) with increasing linear energy transfer (LET) observed for the loss of reproductive capacity caused by radiation in many cellular organisms. Yields of oxygen relationship of OER to LET for two organisms, Chlamydomonas reinhardii and Shigella flexneri, using a simple diffusion kinetic model for radiobiological action which takes account of the diffusion of oxygen after its formation. The results of these calculations show that the model accounts well for the shape of the OER vs. LET relationship

  17. Effects of zilpaterol hydrochloride on methane production, total body oxygen consumption, and blood metabolites in finishing beef steers

    Science.gov (United States)

    An indirect calorimetry experiment was conducted to determine the effects of feeding zilpaterol hydrochloride (ZH) for 20 d on total body oxygen consumption, respiratory quotient, methane production, and blood metabolites in finishing beef steers. Sixteen Angus steers (initial BW = 555 ± 12.7 kg) w...

  18. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  19. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  20. Production of perhydroxy radical (HO2) and oxygen in the radiolysis of aqueous solution and the LET effects

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1987-01-01

    This article aims to review the results concerning the production of perhydroxy radical (HO 2 ) and oxygen from irradiated aqueous solutions and the LET effects on these products, beginning with a brief introduction to the elementary primary processes in radiolysis of aqueous solution. Oxygen, if produced in the radiolysis of aqueous solution, may be considered responsible for the decreased oxygen enhancement ratio (OER) in biological systems exposed to high LET radiation. A Harwell's group has determined oxygen generated from aqueous ferrous solutions irradiated with heavy ions and concluded that the oxygen is a precursor of perhydroxy radicals. The LET-dependent yields for perhydroxy radical have been determined by LaVerne and Schuler; the analysis of their results sheds light into the reactions taking place in high-LET track cores. In conjunction with these results, the possible contributions to the LET effects are pointed out and discussed of the energetic secondary electrons ejected from the track core by knock-on collision with heavy ions and of the variation in the track core size with energy of the heavy particles. (author)

  1. Selective conversion of synthesis gas into C2-oxygenated products using mixed-metal homogeneous catalysts

    International Nuclear Information System (INIS)

    Whyman, R.

    1986-01-01

    A feature which is a key to any wider utilization of chemistry based on synthesis gas is an understanding of, and more particularly, an ability to control, those factors which determine the selectivity of the C 1 to C 2 transformation during the hydrogenation of carbon monoxide. With the exception of the rhodium-catalyzed conversion of carbon monoxide and hydrogen into ethylene glycol and methanol, in which molar ethylene glycol/methanol selectivities of ca 2/1 may be achieved, other catalyst systems containing metals such as cobalt or ruthenium exhibit only poor selectivities to ethylene glycol. The initial studies in this area were based on the reasoning that, since the reduction of carbon monoxide to C 2 products is a complex, multi-step process, the use of appropriate combinations of metals could generate synergistic effects which might prove more effective (in terms of both catalytic activity and selectivity) than simply the sum of the individual metal components. In particular, the concept of the combination of a good hydrogenation catalyst with a good carbonylation, or ''CO insertion'', catalyst seemed particularly germane. As a result of this approach the authors discovered an unprecedented example of the effect of catalyst promoters, particularly in the enhancement of C 2 /C 1 selectivity, and one which has led to the development of composite mixed-metal homogeneous catalyst systems for the conversion of CO/H 2 into C 2 -oxygenate esters

  2. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Andrews

    Full Text Available Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB" experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.

  3. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Science.gov (United States)

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  4. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  5. Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshifumi [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); Shibata, Akinobu; Okumura, Naoko; Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Sasajima, Yasuhide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji [Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501 (Japan); El-Kabbani, Ossama [Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan)

    2017-01-01

    Overdose administration of sibutramine, a serotonin-noradrenalin reuptake inhibitor, is considered to elicit severe side effects including hypertension, whose pathogenic mechanism remains unclear. Here, we found that 48-h incubation with > 10 μM sibutramine provokes apoptosis of human aortic endothelial (HAE) cells. Treatment with the lethal concentration of sibutramine facilitated production of reactive oxygen species (ROS), altered expression of endoplasmic reticulum stress response genes (heat shock protein 70 and C/EBP homologous protein), and inactivated 26S proteasome-based proteolysis. The treatment also decreased cellular level of nitric oxide (NO) through lowering of expression and activity of endothelial NO synthase. These results suggest that ROS production and depletion of NO are crucial events in the apoptotic mechanism and may be linked to the pathogenesis of vasoconstriction elicited by the drug. Compared to sibutramine, its metabolites (N-desmethylsibutramine and N-didesmethylsibutramine) were much less cytotoxic to HAE cells, which hardly metabolized sibutramine. In contrast, both the drug and metabolites showed low cytotoxicity to hepatic HepG2 cells with high metabolic potency and expression of cytochrome P450 (CYP) 3A4. The cytotoxicity of sibutramine to HepG2 and Chang Liver cells was remarkably augmented by inhibition and knockdown of CYP3A4. This study also suggests an inverse relationship between sibutramine cytotoxicity and CYP3A4-mediated metabolism into the N-desmethyl metabolites. - Highlights: • Treatment with sibutramine, an anorexiant, induces endothelial cell apoptosis. • The apoptotic mechanism includes induction of ROS and NO depletion. • There is an inverse relationship between sibutramine cytotoxicity and its metabolism.

  6. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  7. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    International Nuclear Information System (INIS)

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-01-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF 2α ) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF 2α production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and ROS production

  8. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    Science.gov (United States)

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  9. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  10. The compositional study of nitrogen and oxygen compounds in products of heavy oil primary and secondary upgrading processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chmielowiec, J.

    1986-02-01

    The primary objective was to characterize nitrogen and oxygen compound types in the upgraded products derived from Athabasca bitumen. Nitrogen compounds, depending on their nature and concentrations, in charge stocks to catalytic processess (hydro-processes and reforming) can severely limit or poison the catalyst activity. Oxygen compounds are corrosive (especially naphthenic acids) and can promote gum formation as part of the deterioration of the hydrocarbons in the petroleum product. A secondary objective was to evaluate the advantages and limitations of in-house mass spectrometry and infrared spectroscopy methods for analyzing specific classes of polar compounds in naphthas, middle distillates, and gas oils. An analytical procedure that was based on the discrimination of polar compound classes using liquid chromatography followed by mass spectrometric analysis was tested. The chemical intelligence on the fractions obtained from Athabasca bitumen and its upgrading products has been advanced by determining structural characteristics of the nitrogen and oxygen components. This report describes the determination of the distributions of nitrogen and oxygen compounds in samples from various process streams. This procedure is capable of providing information useful for evaluating hydrodenitrogenation and hydrodeoxygenation reactions.

  11. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    Science.gov (United States)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire

  12. The tripeptide feG regulates the production of intracellular reactive oxygen species by neutrophils

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2006-06-01

    Full Text Available Abstract Background The D-isomeric form of the tripeptide FEG (feG is a potent anti-inflammatory agent that suppresses type I hypersensitivity (IgE-mediated allergic reactions in several animal species. One of feG's primary actions is to inhibit leukocyte activation resulting in loss of their adhesive and migratory properties. Since activation of neutrophils is often associated with an increase in respiratory burst with the generation of reactive oxygen species (ROS, we examined the effect of feG on the respiratory burst in neutrophils of antigen-sensitized rats. A role for protein kinase C (PKC in the actions of feG was evaluated by using selective isoform inhibitors for PKC. Results At 18h after antigen (ovalbumin challenge of sensitized Sprague-Dawley rats a pronounced neutrophilia occurred; a response that was reduced in animals treated with feG (100 μg/kg. With antigen-challenged animals the protein kinase C (PKC activator, PMA, significantly increased intracellular ROS of circulating neutrophils, as determined by flow cytometry using the fluorescent probe dihydrorhodamine-123. This increase was prevented by treatment with feG at the time of antigen challenge. The inhibitor of PKCδ, rottlerin, which effectively prevented intracellular ROS production by circulating neutrophils of animals receiving a naïve antigen, failed to inhibit PMA-stimulated ROS production if the animals were challenged with antigen. feG treatment, however, re-established the inhibitory effects of the PKCδ inhibitor on intracellular ROS production. The extracellular release of superoxide anion, evaluated by measuring the oxidative reduction of cytochrome C, was neither modified by antigen challenge nor feG treatment. However, hispidin, an inhibitor of PKCβ, inhibited the release of superoxide anion from circulating leukocytes in all groups of animals. feG prevented the increased expression of the β1-integrin CD49d on the circulating neutrophils elicited by antigen

  13. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai

    2017-09-01

    The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.

  14. Amplifying the manganese scavenging potential of Streptococcus zooepidemicus to reactive oxygen species during production of hyaluronic acid.

    Science.gov (United States)

    Mashitah, M D; Masitah, H; Ramachandran, K B

    2004-05-01

    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.

  15. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  17. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...... mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  18. Unravelling regolith material types using Mg/Al and K/Al plot to support field regolith identification in the savannah regions of NW Ghana, West Africa

    Science.gov (United States)

    Arhin, Emmanuel; Zango, Saeed M.

    2015-12-01

    The XRF analytical method was used to measure the weight % of the major oxides in regolith samples. The metal weight % of Mg, K and Al were calculated from their oxides and were normalised relative to immobile Al calculated from its oxide. The plot of Mg/Al and K/Al identified the regolith of the study area to consist of 137 transported clays, 4 ferruginous sediments or ferricrete, 2 lateritic duricrust and 4 saprolites. Surface regolith that had undergone secondary transformation and shows compositional overlaps were 4 transported clays with Fe-oxide impregnation may be referred to as nodular laterite and 5 ferruginous saprolites. The variable regolith materials features identified from the 154 samples enabled the characterisation and identification of the different sample materials because an overprint of bedrock geochemistry is reflected in the regolith. Plot of Mg/Al and K/Al highlighted the compositional variability of the regolith samples and refute the notion of the homogeneity of all the sampled materials in the area. The study thus recognized Mg/Al versus K/Al plots to be used in supporting field identification of regolith mapping units particularly in complex regolith terrains of savannah regions of Ghana and in similar areas where geochemical exploration surveys are being carried out under cover.

  19. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  20. Investigation of element distributions in Luna-16 regolith

    Science.gov (United States)

    Kuznetsov, R. A.; Lure, B. G.; Minevich, V. Ia.; Stiuf, V. I.; Pankratov, V. B.

    1981-03-01

    The concentrations of 32 elements in fractions of different grain sizes in the samples of the lunar regolith brought back by Luna-16 are determined by means of neutron activation analysis. Four groups of elements are distinguished on the basis of the variations of their concentration with grain size, and concentration variations of the various elements with sample depth are also noted. Chemical leaching of the samples combined with neutron activation also reveals differences in element concentrations in the water soluble, metallic, sulphide, phosphate, rare mineral and rock phases of the samples. In particular, the rare earth elements are observed to be depleted in the regolith with respect to chondritic values, and to be concentrated in the phase extracted with 14 M HNO3.

  1. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  2. Grain-Scale Supercharging and Breakdown on Airless Regoliths

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-01-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  3. Regolith transport in the Dry Valleys of Antarctica

    Science.gov (United States)

    Putkonen, J.; Rosales, M.; Turpen, N.; Morgan, D.; Balco, G.; Donaldson, M.

    2007-01-01

    The stability of ground surface and preservation of landforms that record past events and environments is of great importance as the geologic and climatic history is evaluated in the Dry Valleys of Antarctica. Currently little is known about the regolith transport that tends to eradicate and confound this record and regolith transport is itself an environmental indicator. Based on analyses of repeat photographs, soil traps, and pebble transport distances, it was found that there is a large spatial variation in topographic diffusivities at least in the annual basis and that counter intuitively the highest topographic diffusivities are found in the alpine valleys that are located farther inland from the coast where the lowest topographic diffusivities were recorded. An average topographic diffusivity for the Dry Valleys was determined to be 10M-5–10-4 m2

  4. Electrical stress and strain in lunar regolith simulants

    Science.gov (United States)

    Marshall, J.; Richard, D.; Davis, S.

    2011-11-01

    Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.

  5. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    Science.gov (United States)

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  6. Improved Lunar and Martian Regolith Simulant Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's new exploration initiative created immediate need for materials science and technology research to enable safe human travel and work on future lunar or...

  7. Improved Lunar and Martian Regolith Simulant Production, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of the Phase II project is to provide a more complete investigation of the long-term needs of the simulant community based on the updated...

  8. Mass Production of Mature Lunar Regolith Simulant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA prepares for future exploration activities on the Moon, there is a growing need to develop higher fidelity lunar soil simulants that can accurately reproduce...

  9. Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages

    Directory of Open Access Journals (Sweden)

    Sue-jie Koo

    2018-02-01

    Full Text Available Metabolism provides substrates for reactive oxygen species (ROS and nitric oxide (NO generation, which are a part of the macrophage (Mφ anti-microbial response. Mφs infected with Trypanosoma cruzi (Tc produce insufficient levels of oxidative species and lower levels of glycolysis compared to classical Mφs. How Mφs fail to elicit a potent ROS/NO response during infection and its link to glycolysis is unknown. Herein, we evaluated for ROS, NO, and cytokine production in the presence of metabolic modulators of glycolysis and the Krebs cycle. Metabolic status was analyzed by Seahorse Flux Analyzer and mass spectrometry and validated by RNAi. Tc infection of RAW264.7 or bone marrow-derived Mφs elicited a substantial increase in peroxisome proliferator-activated receptor (PPAR-α expression and pro-inflammatory cytokine release, and moderate levels of ROS/NO by 18 h. Interferon (IFN-γ addition enhanced the Tc-induced ROS/NO release and shut down mitochondrial respiration to the levels noted in classical Mφs. Inhibition of PPAR-α attenuated the ROS/NO response and was insufficient for complete metabolic shift. Deprivation of glucose and inhibition of pyruvate transport showed that Krebs cycle and glycolysis support ROS/NO generation in Tc + IFN-γ stimulated Mφs. Metabolic profiling and RNAi studies showed that glycolysis-pentose phosphate pathway (PPP at 6-phosphogluconate dehydrogenase was essential for ROS/NO response and control of parasite replication in Mφ. We conclude that IFN-γ, but not inhibition of PPAR-α, supports metabolic upregulation of glycolytic-PPP for eliciting potent ROS/NO response in Tc-infected Mφs. Chemical analogs enhancing the glucose-PPP will be beneficial in controlling Tc replication and dissemination by Mφs.

  10. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  11. Telerobotic Perception During Asteroid and Mars Regolith Operations Project

    Science.gov (United States)

    Gaddis, Steven; Zeitlin, Nancy (Compiler); Mueller, Robert (Compiler)

    2015-01-01

    Current space telerobotic systems are constrained to only operating in bright light and dust-free conditions. This project will study the effects of difficult lighting and dust conditions on telerobotic perception systems to better assess and refine regolith operations on other neighboring celestial bodies. In partnership with Embry-Riddle Aeronautical University and Caterpillar, Inc., optical, LiDAR and RADAR sensing equipment will be used in performing the study. This project will create a known dust environment in the Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory regolith test bin to characterize the behavior of the sensing equipment in various calibrated lighting and dust conditions. It will also identify potential methods for mitigating the impacts of these undesirable conditions on the performance of the sensing equipment. Enhancing the capability of telerobotic perception systems will help improve life on earth for those working in dangerous, dusty mining conditions, as well as help advance the same technologies used for safer self-driving automobiles in various lighting and weather conditions. It will also prove to be a critical skill needed for advancing robotic and human exploration throughout our solar system, for activities such as mining on an asteroid or pioneering the first colony on Mars.

  12. Influence of nitrogen oxides NO and NO2 on singlet delta oxygen production in pulsed discharge

    International Nuclear Information System (INIS)

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V; Vagin, N P; Yuryshev, N N; Kochetov, I V; Napartovich, A P

    2009-01-01

    The influence of nitrogen oxides NO and NO 2 on the specific input energy (SIE) and the time behaviour of singlet delta oxygen (SDO) luminescence excited by a pulsed e-beam sustained discharge in oxygen were experimentally and theoretically studied. NO and NO 2 addition into oxygen results in a small increase and decrease in the SIE, respectively, the latter being connected with a large energy of electron affinity to NO 2 . The addition of 0.1-0.3% nitrogen oxides was experimentally and theoretically demonstrated to result in a notable enhancement of the SDO lifetime, which is related to a decrease in the atomic oxygen concentration in afterglow. It was experimentally demonstrated that to get a high SDO concentration at the gas pressure 30-60 Torr for a time interval of less than ∼0.5 s one needs to add not less than 0.2% nitrogen oxides into oxygen. The temperature dependence of the relaxation constant for SDO quenching by unexcited oxygen was estimated by using experimental data on the time behaviour of SDO luminescence.

  13. Latitudinal variations in intermediate depth ventilation and biological production over northeastern Pacific Oxygen Minimum Zones during the last 60 ka

    Science.gov (United States)

    Cartapanis, Olivier; Tachikawa, Kazuyo; Bard, Edouard

    2012-10-01

    Mechanisms affecting past variability in the Oxygen Minimum Zone (OMZ) in the Eastern Tropical North Pacific (ETNP) are poorly known. We analyzed core MD02-2524, obtained from the Nicaragua Margin in the present ETNP OMZ for major and minor elements (titanium (Ti), brome (Br), silicon (Si), potassium (K), and calcium (Ca)) using an X-ray Fluorescence (XRF) core scanner, and redox-sensitive trace elements (uranium (U), molybdenum (Mo), and nickel (Ni)) determined by ICP-MS. The U and Mo content was higher during the deglaciation than during the Holocene and the last glacial maximum, whereas enrichment was not observed for Ni, an element closely associated with organic matter. High-resolution XRF scanning indicated that the Ca-based carbonate content had millennial-scale variability inversely correlated with Br-based organic matter and Si/K-based opal content during the last glacial period. The available data suggest no clear regional trend in biological productivity during the last deglaciation, but significant local variability in the coastal eastern equatorial Pacific. The trace element enrichment and the lack of a concomitant increase in biogenic phases indicated that an enhanced ETNP OMZ, at least between 15°N and 12°N at a water depth of 500-900 m, was principally caused by a reduced oxygen supply driven by oceanic circulation to the Nicaragua Basin during the deglaciation. The observed patterns can be interpreted as the distinct changes in the oxygenation state of northern and southern water masses at intermediate depths. We also found evidence for a decoupling between local productivity and pore water oxygenation for several millennial-scale events during Marine Isotopic Stage 3, indicating that remote oxygen consumption and/or oceanic ventilation impacted OMZ intensity. Multi-millennial scale variations of the productivity at Papagayo upwelling cell displayed an opposite trend from productivity at the Costa Rica Dome, in relation with the latitudinal shift

  14. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  15. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  16. Differential rates of feldspar weathering in granitic regoliths

    Science.gov (United States)

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  17. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  18. The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters

    Science.gov (United States)

    Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.

    2018-03-01

    Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

  19. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP)

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Ann Tørngren, Mari; Christensen, Mette

    2016-01-01

    The characteristics and the oxidative stability of pork steaks and of pork mince were investigated during 2, 5 and 7 days of refrigerated storage using oxygen (O2) levels of 0%, 20%, 50% and 80% in modified atmosphere packaging (MAP). Steaks stored during 7 days were not affected by an increase i......%) O2 MAP. The results show that fresh pork products are affected differently by the MAP O2 concentration and strongly indicate that optimisation of MAP based on the retail product type would be of considerable benefit to their oxidative stability....

  20. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  1. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product

    International Nuclear Information System (INIS)

    Tan, Peng; Ni, Meng; Shao, Zongping; Chen, Bin; Kong, Wei

    2017-01-01

    Highlights: •A macroscopic model for Li-O 2 batteries based on LiO 2 is developed. •The electrode and electrolyte properties on discharge behaviors are investigated. •A thin cathode with a large porosity is favorable for a high specific capacity. •A high catalytic activity can lead to a high discharge voltage. •The oxygen solubility has larger impacts on the discharge performance. -- Abstract: It is reported lithium superoxide as the discharge product can largely decrease the charge voltage and enable a high round-trip efficiency of lithium-oxygen (Li-O 2 ) batteries. Here, we conduct a numerical investigation of the discharge behaviors of such batteries with LiO 2 as the discharge product. A mathematical model considering the mass transport and electrochemical reaction processes is first developed, which gives good agreement of the simulated discharge voltage with the experimental data. Then, with this model, the effects of electrode and electrolyte properties on the discharge performance are detailedly investigated. It is found that a thin cathode with a large porosity is favorable for a high specific capacity, and a high catalytic activity can lead to a high discharge voltage. For the cathode with different geometrical properties, it is found that the oxygen solubility and diffusivity have similar impacts on discharge capacities, but the oxygen solubility has a larger impact on energy densities. Besides, the limitations and further developments of the present model are also discussed. The results obtained from this work may give useful guidance for the discharge performance improvements of non-aqueous Li-O 2 batteries, and provide implications for other energy storage systems with solid product formation such as Na-O 2 batteries and Li-S batteries.

  2. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals

    Science.gov (United States)

    Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man

    2018-02-01

    Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min

  3. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone

    DEFF Research Database (Denmark)

    Bristow, Laura A.; Callbeck, C. M.; Larsen, M

    2017-01-01

    with isotopically labelled nitrogen compounds and analyse geochemical signatures of these processes in the water column. We find that the Bay of Bengal supports denitrifier and anammox microbial populations, mediating low, but significant N loss. Yet, unlike other oxygen minimum zones, our measurements using...

  4. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone

    Digital Repository Service at National Institute of Oceanography (India)

    Bristow, L.A; Callbeck, C.M.; Larsen, M.; Altabet, M.A; Dekaezemacker, J.; Forth, M.; Gauns, M.; Glud, R.N.; Kuypers, M.M.M.; Lavik, G.; Milucka, J.; Naqvi, S.W.A; Pratihary, A; Revsbech, N.P.; Thamdrup, B.; Treusch, A; Canfield, D.E.

    A third or more of the fixed nitrogen lost from the oceans as N2 is removed by anaerobic microbial processes in open ocean oxygen minimum zones. These zones have expanded over the past decades, and further anthropogenically induced...

  5. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  6. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2011-01-01

    Roč. 25, č. 1 (2011), s. 145-152 ISSN 0887-2333 R&D Projects: GA MŠk(CZ) OC08058; GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : lipid peroxidation products * reactive oxygen species * nitric oxide Subject RIV: BO - Biophysics Impact factor: 2.775, year: 2011

  8. Evolution of Shock Melt Compositions in Lunar Regoliths

    Science.gov (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.

    2016-01-01

    Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.

  9. The Strata-l Experiment on Microgravity Regolith Segregation

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular

  10. Renewable Bio-Solar Hydrogen Production From Robust Oxygenic Phototrophs: The Second Generation

    Science.gov (United States)

    2014-07-14

    adds a layer of complexity due to oxygen’s natural prevalence in air. Furthermore, oxygenic photosynthesis, the most effective photosynthesis, is...between the oxic and anoxic layers as well as the anaerobic water and benthic layers . (c) We have tested the hypothesis that sequence variations...both hydrogenase and urease in Helicobacter pylori, Mol Microbiol, 39 (2001) 176-182. [199] L. Forzi, R.G. Sawers, Maturation of [NiFe]-hydrogenases

  11. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  12. Hot oxygen atoms: Their generation and chemistry. [Production by sputtering; reaction with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta/sub 2/O/sub 5/ and V/sub 2/O/sub 5/. Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O(/sup 3/P) with cis- and trans-butenes were investigated. (DLC)

  13. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.; Sawakuchi, Henrique O.; Da Cunha, Alan C.; Neu, Vania; Brito, Daimio C.; Da Silva Less, Diani F.; Diniz, Joel E. M.; De Matos Valerio, Aline; Kampel, Milton; Krusche, Alex V.; Richey, Jeffrey E.

    2017-02-07

    The Amazon River outgasses nearly an equivalent amount of CO2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO2 production since the recognition of a persistent state of CO2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capable of both decomposing high amounts of organic matter at lower trophic levels, driving CO2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O218O-O2) and O2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m3 d-1 at high water and 1.02 ± 0.55 g O m3 d-1 at low water. This translates to 41 ± 24% of the rate of O2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than

  14. Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — This project was established to build and demonstrate a methane/oxygen propellant production system in a Mars analog environment. Proving a propellant production...

  15. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D. [National Renewable Energy Laboratory, Golden CO USA; Snowden-Swan, Lesley J. [Pacific Northwest National Laboratory, Richland WA USA; Talmadge, Michael [National Renewable Energy Laboratory, Golden CO USA; Dutta, Abhijit [National Renewable Energy Laboratory, Golden CO USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA USA; Ramasamy, Karthikeyan K. [Pacific Northwest National Laboratory, Richland WA USA; Gray, Michel [Pacific Northwest National Laboratory, Richland WA USA; Dagle, Robert [Pacific Northwest National Laboratory, Richland WA USA; Padmaperuma, Asanga [Pacific Northwest National Laboratory, Richland WA USA; Gerber, Mark [Pacific Northwest National Laboratory, Richland WA USA; Sahir, Asad H. [National Renewable Energy Laboratory, Golden CO USA; Tao, Ling [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yanan [National Renewable Energy Laboratory, Golden CO USA

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  16. Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA

    Science.gov (United States)

    Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams

    2005-01-01

    Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...

  17. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    Science.gov (United States)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  18. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  19. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH 3 -N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DOpigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  1. Seasonal Oxygen Dynamics in a Warm Temperate Estuary: Effects of Hydrologic Variability on Measurements of Primary Production, Respiration, and Net Metabolism

    Science.gov (United States)

    Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates...

  2. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Maynard, Scott; Keijzers, Guido; Gram, Martin

    2013-01-01

    . Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production...

  3. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  4. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  5. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  6. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  7. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier

    Directory of Open Access Journals (Sweden)

    Sanaz Daneshmand-Jahromi

    2017-09-01

    Full Text Available In this work, the modification of Ni/SBA-16 oxygen carrier (OC with yttrium promoter is investigated. The yttrium promoted Ni-based oxygen carrier was synthesized via co-impregnation method and applied in chemical looping steam methane reforming (CL-SMR process, which is used for the production of clean energy carrier. The reaction temperature (500–750 °C, Y loading (2.5–7.4 wt. %, steam/carbon molar ratio (1–5, Ni loading (10–30 wt. % and life time of OCs over 16 cycles at 650 °C were studied to investigate and optimize the structure of OC and process temperature with maximizing average methane conversion and hydrogen production yield. The synthesized OCs were characterized by multiples techniques. The results of X-ray powder diffraction (XRD and energy dispersive X-ray spectroscopy (EDX of reacted OCs showed that the presence of Y particles on the surface of OCs reduces the coke formation. The smaller NiO species were found for the yttrium promoted OC and therefore the distribution of Ni particles was improved. The reduction-oxidation (redox results revealed that 25Ni-2.5Y/SBA-16 OC has the highest catalytic activity of about 99.83% average CH4 conversion and 85.34% H2 production yield at reduction temperature of 650 °C with the steam to carbon molar ratio of 2.

  8. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  9. A cell for extended x-ray absorption fine structure studies of oxygen sensitive products of redox reactions

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Renner, M.W.; Fajer, J.

    1990-01-01

    We describe a cell suitable for extended x-ray absorption fine structure (EXAFS) studies of oxygen and/or water sensitive products of redox reactions. The cell utilizes aluminized Mylar windows that are transparent to x rays, provide low gas permeability, and allow vacuum to be maintained in the cell. The windows are attached to the glassware with an epoxy that resists attack by common organic solvents. Additional side arms allow multiple spectroscopic probes of the same sample under anaerobic and anhydrous conditions

  10. Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

    1999-05-20

    Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

  11. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  12. Layered Double Hydroxides with Intercalated Porphyrins as Photofunctional Materials: Subtle Structural Changes Modify Singlet Oxygen Production

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Bezdička, Petr; Bourdelande, J.L.; Hernando, J.; Jirka, Ivan; Káfuňková, Eva; Kubát, Pavel; Mosinger, Jiří; Wagnerová, Dana Marie

    2007-01-01

    Roč. 19, č. 15 (2007), s. 3822-3829 ISSN 0897-4756 R&D Projects: GA ČR(CZ) GA203/06/1244; GA ČR GA203/07/1424; GA AV ČR KAN100500651 Grant - others:MESS(ES) CTQ2006-01040 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : singlet oxygen Subject RIV: CA - Inorganic Chemistry Impact factor: 4.883, year: 2007

  13. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Rajainmaeki, H.; Nieminen, M.; Laakso, L.

    1991-08-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for spent fuel repository are discussed. The capsule design is based on the TVO's new advanced cold process concept where a steel canister is surrounded by the oxygen free copper canister. This study shows that already at present there exist several possible manufacturing routes, which result in consistently high quality canisters. Hot rolling, bending and EB-welding the seam is the best way to assure the small grain size which is preferable for the best inspectability of the final EB-welded seam of the lid. The same route turns out also to be the most economical

  14. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Rajainmaeki, H.; Nieminen, M.; Laakso, L.

    1991-06-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for spent fuel repository are discussed. The capsule design is based on the TVO's new advanced cold process concept where a steel canister is surrounded by the oxygen free copper canister. This study shows that already at present there exist several possible manufacturing routes, which results in consistently high quality canisters. Hot rolling, bending and EB-welding the seam is the best way to assure the small grain size which is preferable for the best inspectability of the final EB-welded seam of the lid. The same route turns out also to be the most economical. (au)

  15. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  16. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Wang H

    2014-06-01

    Full Text Available Haiping Wang,1 Xiaobing Wang,1 Shaoliang Zhang,2 Pan Wang,1 Kun Zhang,1 Quanhong Liu1 1Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 2Qinglong High-Tech Co, Ltd, Yichun, Jiangxi, People's Republic of China Background: Sonodynamic therapy (SDT is a promising method that uses ultrasound to activate certain chemical sensitizers for the treatment of cancer. The purpose of this study was to investigate the sonoactivity of a novel sensitizer, sinoporphyrin sodium (DVDMS, and its sonotoxicity in an esophageal cancer (ECA-109 cell line. Methods: The fluorescence intensity of DVDMS, hematoporphyrin, protoporphyrin IX, and Photofrin II was detected by fluorescence microscopy and flow cytometry. Generation of singlet oxygen was measured using a 1, 3-diphenylisobenzofuran experiment. A 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide assay was used to examine cell viability. Production of reactive oxygen species (ROS and destabilization of the mitochondrial membrane potential were assessed by flow cytometry. Apoptosis was analyzed using Annexin-PE/7-amino-actinomycin D staining. Confocal microscopy was performed to assess mitochondrial damage and identify release of cytochrome C after treatment. Western blots were used to determine expression of oxidative stress-related and apoptosis-associated protein. Ultrastructural changes in the cell were studied by scanning electron microscopy. Results: DVDMS showed higher autofluorescence intensity and singlet oxygen production efficiency compared with other photosensitizers in both cancerous and normal cells. Compared with hematoporphyrin, DVDMS-mediated SDT was more cytotoxic in ECA-109 cells. Abundant intracellular ROS was found in the SDT groups, and the cytotoxicity

  18. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  19. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas

    International Nuclear Information System (INIS)

    Normann, Fredrik; Thunman, Henrik; Johnsson, Filip

    2009-01-01

    This paper investigates new possibilities and synergy effects for an oxy-fuel fired polygeneration scheme (transportation fuel and electricity) with carbon capture and co-firing of biomass. The proposed process has the potential to make the oxy-fuel process more effective through a sub-stoichiometric combustion in-between normal combustion and gasification, which lowers the need for oxygen within the process. The sub-stoichiometric combustion yields production of synthesis gas, which is utilised in an integrated synthesis to dimethyl ether (DME). The process is kept CO 2 neutral through co-combustion of biomass in the process. The proposed scheme is simulated with a computer model with a previous study of an oxy-fuel power plant as a reference process. The degree of sub-stoichiometric combustion, or amount of synthesis gas produced, is optimised with respect to the overall efficiency. The maximal efficiency was found at a stoichiometric ratio just below 0.6 with the efficiency for the electricity producing oxy-fuel process of 0.35 and a DME process efficiency of 0.63. It can be concluded that the proposed oxygen lean combustion process constitutes a way to improve the oxy-fuel carbon capture processes with an efficient production of DME in a polygeneration process

  20. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carp head kidney leukocytes display different patterns of oxygen radical production after stimulation with PAMPs and DAMPs

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera; Nielsen, Michael Engelbrecht

    2013-01-01

    . Consistent with a pathogen eradication strategy, ROS responses to PAMP stimulation (β-glucan) was fast, vigorous and highly dominated by production of superoxide anion. In contrast, stimulation with DAMPs led to a slow, subtle but long-lasting production of oxygen radicals dominated by hydrogen peroxide....... Using an in vitro model of scratch-wounded CCB fibroblast cell cultures and a novel PhotoID proliferation assay, stimulation with low and continuous levels of hydrogen peroxide (5μM) led to a slight increase in the percentage of wound recovery and thus promoted wound closure. In contrast, high doses...... and thereby potential tissue damage. Direct in vitro stimulation with β-glucans did not impact fibroblast scratch-wound recovery, which further suggests that interaction with tissue-resident leukocytes or other components of the fish immune system are required to induce fibroblast proliferation and thus...

  2. An approximate method for calculating composition of the non-equilibrium explosion products of hydrocarbons and oxygen

    International Nuclear Information System (INIS)

    Shargatov, V A; Gubin, S A; Okunev, D Yu

    2016-01-01

    We develop a method for calculating the changes in composition of the explosion products in the case where the complete chemical equilibrium is absent but the bimolecular reactions are in quasi-equilibrium with the exception bimolecular reactions with one of the components of the mixture. We investigate the possibility of using the method of 'quasiequilibrium' for mixtures of hydrocarbons and oxygen. The method is based on the assumption of the existence of the partial chemical equilibrium in the explosion products. Without significant loss of accuracy to the solution of stiff differential equations detailed kinetic mechanism can be replaced by one or two differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the solution of a stiff system for chemically non-equilibrium mixtures replacing it when bimolecular reactions are near to equilibrium. (paper)

  3. Astrobiological Aspects of Radiation Chemistry in Europa's Icy Regolith

    Science.gov (United States)

    Carlson, R. W.; Hand, K. P.

    2006-05-01

    Jupiter's moon Europa, with its likely subsurface ocean and young, active surface, is a promising habitat for life. Europa orbits in the heart of Jupiter's powerful magnetosphere and suffers intense energetic particle bombardment, producing both positive and negative aspects for astrobiology at Europa. Ionizing radiation can produce oxidants that could support a radiation-driven ecology as proposed by Chyba. On the other hand, biomolecular evidence for life that may be upwelled to the surface is rapidly altered by irradiation, complicating astrobiological searches for evidence of life. We present an overview of laboratory work performed at JPL and elsewhere and observational results related to these two aspects. The oxidants hydrogen peroxide and molecular oxygen are known to exist on Europa and the radiolytic production of these species has been studied in the laboratory for both electron and ion irradiation. Laboratory- measured equilibrium concentrations of H2O2, where production and destruction rates are equal, are in general agreement with the observed 0.1% molar abundance on Europa. The shape of Europa's peroxide band is consistent with the line shapes observed in radiolysis and with H2O2 dispersed in water ice rather than occurring as H2O2 aggregates. Surprisingly, molecular oxygen may be even more abundant on Europa even though O2 is extremely volatile ande would be expected to escape from the ice surface. Radiolysis can produce molecular oxygen and appears to simultaneously alter the ice matrix, trapping the O2. Other species observed on Europa are CO2 and SO2, and laboratory radiolysis of these species in H2O ice produces carbonic and sulfuric acid, respectively. We are studying the radiolytic degradation of biomarkers in ice at Europa temperatures by studying both simple organics and more complex biomolecules, including microorganisms. Hydrocarbon radiolysis yields carbon dioxide and methane, which can escape the system and results in loss of carbon. In

  4. Expert systems for automated maintenance of a Mars oxygen production system

    Science.gov (United States)

    Huang, Jen-Kuang; Ho, Ming-Tsang; Ash, Robert L.

    1992-08-01

    Application of expert system concepts to a breadboard Mars oxygen processor unit have been studied and tested. The research was directed toward developing the methodology required to enable autonomous operation and control of these simple chemical processors at Mars. Failure detection and isolation was the key area of concern, and schemes using forward chaining, backward chaining, knowledge-based expert systems, and rule-based expert systems were examined. Tests and simulations were conducted that investigated self-health checkout, emergency shutdown, and fault detection, in addition to normal control activities. A dynamic system model was developed using the Bond-Graph technique. The dynamic model agreed well with tests involving sudden reductions in throughput. However, nonlinear effects were observed during tests that incorporated step function increases in flow variables. Computer simulations and experiments have demonstrated the feasibility of expert systems utilizing rule-based diagnosis and decision-making algorithms.

  5. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  6. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance.

    Science.gov (United States)

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P; Garduno-Garcia, Jose de Jesus; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas

    2011-08-01

    Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria.

  7. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  8. Stratification in the lunar regolith - a preliminary view

    International Nuclear Information System (INIS)

    Duke, M.B.; Nagle, J.S.

    1975-01-01

    Although the knowledge of lunar regolith stratification is incomplete, several categories of thick and thin strata have been identified. Relatively thick units average 2 to 3 cm in thickness, and appear surficially to be massive. On more detailed examination, these units can be uniformly fine-grained, can show internal trends, or can show internal variations which apparently are random. Other thick units contain soil clasts apparently reworked from underlying units. Thin laminae average approximately 1 mm in thickness; lenticular distribution and composition of some thin laminae indicates they are fillets shed from adjacent rock fragments. Other dark, fine-grained, well-sorted thin laminae appear to be surficial zones, reworked by micrometeorites. Interpretations of stratigraphic succession can be strengthened by the occurrence of characteristic coarse rock fragments and the orientation of large spatter agglutinates, which are commonly found in their original depositional orientation. (Auth.)

  9. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  10. PROGRA2 experiment: new results for dust clouds and regoliths

    Science.gov (United States)

    Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.

    With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.

  11. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Directory of Open Access Journals (Sweden)

    Geoffry N De Iuliis

    Full Text Available BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR tuned to 1.8 GHz and covering a range of specific absorption rates (SAR from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001. Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications

  12. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  13. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Directory of Open Access Journals (Sweden)

    Patnaik Pratap R

    2008-03-01

    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  14. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: A comparative study

    International Nuclear Information System (INIS)

    Lee, Hongshin; Lee, Hye-jin; Kim, Hyung-Eun; Kweon, Jihyang; Lee, Byeong-Dae; Lee, Changha

    2014-01-01

    Highlights: • Oxidants from zero-valent iron were quantified in the presence of oxygen and EDTA. • The oxidant yields of nano- and microparticulate zero-valent iron were compared. • Microparticulate zero-valent iron produced higher oxidant yields. • The factors affecting the oxidant production from zero-valent iron were discussed. -- Abstract: In aqueous solution, zero-valent iron (ZVI, Fe 0 ) is known to activate oxygen (O 2 ) into reactive oxidants such as hydroxyl radical and ferryl ion capable of oxidizing contaminants. However, little is known about the effect of the particle size of ZVI on the yield of reactive oxidants. In this study, the production of reactive oxidants from nanoparticulate and microparticulate ZVIs (denoted as nZVI and mZVI, respectively) was comparatively investigated in the presence of O 2 and EDTA. To quantify the oxidant yield, excess amount of methanol was employed, and the formation of its oxidation product, formaldehyde (HCHO), was monitored. The concentration of HCHO in the nZVI/O 2 system rapidly reached the saturation value, whereas that in the mZVI/O 2 system gradually increased throughout the entire reaction time. The mZVI/O 2 system exhibited higher yields of HCHO than the nZVI/O 2 system under both acidic and neutral pH conditions. The higher oxidant yields in the mZVI/O 2 system are mainly attributed to the less reactivity of the mZVI surface with hydrogen peroxide (H 2 O 2 ) relative to the surface of nZVI, which minimize the loss of H 2 O 2 by ZVI (i.e., the two-electron reduction of H 2 O 2 into water). In addition, the slow dissolution of Fe(II) from mZVI was found to be partially responsible for the higher oxidant yields at neutral pH

  15. Thermal analysis, optimization and design of a Martian oxygen production plant

    Science.gov (United States)

    Iyer, Venkatesh A.; Sridhar, K. R.

    1991-01-01

    The objective is to optimally design the thermal components of a system that uses carbon dioxide (CO2) from the Martian atmosphere to produce oxygen (O2) for spacecraft propulsion and/or life-support. Carbon dioxide is thermally decomposed into carbon monoxide (CO) and O2 followed by the electrochemical separation of O2. The design of the overall system and its various individual components depends on, among other things, the fraction of the stoichiometric yield of O2 that can be realized in the system and the temperature of operation of the electrochemical separation membrane. The analysis indicates that a substantial reduction could be obtained in the mass and power requirements of the system if the unreacted CO2 were to be recycled. The concepts of an optimum temperature of the zirconia cell and impracticality of plant operation at low cell efficiencies are also discussed. The design of the thermal equipment is such that the mass and power requirements of the individual components and of the overall system are optimized.

  16. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation.

    Science.gov (United States)

    Gao, Lin-Rui; Wang, Guang; Zhang, Jing; Li, Shuai; Chuai, Manli; Bao, Yongping; Hocher, Berthold; Yang, Xuesong

    2018-09-01

    An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI + cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. © 2018 Wiley Periodicals, Inc.

  17. Inhibitory Effects of Adlay Extract on Melanin Production and Cellular Oxygen Stress in B16F10 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2014-09-01

    Full Text Available The aim of this study was to determine the effects of adlay extract on melanin production and the antioxidant characteristics of the extract. The seeds were extracted by the supercritical fluid CO2 extraction (SFE method. The effect of adlay extract on melanin production was evaluated using mushroom tyrosinase activity assay, intracellular tyrosinase activity, antioxidant properties and melanin content. Those assays were performed spectrophotometrically. In addition, the expression of melanogenesis-related proteins was determined by western blotting. The results revealed that the adlay extract suppressed intracellular tyrosinase activity and decreased the amount of melanin in B16F10 cells. The adlay extract decreased the expression of microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase related protein-1 (TRP-1 and tyrosinase related protein-2 (TRP-2. The extract also exhibited antioxidant characteristics such as free radical scavenging capacity and reducing power. It effectively decreased intracellular reactive oxygen species (ROS levels in B16F10 cells. We concluded that the adlay extract inhibits melanin production by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2. The antioxidant properties of the extract may also contribute to the inhibition of melanogenesis. The adlay extract can therefore be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.

  18. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    Science.gov (United States)

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  19. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    Science.gov (United States)

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  20. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen

    2016-01-01

    ) methods were used to prepare NiFe2O4 oxygen carriers. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, as well as Barrett-Joyner-Halenda (BJH......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement...

  1. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    Science.gov (United States)

    Burton, rodney; King, Darren

    2013-01-01

    The innovation consists of a thermodynamic system for extracting in situ oxygen vapor from lunar regolith using a solar photovoltaic power source in a reactor, a method for thermally insulating the reactor, a method for protecting the reactor internal components from oxidation by the extracted oxygen, a method for removing unwanted chemical species produced in the reactor from the oxygen vapor, a method for passively storing the oxygen, and a method for releasing high-purity oxygen from storage for lunar use. Lunar oxygen exists in various types of minerals, mostly silicates. The energy required to extract the oxygen from the minerals is 30 to 60 MJ/kg O. Using simple heating, the extraction rate depends on temperature. The minimum temperature is approximately 2,500 K, which is at the upper end of available oven temperatures. The oxygen is released from storage in a purified state, as needed, especially if for human consumption. This method extracts oxygen from regolith by treating the problem as a closed batch cycle system. The innovation works equally well in Earth or Lunar gravity fields, at low partial pressure of oxygen, and makes use of in situ regolith for system insulation. The innovation extracts oxygen from lunar regolith using a method similar to vacuum pyrolysis, but with hydrogen cover gas added stoichiometrically to react with the oxygen as it is produced by radiatively heating regolith to 2,500 K. The hydrogen flows over and through the heating element (HE), protecting it from released oxygen. The H2 O2 heat of reaction is regeneratively recovered to assist the heating process. Lunar regolith is loaded into a large-diameter, low-height pancake reactor powered by photovoltaic cells. The reactor lid contains a 2,500 K HE that radiates downward onto the regolith to heat it and extract oxygen, and is shielded above by a multi-layer tungsten radiation shield. Hydrogen cover gas percolates through the perforated tungsten shielding and HE, preventing

  2. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  3. Depth and stratigraphy of regolith. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Nyman, Helena; Sohlenius, Gustav; Stroemgren, Maarten; Brydsten, Lars

    2008-06-01

    At the Laxemar-Simpevarp site, numerical and descriptive modelling are performed both for the deep bedrock and for the surface systems. The surface geology and regolith depth are important parameters for e.g. hydrogeological and geochemical modelling and for the over all understanding of the area. Regolith refers to all the unconsolidated deposits overlying the bedrock. The regolith depth model (RDM) presented here visualizes the stratigraphical distribution of the regolith as well as the elevation of the bedrock surface. The model covers 280 km 2 including both terrestrial and marine areas. In the model the stratigraphy is represented by six layers (Z1-Z6) that corresponds to different types of regolith. The model is geometric and the properties of the layers are assigned by the user according to the purpose. The GeoModel program, which is an ArcGIS extension, was used for modelling the regolith depths. A detailed topographical Digital Elevation Model (DEM) and a map of Quaternary deposits were used as input to the model. Altogether 319 boreholes and 440 other stratigraphical observations were also used. Furthermore a large number of depth data interpreted from geophysical investigations were used; refraction seismic measurements from 51 profiles, 11,000 observation points from resistivity measurements and almost 140,000 points from seismic and sediment echo sounding data. The results from the refraction seismic and resistivity measurements give information about the total regolith depths, whereas most other data also give information about the stratigraphy of the regolith. Some of the used observations did not reach the bedrock surface. They do, however, describe the minimum regolith depth at each location and were therefore used where the regolith depth would have been thinner without using the observation point. A large proportion of the modelled area has a low data density and the area was therefore divided into nine domains. These domains were defined based

  4. Depth and stratigraphy of regolith. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Helena (SWECO Position, Stockholm (Sweden)); Sohlenius, Gustav (Geological Survey of Sweden (SGU), Uppsala (Sweden)); Stroemgren, Maarten; Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2008-06-15

    At the Laxemar-Simpevarp site, numerical and descriptive modelling are performed both for the deep bedrock and for the surface systems. The surface geology and regolith depth are important parameters for e.g. hydrogeological and geochemical modelling and for the over all understanding of the area. Regolith refers to all the unconsolidated deposits overlying the bedrock. The regolith depth model (RDM) presented here visualizes the stratigraphical distribution of the regolith as well as the elevation of the bedrock surface. The model covers 280 km2 including both terrestrial and marine areas. In the model the stratigraphy is represented by six layers (Z1-Z6) that corresponds to different types of regolith. The model is geometric and the properties of the layers are assigned by the user according to the purpose. The GeoModel program, which is an ArcGIS extension, was used for modelling the regolith depths. A detailed topographical Digital Elevation Model (DEM) and a map of Quaternary deposits were used as input to the model. Altogether 319 boreholes and 440 other stratigraphical observations were also used. Furthermore a large number of depth data interpreted from geophysical investigations were used; refraction seismic measurements from 51 profiles, 11,000 observation points from resistivity measurements and almost 140,000 points from seismic and sediment echo sounding data. The results from the refraction seismic and resistivity measurements give information about the total regolith depths, whereas most other data also give information about the stratigraphy of the regolith. Some of the used observations did not reach the bedrock surface. They do, however, describe the minimum regolith depth at each location and were therefore used where the regolith depth would have been thinner without using the observation point. A large proportion of the modelled area has a low data density and the area was therefore divided into nine domains. These domains were defined based on

  5. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    Science.gov (United States)

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The relation between in vivo ethylene production and oxygen partial pressure

    NARCIS (Netherlands)

    Sanders, M.G.; Wild, de H.P.J.

    2003-01-01

    Modelling in vivo ethylene production rate in relation to O2 partial pressure was used to improve understanding of enzyme kinetics of 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase). Tomato fruit were stored in an extensive range of O2 partial pressures at 8, 13 and 18 °C. Ethylene

  7. The effect of lipid peroxidation products on reactive oxygen species formation and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Ambrozova, Gabriela; Pekarova, Michaela; Lojek, Antonin

    2011-02-01

    Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes

    International Nuclear Information System (INIS)

    Chen Baoying; Lam, Karen S.L.; Wang Yu; Wu Donghai; Lam, Michael C.; Shen Jiangang; Wong Laiching; Hoo, Ruby L.C.; Zhang Jialiang; Xu Aimin

    2006-01-01

    Low plasma levels of adiponectin (hypoadiponectinemia) and elevated circulating concentrations of plasminogen activator inhibitor (PAI)-1 are causally associated with obesity-related insulin resistance and cardiovascular disease. However, the mechanism that mediates the aberrant production of these two adipokines in obesity remains poorly understood. In this study, we investigated the effects of hypoxia and reactive oxygen species (ROS) on production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Quantitative PCR and immunoassays showed that ambient hypoxia markedly suppressed adiponectin mRNA expression and its protein secretion, and increased PAI-1 production in mature adipocytes. Dimethyloxallyl glycine, a stabilizer of hypoxia-inducible factor 1α (HIF-1α), mimicked the hypoxia-mediated modulations of these two adipokines. Hypoxia caused a modest elevation of ROS in adipocytes. However, ablation of intracellular ROS by antioxidants failed to alleviate hypoxia-induced aberrant production of adiponectin and PAI-1. On the other hand, the antioxidants could reverse hydrogen peroxide (H 2 O 2 )-induced dysregulation of adiponectin and PAI-1 production. H 2 O 2 treatment decreased the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), but had no effect on HIF-1α, whereas hypoxia stabilized HIF-1α and decreased expression of C/EBPα, but not PPARγ. Taken together, these data suggest that hypoxia and ROS decrease adiponectin production and augment PAI-1 expression in adipocytes via distinct signaling pathways. These effects may contribute to hypoadiponectinemia and elevated PAI-1 levels in obesity, type 2 diabetes, and cardiovascular diseases

  9. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  10. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  11. Acute exposure of mercury chloride stimulates the tissue regeneration program and reactive oxygen species production in the Drosophila midgut.

    Science.gov (United States)

    Chen, Zhi; Wu, Xiaochun; Luo, Hongjie; Zhao, Lingling; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    We used Drosophila as an animal model to study the digestive tract in response to the exposure of inorganic mercury (HgCl2). We found that after oral administration, mercury was mainly sequestered within the midgut. This resulted in increased cell death, which in turn stimulated the tissue regeneration program, including accelerated proliferation and differentiation of the intestinal stem cells (ISCs). We further demonstrated that these injuries correlate closely with the excessive production of the reactive oxygen species (ROS), as vitamin E, an antioxidant reagent, efficiently suppressed the HgCl2-induced phenotypes of midgut and improved the viability. We propose that the Drosophila midgut could serve as a suitable model to study the treatment of acute hydrargyrism on the digestive systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Aalto, H.; Rajainmaeki, H.; Laakso, L.

    1996-10-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for disposal of spent nuclear fuel from reactors of Teollisuuden Voima Oy (TVO) and Imatran Voima Oy (IVO) are discussed. The canister design is based on the Posiva's concept where solid insert structure is surrounded by the copper mantle. During recent years Outokumpu Copper Products and Posiva have continued their work on development of the copper canisters. Outokumpu Copper Products has also increased capability to manufacture these canisters. In the study the most potential manufacturing methods and their costs are discussed. The cost estimates are based on the assumption that Outokumpu will supply complete copper mantles. At the moment there are at least two commercially available production methods for copper cylinder manufacturing. These routes are based on either hot extrusion of the copper tube or hot rolling, bending and EB-welding of the tube. Trial fabrications has been carried out with both methods for the full size canisters. These trials of the canisters has shown that both the forming from rolled plate and the extrusion are possible methods for fabricating copper canisters on a full scale. (orig.) (26 refs.)

  13. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    Science.gov (United States)

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Production of reactive oxygen species during the aerobic and anaerobic exercise

    Directory of Open Access Journals (Sweden)

    Edilson Serpeloni Cyrino

    2006-06-01

    Full Text Available The protective effect of physical exercise against diseases is well established in literature, although it is known that exercising generates free radicals. Despite the mitochondria being the main source of free radicals, the processes of ischemia, inflammation, and reperfusion can also form free radicals. The purpose of this literature review was to investigate the impact of both aerobic and anaerobic physical exercise on the generation of reactive oxygen species (ROS. We verified that cellular and tissue damage by free radicals, caused by lipid peroxidation and inflammation, occurs in both types of physical exercises, especially in high intensity efforts. There are indications that ROS generation during physical exercise cannot be modulated by regular training, however, the cellular environment can increase antioxidant endogenous concentration to compensate for that stress. Moreover, ROS regulation can differently occur in aerobic and anaerobic exercises. Therefore, the control of oxidative stress may be very important, particularly, in anaerobic exercises. RESUMOO efeito protetor do exercício físico contra doenças está bem estabelecido na literatura, embora haja conhecimento de que sua prática gera radicais livres. Apesar de a mitocôndria ser a principal fonte de radicais livres, os processos de isquemia, inflamação e reperfusão também podem causar formação de radicais livres. Apartir de uma ampla revisão da literatura, o objetivo deste estudo foi investigar o impacto do exercício físico sob condições de aerobiose e anaerobiose sobre a geração de espécies reativas de oxigênio (ERO. Verificou-se que o dano celular e tecidual por radicais livres, causado por peroxidação lipídica e inflamação, ocorre em ambos os tipos de exercícios físicos, sobretudo em esforços de alta intensidade. Existem indicações de que a geração de ERO durante o exercício físico não pode ser modulada pelo treinamento regular, contudo, o

  15. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions

    Science.gov (United States)

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R 2 = 0.95), plasma (R 2 = 0.82), and erythrocytes (R 2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  16. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean.

    Science.gov (United States)

    Shine, M B; Guruprasad, K N; Anand, Anjali

    2012-07-01

    Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS. Copyright © 2012 Wiley Periodicals, Inc.

  17. Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows.

    Science.gov (United States)

    Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio

    2017-01-01

    The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.

  18. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin

    Directory of Open Access Journals (Sweden)

    Alasdair Anderson

    2014-01-01

    Full Text Available The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC complexes I, II and III towards production of reactive oxygen species (ROS have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549. The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05 suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001. The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase cells than the corresponding wild type cells (P=0.0012 which can be considered (in terms of telomerase activity as models of younger and older cells respectively.

  19. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  20. Mars Atmosphere and Regolith COllector/PrOcessor for Lander Ops (MARCO POLO) Atmospheric Processing Module

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a...

  1. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  2. High Fidelity Multi-Scale Regolith Simulation Tool for ISRU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  3. CNT-Based Smart Electrostatic Filters for Capturing Nanoparticulate Lunar Regolith, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The abrasive, reactive, and ubiquitous nature of lunar regolith created significant and serious problems during the Apollo moon missions. In this Phase I, Agave...

  4. Electrostatic Separation of Lunar Regolith for Size Beneficiation Using Same-Material Tribocharging

    Data.gov (United States)

    National Aeronautics and Space Administration — The success of future long-term manned lunar missions depends on the development of certain key technologies. One such technology, the utilization of lunar regolith...

  5. The Strata-1 Regolith Dynamics Experiment: Class 1E Science on ISS

    Science.gov (United States)

    Fries, Marc; Graham, Lee; John, Kristen

    2016-01-01

    The Strata-1 experiment studies the evolution of small body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). This study will record segregation and mechanical dynamics of regolith simulants in a microgravity and vibration environment similar to that experienced by regolith on small Solar System bodies. Strata-1 will help us understand regolith dynamics and will inform design and procedures for landing and setting anchors, safely sampling and moving material on asteroidal surfaces, processing large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predicting the behavior of large and small particles on disturbed asteroid surfaces. This experiment is providing new insights into small body surface evolution.

  6. DIHeDRAL: Downhole Regolith Interrogation with Helium-Assisted Drill and LIBS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future landed robotic missions to the lunar poles will seek to characterize the properties of subsurface regolith. Current instruments for such in-situ analysis,...

  7. DIHeDRAL: Downhole Regolith Interrogation with Helium-Assisted DRill And LIBS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future landed robotic missions to the lunar poles will seek to characterize the properties of subsurface regolith. Current instruments for such in-situ analysis,...

  8. Correlation Between Metabolic Syndrome, Periodontitis and Reactive Oxygen Species Production. A Pilot Study.

    Science.gov (United States)

    Patini, Romeo; Gallenzi, Patrizia; Spagnuolo, Gianrico; Cordaro, Massimo; Cantiani, Monica; Amalfitano, Adriana; Arcovito, Alessandro; Callà, Cinzia; Mingrone, Gertrude; Nocca, Giuseppina

    2017-01-01

    Metabolic syndrome (MetS) is associated with an increased risk of periodontitis even if the mechanism is unknown. Since both MetS and periodontitis are characterized by an alteration of inflammation status, the aim of this pilot study was to determine if differences in ROS metabolism of phagocytes isolated from (A) patients with MetS, (B) patients with both MetS and mild periodontitis, (C) healthy subjects and (D) normal weight subjects with mild periodontitis, were present. ROS metabolism was studied by a Chemiluminescence (CL) technique: the system was made up of luminol (100 nmol/L) and cells (1 × 10 5 ) in the presence or absence of stimulus constituted by opsonized zymosan (0.5 mg). The final volume (1.0 mL) was obtained using modified KRP buffer. ROS production was measured at 25°C for 2 h, using an LB 953 luminometer (Berthold, EG & G Co, Germany). All the experiments were performed in triplicate. All results are mean ± standard deviation (SD). The group of means was compared by the analysis of variance "(ANOVA)". A value of p < 0.05 was considered significant. Results showed that basal ROS production (both from PMNs and from PBMs) of groups A, B and D was increased with respect to that obtained from group C ( p <0.05). These results are congruent with literature data, although the actual clinical relevance of the phenomenon remains to be evaluated.

  9. Elucidation of oxidation and degradation products of oxygen containing fuel components by combined use of a stable isotopic tracer and mass spectrometry.

    Science.gov (United States)

    Frauscher, Marcella; Besser, Charlotte; Allmaier, Günter; Dörr, Nicole

    2017-11-15

    In order to reveal the degradation products of oxygen-containing fuel components, in particular fatty acid methyl esters, a novel approach was developed to characterize the oxidation behaviour. Combination of artificial alteration under pressurized oxygen atmosphere, a stable isotopic tracer, and gas chromatography electron impact mass spectrometry (GC-EI-MS) was used to obtain detailed information on the formation of oxidation products of (9Z), (12Z)-octadecadienoic acid methyl ester (C18:2 ME). Thereby, biodiesel simulating model compound C18:2 ME was oxidized in a rotating pressurized vessel standardized for lubricant oxidation tests (RPVOT), i.e., artificially altered, under 16 O 2 as well as 18 O 2 atmosphere. Identification of the formed degradation products, mainly carboxylic acids of various chain lengths, alcohols, ketones, and esters, was performed by means of GC-EI-MS. Comparison of mass spectra of compounds under both atmospheres revealed not only the degree of oxidation and the origin of oxygen atoms, but also the sites of oxidative attack and bond cleavage. Hence, the developed and outlined strategy based on a gas-phase stable isotopic tracer and mass spectrometry provides insight into the degradation of oxygen-containing fuels and fuel components by means of the accurate differentiation of oxygen origin in a degradation product. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  11. Reduction of iron-bearing lunar minerals for the production of oxygen

    Science.gov (United States)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  12. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Science.gov (United States)

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  13. Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures

    Science.gov (United States)

    Rodriquez, Gary

    2013-01-01

    The Moonraker Excavator and other tools under development for use on the Moon, Mars, and asteroids will be employed to construct a number of civil engineering projects and to mine the soil. Mounds of loose soil will be subject to the local transport mechanisms plus artificial mechanisms such as blast effects from landers and erosion from surface vehicles. Some of these structures will require some permanence, with a minimum of maintenance and upkeep. Combustion Synthesis (CS) is a family of processes and techniques whereby chemistry is used to transform materials, often creating flame in a hard vacuum. CS can be used to stabilize civil engineering works such as berms, habitat shielding, ramps, pads, roadways, and the like. The method is to unroll thin sheets of CS fabric between layers of regolith and then fire the fabric, creating a continuous sheet of crusty material to be interposed among layers of loose regolith. The combination of low-energy processes, ISRU (in situ resource utilization) excavator, and CS fabrics, seems compelling as a general method for establishing structures of some permanence and utility, especially in the role of robotic missions as precursors to manned exploration and settlement. In robotic precursory missions, excavator/ mobility ensembles mine the Lunar surface, erect constructions of soil, and dispense sheets of CS fabrics that are covered with layers of soil, fired, and then again covered with layers of soil, iterating until the desired dimensions and forms are achieved. At the base of each berm, for example, is a shallow trench lined with CS fabric, fired and filled, mounded, and then covered and fired, iteratively to provide a footing against lateral shear. A larger trench is host to a habitat module, backfilled, covered with fabric, covered with soil, and fired. Covering the applied CS fabric with layers of soil before firing allows the resulting matrix to incorporate soil both above and below the fabric ply into the fused layer

  14. Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum

    Science.gov (United States)

    Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.

  15. A time series of prokaryote secondary production in the oxygen minimum zone of the Humboldt current system, off central Chile

    Science.gov (United States)

    Levipan, H. A.; Quiñones, R. A.; Urrutia, H.

    2007-11-01

    Because the marine picoplanktonic communities are made up of phylogenetically different microbial groups, the re-evaluation of key processes such as bacterial secondary production (BSP) has become an important contemporary issue. The difficulty of differentiating the metabolic processes of Bacteria from the rest of the microorganisms in the water column (i.e., Archaea and Eukarya) has made it difficult to estimate in situ BSP. This work presents the seasonal variability of the prokaryote secondary production (PSP) measured by the incorporation of 14C-leucine in the oxygen minimum zone (OMZ) off central-southern Chile. The BSP and potential archaeal secondary production (PASP) were determined through the combined use of 14C-leucine and N1-guanyl-1, 7-diaminoheptane (GC 7), an efficient inhibitor of archaeal and eukaryote cell growth. BSP accounted for the majority of the PSP (total average, 59 ± 7.5%); maximum values were ∼600 μg C m -3 h -1 and, on several dates, BSP represented 100% of the PSP. Similarly, PASP was also an important fraction of the PSP (total average, 42.4 ± 8.5%), although with levels that ranged from not detectable (on given dates) to levels that represented up to ∼97% of PSP (winter 2003). Our results showed that both Bacteria and Archaea accounted for almost equal portions of the prokaryote heterotrophic metabolism in the OMZ, and that PASP is notoriously enhanced through temporal pulses of heterotrophy. This indicates that, at least in marine systems with high abundance of Archaea (e.g., mesopelagic realm), the secondary production obtained through methods measuring the uptake of radiolabeled substrates should be considered as PSP and not as BSP. If the latter is the target measurement, then the use of an inhibitor of both archaeal and eukaryote cell growth such as GC 7 is recommended.

  16. Radiolysis of uracil in oxygenated aqueous solutions. A study by product analysis and pulse radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schuchnmann, M N; Sonntag, C von [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1983-10-01

    Hydroxyl radicals are generated by the radiolysis of N/sub 2/O-O/sub 2/ (4:1 v/v)-saturated aqueous solutions of uracil. They add to the 5,6-double bond of the substrate. These radicals are converted by oxygen into the corresponding peroxyl radicals (I) and (II), respectively. Peroxyl radical (I) undergoes a base-induced O/sub 2//sup -/ elimination. As an intermediate 5-hydroxyisopyrimidine is formed which rearranges into isobarbituric acid and adds water forming 5,6-dihydro-5,6-dihydroxyuracil. Competing with this base-induced reaction of radical (I) there is a bimolecular decay of radicals (I) and (II). These processes become predominant at low pH. For this reason a strong pH dependence of G (products) is observed. The major products are (G values at pH 3 and 10 in parentheses) 5,6-dihydroxy-5,6-dihydrouracil (1.1; 2.4), isobarbituric acid (0; 1.2), N-formyl-5-hydroxyhydantoin (1.6; 0.2), 5-hydroxybarbituric acid (0.9; 0.2). 5-Hydroxybarbituric acid is formed in its keto form. Its deprotonation has been followed by pulse conductometry. Details of the reaction mechanism, e.g. the involvement of oxyl radicals in the bimolecular decay of (I) and (II), are discussed.

  17. Glycidamide inhibits progesterone production through reactive oxygen species-induced apoptosis in R2C Rat Leydig Cells.

    Science.gov (United States)

    Li, Mingwei; Sun, Jianxia; Zou, Feiyan; Bai, Shun; Jiang, Xinwei; Jiao, Rui; Ou, Shiyi; Zhang, Hui; Su, Zhijian; Huang, Yadong; Bai, Weibin

    2017-10-01

    The food contaminant acrylamide (AA) is usually recognized as a probable human carcinogen. In addition, AA has also been found able to induce male infertility in animals. Interestingly, resent research work revealed that the toxic effect of AA on the ability of male reproduction in vivo may due to glycidamide (GA) which is the metabolite of AA. In this study, R2C Leydig cells was used to investigate the toxic effects of GA on progesterone production. GA caused dose-dependent inhibition on the cell growth, with IC 25 , IC 50, and IC 75 values found at 0.635, 0.872, and 1.198 mM, respectively. The results of single cell gel/Comet assay showed that GA significantly induced early-phase cell apoptosis, reduced progesterone production, as well as decreasing the protein expression of steroidogenic acute regulatory (StAR) in R2C cells. Furthermore, GA induced overproduction of intracellular reactive oxygen species (ROS), upregulated Bax expression, decreased mitochondrial membrane potential, and triggered mitochondria-mediated cell apoptosis. Consequently, the downstream effector caspase-3 was activated, resulting in Leydig cells apoptosis. Overall, our results showed that GA could damage R2C Leydig cells by the lesion of the ability of progesterone genesis and inducing cells apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability.

    Science.gov (United States)

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Lan Guo, Nancy; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2010-01-01

    Perfluorooctane sulfonate (PFOS) is a member of the perfluoroalkyl acids (PFAA) containing an eight-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are among the strongest in organic chemistry, and PFOS is widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and is persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated that the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.

  19. Induction of Apoptosis in Human Multiple Myeloma Cell Lines by Ebselen via Enhancing the Endogenous Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2014-01-01

    Full Text Available Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  20. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    Science.gov (United States)

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production.

    Science.gov (United States)

    Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

    2014-01-01

    Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  2. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  3. Eclipta yellow vein virus enhances chlorophyll destruction, singlet oxygen production and alters endogenous redox status in Andrographis paniculata.

    Science.gov (United States)

    Khan, Asifa; Luqman, Suaib; Masood, Nusrat; Singh, Dhananjay Kumar; Saeed, Sana Tabanda; Samad, Abdul

    2016-07-01

    The infection of Eclipta yellow vein virus [EcYVV-IN, Accession No. KC476655], recently reported for the first time, on Andrographis paniculata was studied for redox-mediated alteration mechanism in infected plants. A. paniculata, an important medicinal plant, is used in traditional Indian, Chinese and modern system of medicine. Andrographolide, one of the foremost components of this plant, is known for its varied pharmacological properties. Our investigation provides insight into the effect of virus-induced changes in the singlet oxygen quenching due to the alteration in pigment content (chlorophyll and carotenoids) as well as activation of plant secondary metabolism along with defense activation leading to changes in enzymatic and non-enzymatic redox status. Due to infection, a reduction in carotenoid content was observed which leads to reduced quenching of singlet oxygen. An increased level of enzymatic (SOD and APX) and non-enzymatic antioxidant (DPPH, FRAP, RP, NO, TAC and TP) activities were also observed in virus-infected plants with a positive correlation (>0.9). However, CAT activity was diminished which could be either due to its proteolytic degradation or inactivation by superoxide anions (O(2-.)), NO or peroxynitrite radicals. A significant (p < 0.05) increase in total phenolic content was observed in the infected plants while no considerable difference was seen in the total flavonoid content. Our results highlighted the alteration in redox status caused by virus-induced biotic stress on the plants and could be useful for understanding the after effects of viral infection This study could also be helpful in developing biomimetic methods for improving the production of secondary metabolites of pharmaceutical importance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii.

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Barrera

    Full Text Available Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1 and 500 rpm resulted in the highest carbon utilization into alginate (25%. Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1, the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1 showed a highest alginate molecular weight (580 kDa at 500 rpm whereas similar molecular weights (480 kDa were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization. Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain

  5. The analysis of water in the Martian regolith.

    Science.gov (United States)

    Anderson, D M; Tice, A R

    1979-12-01

    One of the scientific objectives of the Viking Mission to Mars was to accomplish an analysis of water in the Martian regolith. The analytical scheme originally envisioned was severely compromised in the latter stages of the Lander instrument package design. Nevertheless, a crude soil water analysis was accomplished. Samples from each of the two widely separated sites yielded roughly 1 to 3% water by weight when heated successively to several temperatures up to 500 degrees C. A significant portion of this water was released in the 200 degrees to 350 degrees C interval indicating the presence of mineral hydrates of relatively low thermal stability, a finding in keeping with the low temperatures generally prevailing on Mars. The presence of a duricrust at one of the Lander sites is taken as possible evidence for the presence of hygroscopic minerals on Mars. The demonstrated presence of atmospheric water vapor and thermodynamic calculations lead to the belief that adsorbed water could provide a relatively favorable environment for endolithic organisms on Mars similar to types recently discovered in the dry antarctic deserts.

  6. Kinetic and Potential Sputtering Enhancements of Lunar Regolith Erosion: The Contribution of the Heavy Multicharged (Minority) Solar Wind Constituents

    Science.gov (United States)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    We report preliminary results for H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A lunar regolith simulant at solar wind velocities, obtain ed at the ORNL Multicharged Ion Research Facility using quadrupole ma ss spectrometry. The multi-charged Ar ions were used as proxies for i ntermediate mass solar wind multicharged ions. Prior to the Ar beam e xposures, the sample was exposed to high fluence H+ irradiation to si mulate H-loading due to the dominant solar wind constituent. A x80 en hancement of oxygen sputtering by Ar+ over same velocity H+ was measu red and an additional x2 increase for Ar+9 over same velocity Ar+ was demonstrated, giving clear evidence of the importance of potential s puttering by multicharged ions. This enhancement was observed to pers ist to the maximum fluences investigated (approx 10(exp 16)/sq cm). As discussed in a companion abstract by N. Barghouty, such persistent s puttering enhancement has significant implications on weathering and aging of lunar regolith. In addition, XPS measurements showed strong evidence of Fe reduction for those target areas that had been exposed to high fluence Ar+ and Ar+8 beams. Preferential oxidation of the Fe -reduced beam-exposed regions during transfer to the XPS system led t o enhanced O concentrations in those regions as well. On the basis of these very promising preliminary results, a NASA-LASER project on mo re extensive measurements was recently selected for funding. The prop osal expands the collaboration with NASA-MSFC for the simulation effort, and adds a new collaboration with NASA-GSFC for lunar mission-rele vant measurements.

  7. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats.

    Science.gov (United States)

    Ximenes, Carolina Falcão; Rodrigues, Samya Mere Lima; Podratz, Priscila Lang; Merlo, Eduardo; de Araújo, Julia Fernandez Puñal; Rodrigues, Lívia Carla Melo; Coitinho, Juliana Barbosa; Vassallo, Dalton Valentim; Graceli, Jones Bernardes; Stefanon, Ivanita

    2017-11-01

    Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g -1 . The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to N G -nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E 2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5

  8. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    Directory of Open Access Journals (Sweden)

    Janosch eSchirmack

    2015-03-01

    Full Text Available Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g. permafrost environments, desert soils and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 %wt of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats

  9. Oxidation of D-glucose and D-fructose with oxygen in aqueous, alkaline solutions. III. Kinetic approach to the product distribution

    NARCIS (Netherlands)

    de Wilt, H.G.J.; Kuster, Ben

    1972-01-01

    Based on a previously reported, integral reaction-scheme for the homogeneous oxidation of -glucose and -fructose with oxygen in aqueous, alkaline solutions, a kinetic model covering the product distribution has been developed. The model consists of a repeated set of reactions with constant rate

  10. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    Science.gov (United States)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  11. Developing a Material Response Model of Biopolymer-Stabilized Regolith to Predict Micrometeorite Damage of ISRU Habitat Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed space technology research aims to investigate the micrometeorite impact performance of Regolith Biocomposite (RBC), an innovative in-situ material...

  12. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  13. Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation.

    Science.gov (United States)

    Sandiford, Shelley D E; Kennedy, Karen A M; Xie, Xiaojun; Pickering, J Geoffrey; Li, Shawn S C

    2014-01-11

    Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1.

  14. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  15. Effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on pH, net oxygen production, and respiration by algae

    Science.gov (United States)

    Scholefield, Ronald J.; Fredricks, Kim T.; Slaght, Karen S.; Seelye, James G.

    1999-01-01

    The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in the United States and Canada for more than 35 years to control larval sea lampreys (Petromyzon marinus) in tributaries of the Great Lakes. Occasionally, during stream treatments with TFM, nontarget-fish mortality reaches unacceptable levels. These losses could be due to the presence of sensitive fish species, excess TFM, or a combination of factors that influence the toxicity of TFM, such as delays in daily stream reaeration by algae resulting in extended periods of low pH and low dissolved oxygen (DO). We determined the effects of a broad range of TFM concentrations on net DO production and respiration by two species of algae, in two culture media (high alkalinity and low alkalinity). The pH and DO in cultures of Chlorella pyrenoidosa and Selenastrum capricornutum were recorded at time zero and again after a 9-h exposure to TFM under either lighted or dark conditions. Algal cultures exposed to TFM concentrations typical of those used to control sea lampreys in streams showed only small changes in pH (<0.1) and small reductions in DO (about 8% in lighted conditions and 11% in dark conditions). Changes in pH and DO of this magnitude probably do not change the efficacy of TFM or cause nontarget fish mortality if algae are the predominant photosynthetic organisms in the stream.

  16. Differential expression of islet glutaredoxin 1 and 5 with high reactive oxygen species production in a mouse model of diabesity.

    Science.gov (United States)

    Petry, Sebastian Friedrich; Sharifpanah, Fatemeh; Sauer, Heinrich; Linn, Thomas

    2017-01-01

    The onset and progression of diabetes mellitus type 2 is highly contingent on the amount of functional beta-cell mass. An underlying cause of beta-cell decay in diabetes is oxidative stress, which markedly affects the insulin producing pancreatic cells due to their poor antioxidant defence capacity. Consequently, disturbances of cellular redox signaling have been implicated to play a major role in beta-cell loss in diabetes mellitus type 2. There is evidence suggesting that the glutaredoxin (Grx) system exerts a protective role for pancreatic islets, but the exact mechanisms have not yet been elucidated. In this study, a mouse model for diabetes mellitus type 2 was used to gain further insight into the significance of Grx for the islets of Langerhans in the diabetic metabolism. We have observed distinct differences in the expression levels of Grx in pancreatic islets between obese, diabetic db mice and lean, non-diabetic controls. This finding is the first report about a decrease of Grx expression levels in pancreatic islets of diabetic mice which was accompanied by declining insulin secretion, increase of reactive oxygen species (ROS) production level, and cell cycle alterations. These data demonstrate the essential role of the Grx system for the beta-cell during metabolic stress which may provide a new target for diabetes mellitus type 2 treatment.

  17. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. © 2014 FEBS.

  18. Simulation of oxygen-steam gasification with CO{sub 2} adsorption for hydrogen production from empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.; Inayat, A.; Yusup, S.; Sabil, K.M. [Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh (Malaysia). Center of Biofuel and Biochemical, Green Technology Mission Oriented Research

    2011-07-01

    The world is facing a critical situation in which fossil fuel reservoir is depleting while the demand for energy is increasing worldwide. Scientists globally have shifted their effort towards developing alternative sustainable fuels and quite a number of technologies have been discovered. One potential alternative solution is to produce energy from hydrogen as its energy content per kilogram is three times larger than that of gasoline. The combustion of hydrogen produces water instead of greenhouse gases, along with energy, making hydrogen even more attractive as a clean fuel. Current study focuses on the process development of hydrogen production via gasification of Empty Fruit Bunch (EFB) with in-situ adsorption of CO{sub 2} based on equilibrium modeling approach. The process flowsheet simulation is performed using iCON, PETRONAS process simulation software. This work investigates the influence of the temperature within the range of 600 to 1000 C and steam/biomass ratio between 0.1 and 1.0 on the hydrogen yield and product gas composition. The importance of different reactions involved in the system is also discussed. Using the simulation, the optimal operating conditions are predicted to be at 800 C and steam/biomass ratio of 0.6. Hydrogen yield of 149g kg{sup -1} of EFB can be obtained at 1000 C. The preliminary economic potential per annum of the oxygen-steam gasification system coupled with in situ CO{sub 2} adsorption is RM 6.64 x 10{sup 6} or approximately USD 2 x 10{sup 6}.

  19. Fuzzy control of dissolved oxygen, pH and temperature of bubble column bioreactor for Candida utilis biomass production

    Directory of Open Access Journals (Sweden)

    Hubert Arteaga Miñano

    2012-06-01

    Full Text Available An automatic control system by dissolved oxygen (DO fuzzy logic, pH and temperature in a bubble column bioreactor (BCB for Candida utilis CECT 10704 biomass production was implemented. Their performance was compared with the classical proportional control. A data acquisition card for the control was designed, built and programmed, using the 4.14 Eagle software for the design and the 3.0 Microcode Studio Plus for programming. A program in 6.0 Visual Basic, which linked up with 7.0 MatLab for fuzzy control was developed; using Mandani inference, membership functions of input and output trapezoidal and triangular; 4 rules for the DO, 3 for pH and 3 for temperature, with connector and type and for defuzzifying the centroid method. Evaluation of biomass production was performed by determining dry weight and growth kinetics with the Gompertz model.The fuzzy control performance of DO, pH and temperature showed superiority in proportional control, characterized by a very close control to set point and a low standard deviation. DO Fuzzy control at 6 ppm, pH of 6 and 30°C, allowed to have the greatest dry weight of 7.65±0.02 g/L and the highest maximum growth of 1.51±0.2, the lowest adaptation phase of 0.27±0.01 h and the greatest specific speed of Candida utilis growth rate of 0.7±0.01 h-1.

  20. Effects of oxygen and ethanol on recombinant yeast fermentation for hepatitis B virus surface antigen production: modeling and simulation studies.

    Science.gov (United States)

    Shi, Y; Ryu, D D; Yuan, W K

    1993-01-05

    A model was formulated to examine the competitive growth of two phenotypes (Leu(+) and Leu(-)) and the product formation with recombinant Saccharomyces cerevisiae strain DBY-745, which contains the shuttle vector pYGH3-16-s with the foreign gene HBsAg (hepatitis B virus surface antigen) as well as experimental fedbatch fermentation data. The important state variables and the process parameters evaluated include (1) the ratio of the plasmid-free cell concentration to the plasmid-containing cell concentration (rho = X(-)X(+)), (2) the expression of human hepatitis B surface antigen g (CH), (3) the glucose consumption (S), (4) the ethanol production (/), (5) the change of working volume (V) in the fermentor, (6) the different specific growth rates of two phenotype cells, and (7) the plasmid loss frequency coefficient (alpha ). These variables and other parameters were carefully defined, their correlations were studied, and a mathematical model using a set of nonlinear ordinary differential equations (ODEs) for fed-batch fermentation was then obtained based on the theoretical considerations and the experimental results. The extended Kalman filter (EKF) methods was applied for the best estimate of these variables based on the experimentally observable variables: rhoV, and g (CH). Each of these variable was affected by random measuring errors under the different operating conditions. Simulation results presented for verification of the model agreed with our observations and provided useful information relevant to the operation and the control of the fedbatch recombinant yeast fermentation. The method of predicting an optimal profile of the cell growth was also demonstrated under the different dissolved oxygen concentrations.

  1. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells.

    Science.gov (United States)

    Thangamani, Shankar; Eldesouky, Hassan E; Mohammad, Haroon; Pascuzzi, Pete E; Avramova, Larisa; Hazbun, Tony R; Seleem, Mohamed N

    2017-01-01

    Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production

    International Nuclear Information System (INIS)

    Li, Fengmin; Liang, Zhi; Zheng, Xiang; Zhao, Wei; Wu, Miao; Wang, Zhenyu

    2015-01-01

    Highlights: • The growth of two species of algae was inhibited under nano-TiO 2 exposure. • Oxidative stress was one of the mechanisms of toxicity of nano-TiO 2 on algae. • The site of ROS production was the electron transfer chain of chloroplast. - Abstract: Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO 2 (anatase, average particle size of 5–10 nm, specific surface area of 210 ± 10 m 2 g −1 ) to assess the effects of nano-TiO 2 on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO 2 in the algal suspension. Nano-TiO 2 was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO 2 exposure. The 72 h EC 50 values of nano-TiO 2 to K. brevis and S. costatum were 10.69 and 7.37 mg L −1 , respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO 2 exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (p < 0.05). Meanwhile, superoxide dismutase (SOD) and catalase activities (CAT) of K. brevis and S. costatum changed in different ways. The reactive oxygen species (ROS) levels in both species were significantly higher than those of the control (p < 0.05). The site of ROS production and accumulation in K. brevis and S. costatum under nano-TiO 2 exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO 2 in algal suspensions inhibited the growth of K. brevis and S. costatum. This effect was attributed to oxidative

  3. Toxicity of nano-TiO{sub 2} on algae and the site of reactive oxygen species production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengmin, E-mail: lifengmin@ouc.edu.cn [Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Technology, Ocean University of China, Qingdao 266100 (China); Liang, Zhi [Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Technology, Ocean University of China, Qingdao 266100 (China); Zheng, Xiang, E-mail: zhengxiang7825@sina.com [School of Environment and Natural Resources, Renmin University of China, Beijing 100872 (China); Zhao, Wei; Wu, Miao; Wang, Zhenyu [Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Technology, Ocean University of China, Qingdao 266100 (China)

    2015-01-15

    Highlights: • The growth of two species of algae was inhibited under nano-TiO{sub 2} exposure. • Oxidative stress was one of the mechanisms of toxicity of nano-TiO{sub 2} on algae. • The site of ROS production was the electron transfer chain of chloroplast. - Abstract: Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO{sub 2} (anatase, average particle size of 5–10 nm, specific surface area of 210 ± 10 m{sup 2} g{sup −1}) to assess the effects of nano-TiO{sub 2} on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO{sub 2} in the algal suspension. Nano-TiO{sub 2} was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO{sub 2} exposure. The 72 h EC{sub 50} values of nano-TiO{sub 2} to K. brevis and S. costatum were 10.69 and 7.37 mg L{sup −1}, respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO{sub 2} exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (p < 0.05). Meanwhile, superoxide dismutase (SOD) and catalase activities (CAT) of K. brevis and S. costatum changed in different ways. The reactive oxygen species (ROS) levels in both species were significantly higher than those of the control (p < 0.05). The site of ROS production and accumulation in K. brevis and S. costatum under nano-TiO{sub 2} exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO{sub 2} in algal suspensions inhibited the growth

  4. Iron signatures in Planetary Regoliths: The Moon as Case Study

    Science.gov (United States)

    McFadden, L. A.; Clark, P. E.; Basu, A.

    1998-09-01

    We consider the distribution of iron in the lunar crust by combining two complementary remote sensing techniques, Apollo Gamma-ray (AGR) spectroscopy and Clementine reflectance spectroscopy (CRS). Both maps were compared in areas of overlap controlled by Apollo 15 and 16 ground tracks. The CRS map was scaled to the same lower spatial resolution (200 km) as AGR using the same color map in a mercator projection. Both AGR and CRS maps show bimodal distributions of iron abundance and have large scale similarities, but there are quantitative and significant differences. Maria account for the high iron peak and highlands, the low iron peak. CSR-derived Fe has a greater overall range, very narrow modal peaks and greater separation between high and low modes compared to AGR Fe values. If both techniques measure total iron in the regolith then both approaches should agree, their residuals should be zero. After failure to explain the differences in a systematic manner, we recalibrated the CSR iron map to the iron abundance in the pyroxene component of Apollo landing site soils, an approach consistent with crystal field theory and the algorithm used to produce the CSR map. The difference between total iron measured by AGR and iron in pyroxene now measured by CSR gives a map of the non-pyroxene iron component of the lunar crust and its distribution. We now see a correlation with lunar morphology and an anti-correlation with age of mare basins and their iron abundance, the younger basins having a higher component of non-pyroxene iron than the older ones. These results can be checked with Lunar Prospector data on other areas of the Moon. Combining remote sensing data sets has promise for determining the distribution of iron in different oxidation states on Eros with data from the NEAR mission.

  5. Reply to Nicholson's comment on "Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2012-08-01

    Full Text Available The comment by Nicholson (2011a questions the "consistency" of the "definition" of the "biological end-member" used by Kaiser (2011a in the calculation of oxygen gross production. "Biological end-member" refers to the relative oxygen isotope ratio difference between photosynthetic oxygen and Air-O2 (abbreviated 17δP and 18δP for 17O/16O and 18O/16O, respectively. The comment claims that this leads to an overestimate of the discrepancy between previous studies and that the resulting gross production rates are "30% too high". Nicholson recognises the improved accuracy of Kaiser's direct calculation ("dual-delta" method compared to previous approximate approaches based on 17O excess (17Δ and its simplicity compared to previous iterative calculation methods. Although he correctly points out that differences in the normalised gross production rate (g are largely due to different input parameters used in Kaiser's "base case" and previous studies, he does not acknowledge Kaiser's observation that iterative and dual-delta calculation methods give exactly the same g for the same input parameters (disregarding kinetic isotope fractionation during air-sea exchange. The comment is based on misunderstandings with respect to the "base case" 17δP and 18δP values. Since direct measurements of 17δP and 18δPdo not exist or have been lost, Kaiser constructed the "base case" in a way that was consistent and compatible with literature data. Nicholson showed that an alternative reconstruction of 17δP gives g values closer to previous studies. However, unlike Nicholson, we refrain from interpreting either reconstruction as a benchmark for the accuracy of g. A number of publications over the last 12 months

  6. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil.

    Science.gov (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin

    2008-11-07

    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  7. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  8. Assessing the elements mobility through the regolith and their potential as tracers for hydrological processes

    Science.gov (United States)

    Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter

    2017-04-01

    Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.

  9. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  10. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment.

    Science.gov (United States)

    Dalsing, Beth L; Truchon, Alicia N; Gonzalez-Orta, Enid T; Milling, Annett S; Allen, Caitilyn

    2015-03-17

    that R. solanacearum rapidly depletes oxygen in host xylem but can then respire using host nitrate as a terminal electron acceptor. The microbe uses its denitrification pathway to detoxify the reactive nitrogen species nitrite (a product of nitrate respiration) and nitric oxide (a plant defense signal). Detoxification may play synergistic roles in bacterial wilt virulence by converting the host's chemical weapon into an energy source. Mutant bacterial strains lacking elements of the denitrification pathway could not grow as well as the wild type in tomato plants, and some mutants were also reduced in virulence. Our results show how a pathogen's metabolic activity can alter the host environment in ways that increase pathogen success. Copyright © 2015 Dalsing et al.

  11. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum.

    Science.gov (United States)

    Wu, Chen-Gao; Tian, Jia-Long; Liu, Rui; Cao, Peng-Fei; Zhang, Tian-Jun; Ren, Ang; Shi, Liang; Zhao, Ming-Wen

    2017-10-15

    Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC -silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC -silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC -silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC -silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes. IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC -silenced strains. The content of

  12. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N.; Hirayama, K. [Kumamoto University, School of Health Science, Kumamoto (Japan); Yasutake, A. [National Institute for Minamata Disease, Minamata (Japan)

    2007-11-15

    The involvement of oxidative stress has been suggested as a mechanism for neurotoxicity caused by methylmercury (MeHg), but the mechanism for MeHg selective toxicity in the central nervous system is still unclear. In this research, to clarify the mechanism of selective neurotoxicity caused by MeHg, the oxygen consumption levels, the reactive oxygen species (ROS) production rates and several antioxidant levels in mitochondria were compared among the cerebrum, cerebellum and liver of male Wistar rats. In addition, the alterations of these indexes were examined in MeHg-intoxicated rats (oral administration of 10 mg/kg day, for 5 days). Although the cerebrum and cerebellum in intact rats showed higher mitochondrial oxygen consumption levels and ROS production rates than the liver, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities were much lower in the cerebrum and cerebellum than in the liver. Especially, the cerebellum showed the highest oxygen consumption and ROS production rate and the lowest mitochondrial glutathione (GSH) levels among the tissues examined. In the MeHg-treated rats, decrease in the oxygen consumption and increase in the ROS generation were found only in the cerebellum mitochondria, despite a lower Hg accumulation in the mitochondrial fraction compared to the liver. Since MeHg treatment produced an enhancement of ROS generation in cerebellum mitochondria supplemented with succinate substrates, MeHg-induced oxidative stress might affect the complex II-III mediated pathway in the electron transfer chain in the cerebellum mitochondria. Our study suggested that inborn factors, high production system activity and low defense system activity of ROS in the brain, would relate to the high susceptibility of the central nervous system to MeHg toxicity. (orig.)

  13. A PIXE/PIGE study of lateritic gold mineralization from the regolith of the Mystery Zone, Mt Percy, Western Australia

    International Nuclear Information System (INIS)

    Li, X.; Van Moort, J.C.

    1998-01-01

    PIXE/PIGE have been utilized extensively in the search for gold and volcanic hosted massive sulphide deposits, using rock powders from relatively fresh rock. The present study uses regolith samples, from which weathering products (oxides, hydroxides, carbonates, sulphates and clay) have been removed by sequential treatment with aqua regia and sulphuric acid. The samples come from the Mystery Zone, Mt Percy, Kalgoorlie, comprising both mineralized and barren samples. The acid insoluble residue consist essentially of quartz with minor sericite. The PlXE/PIGE data from the acid insoluble residue shows that the geochemical character of W, Al, K, Ca, V, Ga, Rb, Rb/K and Rb/Al could correctly define the location of underlying mineralization at depth. The ratio of Ti/Zr remained relatively constant in different geological units and can be used to distinguish lithologies. (authors)

  14. A PIXE/PIGE study of lateritic gold mineralization from the regolith of the Mystery Zone, Mt Percy, Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Van Moort, J.C. [Tasmania Univ., Sandy Bay, TAS (Australia). Dept. of Geology

    1998-06-01

    PIXE/PIGE have been utilized extensively in the search for gold and volcanic hosted massive sulphide deposits, using rock powders from relatively fresh rock. The present study uses regolith samples, from which weathering products (oxides, hydroxides, carbonates, sulphates and clay) have been removed by sequential treatment with aqua regia and sulphuric acid. The samples come from the Mystery Zone, Mt Percy, Kalgoorlie, comprising both mineralized and barren samples. The acid insoluble residue consist essentially of quartz with minor sericite. The PlXE/PIGE data from the acid insoluble residue shows that the geochemical character of W, Al, K, Ca, V, Ga, Rb, Rb/K and Rb/Al could correctly define the location of underlying mineralization at depth. The ratio of Ti/Zr remained relatively constant in different geological units and can be used to distinguish lithologies. (authors). Extended abstract. 5 refs.

  15. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinskey, Anthony J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worden, Robert Mark [Michigan State Univ., East Lansing, MI (United States); Brigham, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lu, Jingnan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Quimby, John Westlake [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gai, Claudia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Speth, Daan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Elliott, Sean [Boston Univ., MA (United States); Fei, John Qiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bernardi, Amanda [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Sophia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grunwald, Stephan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grousseau, Estelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maiti, Soumen [Michigan State Univ., East Lansing, MI (United States); Liu, Chole [Michigan State Univ., East Lansing, MI (United States)

    2013-12-16

    E), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation supplied the cells with sufficient nutrients while minimizing the toxicity caused by isobutanol. Under this cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. While this bioengineering work was being done at the Sinskey laboratory at MIT, the researchers at the Worden laboratory at Michigan State were working on the design and construction of the required specialty bioreactor for incompatible gasses (BIG) that would allow the safe feeding of microbes on Carbon Dioxide, Hydrogen, and Oxygen without explosive results. The early design and assembly work in year 1 incorporated a novel microbubble generator to maximize the bioavailability of gasses within the system comprised of small scale hollow fiber reactors. The early success of the microbubble generator eliminated the need to investigate potentially toxic surfactants within the system. For operational control, the system design incorporated a Opto22-based control network. The researchers also selected the specific hollow fiber material suitable for the bioreactor application. A variety of commercially available hollow fiber membranes were compared with regard to their pore sizes, cell affinity, and potential interference to cell viability assays. The selected membrane with its spongy layer was then tested for diffusivity of O2 and CO2. The instrumented system was then fully assembled for experimentally measuring the heterotrophic growth rate of immobilized R. eutropha cells. The requisite procedures for inoculation, measurement, and cleaning were established enabling the system performance to be validated

  16. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    Science.gov (United States)

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  17. Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar

    Science.gov (United States)

    Fa, Wenzhe; Zhu, Meng-Hua; Liu, Tiantian; Plescia, Jeffrey B.

    2015-12-01

    The Chang'E-3 lunar penetrating radar (LPR) observations at 500 MHz reveal four major stratigraphic zones from the surface to a depth of ~20 m along the survey line: a layered reworked zone (<1 m), an ejecta layer (~2-6 m), a paleoregolith layer (~4-11 m), and the underlying mare basalts. The reworked zone has two to five distinct layers and consists of surface regolith. The paleoregolith buried by the ejecta from a 500 m crater is relatively homogenous and contains only a few rocks. Population of buried rocks increases with depth to ~2 m at first, and then decreases with depth, representing a balance between initial deposition of the ejecta and later turnover of the regolith. Combining with the surface age, the LPR observations indicate a mean accumulation rate of about 5-10 m/Gyr for the surface regolith, which is at least 4-8 times larger than previous estimation.

  18. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    International Nuclear Information System (INIS)

    Meyer, Fred W.; Harris, Peter R.; Taylor, C.N.; Meyer, Harry M. III; Barghouty, N.; Adams, J. Jr.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  19. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    Science.gov (United States)

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  20. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  1. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  2. Carbon and oxygen dynamics on the Louisiana continental shelf: role of water column primary production and respiration

    Science.gov (United States)

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen respiration (R) and primary p...

  3. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  4. University of Central Florida / Deep Space Industries Asteroid Regolith Simulants

    Science.gov (United States)

    Britt, Daniel; Covey, Steven D.; Schultz, Cody

    2017-10-01

    Introduction: The University of Central Florida (UCF), in partnership with Deep Space Industries (DSI) are working under a NASA Phase 2 SBIR contract to develop and produce a family of asteroid regolith simulants for use in research, engineering, and mission operations testing. We base simulant formulas on the mineralogy, particle size, and physical characteristics of CI, CR, CM, C2, CV, and L-Chondrite meteorites. The advantage in simulating meteorites is that the vast majority of meteoritic materials are common rock forming minerals that are available in commercial quantities. While formulas are guided by the meteorites our approach is one of constrained maximization under the limitations of safety, cost, source materials, and ease of handling. In all cases our goal is to deliver a safe, high fidelity analog at moderate cost.Source Materials, Safety, and Biohazards: A critical factor in any useful simulant is to minimize handling risks for biohazards or toxicity. All the terrestrial materials proposed for these simulants were reviewed for potential toxicity. Of particular interest is the organic component of volatile rich carbonaceous chondrites which contain polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. Our research suggests that we can maintain rough chemical fidelity by substituting much safer sub-bituminous coal as our organic analog. A second safety consideration is the choice of serpentine group materials. While most serpentine polymorphs are quite safe we avoid fibrous chrysotile because of its asbestos content. Terrestrial materials identified as inputs for our simulants are common rock forming minerals that are available in commercial quantities. These include olivine, pyroxene, plagioclase feldspar, smectite, serpentine, saponite, pyrite, and magnetite in amounts that are appropriate for each type. For CI's and CR’s, their olivines tend to be Fo100 which is rare on Earth. We have substituted Fo90 olivine

  5. Particle Shape Characterization of Lunar Regolith using Reflected Light Microscopy

    Science.gov (United States)

    McCarty, C. B.; Garcia, G. C.; Rickman, D.

    2014-12-01

    Automated identification of particles in lunar thin sections is necessary for practical measurement of particle shape, void characterization, and quantitative characterization of sediment fabric. This may be done using image analysis, but several aspects of the lunar regolith make such automations difficult. For example, many of the particles are shattered; others are aggregates of smaller particles. Sieve sizes of the particles span 5 orders of magnitude. The physical thickness of a thin section, at a nominal 30 microns, is large compared to the size of many of the particles. Image acquisition modes, such as SEM and reflected light, while superior to transmitted light, still have significant ambiguity as to the volume being sampled. It is also desirable to have a technique that is inexpensive, not resource intensive, and analytically robust. To this end, we have developed an image acquisition and processing protocol that identifies and delineates resolvable particles on the front surface of a lunar thin section using a petrographic microscope in reflected light. For a polished thin section, a grid is defined covering the entire thin section. The grid defines discrete images taken with 20% overlap, minimizing the number of particles that intersect image boundaries. In reflected light mode, two images are acquired at each grid location, with a closed aperture diaphragm. One image, A, is focused precisely on the front surface of the thin section. The second image, B, is made after the stage is brought toward the objective lens just slightly. A bright fringe line, analogous to a Becke line, appears inside all transparent particles at the front surface of the section in the second image. The added light in the bright line corresponds to a deficit around the particles. Particle identification is done using ImageJ and uses multiple steps. A hybrid 5x5 median filter is used to make images Af and Bf. This primarily removes very small particles just below the front surface

  6. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    Science.gov (United States)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  7. Evolution and Transport of Water in the Upper Regolith of Mars

    Science.gov (United States)

    Hudson, T. L.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N. T.; Green, J. R.

    2003-01-01

    Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.

  8. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production

    International Nuclear Information System (INIS)

    Mckay, D.S.; Morris, R.V.; Jurewicz, A.J.

    1991-01-01

    The most abundant element in lunar rocks and soils is oxygen which makes up approximately 45 percent by weight of the typical lunar samples returned during the Apollo missions. This oxygen is not present as a gas but is tightly bound to other elements in mineral or glass. When people return to the Moon to explore and live, the extraction of this oxygen at a lunar outpost may be a major goal during the early years of operation. Among the most studied processes for oxygen extraction is the reduction of ilmenite by hydrogen gas to form metallic iron, titanium oxide, and oxygen. A related process is proposed which overcomes some of the disadvantages of ilmenite reduction. It is proposed that oxygen can be extracted by direct reduction of native lunar pyroclactic glass using either carbon, carbon monoxide, or hydrogen. In order to evaluate the feasibility of this proposed process a series of experiments on synthetic lunar glass are presented. The results and a discussion of the experiments are presented

  9. Modeling the Expected Performance of the REgolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    Inamdar, Niraj K.; Binzel, Richard P.; Hong, Jae Sub; Allen, Branden; Grindlay, Jonathan; Masterson, Rebecca A.

    2014-01-01

    OSIRIS-REx is the third spacecraft in the NASA New Frontiers Program and is planned for launch in 2016. OSIRIS-REx will orbit the near-Earth asteroid (101955) Bennu, characterize it, and return a sample of the asteroid's regolith back to Earth. The Regolith X-ray Imaging Spectrometer (REXIS) is an instrument on OSIRIS-REx designed and built by students at MIT and Harvard. The purpose of REXIS is to collect and image sun-induced fluorescent X-rays emitted by Bennu, thereby providing spectrosco...

  10. The Nature of C Asteroid Regolith Revealed from the Jbilet Winselwan CM Chondrite

    Science.gov (United States)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.

    2016-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission, although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites, but has rarely been considered a major process for hydrous carbonaceous chondrites.

  11. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content.

    Science.gov (United States)

    Høgsberg, Trine; Jacobsen, Nicklas Raun; Clausen, Per Axel; Serup, Jørgen

    2013-07-01

    Black tattoo inks are composed of carbon nanoparticles, additives and water and may contain polycyclic aromatic hydrocarbons (PAHs). We aimed to clarify whether reactive oxygen species (ROS) induced by black inks in vitro is related to pigment chemistry, physico-chemical properties of the ink particles and the content of chemical additives and contaminants including PAHs. The study included nine brands of tattoo inks of six colours each (black, red, yellow, blue, green and white) and two additional black inks of different brands (n = 56). The ROS formation potential was determined by the dichlorofluorescein (DCFH) assay. A semiquantitative method was developed for screening extractable organic compounds in tattoo ink based on gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Two black inks produced high amounts of ROS. Peroxyl radicals accounted for up to 72% of the free radicals generated, whereas hydroxyl radicals and H₂O₂ accounted for inks aggregated strongly in water in contrast to the other black inks. They did not exhibit any shared pattern in PAHs and other organic substances. Aggregation was exclusively shared by all ink colours belonging to the same two brands. Ten of 11 black inks had PAH concentrations exceeding the European Council's recommended level, and all 11 exceeded the recommended level for benzo(a)pyrene. It is a new finding that aggregation of tattoo pigment particles correlates with ROS production and brand, independently of chemical composition including PAHs. ROS is hypothesized to be implicated in minor clinical symptoms. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. K-, L- and M-shell X-ray productions induced by oxygen ions in the 0.8–1.6 MeV/amu range

    Energy Technology Data Exchange (ETDEWEB)

    Gorlachev, I., E-mail: Igor.Gorlachev@gmail.com [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Gluchshenko, N. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Kireyev, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Kozin, S.; Kurakhmedov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Platov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ural Federal University, Yekaterinburg 620002 (Russian Federation)

    2016-08-15

    The X-ray production cross sections induced by oxygen ions with projectile energies from 12.8 to 25.6 MeV for the elements from Al to Bi were measured. The applied approach is based on calculation of X-ray production cross sections through the cross section of Rutherford backscattering, which can be calculated with high accuracy using the Rutherford formula. The experimental results are compared to the predictions of ECPSSR and PWBA theories calculated with the ISICS code.

  13. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Science.gov (United States)

    Mansell, J. Matthew; Abney, Morgan B.

    2012-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.

  14. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  15. Preliminary Broadband Measurements of Dielectric Permittivity of Planetary Regolith Analog Materials Using a Coaxial Airline

    Science.gov (United States)

    Boivin, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2014-12-01

    When considering radar observations of airless bodies containing regolith, the radar backscatter coefficient is dependent upon the complex dielectric permittivity of the regolith materials. In many current applications of imaging radar data, uncertainty in the dielectric permittivity precludes quantitative estimates of such important parameters as regolith thickness and depth to buried features (e.g., lava flows on the Aristarchus Plateau on the Moon and the flows that surround the Quetzalpetlatl Corona on Venus). For asteroids, radar is an important tool for detecting and characterizing regoliths. Many previous measurements of the real and/or complex parts of the dielectric permittivity have been made, particularly for the Moon (on both Apollo samples and regolith analogues). However, no studies to date have systematically explored the relationship between permittivity and the various mineralogical components such as presence of FeO and TiO2. For lunar materials, the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor controlling the loss tangent (tanδ, the ratio of the imaginary and real components of the dielectric permittivity). Ilmenite, however, is not the only mineral to contain iron in the lunar soil and our understanding of the effect of iron on the loss tangent is insufficient. Beyond the Moon, little is known about the effects on permittivity of carbonaceous materials. This is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, a carbonaceous asteroid whose regolith composition is largely unknown. Here we present preliminary broadband (300 Mhz to 14 GHz) measurements on materials intended as planetary regolith analogs. Our ultimate goal is to establish a database of the effects of a wide range mineralogical components on dielectric permittivity, in support of the OSIRIS REx mission and ongoing Earth-based radar investigation of the Moon

  16. The role of UCP 1 in production of reactive oxygen species by mitochondria isolated from brown adipose tissue

    Czech Academy of Sciences Publication Activity Database

    Dlasková, Andrea; Clarke, K.J.; Porter, R. K.

    2010-01-01

    Roč. 1797, č. 8 (2010), s. 1470-1476 ISSN 0005-2728 Institutional research plan: CEZ:AV0Z50110509 Keywords : Mitochondria * Reactive oxygen species * Uncoupling protein 1 Subject RIV: ED - Physiology Impact factor: 5.132, year: 2010

  17. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  18. Intrinsic Conductivity in Magnesium-Oxygen Battery Discharge Products: MgO and MgO2

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2017-01-01

    Nonaqueous magnesium–oxygen (or “Mg-air”) batteries are attractive next generation energy storage devices due to their high theoretical energy densities, projected low cost, and potential for rechargeability. Prior experiments identified magnesium oxide, MgO, and magnesium peroxide, MgO2...

  19. Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes

    Czech Academy of Sciences Publication Activity Database

    Vašíček, Ondřej; Lojek, Antonín; Jančinová, V.; Nosál, R.; Číž, Milan

    2014-01-01

    Roč. 100, č. 1 (2014), s. 67-72 ISSN 0024-3205 R&D Projects: GA MŠk(CZ) LD11010 Institutional support: RVO:68081707 Keywords : Histamine * Histamine receptors * Reactive oxygen species Subject RIV: BO - Biophysics Impact factor: 2.702, year: 2014

  20. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    Science.gov (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  1. REE enrichment in granite-derived regolith deposits of the southeast United States: Prospective source rocks and accumulation processes

    Science.gov (United States)

    Foley, Nora K.; Ayuso, Robert A.; Simandl, G.J.; Neetz, M.

    2015-01-01

    The Southeastern United States contains numerous anorogenic, or A-type, granites, which constitute promising source rocks for REE-enriched ion adsorption clay deposits due to their inherently high concentrations of REE. These granites have undergone a long history of chemical weathering, resulting in thick granite-derived regoliths, akin to those of South China, which supply virtually all heavy REE and Y, and a significant portion of light REE to global markets. Detailed comparisons of granite regolith profiles formed on the Stewartsville and Striped Rock plutons, and the Robertson River batholith (Virginia) indicate that REE are mobile and can attain grades comparable to those of deposits currently mined in China. A REE-enriched parent, either A-type or I-type (highly fractionated igneous type) granite, is thought to be critical for generating the high concentrations of REE in regolith profiles. One prominent feature we recognize in many granites and mineralized regoliths is the tetrad behaviour displayed in REE chondrite-normalized patterns. Tetrad patterns in granite and regolith result from processes that promote the redistribution, enrichment, and fractionation of REE, such as late- to post- magmatic alteration of granite and silicate hydrolysis in the regolith. Thus, REE patterns showing tetrad effects may be a key for discriminating highly prospective source rocks and regoliths with potential for REE ion adsorption clay deposits.

  2. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters

    Science.gov (United States)

    Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi

    2014-08-01

    High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.

  3. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  4. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  5. Production of Reactive Oxygen Species by Multipotent Stromal Cells/Mesenchymal Stem Cells Upon Exposure to Fas Ligand

    OpenAIRE

    Rodrigues, Melanie; Turner, Omari; Stolz, Donna; Griffith, Linda G.; Wells, Alan

    2011-01-01

    Multipotent stromal cells (MSCs) can be differentiated into osteoblasts and chondrocytes, making these cells candidates to regenerate cranio-facial injuries and lesions in long bones. A major problem with cell replacement therapy, however, is the loss of transplanted MSCs at the site of graft. Reactive oxygen species (ROS) and nonspecific inflammation generated at the ischemic site have been hypothesized to lead to MSCs loss; studies in vitro show MSCs dying both in the presence of ROS or cyt...

  6. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte.

    Science.gov (United States)

    Wang, Nan; Li, Ligui; Zhao, Dengke; Kang, Xiongwu; Tang, Zhenghua; Chen, Shaowei

    2017-09-01

    Nitrogen and sulfur-codoped graphene composites with Co 9 S 8 (NS/rGO-Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO 2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only -0.193 V to reach 10 mA cm -2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half-wave potential in ORR and the potential to reach 10 mA cm -2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm -2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S-codoped rGO, and Co 9 S 8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  8. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  9. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.

    Science.gov (United States)

    Puente-Maestu, Luis; Tejedor, Alberto; Lázaro, Alberto; de Miguel, Javier; Alvarez-Sala, Luis; González-Aragoneses, Federico; Simón, Carlos; Agustí, Alvar

    2012-09-01

    Exercise triggers skeletal muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD). The objective of this research was to study the specific sites of reactive oxygen species (ROS) production in mitochondria isolated from skeletal muscle of patients with COPD and its relationship with local oxidative stress induced by exercise. Vastus lateralis biopsies were obtained in 16 patients with COPD (66 ± 10 yr; FEV(1), 54 ± 12% ref) and in 14 control subjects with normal lung function who required surgery because of lung cancer (65 ± 7 yr; FEV(1), 91 ± 14% ref) at rest and after exercise. In these biopsies we isolated mitochondria and mitochondrial membrane fragments and determined in vitro mitochondrial oxygen consumption (Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2)) and ROS production before and after inhibition of complex I (rotenone), complex II (stigmatellin), and complex III (antimycin-A). We related the in vitro ROS production during state 3 respiration), which mostly corresponds to the mitochondria respiratory state during exercise, with skeletal muscle oxidative stress after exercise, as measured by thiobarbituric acid reactive substances.State 3 Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2) was similar in patients with COPD and control subjects (191 ± 27 versus 229 ± 46 nmol/min/mg; P = 0.058), whereas H(2)O(2) production was higher in the former (147 ± 39 versus 51 ± 8 pmol/mg/h; P release by mitochondria in patients with COPD and in control subjects. The mitochondrial production of H(2)O(2) in state 3 respiration was related (r = 0.69; P < 0.001) to postexercise muscle thiobarbituric acid reactive substance levels. Our results show that complex III is the main site of the enhanced mitochondrial H(2)O(2) production that occurs in skeletal muscle of patients with COPD, and the latter appears to contribute to muscle oxidative damage.

  10. Calculated differential secondary-particle production cross sections after nonelastic neutron interactions with carbon and oxygen between 15 and 60 MeV

    International Nuclear Information System (INIS)

    Brenner, D.J.; Prael, R.E.

    1989-01-01

    Calculated values are given for double-differential (energy/angle) cross sections for the nonelastic production of hydrogen and helium isotopes and heavier-mass recoils, after the interaction of 15- to 60-MeV neutrons with carbon and oxygen. The data are calculated with an intranuclear cascade code, including alpha clustering and particle pickup, followed by a Fermi-breakup mechanism, incorporating decay via intermediate particle-unstable states. The predictions have been extensively tested against available experimental data in this energy/mass range. copyright 1989 Academic Press, Inc

  11. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks.

    Science.gov (United States)

    Valdez-Cruz, Norma A; Reynoso-Cereceda, Greta I; Pérez-Rodriguez, Saumel; Restrepo-Pineda, Sara; González-Santana, Jesus; Olvera, Alejandro; Zavala, Guadalupe; Alagón, Alejandro; Trujillo-Roldán, Mauricio A

    2017-07-25

    Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (k L a ≈ 80 h -1 ) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and β-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in

  12. Electrolyte Engineering Toward Efficient Hydrogen Production Electrocatalysis with Oxygen-crossover Regulation under Densely Buffered Near-neutral pH Conditions

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    This study tackles the core issues associated with near-neutral pH water splitting, particularly regarding electrolyte engineering in the electrocatalysis and product cross-over. We demonstrate that solute engineering has a major impact on water splitting electrocatalysis because the diffusion component, often not well integrated into performance descriptions, largely determines the overall performance. The hydrogen evolution reaction (HER) was investigated on Pt, Ni and NiMo catalysts in various concentrations of cations (Li+, K+, Na+) and anions (H2PO4−, HPO42−, PO43− and HCO3−) to describe its performance by quantifying kinetics, diffusion and solution resistance. In fact, the choice of electrolyte in terms of its identity and activity drastically altered the HER rate and oxygen mass-transport flux at near-neutral pH. Electrolyte properties (activity coefficient, kinematic viscosity and diffusion coefficient) accurately described the diffusion contribution, which can be easily isolated when a highly active Pt catalyst was used for the HER. By analyzing these properties, we maximized the HER rate on the Pt by tuning the solute concentration (typically 1.5 – 2.0 M). Moreover, the kinematic viscosity and oxygen solubility in such densely buffered conditions governed the oxygen mass-transport flux in the electrolyte, which in turn tuned the cross-over flux. At near-neutral pH, as high as 90 % selectivity toward the HER was achieved even under an oxygen saturated condition, where only a 40 mV overpotential was needed to achieve 10 mA cm−2 for the HER. This information can be regarded as an important milestone for achieving a highly efficient water splitting system at near-neutral pH.

  13. Electrolyte Engineering Toward Efficient Hydrogen Production Electrocatalysis with Oxygen-crossover Regulation under Densely Buffered Near-neutral pH Conditions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-12-30

    This study tackles the core issues associated with near-neutral pH water splitting, particularly regarding electrolyte engineering in the electrocatalysis and product cross-over. We demonstrate that solute engineering has a major impact on water splitting electrocatalysis because the diffusion component, often not well integrated into performance descriptions, largely determines the overall performance. The hydrogen evolution reaction (HER) was investigated on Pt, Ni and NiMo catalysts in various concentrations of cations (Li+, K+, Na+) and anions (H2PO4−, HPO42−, PO43− and HCO3−) to describe its performance by quantifying kinetics, diffusion and solution resistance. In fact, the choice of electrolyte in terms of its identity and activity drastically altered the HER rate and oxygen mass-transport flux at near-neutral pH. Electrolyte properties (activity coefficient, kinematic viscosity and diffusion coefficient) accurately described the diffusion contribution, which can be easily isolated when a highly active Pt catalyst was used for the HER. By analyzing these properties, we maximized the HER rate on the Pt by tuning the solute concentration (typically 1.5 – 2.0 M). Moreover, the kinematic viscosity and oxygen solubility in such densely buffered conditions governed the oxygen mass-transport flux in the electrolyte, which in turn tuned the cross-over flux. At near-neutral pH, as high as 90 % selectivity toward the HER was achieved even under an oxygen saturated condition, where only a 40 mV overpotential was needed to achieve 10 mA cm−2 for the HER. This information can be regarded as an important milestone for achieving a highly efficient water splitting system at near-neutral pH.

  14. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  15. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  16. Regolith thickness at the Chang'E-3 landing site from the Lunar Penetrating Radar and impact craters

    Science.gov (United States)

    Fa, W.; Zhu, M.-H.; Liu, T.

    2015-10-01

    The Chang'E-3 lunar penetrating radar (LPR) observations reveal a newly formed regolith layer (<1 m), an ejecta layer (~2-6 m), and a palaeoregolith layer (~4-9 m) from the surface to a depth of ~ 20 m. The thicknesses of the newly formed regolith layer and the palaeoregolith layer are consistent with the estimations based on the excavation depth and morphology of small fresh craters.

  17. Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst.

    Science.gov (United States)

    Hwang, Hyojin; Yeon, Young Joo; Lee, Sumi; Choe, Hyunjun; Jang, Min Gee; Cho, Dae Haeng; Park, Sehkyu; Kim, Yong Hwan

    2015-06-01

    The use of biocatalysts to convert CO2 into useful chemicals is a promising alternative to chemical conversion. In this study, the electro-biocatalytic conversion of CO2 to formate was attempted with a whole cell biocatalyst. Eight species of Methylobacteria were tested for CO2 reduction, and one of them, Methylobacterium extorquens AM1, exhibited an exceptionally higher capability to synthesize formate from CO2 by supplying electrons with electrodes, which produced formate concentrations of up to 60mM. The oxygen stability of the biocatalyst was investigated, and the results indicated that the whole cell catalyst still exhibited CO2 reduction activity even after being exposed to oxygen gas. From the results, we could demonstrate the electro-biocatalytic conversion of CO2 to formate using an obligate aerobe, M. extorquens AM1, as a whole cell biocatalyst without providing extra cofactors or hydrogen gas. This electro-biocatalytic process suggests a promising approach toward feasible way of CO2 conversion to formate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Some consequences of a liquid water saturated regolith in early Martian history

    Science.gov (United States)

    Fuller, A. O.; Hargraves, R. B.

    1978-01-01

    Flooding of low-lying areas of the Martian regolith may have occurred early in the planet's history when a comparatively dense primitive atmosphere existed. If this model is valid, the following are some pedogenic and mineralogical consequences to be expected. Fluctuation of the water table in response to any seasonal or longer term causes would have resulted in precipitation of ferric oxyhydroxides with the development of a vesicular duricrust (or hardpan). Disruption of such a crust by scarp undercutting or frost heaving accompanied by wind deflation of fines could account for the boulders visible on Utopia Planitia in the vicinity of the second Viking lander site. Laboratory and field evidence on earth suggests that under weakly oxidizing conditions lepidocrocite (rather than goethite) would have preferentially formed in the Martian regolith from the weathering of ferrous silicates, accompanied by montmorillonite, nontronite, and cronstedtite. Maghemite may have formed as a low-temperature dehydrate of lepidocrocite or directly from ferrous precursors.

  19. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  20. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen.

    Science.gov (United States)

    Gao, Wa; Kim, Hye-Jin; Chung, Chung-Han; Lee, Jin-Woo

    2014-09-01

    The optimal conditions for the production of carboxymethylcellulase (CMCase) by Bacillus velezensis A-68 at a flask scale have been previously reported. In this study, the parameters involved in dissolved oxygen in 7 and 100 L bioreactors were optimized for the pilot-scale production of CMCase. The optimal agitation speed and aeration rate for cell growth of B. velezensis A-68 were 323 rpm and 1.46 vvm in a 7 L bioreactor, whereas those for the production of CMCase were 380 rpm and 0.54 vvm, respectively. The analysis of variance (ANOVA) implied that the highly significant factor for cell growth was the aeration rate, whereas that for the production of CMCase was the agitation speed. The optimal inner pressures for cell growth and the production of CMCase by B. velezensis A-68 in a 100 L bioreactor were 0.00 and 0.04 MPa, respectively. The maximal production of CMCase in a 100 L bioreactor under optimized conditions using rice hulls was 108.1 U/ml, which was 1.8 times higher than that at a flask scale under previously optimized conditions.

  1. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    Science.gov (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  2. Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data

    Science.gov (United States)

    Feng, Jianqing; Su, Yan; Ding, Chunyu; Xing, Shuguo; Dai, Shun; Zou, Yongliao

    2017-03-01

    The second channel (CH2) of the Lunar Penetrating Radar (LPR) carried on the Chang'e-3 (CE-3) Yutu Rover was used to determine the thickness and structure of the lunar regolith. Accurately revealing the true structure beneath the surface requires knowledge of the dielectric permittivity of the regolith, which allows one to properly apply migration to the radar image. In contrast to simple assumptions in previous studies, this paper takes account of heterogeneity of the regolith and derives regolith's permittivity distribution laterally and vertically by a method widely used in data processing of terrestrial Ground Penetrating Radar (GPR). We find that regolith permittivity at the landing site increases with depth more quickly than previously recognized. At a depth of ∼2.5-3 m, the dielectric constant reaches the value of solid basalt. The radar image was migrated on the basis of the permittivity profile. We do not find any continuous distinct layers or an apparent regolith/rock interface in the migrated radargram, which implies that this area is covered by relatively young, poorly layered deposits.

  3. Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing

    OpenAIRE

    Goulas, A; Binner, JGP; Harris, RA; Friel, RJ

    2017-01-01

    This research paper investigates the suitability of ceramic multi-component materials, which are found on the Martian and Lunar surfaces, for 3D printing (aka Additive Manufacturing) of solid structures. 3D printing is a promising solution as part of the cutting edge field of future in situ space manufacturing applications. 3D printing of physical assets from simulated Martian and Lunar regolith was successfully performed during this work by utilising laser-based powder bed fusion equipment. ...

  4. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    Science.gov (United States)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  5. Size-dependent Measurements of the Scattering Properties of Planetary Regolith Analogs: A Challenge to Theory

    Science.gov (United States)

    Piatek, J. L.; Hapke, B. W.; Nelson, R. M.; Hale, A. S.; Smythe, W. D.

    2003-01-01

    The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.

  6. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  7. Apollo 14 regolith breccias - Different glass populations and their potential for charting space time variations

    Science.gov (United States)

    Delano, John W.

    1988-01-01

    Apollo 14 regolith breccias (14313, 14307, 14301, 14049, 14047) have been found to have different populations of nonagglutinitic, mare-derived glasses. These variations appear to not only reflect different source regoliths but also different closure ages for these breccias. Based upon these different glass populations, 14301 is inferred to have a closure age sometime during the epoch of mare volcanism. All of the other four breccias were formed after the termination of mare volcanism with a possible age sequence from old to young of the following: 14307, 14313, 14049, 14047. Due to the relative simplicity of acquiring high-quality chemical data on large numbers of glasses by electron microprobe, mare glass populations allow: (1) classification of regolith breccias with respect to provenance and (2) estimation of their relative and absolute closure ages. The determination of (Ar-40)-(Ar-39) ages on individual glass spherules within breccias using the laser probe should in the future prove to be a promising extension of the present study.

  8. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  9. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  10. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    Science.gov (United States)

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  11. The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA

    Science.gov (United States)

    Agui, Juan H.

    2011-01-01

    One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.

  12. Modeling the expected performance of the REgolith X-ray Imaging Spectrometer (REXIS)

    Science.gov (United States)

    Inamdar, Niraj K.; Binzel, Richard P.; Hong, Jae Sub; Allen, Branden; Grindlay, Jonathan; Masterson, Rebecca A.

    2014-09-01

    OSIRIS-REx is the third spacecraft in the NASA New Frontiers Program and is planned for launch in 2016. OSIRIS-REx will orbit the near-Earth asteroid (101955) Bennu, characterize it, and return a sample of the asteroid's regolith back to Earth. The Regolith X-ray Imaging Spectrometer (REXIS) is an instrument on OSIRIS-REx designed and built by students at MIT and Harvard. The purpose of REXIS is to collect and image sun-induced fluorescent X-rays emitted by Bennu, thereby providing spectroscopic information related to the elemental makeup of the asteroid regolith and the distribution of features over its surface. Telescopic reflectance spectra suggest a CI or CM chondrite analog meteorite class for Bennu, where this primitive nature strongly motivates its study. A number of factors, however, will influence the generation, measurement, and interpretation of the X-ray spectra measured by REXIS. These include: the compositional nature and heterogeneity of Bennu, the time-variable solar state, X-ray detector characteristics, and geometric parameters for the observations. In this paper, we will explore how these variables influence the precision to which REXIS can measure Bennu's surface composition. By modeling the aforementioned factors, we place bounds on the expected performance of REXIS and its ability to ultimately place Bennu in an analog meteorite class.

  13. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks

    Science.gov (United States)

    Jakus, Adam E.; Koube, Katie D.; Geisendorfer, Nicholas R.; Shah, Ramille N.

    2017-03-01

    Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 μm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young’s moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.

  14. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    Science.gov (United States)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  15. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling.

    Science.gov (United States)

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-03-29

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.

  16. Vitamin K3 induces antiproliferative effect in cervical epithelial cells transformed by HPV 16 (SiHa cells) through the increase in reactive oxygen species production.

    Science.gov (United States)

    de Carvalho Scharf Santana, Natália; Lima, Natália Alves; Desoti, Vânia Cristina; Bidóia, Danielle Lazarin; de Souza Bonfim Mendonça, Patrícia; Ratti, Bianca Altrão; Nakamura, Tânia Ueda; Nakamura, Celso Vataru; Consolaro, Marcia Edilaine Lopes; Ximenes, Valdecir Farias; de Oliveira Silva, Sueli

    2016-10-01

    Cervical cancer is characterized as an important public health problem. According to latest estimates, cancer of the cervix is the fourth most common cancer among women. Due to its high prevalence, the search for new and efficient drugs to treat this infection is continuous. The progression of HPV-associated cervical cancer involves the expression of two viral proteins, E6 and E7, which are rapidly degraded by the ubiquitin-proteasome system through the increase in reactive oxygen species generation. Vitamins are essential to human substances, participate in the regulation of metabolism, and facilitate the process of energy transfer. Some early studies have indicated that vitamin K3 exerts antitumor activity by inducing cell death by apoptosis through an increase in the generation of reactive oxygen species. Thus, we evaluated the antiproliferative effect and a likely mechanism of action of vitamin K3 against cervical epithelial cells transformed by HPV 16 (SiHa cells) assessing the production of total ROS, the mitochondrial membrane potential, the cell morphology, the cell volume, and the cell membrane integrity. Our results show that vitamin K3 induces an increase in ROS production in SiHa cells, triggering biochemical and morphological events, such as depolarization of mitochondrial membrane potential and decreasing cell volume. Our data showed that vitamin K3 generates an oxidative imbalance in SiHa cells, leading to mechanisms that induce cell death by apoptosis.

  17. Expression of death-related genes and reactive oxygen species production in Skeletonema tropicum upon exposure to the polyunsaturated aldehyde octadienal

    Directory of Open Access Journals (Sweden)

    Alessandra A. Gallina

    2015-11-01

    Full Text Available The effects of 4E/Z-octadienal (OCTA on ScDSP-1 and ScDSP-2 gene expression and reactive oxygen species (ROS production were investigated in the marine diatom Skeletonema tropicum (formerly costatum using qRTPCR and flow cytometry. ScDSP-1 and ScDSP-2 genes have been previously shown to be involved in cell death in ageing cells and in response to photosynthetic stress. OCTA induced a differential, concentration-dependent DSP gene expression associated to ROS production, 821.6 and 97.7 folds higher for ScDSP-1 and ScDSP-2, respectively. Among the concentrations tested, only 8 μM OCTA, which caused a reduction of 50% in cell concentrations at 24 h, was able to elicit an expression pattern consistent with a signalling role. Interestingly, only intermediate levels of reactive oxygen species (ROS (i.e., 1.5±0.1 increase were observed to be elicited by such concentration. These results suggest that ROS are key components of the molecular cascade triggered by polyunsaturated aldehydes (PUA and leading to cell death. This could have implications for bloom final stages at sea, where PUA may act as effectors of diatom population dynamics through ROS acting as modulators.

  18. β-Glucan induces reactive oxygen species production in human neutrophils to improve the killing of Candida albicans and Candida glabrata isolates from vulvovaginal candidiasis.

    Directory of Open Access Journals (Sweden)

    Patricia de Souza Bonfim-Mendonça

    Full Text Available Vulvovaginal candidiasis (VVC is among the most prevalent vaginal diseases. Candida albicans is still the most prevalent species associated with this pathology, however, the prevalence of other Candida species, such as C. glabrata, is increasing. The pathogenesis of these infections has been intensely studied, nevertheless, no consensus has been reached on the pathogenicity of VVC. In addition, inappropriate treatment or the presence of resistant strains can lead to RVVC (vulvovaginal candidiasis recurrent. Immunomodulation therapy studies have become increasingly promising, including with the β-glucans. Thus, in the present study, we evaluated microbicidal activity, phagocytosis, intracellular oxidant species production, oxygen consumption, myeloperoxidase (MPO activity, and the release of tumor necrosis factor α (TNF-α, interleukin-8 (IL-8, IL-1β, and IL-1Ra in neutrophils previously treated or not with β-glucan. In all of the assays, human neutrophils were challenged with C. albicans and C. glabrata isolated from vulvovaginal candidiasis. β-glucan significantly increased oxidant species production, suggesting that β-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal response of neutrophils for both of the species isolated from vulvovaginal candidiasis. The effects of β-glucan appeared to be mainly related to the activation of reactive oxygen species and modulation of cytokine release.

  19. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Directory of Open Access Journals (Sweden)

    Ukkonen Kaisa

    2011-12-01

    Full Text Available Abstract This report describes the combined use of an enzyme-based glucose release system (EnBase® and high-aeration shake flask (Ultra Yield Flask™. The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.

  20. Carbon coated (carbonous) catalyst in ebullated bed reactor for production of oxygenated chemicals from syngas/CO2

    International Nuclear Information System (INIS)

    Peizheng Zhou

    2002-01-01

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R and D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO 2 efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates

  1. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS. Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  2. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  3. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury. PMID:25821552

  4. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  5. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  6. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  7. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  8. Effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs on the production of reactive oxygen species by activated rat neutrophils

    Directory of Open Access Journals (Sweden)

    Paino I.M.M.

    2005-01-01

    Full Text Available The release of reactive oxygen specie (ROS by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM, indomethacin (12 µM, naproxen (160 µM, piroxicam (13 µM, and tenoxicam (30 µM were incubated at 37ºC in PBS (10 mM, pH 7.4, for 30 min with rat neutrophils (1 x 10(6 cells/ml stimulated by phorbol-12-myristate-13-acetate (100 nM. The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6. For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6. Using the myeloperoxidase (MPO/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%, indomethacin (97 ± 2, 100 ± 1%, naproxen (56 ± 8, 76 ± 3%, piroxicam (77 ± 5, 99 ± 1%, and tenoxicam (90 ± 2, 100 ± 1%, respectively (N = 3. These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.

  9. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ji-Yun Kim

    2017-12-01

    Full Text Available Prostaglandin D2 (PGD2 is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.

  10. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    Science.gov (United States)

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  11. Charged particle production in proton-, deuteron-, oxygen- and sulphur-nucleus collisions at 200 GeV per nucleon

    CERN Document Server

    Alber, T.; Bachler, J.; Bartke, J.; Bialkowska, H.; Bloomer, M.A.; Bock, R.; Braithwaite, W.J.; Brinkmann, D.; Brockmann, R.; Buncic, P.; Chan, P.; Cramer, J.G.; Cramer, P.B.; Derado, I.; Eckardt, V.; Eschke, J.; Favuzzi, C.; Ferenc, D.; Fleischmann, B.; Foka, P.; Freund, P.; Fuchs, M.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hoffmann, M.; Jacobs, P.; Kabana, S.; Kadija, K.; Keidel, R.; Kowalski, M.; Kuhmichel, A.; Lee, J.Y.; Ljubicic, A, Jr.; Margetis, S.; Mitchell, J.T.; Morse, R.; Nappi, E.; Odyniec, G.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Posa, F.; Poskanzer, Arthur M.; Puhlhofer, F.; Rauch, W.; Renfordt, R.; Retyk, W.; Rohrich, D.; Roland, G.; Rothard, H.; Runge, K.; Sandoval, A.; Schmitz, N.; Schmoetten, E.; Sendelbach, R.; Seyboth, P.; Seyerlein, J.; Skrzypczak, E.; Spinelli, P.; Stock, R.; Strobele, H.; Teitelbaum, L.; Tonse, S.; Trainor, T.A.; Vasileiadis, G.; Vassiliou, M.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wosiek, B.; Zhu, X.

    1998-01-01

    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse mom...

  12. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.

    Science.gov (United States)

    Bastos, Marcele F; Kayano, Ana Carolina A V; Silva-Filho, João Luiz; Dos-Santos, João Conrado K; Judice, Carla; Blanco, Yara C; Shryock, Nathaniel; Sercundes, Michelle K; Ortolan, Luana S; Francelin, Carolina; Leite, Juliana A; Oliveira, Rafaella; Elias, Rosa M; Câmara, Niels O S; Lopes, Stefanie C P; Albrecht, Letusa; Farias, Alessandro S; Vicente, Cristina P; Werneck, Claudio C; Giorgio, Selma; Verinaud, Liana; Epiphanio, Sabrina; Marinho, Claudio R F; Lalwani, Pritesh; Amino, Rogerio; Aliberti, Julio; Costa, Fabio T M

    2018-03-20

    Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen

  13. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Coursol, Sylvie; Fromentin, Jérôme; Noirot, Elodie; Brière, Christian; Robert, Franck; Morel, Johanne; Liang, Yun-Kuan; Lherminier, Jeannine; Simon-Plas, Françoise

    2015-02-01

    The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells. © 2014 INRA New Phytologist © 2014 New Phytologist Trust.

  14. Glucagon-Like Peptide-1 Secreting Cell Function as well as Production of Inflammatory Reactive Oxygen Species Is Differently Regulated by Glycated Serum and High Levels of Glucose

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1, an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS or high levels of glucose (HG may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination increased reactive oxygen species (ROS production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3, while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone.

  15. Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria

    Directory of Open Access Journals (Sweden)

    Servais Stéphane

    2010-04-01

    Full Text Available Abstract Background Although identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle. Results The abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA or pharmacological hyperthyroidism but was down-regulated by hypothyroidism. Activators of UCPs, such as superoxide with low doses of fatty acids, stimulated a GDP-sensitive proton conductance across the inner membrane of muscle mitochondria from CA or hyperthyroid ducklings. The stimulation was much weaker in controls and not observed in hypothyroid ducklings or in any liver mitochondrial preparations. The production of endogenous mitochondrial reactive oxygen species (ROS was much lower in muscle mitochondria from CA and hyperthyroid ducklings than in the control or hypothyroid groups. The addition of GDP markedly increased the mitochondrial ROS production of CA or hyperthyroid birds up to, or above, the level of control or hypothyroid ducklings. Differences in ROS production among groups could not be attributed to changes in antioxidant enzyme activities (superoxide dismutase or glutathione peroxidase. Conclusion This work provides the first functional in vitro evidence that avian UCP regulates mitochondrial ROS production in situations of enhanced metabolic activity.

  16. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species.

    Science.gov (United States)

    Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias

    2015-08-15

    Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria.

    Science.gov (United States)

    Rey, Benjamin; Roussel, Damien; Romestaing, Caroline; Belouze, Maud; Rouanet, Jean-Louis; Desplanches, Dominique; Sibille, Brigitte; Servais, Stéphane; Duchamp, Claude

    2010-04-28

    Although identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP) remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle. The abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA) or pharmacological hyperthyroidism but was down-regulated by hypothyroidism. Activators of UCPs, such as superoxide with low doses of fatty acids, stimulated a GDP-sensitive proton conductance across the inner membrane of muscle mitochondria from CA or hyperthyroid ducklings. The stimulation was much weaker in controls and not observed in hypothyroid ducklings or in any liver mitochondrial preparations. The production of endogenous mitochondrial reactive oxygen species (ROS) was much lower in muscle mitochondria from CA and hyperthyroid ducklings than in the control or hypothyroid groups. The addition of GDP markedly increased the mitochondrial ROS production of CA or hyperthyroid birds up to, or above, the level of control or hypothyroid ducklings. Differences in ROS production among groups could not be attributed to changes in antioxidant enzyme activities (superoxide dismutase or glutathione peroxidase). This work provides the first functional in vitro evidence that avian UCP regulates mitochondrial ROS production in situations of enhanced metabolic activity.

  18. LUNAR OUTGASSING, TRANSIENT PHENOMENA, AND THE RETURN TO THE MOON. II. PREDICTIONS AND TESTS FOR OUTGASSING/REGOLITH INTERACTIONS

    International Nuclear Information System (INIS)

    Crotts, Arlin P. S.; Hummels, Cameron

    2009-01-01

    We follow Paper I with predictions of how gas leaking through the lunar surface could influence the regolith, as might be observed via optical transient lunar phenomena (TLPs) and related effects. We touch on several processes, but concentrate on low and high flow rate extremes, which are perhaps the most likely. We model explosive outgassing for the smallest gas overpressure at the regolith base that releases the regolith plug above it. This disturbance's timescale and affected area are consistent with observed TLPs; we also discuss other effects. For slow flow, escape through the regolith is prolonged by low diffusivity. Water, found recently in deep magma samples, is unique among candidate volatiles, capable of freezing between the regolith base and surface, especially near the lunar poles. For major outgassing sites, we consider the possible accumulation of water ice. Over geological time, ice accumulation can evolve downward through the regolith. Depending on gases additional to water, regolith diffusivity might be suppressed chemically, blocking seepage and forcing the ice zone to expand to larger areas, up to km 2 scales, again, particularly at high latitudes. We propose an empirical path forward, wherein current and forthcoming technologies provide controlled, sensitive probes of outgassing. The optical transient/outgassing connection, addressed via Earth-based remote sensing, suggests imaging and/or spectroscopy, but aspects of lunar outgassing might be more covert, as indicated above. TLPs betray some outgassing, but does outgassing necessarily produce TLPs? We also suggest more intrusive techniques from radar to in situ probes. Understanding lunar volatiles seems promising in terms of resource exploitation for human exploration of the Moon and beyond, and offers interesting scientific goals in its own right. Many of these approaches should be practiced in a pristine lunar atmosphere, before significant confusing signals likely to be produced upon humans

  19. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    International Nuclear Information System (INIS)

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan; Li, Ting; Mao, Jiamin; Liu, Xinhang; Gu, Yiyang; Shi, Jiyun; Xiao, Jing; Wan, Chunhua; Wu, Qiyun

    2015-01-01

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.

  20. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting; Mao, Jiamin [Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Liu, Xinhang [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Gu, Yiyang; Shi, Jiyun [Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xiao, Jing [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wan, Chunhua [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wu, Qiyun, E-mail: wqy@ntu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2015-10-15

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.

  1. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cheng

    2016-01-01

    Full Text Available The opening of mitochondrial permeability transition pore (mPTP is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS and glycogen synthase kinase 3β (GSK-3β, in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9 phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9 was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  2. Radiation-induced formation of deoxy-products from trehalose; the influence of oxygen, added proteins and lipids. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S [Bundesforschungsanstalt fuer Ernaehrung, Karlsruhe (Germany, F.R.)

    1977-12-01

    The yield (G-values) of the main C/sub 6/ products of aerated and non-aerated solutions of ..cap alpha.., ..cap alpha..-trehalose after gamma irradiation were determined. The effect of the presence of dissolved proteins and various lipids during irradiation was studied.

  3. Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Sohlenius, Gustav; Hedenstroem, Anna

    2008-11-01

    This report compiles all known available information regarding the regolith in the Laxemar-Simpevarp regional model area. Regolith refers to the loose deposits overlying the bedrock. In the Laxemar-Simpevarp area, all known regolith was deposited during the Quaternary period and is consequently often referred to as Quaternary deposits (QD). In the terrestrial areas the uppermost part of the regolith, which has been affected by climate and vegetation, is referred to as soil. The geographical and stratigraphical distributions of the regolith have been used to construct a model showing the distribution of regolith depths in the whole model area. The stratigraphical units shown in the regolith depth and stratigraphy model have been characterised with respect to physical and chemical properties. Most of the data used for that characterisation have been obtained from the site investigation but some data were taken from the literature. All QD in the Laxemar area have most probably been deposited during or after the latest deglaciation. The ice sheet in the area moved from the north-west during the latest ice age. The Baltic Sea completely covered the investigated area after the latest deglaciation c 12,000 BC. Land uplift was fastest during the first few thousand years following the deglaciation and has subsequently decreased to the present value of 1 mm/year. Older QD have been eroded in areas exposed to waves and currents and the material has later been redeposited. Fine-grained sediments have been deposited on the floor of bays and in other sheltered positions. Peat has accumulated in many of the wetlands situated in topographically low positions. The groundwater table in many of the former wetlands has been artificially lowered to obtain land for forestry and agriculture, which has caused the peat to partly or completely oxidise. As land uplift proceeds, some new areas are being subjected to erosion at the same time as other new areas are becoming lakes and sheltered

  4. Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sohlenius, Gustav; Hedenstroem, Anna (Geological Survey of Sweden (SGU), Uppsala (Sweden))

    2008-11-15

    This report compiles all known available information regarding the regolith in the Laxemar-Simpevarp regional model area. Regolith refers to the loose deposits overlying the bedrock. In the Laxemar-Simpevarp area, all known regolith was deposited during the Quaternary period and is consequently often referred to as Quaternary deposits (QD). In the terrestrial areas the uppermost part of the regolith, which has been affected by climate and vegetation, is referred to as soil. The geographical and stratigraphical distributions of the regolith have been used to construct a model showing the distribution of regolith depths in the whole model area. The stratigraphical units shown in th