WorldWideScience

Sample records for regions multivariate statistical

  1. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    Science.gov (United States)

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the

  2. Comparative Estimation of Russia’s Regions Investment Potential on the Base of the Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Victor V. Nikitin

    2013-01-01

    Full Text Available The article introduces the algorithm of Russia’s regions investment potential estimation, developed by means of multivariate statistical methods, determines the factors, reflecting regions investment state. The integral indicator was developed on their basis, using statistical data. The article presents regions’ classification on the basis of the integral index

  3. Hierarchical probabilistic regionalization of volcanism for Sengan region in Japan using multivariate statistical techniques and geostatistical interpolation techniques

    International Nuclear Information System (INIS)

    Park, Jinyong; Balasingham, P.; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2004-01-01

    Sandia National Laboratories, under contract to Nuclear Waste Management Organization of Japan (NUMO), is performing research on regional classification of given sites in Japan with respect to potential volcanic disruption using multivariate statistics and geo-statistical interpolation techniques. This report provides results obtained for hierarchical probabilistic regionalization of volcanism for the Sengan region in Japan by applying multivariate statistical techniques and geostatistical interpolation techniques on the geologic data provided by NUMO. A workshop report produced in September 2003 by Sandia National Laboratories (Arnold et al., 2003) on volcanism lists a set of most important geologic variables as well as some secondary information related to volcanism. Geologic data extracted for the Sengan region in Japan from the data provided by NUMO revealed that data are not available at the same locations for all the important geologic variables. In other words, the geologic variable vectors were found to be incomplete spatially. However, it is necessary to have complete geologic variable vectors to perform multivariate statistical analyses. As a first step towards constructing complete geologic variable vectors, the Universal Transverse Mercator (UTM) zone 54 projected coordinate system and a 1 km square regular grid system were selected. The data available for each geologic variable on a geographic coordinate system were transferred to the aforementioned grid system. Also the recorded data on volcanic activity for Sengan region were produced on the same grid system. Each geologic variable map was compared with the recorded volcanic activity map to determine the geologic variables that are most important for volcanism. In the regionalized classification procedure, this step is known as the variable selection step. The following variables were determined as most important for volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater

  4. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review

    International Nuclear Information System (INIS)

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-01-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0–0.10 m, or 0–0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component

  5. Multivariate statistical methods a first course

    CERN Document Server

    Marcoulides, George A

    2014-01-01

    Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is poin

  6. Multivariate Statistical Process Control Charts: An Overview

    OpenAIRE

    Bersimis, Sotiris; Psarakis, Stelios; Panaretos, John

    2006-01-01

    In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as p...

  7. A primer of multivariate statistics

    CERN Document Server

    Harris, Richard J

    2014-01-01

    Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why

  8. Applied multivariate statistics with R

    CERN Document Server

    Zelterman, Daniel

    2015-01-01

    This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the B...

  9. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    Science.gov (United States)

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis

  10. Method for statistical data analysis of multivariate observations

    CERN Document Server

    Gnanadesikan, R

    1997-01-01

    A practical guide for multivariate statistical techniques-- now updated and revised In recent years, innovations in computer technology and statistical methodologies have dramatically altered the landscape of multivariate data analysis. This new edition of Methods for Statistical Data Analysis of Multivariate Observations explores current multivariate concepts and techniques while retaining the same practical focus of its predecessor. It integrates methods and data-based interpretations relevant to multivariate analysis in a way that addresses real-world problems arising in many areas of inte

  11. The outlier sample effects on multivariate statistical data processing geochemical stream sediment survey (Moghangegh region, North West of Iran)

    International Nuclear Information System (INIS)

    Ghanbari, Y.; Habibnia, A.; Memar, A.

    2009-01-01

    In geochemical stream sediment surveys in Moghangegh Region in north west of Iran, sheet 1:50,000, 152 samples were collected and after the analyze and processing of data, it revealed that Yb, Sc, Ni, Li, Eu, Cd, Co, as contents in one sample is far higher than other samples. After detecting this sample as an outlier sample, the effect of this sample on multivariate statistical data processing for destructive effects of outlier sample in geochemical exploration was investigated. Pearson and Spear man correlation coefficient methods and cluster analysis were used for multivariate studies and the scatter plot of some elements together the regression profiles are given in case of 152 and 151 samples and the results are compared. After investigation of multivariate statistical data processing results, it was realized that results of existence of outlier samples may appear as the following relations between elements: - true relation between two elements, which have no outlier frequency in the outlier sample. - false relation between two elements which one of them has outlier frequency in the outlier sample. - complete false relation between two elements which both have outlier frequency in the outlier sample

  12. Multivariate statistics high-dimensional and large-sample approximations

    CERN Document Server

    Fujikoshi, Yasunori; Shimizu, Ryoichi

    2010-01-01

    A comprehensive examination of high-dimensional analysis of multivariate methods and their real-world applications Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic

  13. Applied multivariate statistical analysis

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners.  It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added.  All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior.  All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...

  14. Multivariate statistical analysis a high-dimensional approach

    CERN Document Server

    Serdobolskii, V

    2000-01-01

    In the last few decades the accumulation of large amounts of in­ formation in numerous applications. has stimtllated an increased in­ terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de­ ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat­ ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari­ ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen­ ...

  15. Multivariate Statistical Process Control

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2013-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control (SPC) and monitoring for which the aim...... is to identify “out-of-control” state of a process using control charts in order to reduce the excessive variation caused by so-called assignable causes. In practice, the most common method of monitoring multivariate data is through a statistic akin to the Hotelling’s T2. For high dimensional data with excessive...... amount of cross correlation, practitioners are often recommended to use latent structures methods such as Principal Component Analysis to summarize the data in only a few linear combinations of the original variables that capture most of the variation in the data. Applications of these control charts...

  16. Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan.

    Science.gov (United States)

    Muhammad, Said; Tahir Shah, M; Khan, Sardar

    2010-10-01

    The present study was conducted in Kohistan region, where mafic and ultramafic rocks (Kohistan island arc and Indus suture zone) and metasedimentary rocks (Indian plate) are exposed. Water samples were collected from the springs, streams and Indus river and analyzed for physical parameters, anions, cations and arsenic (As(3+), As(5+) and arsenic total). The water quality in Kohistan region was evaluated by comparing the physio-chemical parameters with permissible limits set by Pakistan environmental protection agency and world health organization. Most of the studied parameters were found within their respective permissible limits. However in some samples, the iron and arsenic concentrations exceeded their permissible limits. For health risk assessment of arsenic, the average daily dose, hazards quotient (HQ) and cancer risk were calculated by using statistical formulas. The values of HQ were found >1 in the samples collected from Jabba, Dubair, while HQ values were pollution load was also calculated by using multivariate statistical techniques like one-way ANOVA, correlation analysis, regression analysis, cluster analysis and principle component analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. An Exact Confidence Region in Multivariate Calibration

    OpenAIRE

    Mathew, Thomas; Kasala, Subramanyam

    1994-01-01

    In the multivariate calibration problem using a multivariate linear model, an exact confidence region is constructed. It is shown that the region is always nonempty and is invariant under nonsingular transformations.

  18. Multivariate methods and forecasting with IBM SPSS statistics

    CERN Document Server

    Aljandali, Abdulkader

    2017-01-01

    This is the second of a two-part guide to quantitative analysis using the IBM SPSS Statistics software package; this volume focuses on multivariate statistical methods and advanced forecasting techniques. More often than not, regression models involve more than one independent variable. For example, forecasting methods are commonly applied to aggregates such as inflation rates, unemployment, exchange rates, etc., that have complex relationships with determining variables. This book introduces multivariate regression models and provides examples to help understand theory underpinning the model. The book presents the fundamentals of multivariate regression and then moves on to examine several related techniques that have application in business-orientated fields such as logistic and multinomial regression. Forecasting tools such as the Box-Jenkins approach to time series modeling are introduced, as well as exponential smoothing and naïve techniques. This part also covers hot topics such as Factor Analysis, Dis...

  19. Ellipsoidal prediction regions for multivariate uncertainty characterization

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Azizipanah-Abarghooee, Rasoul

    2018-01-01

    , for classes of decision-making problems based on robust, interval chance-constrained optimization, necessary inputs take the form of multivariate prediction regions rather than scenarios. The current literature is at very primitive stage of characterizing multivariate prediction regions to be employed...... in these classes of optimization problems. To address this issue, we introduce a new class of multivariate forecasts which form as multivariate ellipsoids for non-Gaussian variables. We propose a data-driven systematic framework to readily generate and evaluate ellipsoidal prediction regions, with predefined...... probability guarantees and minimum conservativeness. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for potential misspecification of ellipsoidal prediction regions...

  20. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    Science.gov (United States)

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  1. Multivariate statistical assessment of coal properties

    Czech Academy of Sciences Publication Activity Database

    Klika, Z.; Serenčíšová, J.; Kožušníková, Alena; Kolomazník, I.; Študentová, S.; Vontorová, J.

    2014-01-01

    Roč. 128, č. 128 (2014), s. 119-127 ISSN 0378-3820 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : coal properties * structural,chemical and petrographical properties * multivariate statistics Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 3.352, year: 2014 http://dx.doi.org/10.1016/j.fuproc.2014.06.029

  2. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    Science.gov (United States)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  3. Application of multivariate statistical techniques in microbial ecology.

    Science.gov (United States)

    Paliy, O; Shankar, V

    2016-03-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.

  4. Aspects of multivariate statistical theory

    CERN Document Server

    Muirhead, Robb J

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . the wealth of material on statistics concerning the multivariate normal distribution is quite exceptional. As such it is a very useful source of information for the general statistician and a must for anyone wanting to pen

  5. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    Science.gov (United States)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface

  6. Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS

    OpenAIRE

    Sumintadireja, Prihadi; Irawan, Dasapta Erwin; Rezky, Yuanno; Gio, Prana Ugiana; Agustin, Anggita

    2016-01-01

    This file is the dataset for the following paper "Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS". Authors: Prihadi Sumintadireja1, Dasapta Erwin Irawan1, Yuano Rezky2, Prana Ugiana Gio3, Anggita Agustin1

  7. Synthetic environmental indicators: A conceptual approach from the multivariate statistics

    International Nuclear Information System (INIS)

    Escobar J, Luis A

    2008-01-01

    This paper presents a general description of multivariate statistical analysis and shows two methodologies: analysis of principal components and analysis of distance, DP2. Both methods use techniques of multivariate analysis to define the true dimension of data, which is useful to estimate indicators of environmental quality.

  8. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    Directory of Open Access Journals (Sweden)

    Charmaine eDemanuele

    2015-10-01

    Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel

  9. Multivariate statistical characterization of groundwater quality in Ain ...

    African Journals Online (AJOL)

    Administrator

    depends much on the sustainability of the available water resources. Water of .... 18 wells currently in use were selected based on the preliminary field survey carried out to ... In recent times, multivariate statistical methods have been applied ...

  10. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological

  11. Hydrochemical analysis of groundwater using multivariate statistical methods - The Volta region, Ghana

    Science.gov (United States)

    Banoeng-Yakubo, B.; Yidana, S.M.; Nti, E.

    2009-01-01

    Q and R-mode multivariate statistical analyses were applied to groundwater chemical data from boreholes and wells in the northern section of the Volta region Ghana. The objective was to determine the processes that affect the hydrochemistry and the variation of these processes in space among the three main geological terrains: the Buem formation, Voltaian System and the Togo series that underlie the area. The analyses revealed three zones in the groundwater flow system: recharge, intermediate and discharge regions. All three zones are clearly different with respect to all the major chemical parameters, with concentrations increasing from the perceived recharge areas through the intermediate regions to the discharge areas. R-mode HCA and factor analysis (using varimax rotation and Kaiser Criterion) were then applied to determine the significant sources of variation in the hydrochemistry. This study finds that groundwater hydrochemistry in the area is controlled by the weathering of silicate and carbonate minerals, as well as the chemistry of infiltrating precipitation. This study finds that the ??D and ??18O data from the area fall along the Global Meteoric Water Line (GMWL). An equation of regression derived for the relationship between ??D and ??18O bears very close semblance to the equation which describes the GMWL. On the basis of this, groundwater in the study area is probably meteoric and fresh. The apparently low salinities and sodicities of the groundwater seem to support this interpretation. The suitability of groundwater for domestic and irrigation purposes is related to its source, which determines its constitution. A plot of the sodium adsorption ratio (SAR) and salinity (EC) data on a semilog axis, suggests that groundwater serves good irrigation quality in the area. Sixty percent (60%), 20% and 20% of the 67 data points used in this study fall within the medium salinity - low sodicity (C2-S1), low salinity -low sodicity (C1-S1) and high salinity - low

  12. A unifying framework for k-statistics, polykays and their multivariate generalizations.

    OpenAIRE

    DI NARDO, Elvira; GUARINO G, G.; Senato, D.

    2008-01-01

    Through the classical umbral calculus, we provide a unifying syntax for single and multivariate $k$-statistics, polykays and multivariate polykays. From a combinatorial point of view, we revisit the theory as exposed by Stuart and Ord, taking into account the Doubilet approach to symmetric functions. Moreover, by using exponential polynomials rather than set partitions, we provide a new formula for $k$-statistics that results in a very fast algorithm to generate such estimators.

  13. Multivariate pattern dependence.

    Directory of Open Access Journals (Sweden)

    Stefano Anzellotti

    2017-11-01

    Full Text Available When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD: a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS and to the fusiform face area (FFA, using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity.

  14. Classification of Specialized Farms Applying Multivariate Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zuzana Hloušková

    2017-01-01

    Full Text Available Classification of specialized farms applying multivariate statistical methods The paper is aimed at application of advanced multivariate statistical methods when classifying cattle breeding farming enterprises by their economic size. Advantage of the model is its ability to use a few selected indicators compared to the complex methodology of current classification model that requires knowledge of detailed structure of the herd turnover and structure of cultivated crops. Output of the paper is intended to be applied within farm structure research focused on future development of Czech agriculture. As data source, the farming enterprises database for 2014 has been used, from the FADN CZ system. The predictive model proposed exploits knowledge of actual size classes of the farms tested. Outcomes of the linear discriminatory analysis multifactor classification method have supported the chance of filing farming enterprises in the group of Small farms (98 % filed correctly, and the Large and Very Large enterprises (100 % filed correctly. The Medium Size farms have been correctly filed at 58.11 % only. Partial shortages of the process presented have been found when discriminating Medium and Small farms.

  15. Assessment of Near-Bottom Water Quality of Southwestern Coast of Sarawak, Borneo, Malaysia: A Multivariate Statistical Approach

    Directory of Open Access Journals (Sweden)

    Chen-Lin Soo

    2017-01-01

    Full Text Available The study on Sarawak coastal water quality is scarce, not to mention the application of the multivariate statistical approach to investigate the spatial variation of water quality and to identify the pollution source in Sarawak coastal water. Hence, the present study aimed to evaluate the spatial variation of water quality along the coastline of the southwestern region of Sarawak using multivariate statistical techniques. Seventeen physicochemical parameters were measured at 11 stations along the coastline with approximately 225 km length. The coastal water quality showed spatial heterogeneity where the cluster analysis grouped the 11 stations into four different clusters. Deterioration in coastal water quality has been observed in different regions of Sarawak corresponding to land use patterns in the region. Nevertheless, nitrate-nitrogen exceeded the guideline value at all sampling stations along the coastline. The principal component analysis (PCA has determined a reduced number of five principal components that explained 89.0% of the data set variance. The first PC indicated that the nutrients were the dominant polluting factors, which is attributed to the domestic, agricultural, and aquaculture activities, followed by the suspended solids in the second PC which are related to the logging activities.

  16. A multivariate statistical study with a factor analysis of recent planktonic foraminiferal distribution in the Coromandel Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.; Rao, K.K.

    A study of planktonic foraminiferal assemblages from 19 stations in the neritic and oceanic regions off the Coromandel Coast, Bay of Bengal has been made using a multivariate statistical method termed as factor analysis. On the basis of abundance...

  17. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  18. Multivariate statistical methods a primer

    CERN Document Server

    Manly, Bryan FJ

    2004-01-01

    THE MATERIAL OF MULTIVARIATE ANALYSISExamples of Multivariate DataPreview of Multivariate MethodsThe Multivariate Normal DistributionComputer ProgramsGraphical MethodsChapter SummaryReferencesMATRIX ALGEBRAThe Need for Matrix AlgebraMatrices and VectorsOperations on MatricesMatrix InversionQuadratic FormsEigenvalues and EigenvectorsVectors of Means and Covariance MatricesFurther Reading Chapter SummaryReferencesDISPLAYING MULTIVARIATE DATAThe Problem of Displaying Many Variables in Two DimensionsPlotting index VariablesThe Draftsman's PlotThe Representation of Individual Data P:ointsProfiles o

  19. Identification of mine waters by statistical multivariate methods

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N [IGGG, Ljubljana (Slovenia)

    1992-01-01

    Three water-bearing aquifers are present in the Velenje lignite mine. The aquifer waters have differing chemical composition; a geochemical water analysis can therefore determine the source of mine water influx. Mine water samples from different locations in the mine were analyzed, the results of chemical content and of electric conductivity of mine water were statistically processed by means of MICROGAS, SPSS-X and IN STATPAC computer programs, which apply three multivariate statistical methods (discriminate, cluster and factor analysis). Reliability of calculated values was determined with the Kolmogorov and Smirnov tests. It is concluded that laboratory analysis of single water samples can produce measurement errors, but statistical processing of water sample data can identify origin and movement of mine water. 15 refs.

  20. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Science.gov (United States)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  1. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    International Nuclear Information System (INIS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-01-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  2. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Energy Technology Data Exchange (ETDEWEB)

    Glascock, M. D.; Neff, H. [University of Missouri, Research Reactor Center (United States); Vaughn, K. J. [Pacific Lutheran University, Department of Anthropology (United States)

    2004-06-15

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  3. Multivariate statistics exercises and solutions

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    The authors present tools and concepts of multivariate data analysis by means of exercises and their solutions. The first part is devoted to graphical techniques. The second part deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The last part introduces a wide variety of exercises in applied multivariate data analysis. The book demonstrates the application of simple calculus and basic multivariate methods in real life situations. It contains altogether more than 250 solved exercises which can assist a university teacher in setting up a modern multivariate analysis course. All computer-based exercises are available in the R language. All R codes and data sets may be downloaded via the quantlet download center  www.quantlet.org or via the Springer webpage. For interactive display of low-dimensional projections of a multivariate data set, we recommend GGobi.

  4. Multivariate Location Estimation Using Extension of $R$-Estimates Through $U$-Statistics Type Approach

    OpenAIRE

    Chaudhuri, Probal

    1992-01-01

    We consider a class of $U$-statistics type estimates for multivariate location. The estimates extend some $R$-estimates to multivariate data. In particular, the class of estimates includes the multivariate median considered by Gini and Galvani (1929) and Haldane (1948) and a multivariate extension of the well-known Hodges-Lehmann (1963) estimate. We explore large sample behavior of these estimates by deriving a Bahadur type representation for them. In the process of developing these asymptoti...

  5. Provenance Study of Archaeological Ceramics from Syria Using XRF Multivariate Statistical Analysis and Thermoluminescence Dating

    OpenAIRE

    Bakraji, Elias Hanna; Abboud, Rana; Issa, Haissm

    2014-01-01

    Thermoluminescence (TL) dating and multivariate statistical methods based on radioisotope X-ray fluorescence analysis have been utilized to date and classify Syrian archaeological ceramics fragment from Tel Jamous site. 54 samples were analyzed by radioisotope X-ray fluorescence; 51 of them come from Tel Jamous archaeological site in Sahel Akkar region, Syria, which fairly represent ceramics belonging to the Middle Bronze Age (2150 to 1600 B.C.) and the remaining three samples come from Mar-T...

  6. Multivariate Statistical Methods as a Tool of Financial Analysis of Farm Business

    Czech Academy of Sciences Publication Activity Database

    Novák, J.; Sůvová, H.; Vondráček, Jiří

    2002-01-01

    Roč. 48, č. 1 (2002), s. 9-12 ISSN 0139-570X Institutional research plan: AV0Z1030915 Keywords : financial analysis * financial ratios * multivariate statistical methods * correlation analysis * discriminant analysis * cluster analysis Subject RIV: BB - Applied Statistics, Operational Research

  7. Statistical inference for a class of multivariate negative binomial distributions

    DEFF Research Database (Denmark)

    Rubak, Ege Holger; Møller, Jesper; McCullagh, Peter

    This paper considers statistical inference procedures for a class of models for positively correlated count variables called α-permanental random fields, and which can be viewed as a family of multivariate negative binomial distributions. Their appealing probabilistic properties have earlier been...

  8. Multivariate statistical analysis - an application to lunar materials

    International Nuclear Information System (INIS)

    Deb, M.

    1978-01-01

    The compositional characteristics of clinopyroxenes and spinels - two minerals considered to be very useful in deciphering lunar history, have been studied using the multivariate statistical method of principal component analysis. The mineral-chemical data used are from certain lunar rocks and fines collected by Apollo 11, 12, 14 and 15 and Luna 16 and 20 missions, representing mainly the mare basalts and also non-mare basalts, breccia and rock fragments from the highland regions, in which a large number of these minerals have been analyzed. The correlations noted in the mineral compositions, indicating substitutional relationships, have been interpreted on the basis of available crystal-chemical and petrological informations. Compositional trends for individual specimens have been delineated and compared by producing ''principal latent vector diagrams''. The percent variance of the principal components denoted by the eigenvalues, have been evaluated in terms of the crystallization history of the samples. Some of the major petrogenetic implications of this study concern the role of early formed cumulate phases in the near-surface fractionation of mare basalts, mixing of mineral compositions in the highland regolith and the subsolidus reduction trends in lunar spinels. (auth.)

  9. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China

    International Nuclear Information System (INIS)

    Chen Kouping; Jiao, Jiu J.; Huang Jianmin; Huang Runqiu

    2007-01-01

    Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the data of trace elements in groundwater using multivariate statistical techniques such as principal component analysis (PCA), Q-mode factor analysis and cluster analysis. The original matrix consisted of 17 trace elements estimated from 55 groundwater samples colleted in 27 wells located in a coastal area in Shenzhen, China. PCA results show that trace elements of V, Cr, As, Mo, W, and U with greatest positive loadings typically occur as soluble oxyanions in oxidizing waters, while Mn and Co with greatest negative loadings are generally more soluble within oxygen depleted groundwater. Cluster analyses demonstrate that most groundwater samples collected from the same well in the study area during summer and winter still fall into the same group. This study also demonstrates the usefulness of multivariate statistical analysis in hydrochemical studies. - Multivariate statistical analysis was used to investigate relationships among trace elements and factors controlling trace element distribution in groundwater

  10. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    Science.gov (United States)

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  11. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    International Nuclear Information System (INIS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.; Sales, Brian C.; Sefat, Athena S.

    2014-01-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe 0.55 Se 0.45 (T c = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe 1−x Se x structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces

  12. Statistical Inference for a Class of Multivariate Negative Binomial Distributions

    DEFF Research Database (Denmark)

    Rubak, Ege H.; Møller, Jesper; McCullagh, Peter

    This paper considers statistical inference procedures for a class of models for positively correlated count variables called -permanental random fields, and which can be viewed as a family of multivariate negative binomial distributions. Their appealing probabilistic properties have earlier been...... studied in the literature, while this is the first statistical paper on -permanental random fields. The focus is on maximum likelihood estimation, maximum quasi-likelihood estimation and on maximum composite likelihood estimation based on uni- and bivariate distributions. Furthermore, new results...

  13. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    Science.gov (United States)

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Multivariate statistical analysis of major and trace element data for ...

    African Journals Online (AJOL)

    Multivariate statistical analysis of major and trace element data for niobium exploration in the peralkaline granites of the anorogenic ring-complex province of Nigeria. PO Ogunleye, EC Ike, I Garba. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 107-117. Full Text: EMAIL FULL TEXT EMAIL ...

  15. Advances in statistical monitoring of complex multivariate processes with applications in industrial process control

    CERN Document Server

    Kruger, Uwe

    2012-01-01

    The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike.  Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering.  The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica

  16. Multivariate statistical methods and data mining in particle physics (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The lectures will cover multivariate statistical methods and their applications in High Energy Physics. The methods will be viewed in the framework of a statistical test, as used e.g. to discriminate between signal and background events. Topics will include an introduction to the relevant statistical formalism, linear test variables, neural networks, probability density estimation (PDE) methods, kernel-based PDE, decision trees and support vector machines. The methods will be evaluated with respect to criteria relevant to HEP analyses such as statistical power, ease of computation and sensitivity to systematic effects. Simple computer examples that can be extended to more complex analyses will be presented.

  17. Multivariate statistical methods and data mining in particle physics (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The lectures will cover multivariate statistical methods and their applications in High Energy Physics. The methods will be viewed in the framework of a statistical test, as used e.g. to discriminate between signal and background events. Topics will include an introduction to the relevant statistical formalism, linear test variables, neural networks, probability density estimation (PDE) methods, kernel-based PDE, decision trees and support vector machines. The methods will be evaluated with respect to criteria relevant to HEP analyses such as statistical power, ease of computation and sensitivity to systematic effects. Simple computer examples that can be extended to more complex analyses will be presented.

  18. Multivariate statistical methods and data mining in particle physics (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The lectures will cover multivariate statistical methods and their applications in High Energy Physics. The methods will be viewed in the framework of a statistical test, as used e.g. to discriminate between signal and background events. Topics will include an introduction to the relevant statistical formalism, linear test variables, neural networks, probability density estimation (PDE) methods, kernel-based PDE, decision trees and support vector machines. The methods will be evaluated with respect to criteria relevant to HEP analyses such as statistical power, ease of computation and sensitivity to systematic effects. Simple computer examples that can be extended to more complex analyses will be presented.

  19. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  20. An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics

    International Nuclear Information System (INIS)

    Weathers, J.B.; Luck, R.; Weathers, J.W.

    2009-01-01

    The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.

  1. An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics

    Energy Technology Data Exchange (ETDEWEB)

    Weathers, J.B. [Shock, Noise, and Vibration Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: James.Weathers@ngc.com; Luck, R. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)], E-mail: Luck@me.msstate.edu; Weathers, J.W. [Structural Analysis Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: Jeffrey.Weathers@ngc.com

    2009-11-15

    The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.

  2. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  3. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  4. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    Science.gov (United States)

    2017-09-01

    application of statistical inference. Even when human forecasters leverage their professional experience, which is often gained through long periods of... application throughout statistics and Bayesian data analysis. The multivariate form of 2( , )  (e.g., Figure 12) is similarly analytically...data (i.e., no systematic manipulations with analytical functions), it is common in the statistical literature to apply mathematical transformations

  5. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    Science.gov (United States)

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Application of Multivariable Statistical Techniques in Plant-wide WWTP Control Strategies Analysis

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Comas, J.; Rodríguez-Roda, I.

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant...... analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii......) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation...

  7. Point defect characterization in HAADF-STEM images using multivariate statistical analysis

    International Nuclear Information System (INIS)

    Sarahan, Michael C.; Chi, Miaofang; Masiel, Daniel J.; Browning, Nigel D.

    2011-01-01

    Quantitative analysis of point defects is demonstrated through the use of multivariate statistical analysis. This analysis consists of principal component analysis for dimensional estimation and reduction, followed by independent component analysis to obtain physically meaningful, statistically independent factor images. Results from these analyses are presented in the form of factor images and scores. Factor images show characteristic intensity variations corresponding to physical structure changes, while scores relate how much those variations are present in the original data. The application of this technique is demonstrated on a set of experimental images of dislocation cores along a low-angle tilt grain boundary in strontium titanate. A relationship between chemical composition and lattice strain is highlighted in the analysis results, with picometer-scale shifts in several columns measurable from compositional changes in a separate column. -- Research Highlights: → Multivariate analysis of HAADF-STEM images. → Distinct structural variations among SrTiO 3 dislocation cores. → Picometer atomic column shifts correlated with atomic column population changes.

  8. A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity

  9. Multivariate statistical analysis of precipitation chemistry in Northwestern Spain

    International Nuclear Information System (INIS)

    Prada-Sanchez, J.M.; Garcia-Jurado, I.; Gonzalez-Manteiga, W.; Fiestras-Janeiro, M.G.; Espada-Rios, M.I.; Lucas-Dominguez, T.

    1993-01-01

    149 samples of rainwater were collected in the proximity of a power station in northwestern Spain at three rainwater monitoring stations. The resulting data are analyzed using multivariate statistical techniques. Firstly, the Principal Component Analysis shows that there are three main sources of pollution in the area (a marine source, a rural source and an acid source). The impact from pollution from these sources on the immediate environment of the stations is studied using Factorial Discriminant Analysis. 8 refs., 7 figs., 11 tabs

  10. Multivariate statistical analysis of precipitation chemistry in Northwestern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Prada-Sanchez, J.M.; Garcia-Jurado, I.; Gonzalez-Manteiga, W.; Fiestras-Janeiro, M.G.; Espada-Rios, M.I.; Lucas-Dominguez, T. (University of Santiago, Santiago (Spain). Faculty of Mathematics, Dept. of Statistics and Operations Research)

    1993-07-01

    149 samples of rainwater were collected in the proximity of a power station in northwestern Spain at three rainwater monitoring stations. The resulting data are analyzed using multivariate statistical techniques. Firstly, the Principal Component Analysis shows that there are three main sources of pollution in the area (a marine source, a rural source and an acid source). The impact from pollution from these sources on the immediate environment of the stations is studied using Factorial Discriminant Analysis. 8 refs., 7 figs., 11 tabs.

  11. Patterns of regional development in Serbia: A multivariate statistical analysis

    Directory of Open Access Journals (Sweden)

    Čoček Ladislav

    2010-01-01

    Full Text Available The primary objective of this paper is to examine patterns of regional development in Serbia and to identify underlying geographical factors of these patterns. Principal component analysis is used to reveal the basic dimensions of regional differentiation. Its results are described in the context of findings from thematically similar research on Central European countries. An area's position in the national settlement system hierarchy has been identified as the strongest determinant of regional differentiation in Serbia. Other strong patterns seem to be connected with macro-geographical position. Success in economic development is most apparent in regions near the metropolitan area of Belgrade, and the general development level, along with a predisposition for agriculture, exhibits a strong north-south polarization. Specific attention is directed at demographic development, which is characterized by a west-east gradient. Central patterns of regional differentiation are similar to those uncovered in previous Central European research. Regional policy in Serbia should, therefore, try to learn from experience within this region to cope with processes and problems that are often quite similar. .

  12. Multivariate statistical analysis for x-ray photoelectron spectroscopy spectral imaging: Effect of image acquisition time

    International Nuclear Information System (INIS)

    Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.

    2004-01-01

    The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images

  13. Multivariate statistical treatment of PIXE analysis of some traditional Chinese medicines

    International Nuclear Information System (INIS)

    Xiaofeng Zhang; Jianguo Ma; Junfa Qin; Lun Xiao

    1991-01-01

    Elements in two kinds of 30 traditional Chinese medicines were analyzed by PIXE method, and the data were treated by multivariate statistical methods. The results show that these two kinds of traditional Chinese medicines are almost separable according to their elemental contents. The results are congruous with the traditional Chinese medicine practice. (author) 7 refs.; 2 figs.; 2 tabs

  14. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    Science.gov (United States)

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    International Nuclear Information System (INIS)

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  16. Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors

    OpenAIRE

    Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...

  17. Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors.

    Science.gov (United States)

    Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.

  18. An Improvement of the Hotelling T2 Statistic in Monitoring Multivariate Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Ashkan Shabbak

    2012-01-01

    Full Text Available The Hotelling T2 statistic is the most popular statistic used in multivariate control charts to monitor multiple qualities. However, this statistic is easily affected by the existence of more than one outlier in the data set. To rectify this problem, robust control charts, which are based on the minimum volume ellipsoid and the minimum covariance determinant, have been proposed. Most researchers assess the performance of multivariate control charts based on the number of signals without paying much attention to whether those signals are really outliers. With due respect, we propose to evaluate control charts not only based on the number of detected outliers but also with respect to their correct positions. In this paper, an Upper Control Limit based on the median and the median absolute deviation is also proposed. The results of this study signify that the proposed Upper Control Limit improves the detection of correct outliers but that it suffers from a swamping effect when the positions of outliers are not taken into consideration. Finally, a robust control chart based on the diagnostic robust generalised potential procedure is introduced to remedy this drawback.

  19. Study on loss detection algorithms for tank monitoring data using multivariate statistical analysis

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Burr, Tom

    2009-01-01

    Evaluation of solution monitoring data to support material balance evaluation was proposed about a decade ago because of concerns regarding the large throughput planned at Rokkasho Reprocessing Plant (RRP). A numerical study using the simulation code (FACSIM) was done and significant increases in the detection probabilities (DP) for certain types of losses were shown. To be accepted internationally, it is very important to verify such claims using real solution monitoring data. However, a demonstrative study with real tank data has not been carried out due to the confidentiality of the tank data. This paper describes an experimental study that has been started using actual data from the Solution Measurement and Monitoring System (SMMS) in the Tokai Reprocessing Plant (TRP) and the Savannah River Site (SRS). Multivariate statistical methods, such as a vector cumulative sum and a multi-scale statistical analysis, have been applied to the real tank data that have superimposed simulated loss. Although quantitative conclusions have not been derived for the moment due to the difficulty of baseline evaluation, the multivariate statistical methods remain promising for abrupt and some types of protracted loss detection. (author)

  20. Multivariate statistical analysis of atom probe tomography data

    International Nuclear Information System (INIS)

    Parish, Chad M.; Miller, Michael K.

    2010-01-01

    The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.

  1. Detecting relationships between the interannual variability in climate records and ecological time series using a multivariate statistical approach - four case studies for the North Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, H. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1998-12-31

    A multivariate statistical approach is presented that allows a systematic search for relationships between the interannual variability in climate records and ecological time series. Statistical models are built between climatological predictor fields and the variables of interest. Relationships are sought on different temporal scales and for different seasons and time lags. The possibilities and limitations of this approach are discussed in four case studies dealing with salinity in the German Bight, abundance of zooplankton at Helgoland Roads, macrofauna communities off Norderney and the arrival of migratory birds on Helgoland. (orig.) [Deutsch] Ein statistisches, multivariates Modell wird vorgestellt, das eine systematische Suche nach potentiellen Zusammenhaengen zwischen Variabilitaet in Klima- und oekologischen Zeitserien erlaubt. Anhand von vier Anwendungsbeispielen wird der Klimaeinfluss auf den Salzgehalt in der Deutschen Bucht, Zooplankton vor Helgoland, Makrofauna vor Norderney, und die Ankunft von Zugvoegeln auf Helgoland untersucht. (orig.)

  2. Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry

    OpenAIRE

    Bersimis, Sotiris; Panaretos, John; Psarakis, Stelios

    2005-01-01

    Woodall and Montgomery [35] in a discussion paper, state that multivariate process control is one of the most rapidly developing sections of statistical process control. Nowadays, in industry, there are many situations in which the simultaneous monitoring or control, of two or more related quality - process characteristics is necessary. Process monitoring problems in which several related variables are of interest are collectively known as Multivariate Statistical Process Control (MSPC).This ...

  3. Pattern recognition by the use of multivariate statistical evaluation of macro- and micro-PIXE results

    International Nuclear Information System (INIS)

    Tapper, U.A.S.; Malmqvist, K.G.; Loevestam, N.E.G.; Swietlicki, E.; Salford, L.G.

    1991-01-01

    The importance of statistical evaluation of multielemental data is illustrated using the data collected in a macro- and micro-PIXE analysis of human brain tumours. By employing a multivariate statistical classification methodology (SIMCA) it was shown that the total information collected from each specimen separates three types of tissue: High malignant, less malignant and normal brain tissue. This makes a classification of a given specimen possible based on the elemental concentrations. Partial least squares regression (PLS), a multivariate regression method, made it possible to study the relative importance of the examined nine trace elements, the dry/wet weight ratio and the age of the patient in predicting the survival time after operation for patients with the high malignant form, astrocytomas grade III-IV. The elemental maps from a microprobe analysis were also subjected to multivariate analysis. This showed that the six elements sorted into maps could be presented in three maps containing all the relevant information. The intensity in these maps is proportional to the value (score) of the actual pixel along the calculated principal components. (orig.)

  4. Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan

    International Nuclear Information System (INIS)

    Adam, Abdel Majid A.; Eltayeb, Mohamed Ahmed H.

    2012-01-01

    Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the radioactive data in two types of Sudanese phosphate deposits; Kurun and Uro phosphate, using several multivariate statistical methods. Pearson correlation coefficient revealed that a U-238 distribution in Kurun phosphate is controlled by the variation of K-40 concentration, whereas in Uro phosphate it is controlled by the variation of U-235 and U-234 concentration. Histograms and normal Q–Q plots clearly show that the radioactive variables did not follow a normal distribution. This non-normality feature observed may be attributed to complicating influence of geological factors. The principal components analysis (PCA) gives a model of five components for representing the acquired data from Kurun phosphate, where 89.5% of the total variance is explained. A model of four components was sufficient to represent the acquired data from Uro phosphate, where 87.5% of the total data variance is explained. The hierarchical cluster analysis (HCA) indicates that U-238 behaves in the same manner in the two types of phosphates; it associated with a group of four radionuclides; U-234, Po-210, Ra-226, Th-230, which the most abundant radionuclides, and all belong to the uranium-238 decay series. Two parameters have been adapted for the direct differentiate between the two phosphates. Firstly, U-238 in Uro phosphate have shown higher degree of mobility (CV% = 82.6) than that in Kurun phosphate (CV% = 64.7), and secondly, the activity ratio of Th-230/Th-232 in Uro phosphate is nine times than that in Kurun phosphate. - Highlights: ► Multivariate statistical techniques were used to characterize radioactive data. ► U-238 in Uro phosphate shows higher degree of mobility (CV% = 82.6). ► U-238 in Kurun phosphate shows lower degree of mobility (CV% = 64.7). ► The radioactive variables did not follow a normal distribution. ► The ratio of Th

  5. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    Science.gov (United States)

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  6. A MULTIVARIATE ANALYSIS OF CROATIAN COUNTIES ENTREPRENEURSHIP

    Directory of Open Access Journals (Sweden)

    Elza Jurun

    2012-12-01

    Full Text Available In the focus of this paper is a multivariate analysis of Croatian Counties entrepreneurship. Complete data base available by official statistic institutions at national and regional level is used. Modern econometric methodology starting from a comparative analysis via multiple regression to multivariate cluster analysis is carried out as well as the analysis of successful or inefficacious entrepreneurship measured by indicators of efficiency, profitability and productivity. Time horizons of the comparative analysis are in 2004 and 2010. Accelerators of socio-economic development - number of entrepreneur investors, investment in fixed assets and current assets ratio in multiple regression model are analytically filtered between twenty-six independent variables as variables of the dominant influence on GDP per capita in 2010 as dependent variable. Results of multivariate cluster analysis of twentyone Croatian Counties are interpreted also in the sense of three Croatian NUTS 2 regions according to European nomenclature of regional territorial division of Croatia.

  7. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  8. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  9. Multivariate analysis with LISREL

    CERN Document Server

    Jöreskog, Karl G; Y Wallentin, Fan

    2016-01-01

    This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.

  10. Visual classification of very fine-grained sediments: Evaluation through univariate and multivariate statistics

    Science.gov (United States)

    Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.

    1980-01-01

    Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.

  11. Geochemistry of natural and anthropogenic fall-out (aerosol and precipitation) collected from the NW Mediterranean: two different multivariate statistical approaches

    International Nuclear Information System (INIS)

    Molinaroli, E.; Pistolato, M.; Rampazzo, G.; Guerzoni, S.

    1999-01-01

    The chemical characteristics of the mineral fractions of aerosol and precipitation collected in Sardinia (NW Mediterranean) are highlighted by means of two multivariate statistical approaches. Two different combinations of classification and statistical methods for geochemical data are presented. It is shown that the application of cluster analysis subsequent to Q-Factor analysis better distinguishes among Saharan dust, background pollution (Europe-Mediterranean) and local aerosol from various source regions (Sardinia). Conversely, the application of simple cluster analysis was able to distinguish only between aerosols and precipitation particles, without assigning the sources (local or distant) to the aerosol. This method also highlighted the fact that crust-enriched precipitation is similar to desert-derived aerosol. Major elements (Al, Na) and trace metal (Pb) turn out to be the most discriminating elements of the analysed data set. Independent use of mineralogical, granulometric and meteorological data confirmed the results derived from the statistical methods employed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.

    2012-01-01

    PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator

  13. An Application of Multivariate Statistical Analysis for Query-Driven Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, Luke J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garth, Christoph [Univ. of California, Davis, CA (United States); Anderson, John C. [Univ. of California, Davis, CA (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joy, Kenneth I. [Univ. of California, Davis, CA (United States)

    2011-03-01

    Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex datasets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates non-parametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query. In this framework, query distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical significance. We demonstrate the analysis benefits these two strategies provide and show how they may be used to facilitate the refinement of constraints over variables expressed in a user's query. We apply our method to datasets from two different scientific domains to demonstrate its broad applicability.

  14. Multivariate Analysis and Prediction of Dioxin-Furan ...

    Science.gov (United States)

    Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE

  15. Regionalization of Drought across South Korea Using Multivariate Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Azam

    2017-12-01

    Full Text Available Topographic and hydro-climatic features of South Korea are highly heterogeneous and able to influence the drought phenomena in the region. The complex topographical and hydro-climatic features of South Korea need a statistically accurate method to find homogeneous regions. Regionalization of drought in a bivariate framework has scarcely been applied in South Korea before. Hierarchical Classification on Principal Components (HCPC algorithm together with Principal Component Analysis (PCA method and cluster validation indices were investigated and used for the regionalization of drought across the South Korean region. Statistical homogeneity and discordancy of the region was tested on univariate and bivariate frameworks. HCPC indicate that South Korea should be divided into four regions which are closer to being homogeneous. Univariate and bivariate homogeneity and discordancy tests showed the significant difference in their results due to the inability of univariate homogeneity and discordancy measures to consider the joint behavior of duration and severity. Regionalization of drought for SPI time scale of 1, 3, 6, 12, and 24 months showed significant variation in discordancy and homogeneity of the region with the change in SPI time scale. The results of this study can be used as basic data required to establish a drought mitigation plan on regional scales.

  16. Application of multivariate statistical techniques for differentiation of ripe banana flour based on the composition of elements.

    Science.gov (United States)

    Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat

    2009-01-01

    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.

  17. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses

    OpenAIRE

    Buttigieg, Pier Luigi; Ramette, Alban Nicolas

    2014-01-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynami...

  18. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  19. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques--a case study

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita

    2005-01-01

    Multivariate statistical techniques, such as cluster analysis (CA), factor analysis (FA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the data set on water quality of the Gomti river (India), generated during three years (1999-2001) monitoring at eight different sites for 34 parameters (9792 observations). This study presents usefulness of multivariate statistical techniques for evaluation and interpretation of large complex water quality data sets and apportionment of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Three significant groups, upper catchments (UC), middle catchments (MC) and lower catchments (LC) of sampling sites were obtained through CA on the basis of similarity between them. FA/PCA applied to the data sets pertaining to three catchments regions of the river resulted in seven, seven and six latent factors, respectively responsible for the data structure, explaining 74.3, 73.6 and 81.4% of the total variance of the respective data sets. These included the trace metals group (leaching from soil and industrial waste disposal sites), organic pollution group (municipal and industrial effluents), nutrients group (agricultural runoff), alkalinity, hardness, EC and solids (soil leaching and runoff process). DA showed the best results for data reduction and pattern recognition during both temporal and spatial analysis. It rendered five parameters (temperature, total alkalinity, Cl, Na and K) affording more than 94% right assignations in temporal analysis, while 10 parameters (river discharge, pH, BOD, Cl, F, PO 4 , NH 4 -N, NO 3 -N, TKN and Zn) to afford 97% right assignations in spatial analysis of three different regions in the basin. Thus, DA allowed reduction in dimensionality of the large data set, delineating a few indicator parameters responsible for large variations in water quality. Further

  20. Application of a Multivariate Statistical Technique to Interpreting Data from Multichannel Equipment for the Example of the KLEM Spectrometer

    International Nuclear Information System (INIS)

    Podorozhnyi, D.M.; Postnikov, E.B.; Sveshnikova, L.G.; Turundaevsky, A.N.

    2005-01-01

    A multivariate statistical procedure for solving problems of estimating physical parameters on the basis of data from measurements with multichannel equipment is described. Within the multivariate procedure, an algorithm is constructed for estimating the energy of primary cosmic rays and the exponent in their power-law spectrum. They are investigated by using the KLEM spectrometer (NUCLEON project) as a specific example of measuring equipment. The results of computer experiments simulating the operation of the multivariate procedure for this equipment are given, the proposed approach being compared in these experiments with the one-parameter approach presently used in data processing

  1. Quantitative Evaluation of Hybrid Aspen Xylem and Immunolabeling Patterns Using Image Analysis and Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    David Sandquist

    2015-06-01

    Full Text Available A new method is presented for quantitative evaluation of hybrid aspen genotype xylem morphology and immunolabeling micro-distribution. This method can be used as an aid in assessing differences in genotypes from classic tree breeding studies, as well as genetically engineered plants. The method is based on image analysis, multivariate statistical evaluation of light, and immunofluorescence microscopy images of wood xylem cross sections. The selected immunolabeling antibodies targeted five different epitopes present in aspen xylem cell walls. Twelve down-regulated hybrid aspen genotypes were included in the method development. The 12 knock-down genotypes were selected based on pre-screening by pyrolysis-IR of global chemical content. The multivariate statistical evaluations successfully identified comparative trends for modifications in the down-regulated genotypes compared to the unmodified control, even when no definitive conclusions could be drawn from individual studied variables alone. Of the 12 genotypes analyzed, three genotypes showed significant trends for modifications in both morphology and immunolabeling. Six genotypes showed significant trends for modifications in either morphology or immunocoverage. The remaining three genotypes did not show any significant trends for modification.

  2. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties

    International Nuclear Information System (INIS)

    Zhang Changbo; Wu Longhua; Luo Yongming; Zhang Haibo; Christie, Peter

    2008-01-01

    Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis. - Principal components analysis with Varimax rotation can help identify sources of soil inorganic pollutants but pollutant migration and soil properties can exert important effects

  3. Adjustment of geochemical background by robust multivariate statistics

    Science.gov (United States)

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  4. Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA and principal component analysis (PCA. Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.

  5. Multivariate statistical approximation of the in situ gamma-ray spectrometry of the State of Zacatecas, Mexico

    International Nuclear Information System (INIS)

    Lopez I, J. F.; Rios M, C.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J.L.

    2017-09-01

    The environmental radioactivity evaluation is a key point in the assessment of the environmental quality. Through this, it can be found possible radioactive contamination, locate possible Uranium and Thorium deposits and evaluate the primordial isotopes concentration due to human activities. A radioactive map of the Zacatecas State, Mexico is under construction based on in situ gamma-ray spectrometry. The present work reports the results of the multivariate statistical approximation of the measured activity data. Based on Pearson correlation, the 228 Ac and 208 Tl activities are statistically significant, while the 214 Bi and 214 Pb activities are not statistically significant. These can be due to the existence or not of secular equilibrium in the Thorium and Uranium series. (Author)

  6. Assessment of Surface Water Quality Using Multivariate Statistical Techniques in the Terengganu River Basin

    International Nuclear Information System (INIS)

    Aminu Ibrahim; Hafizan Juahir; Mohd Ekhwan Toriman; Mustapha, A.; Azman Azid; Isiyaka, H.A.

    2015-01-01

    Multivariate Statistical techniques including cluster analysis, discriminant analysis, and principal component analysis/factor analysis were applied to investigate the spatial variation and pollution sources in the Terengganu river basin during 5 years of monitoring 13 water quality parameters at thirteen different stations. Cluster analysis (CA) classified 13 stations into 2 clusters low polluted (LP) and moderate polluted (MP) based on similar water quality characteristics. Discriminant analysis (DA) rendered significant data reduction with 4 parameters (pH, NH 3 -NL, PO 4 and EC) and correct assignation of 95.80 %. The PCA/ FA applied to the data sets, yielded in five latent factors accounting 72.42 % of the total variance in the water quality data. The obtained varifactors indicate that parameters in charge for water quality variations are mainly related to domestic waste, industrial, runoff and agricultural (anthropogenic activities). Therefore, multivariate techniques are important in environmental management. (author)

  7. Estimating long-term statistics for annual precipitation for six regions of the United States from tree-ring data

    International Nuclear Information System (INIS)

    Fritts, H.C.; DeWitt, E.; Gordon, G.A.; Hunt, J.H.; Lofgren, G.R.

    1979-12-01

    Spatial anomalies of seasonal precipitation for the United States and southwestern Canada have been reconstructed from 1602 through 1961 using dendrochronological and multivariate techniques on 65 arid-site tree-ring chronologies from western North America. Seasonal reconstructions are averaged to obtain mean annual precipitation values for six regions of importance to the Nuclear Regulatory Commission (NRC) Nuclear Waste Management Program (NWMP). Statistics calculated from the regionally averaged annual values for 25-year and longer intervals show annual precipitation in the seventeenth through nineteenth centuries to be lower than in the twentieth century for three regions in the American Southwest and higher for one region in the Northwest and two regions in the East. The variability of precipitation generally was higher in the past three centuries than in the present century. Twenty-five-year intervals with noteworthy statistics are identified and important results are summarized and tabulated for use in the hydrologic modeling of the NWMP. Additional research is recommended to incorporate temperature and precipitation into a single hydrologic parameter

  8. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    Directory of Open Access Journals (Sweden)

    Jordi Marcé-Nogué

    2017-10-01

    Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.

  9. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    Science.gov (United States)

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  10. Multivariate statistical assessments of greenhouse-gas-induced climatic change and comparison with results from general circulation models

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1990-01-01

    Based on univariate correction and coherence analyses, including techniques moving in time, and taking account of the physical basis of the relationships, a simple multivariate concept is presented which correlates observational climatic time series simultaneously with solar, volcanic, ENSO (El Nino/Souther Oscillation) and anthropogenic greenhouse-gas forcing. The climatic elements considered are air temperature (near the ground and stratosphere), sea surface temperature, sea level and precipitation, and cover at least the period 1881-1980 (stratospheric temperature only since 1960). The climate signal assessments which may be hypothetically attributed to the observed CO 2 or equivalent CO 2 (implying additional greenhouse gases) increase are compared with those resulting from GCM experiments. In case of the Northern hemisphere air temperature these comparisons are performed not only in respect to hemispheric and global means, but also in respect to the regional and seasonal patterns. Autocorrelations and phase shifts of the climate response to natural and anthropogenic forcing complicate the statistical assessments

  11. Multivariate analysis methods in physics

    International Nuclear Information System (INIS)

    Wolter, M.

    2007-01-01

    A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru

  12. Water quality, Multivariate statistical techniques, submarine out fall, spatial variation, temporal variation

    International Nuclear Information System (INIS)

    Garcia, Francisco; Palacio, Carlos; Garcia, Uriel

    2012-01-01

    Multivariate statistical techniques were used to investigate the temporal and spatial variations of water quality at the Santa Marta coastal area where a submarine out fall that discharges 1 m3/s of domestic wastewater is located. Two-way analysis of variance (ANOVA), cluster and principal component analysis and Krigging interpolation were considered for this report. Temporal variation showed two heterogeneous periods. From December to April, and July, where the concentration of the water quality parameters is higher; the rest of the year (May, June, August-November) were significantly lower. The spatial variation reported two areas where the water quality is different, this difference is related to the proximity to the submarine out fall discharge.

  13. Multivariate statistical approximation of the in situ gamma-ray spectrometry of the State of Zacatecas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez I, J. F.; Rios M, C.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J.L., E-mail: fernandolf498@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-09-15

    The environmental radioactivity evaluation is a key point in the assessment of the environmental quality. Through this, it can be found possible radioactive contamination, locate possible Uranium and Thorium deposits and evaluate the primordial isotopes concentration due to human activities. A radioactive map of the Zacatecas State, Mexico is under construction based on in situ gamma-ray spectrometry. The present work reports the results of the multivariate statistical approximation of the measured activity data. Based on Pearson correlation, the {sup 228}Ac and {sup 208}Tl activities are statistically significant, while the {sup 214}Bi and {sup 214}Pb activities are not statistically significant. These can be due to the existence or not of secular equilibrium in the Thorium and Uranium series. (Author)

  14. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    Science.gov (United States)

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  15. Multivariate ordination statistics workshop with R slides

    OpenAIRE

    Strack, Michael

    2015-01-01

    2-hour workshop given at Macquarie University Department of Biological Sciences, 4 November 2015. Workshop was an introduction to the family of techniques falling under multivariate ordination, using the R language and drawing heavily from the book "Numerical Ecology with R" by Borcard et. al (2012).

  16. Comparative urine analysis by liquid chromatography-mass spectrometry and multivariate statistics : Method development, evaluation, and application to proteinuria

    NARCIS (Netherlands)

    Kemperman, Ramses F. J.; Horvatovich, Peter L.; Hoekman, Berend; Reijmers, Theo H.; Muskiet, Frits A. J.; Bischoff, Rainer

    2007-01-01

    We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit

  17. Multivariate statistical analyses demonstrate unique host immune responses to single and dual lentiviral infection.

    Directory of Open Access Journals (Sweden)

    Sunando Roy

    2009-10-01

    Full Text Available Feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters.Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals, and the "immune profiles" that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNgamma, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells.Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual

  18. Multivariate data analysis

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg

    Interest in statistical methodology is increasing so rapidly in the astronomical community that accessible introductory material in this area is long overdue. This book fills the gap by providing a presentation of the most useful techniques in multivariate statistics. A wide-ranging annotated set...

  19. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2016-01-01

    Full Text Available Multivariate statistical methods including cluster analysis (CA, discriminant analysis (DA and component analysis/factor analysis (PCA/FA, were applied to explore the surface water quality datasets including 14 parameters at 28 sites of the Eastern Poyang Lake Basin, Jiangxi Province of China, from January 2012 to April 2015, characterize spatiotemporal variation in pollution and identify potential pollution sources. The 28 sampling stations were divided into two periods (wet season and dry season and two regions (low pollution and high pollution, respectively, using hierarchical CA method. Four parameters (temperature, pH, ammonia-nitrogen (NH4-N, and total nitrogen (TN were identified using DA to distinguish temporal groups with close to 97.86% correct assignations. Again using DA, five parameters (pH, chemical oxygen demand (COD, TN, Fluoride (F, and Sulphide (S led to 93.75% correct assignations for distinguishing spatial groups. Five potential pollution sources including nutrients pollution, oxygen consuming organic pollution, fluorine chemical pollution, heavy metals pollution and natural pollution, were identified using PCA/FA techniques for both the low pollution region and the high pollution region. Heavy metals (Cuprum (Cu, chromium (Cr and Zinc (Zn, fluoride and sulfide are of particular concern in the study region because of many open-pit copper mines such as Dexing Copper Mine. Results obtained from this study offer a reasonable classification scheme for low-cost monitoring networks. The results also inform understanding of spatio-temporal variation in water quality as these topics relate to water resources management.

  20. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    Science.gov (United States)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  1. Application of instrumental neutron activation analysis and multivariate statistical methods to archaeological Syrian ceramics

    International Nuclear Information System (INIS)

    Bakraji, E. H.; Othman, I.; Sarhil, A.; Al-Somel, N.

    2002-01-01

    Instrumental neutron activation analysis (INAA) has been utilized in the analysis of thirty-seven archaeological ceramics fragment samples collected from Tal AI-Wardiate site, Missiaf town, Hamma city, Syria. 36 chemical elements were determined. These elemental concentrations have been processed using two multivariate statistical methods, cluster and factor analysis in order to determine similarities and correlation between the various samples. Factor analysis confirms that samples were correctly classified by cluster analysis. The results showed that samples can be considered to be manufactured using three different sources of raw material. (author)

  2. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses.

    Science.gov (United States)

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-12-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  3. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    Science.gov (United States)

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  4. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    Science.gov (United States)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  5. Multivariate statistical analysis of wildfires in Portugal

    Science.gov (United States)

    Costa, Ricardo; Caramelo, Liliana; Pereira, Mário

    2013-04-01

    Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).

  6. One Hundred Ways to be Non-Fickian - A Rigorous Multi-Variate Statistical Analysis of Pore-Scale Transport

    Science.gov (United States)

    Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko

    2015-04-01

    Fickian transport in groundwater flow is the exception rather than the rule. Transport in porous media is frequently simulated via particle methods (i.e. particle tracking random walk (PTRW) or continuous time random walk (CTRW)). These methods formulate transport as a stochastic process of particle position increments. At the pore scale, geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Hence, it is important to get a better understanding of the processes at pore scale. For our analysis we track the positions of 10.000 particles migrating through the pore space over time. The data we use come from micro CT scans of a homogeneous sandstone and encompass about 10 grain sizes. Based on those images we discretize the pore structure and simulate flow at the pore scale based on the Navier-Stokes equation. This flow field realistically describes flow inside the pore space and we do not need to add artificial dispersion during the transport simulation. Next, we use particle tracking random walk and simulate pore-scale transport. Finally, we use the obtained particle trajectories to do a multivariate statistical analysis of the particle motion at the pore scale. Our analysis is based on copulas. Every multivariate joint distribution is a combination of its univariate marginal distributions. The copula represents the dependence structure of those univariate marginals and is therefore useful to observe correlation and non-Gaussian interactions (i.e. non-Fickian transport). The first goal of this analysis is to better understand the validity regions of commonly made assumptions. We are investigating three different transport distances: 1) The distance where the statistical dependence between particle increments can be modelled as an order-one Markov process. This would be the Markovian distance for the process, where

  7. UNCOVERING THE FORMATION OF ULTRACOMPACT DWARF GALAXIES BY MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Chattopadhyay, Tanuka; Sharina, Margarita; Davoust, Emmanuel; De, Tuli; Chattopadhyay, Asis Kumar

    2012-01-01

    We present a statistical analysis of the properties of a large sample of dynamically hot old stellar systems, from globular clusters (GCs) to giant ellipticals, which was performed in order to investigate the origin of ultracompact dwarf galaxies (UCDs). The data were mostly drawn from Forbes et al. We recalculated some of the effective radii, computed mean surface brightnesses and mass-to-light ratios, and estimated ages and metallicities. We completed the sample with GCs of M31. We used a multivariate statistical technique (K-Means clustering), together with a new algorithm (Gap Statistics) for finding the optimum number of homogeneous sub-groups in the sample, using a total of six parameters (absolute magnitude, effective radius, virial mass-to-light ratio, stellar mass-to-light ratio, and metallicity). We found six groups. FK1 and FK5 are composed of high- and low-mass elliptical galaxies, respectively. FK3 and FK6 are composed of high-metallicity and low-metallicity objects, respectively, and both include GCs and UCDs. Two very small groups, FK2 and FK4, are composed of Local Group dwarf spheroidals. Our groups differ in their mean masses and virial mass-to-light ratios. The relations between these two parameters are also different for the various groups. The probability density distributions of metallicity for the four groups of galaxies are similar to those of the GCs and UCDs. The brightest low-metallicity GCs and UCDs tend to follow the mass-metallicity relation like elliptical galaxies. The objects of FK3 are more metal-rich per unit effective luminosity density than high-mass ellipticals.

  8. UNCOVERING THE FORMATION OF ULTRACOMPACT DWARF GALAXIES BY MULTIVARIATE STATISTICAL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Tanuka [Department of Applied Mathematics, Calcutta University, 92 A.P.C. Road, Calcutta 700009 (India); Sharina, Margarita [Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KCh R 369167 (Russian Federation); Davoust, Emmanuel [IRAP, Universite de Toulouse, CNRS, 14 Avenue Edouard Belin, 31400 Toulouse (France); De, Tuli; Chattopadhyay, Asis Kumar, E-mail: tanuka@iucaa.ernet.in, E-mail: sme@sao.ru, E-mail: davoust@ast.obs-mip.fr, E-mail: akcstat@caluniv.ac.in [Department of Statistics, Calcutta University, 35 B.C. Road, Calcutta 700019 (India)

    2012-05-10

    We present a statistical analysis of the properties of a large sample of dynamically hot old stellar systems, from globular clusters (GCs) to giant ellipticals, which was performed in order to investigate the origin of ultracompact dwarf galaxies (UCDs). The data were mostly drawn from Forbes et al. We recalculated some of the effective radii, computed mean surface brightnesses and mass-to-light ratios, and estimated ages and metallicities. We completed the sample with GCs of M31. We used a multivariate statistical technique (K-Means clustering), together with a new algorithm (Gap Statistics) for finding the optimum number of homogeneous sub-groups in the sample, using a total of six parameters (absolute magnitude, effective radius, virial mass-to-light ratio, stellar mass-to-light ratio, and metallicity). We found six groups. FK1 and FK5 are composed of high- and low-mass elliptical galaxies, respectively. FK3 and FK6 are composed of high-metallicity and low-metallicity objects, respectively, and both include GCs and UCDs. Two very small groups, FK2 and FK4, are composed of Local Group dwarf spheroidals. Our groups differ in their mean masses and virial mass-to-light ratios. The relations between these two parameters are also different for the various groups. The probability density distributions of metallicity for the four groups of galaxies are similar to those of the GCs and UCDs. The brightest low-metallicity GCs and UCDs tend to follow the mass-metallicity relation like elliptical galaxies. The objects of FK3 are more metal-rich per unit effective luminosity density than high-mass ellipticals.

  9. Multivariate meta-analysis: Potential and promise

    Science.gov (United States)

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  10. Understanding the groundwater dynamics in the Southern Rift Valley Lakes Basin (Ethiopia). Multivariate statistical analysis method, oxygen (δ 18O) and deuterium (δ 2H)

    International Nuclear Information System (INIS)

    Girum Admasu Nadew; Zebene Lakew Tefera

    2013-01-01

    Multivariate statistical analysis is very important to classify waters of different hydrochemical groups. Statistical techniques, such as cluster analysis, can provide a powerful tool for analyzing water chemistry data. This method is used to test water quality data and determine if samples can be grouped into distinct populations that may be significant in the geologic context, as well as from a statistical point of view. Multivariate statistical analysis method is applied to the geochemical data in combination with δ 18 O and δ 2 H isotopes with the objective to understand the dynamics of groundwater using hierarchical clustering and isotope analyses. The geochemical and isotope data of the central and southern rift valley lakes have been collected and analyzed from different works. Isotope analysis shows that most springs and boreholes are recharged by July and August rainfalls. The different hydrochemical groups that resulted from the multivariate analysis are described and correlated with the geology of the area and whether it has any interaction with a system or not. (author)

  11. Correlation analysis of energy indicators for sustainable development using multivariate statistical techniques

    International Nuclear Information System (INIS)

    Carneiro, Alvaro Luiz Guimaraes; Santos, Francisco Carlos Barbosa dos

    2007-01-01

    Energy is an essential input for social development and economic growth. The production and use of energy cause environmental degradation at all levels, being local, regional and global such as, combustion of fossil fuels causing air pollution; hydropower often causes environmental damage due to the submergence of large areas of land; and global climate change associated with the increasing concentration of greenhouse gases in the atmosphere. As mentioned in chapter 9 of Agenda 21, the Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technologies were remain constant and if overall quantities were to increase substantially. All energy sources will need to be used in ways that respect the atmosphere, human health, and the environment as a whole. The energy in the context of sustainable development needs a set of quantifiable parameters, called indicators, to measure and monitor important changes and significant progress towards the achievement of the objectives of sustainable development policies. The indicators are divided into four dimensions: social, economic, environmental and institutional. This paper shows a methodology of analysis using Multivariate Statistical Technique that provide the ability to analyse complex sets of data. The main goal of this study is to explore the correlation analysis among the indicators. The data used on this research work, is an excerpt of IBGE (Instituto Brasileiro de Geografia e Estatistica) data census. The core indicators used in this study follows The IAEA (International Atomic Energy Agency) framework: Energy Indicators for Sustainable Development. (author)

  12. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    Science.gov (United States)

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  13. A multivariate statistical study on a diversified data gathering system for nuclear power plants

    International Nuclear Information System (INIS)

    Samanta, P.K.; Teichmann, T.; Levine, M.M.; Kato, W.Y.

    1989-02-01

    In this report, multivariate statistical methods are presented and applied to demonstrate their use in analyzing nuclear power plant operational data. For analyses of nuclear power plant events, approaches are presented for detecting malfunctions and degradations within the course of the event. At the system level, approaches are investigated as a means of diagnosis of system level performance. This involves the detection of deviations from normal performance of the system. The input data analyzed are the measurable physical parameters, such as steam generator level, pressurizer water level, auxiliary feedwater flow, etc. The study provides the methodology and illustrative examples based on data gathered from simulation of nuclear power plant transients and computer simulation of a plant system performance (due to lack of easily accessible operational data). Such an approach, once fully developed, can be used to explore statistically the detection of failure trends and patterns and prevention of conditions with serious safety implications. 33 refs., 18 figs., 9 tabs

  14. Daily precipitation statistics in regional climate models

    DEFF Research Database (Denmark)

    Frei, Christoph; Christensen, Jens Hesselbjerg; Déqué, Michel

    2003-01-01

    An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km...

  15. Multivariate strategies in functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2007-01-01

    We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a `mind reading' predictive multivariate fMRI model....

  16. Comparison of multivariate and univariate statistical process control and monitoring methods

    International Nuclear Information System (INIS)

    Leger, R.P.; Garland, WM.J.; Macgregor, J.F.

    1996-01-01

    Work in recent years has lead to the development of multivariate process monitoring schemes which use Principal Component Analysis (PCA). This research compares the performance of a univariate scheme and a multivariate PCA scheme used for monitoring a simple process with 11 measured variables. The multivariate PCA scheme was able to adequately represent the process using two principal components. This resulted in a PCA monitoring scheme which used two charts as opposed to 11 charts for the univariate scheme and therefore had distinct advantages in terms of both data representation, presentation, and fault diagnosis capabilities. (author)

  17. Multivariate analysis: models and method

    International Nuclear Information System (INIS)

    Sanz Perucha, J.

    1990-01-01

    Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis

  18. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    Science.gov (United States)

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  19. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    Science.gov (United States)

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    Science.gov (United States)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  1. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  2. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions - Using multivariate statistics and geochemical modeling approaches.

    Science.gov (United States)

    Liu, Pu; Hoth, Nils; Drebenstedt, Carsten; Sun, Yajun; Xu, Zhimin

    2017-12-01

    Groundwater is an important drinking water resource that requires protection in North China. Coal mining industry in the area may influence the water quality evolution. To provide primary characterization of the hydrogeochemical processes and paths that control the water quality evolution, a complex multi-layer groundwater system in a coal mining area is investigated. Multivariate statistical methods involving hierarchical cluster analysis (HCA) and principal component analysis (PCA) are applied, 6 zones and 3 new principal components are classified as major reaction zones and reaction factors. By integrating HCA and PCA with hydrogeochemical correlations analysis, potential phases, reactions and connections between various zones are presented. Carbonates minerals, gypsum, clay minerals as well as atmosphere gases - CO 2 , H 2 O and NH 3 are recognized as major reactants. Mixtures, evaporation, dissolution/precipitation of minerals and cation exchange are potential reactions. Inverse modeling is finally used, and it verifies the detailed processes and diverse paths. Consequently, 4 major paths are found controlling the variations of groundwater chemical properties. Shallow and deep groundwater is connected primarily by the flow of deep groundwater up through fractures and faults into the shallow aquifers. Mining does not impact the underlying aquifers that represent the most critical groundwater resource. But controls should be taken to block the mixing processes from highly polluted mine water. The paper highlights the complex hydrogeochemical evolution of a multi-layer groundwater system under mining impact, which could be applied to further groundwater quality management in the study area, as well as most of the other coalfields in North China. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Signature of Nonstationarity in Precipitation Extremes over Urbanizing Regions in India Identified through a Multivariate Frequency Analyses

    Science.gov (United States)

    Singh, Jitendra; Hari, Vittal; Sharma, Tarul; Karmakar, Subhankar; Ghosh, Subimal

    2016-04-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the analytically perceivable impacts of climate change, urbanization and concomitant land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Past studies provided sufficient evidences on changes in the characteristics of Indian monsoon precipitation extremes and further it has been attributed to climate change and urbanization, which shows need of nonstationary analysis on the Indian monsoon extremes. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the entire India to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity in the Indian monsoon. We use 1o resolution of precipitation data for a period of 1901-2004, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. A population density data has been utilized to identify the urban, urbanizing and rural regions. The results showed significant differences in the stationary and nonstationary bivariate return periods for the urbanizing grids, when compared to urbanized and rural grids. A comprehensive multivariate analysis has also been conducted to identify the precipitation characteristics particularly responsible for imprinting signature of nonstationarity.

  4. Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.

    Science.gov (United States)

    Wang, James Z.; Du, Yanping

    Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…

  5. Statistical Research of Investment Development of Russian Regions

    Science.gov (United States)

    Burtseva, Tatiana A.; Aleshnikova, Vera I.; Dubovik, Mayya V.; Naidenkova, Ksenya V.; Kovalchuk, Nadezda B.; Repetskaya, Natalia V.; Kuzmina, Oksana G.; Surkov, Anton A.; Bershadskaya, Olga I.; Smirennikova, Anna V.

    2016-01-01

    This article the article is concerned with a substantiation of procedures ensuring the implementation of statistical research and monitoring of investment development of the Russian regions, which would be pertinent for modern development of the state statistics. The aim of the study is to develop the methodological framework in order to estimate…

  6. Application of Multivariate Statistical Analysis to Biomarkers in Se-Turkey Crude Oils

    Science.gov (United States)

    Gürgey, K.; Canbolat, S.

    2017-11-01

    Twenty-four crude oil samples were collected from the 24 oil fields distributed in different districts of SE-Turkey. API and Sulphur content (%), Stable Carbon Isotope, Gas Chromatography (GC), and Gas Chromatography-Mass Spectrometry (GC-MS) data were used to construct a geochemical data matrix. The aim of this study is to examine the genetic grouping or correlations in the crude oil samples, hence the number of source rocks present in the SE-Turkey. To achieve these aims, two of the multivariate statistical analysis techniques (Principle Component Analysis [PCA] and Cluster Analysis were applied to data matrix of 24 samples and 8 source specific biomarker variables/parameters. The results showed that there are 3 genetically different oil groups: Batman-Nusaybin Oils, Adıyaman-Kozluk Oils and Diyarbakir Oils, in addition to a one mixed group. These groupings imply that at least, three different source rocks are present in South-Eastern (SE) Turkey. Grouping of the crude oil samples appears to be consistent with the geographic locations of the oils fields, subsurface stratigraphy as well as geology of the area.

  7. APPLICATION OF MULTIVARIATE STATISTICAL ANALYSIS TO BIOMARKERS IN SE-TURKEY CRUDE OILS

    Directory of Open Access Journals (Sweden)

    K. Gürgey

    2017-11-01

    Full Text Available Twenty-four crude oil samples were collected from the 24 oil fields distributed in different districts of SE-Turkey. API and Sulphur content (%, Stable Carbon Isotope, Gas Chromatography (GC, and Gas Chromatography-Mass Spectrometry (GC-MS data were used to construct a geochemical data matrix. The aim of this study is to examine the genetic grouping or correlations in the crude oil samples, hence the number of source rocks present in the SE-Turkey. To achieve these aims, two of the multivariate statistical analysis techniques (Principle Component Analysis [PCA] and Cluster Analysis were applied to data matrix of 24 samples and 8 source specific biomarker variables/parameters. The results showed that there are 3 genetically different oil groups: Batman-Nusaybin Oils, Adıyaman-Kozluk Oils and Diyarbakir Oils, in addition to a one mixed group. These groupings imply that at least, three different source rocks are present in South-Eastern (SE Turkey. Grouping of the crude oil samples appears to be consistent with the geographic locations of the oils fields, subsurface stratigraphy as well as geology of the area.

  8. Regional collaborations and indigenous innovation capabilities in China: A multivariate method for the analysis of regional innovation systems

    OpenAIRE

    Zhao, S.L.; Cacciolatti, L.; Lee, Soo Hee; Song, W.

    2014-01-01

    In this study we analyse the emerging patterns of regional collaboration for innovation projects in China, using official government statistics of 30 Chinese regions. We propose the use of Ordinal Multidimensional Scaling and Cluster analysis as a robust method to study regional innovation systems. Our results show that regional collaborations amongst organisations can be categorised by means of eight dimensions: public versus private organisational mindset; public versus private resources; i...

  9. Use of multivariate statistics to identify unreliable data obtained using CASA.

    Science.gov (United States)

    Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón

    2013-06-01

    In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.

  10. Principal Feature Analysis: A Multivariate Feature Selection Method for fMRI Data

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2013-01-01

    Full Text Available Brain decoding with functional magnetic resonance imaging (fMRI requires analysis of complex, multivariate data. Multivoxel pattern analysis (MVPA has been widely used in recent years. MVPA treats the activation of multiple voxels from fMRI data as a pattern and decodes brain states using pattern classification methods. Feature selection is a critical procedure of MVPA because it decides which features will be included in the classification analysis of fMRI data, thereby improving the performance of the classifier. Features can be selected by limiting the analysis to specific anatomical regions or by computing univariate (voxel-wise or multivariate statistics. However, these methods either discard some informative features or select features with redundant information. This paper introduces the principal feature analysis as a novel multivariate feature selection method for fMRI data processing. This multivariate approach aims to remove features with redundant information, thereby selecting fewer features, while retaining the most information.

  11. Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran; a study based on multivariate data analysis

    International Nuclear Information System (INIS)

    Qishlaqi, Afshin; Moore, Farid; Forghani, Giti

    2009-01-01

    The study presents the application of selected multivariate statistical methods (multivariate analysis of variance, discriminant analysis, principal component analysis) and geostatistical techniques to evaluate soil pollution status in arable lands of the Angouran region, NW Iran. Two representative landuse patterns, cropland and grassland, were selected for the purpose of this study. Seventy soil samples (35 topsoils and 35 subsoils) were collected from the two landuse types and 21 soil parameters including total element content and physicochemical properties were also determined. Results from application of the multivariate analysis of variance showed that the two landuse patterns were not statistically differentiated by subsoil variables, whereas significant differences existed between the two landuse patterns with respect to topsoil variables. Discriminant analysis rendered seven variables (Cu, As, Cd, OM, P, K and total N) as indicator parameters responsible for the discrimination between the two landuse types. Using the principal component analysis (PCA), two main components (PCs) explaining 71.71% of total variance were extracted. PC1, with a high contribution of Ni, Cr, Fe, Mn and clay content was hypothesized as lithogenic component and PC2, with high loadings for the seven discerning variables (Cu, As, Cd, OM, P, K and total N), was considered as an agrogenic component. Geostatistical analyses, including the calculation of semivariogram parameters and model fitting, further supported the PCA results. PC1 was generally characterized by moderate spatial dependence and long-range spatial variation (8000 m) influenced by soil parent martial composition, while PC2 was modelled by pure nugget effect probably reflecting the influences of agrogenic activities. The findings of this study could not only expand our knowledge regarding the soil pollution status in the study area, but would also provide decision makers with the information to manage the agrochemical

  12. Multivariate Process Control with Autocorrelated Data

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2011-01-01

    As sensor and computer technology continues to improve, it becomes a normal occurrence that we confront with high dimensional data sets. As in many areas of industrial statistics, this brings forth various challenges in statistical process control and monitoring. This new high dimensional data...... often exhibit not only cross-­‐correlation among the quality characteristics of interest but also serial dependence as a consequence of high sampling frequency and system dynamics. In practice, the most common method of monitoring multivariate data is through what is called the Hotelling’s T2 statistic....... In this paper, we discuss the effect of autocorrelation (when it is ignored) on multivariate control charts based on these methods and provide some practical suggestions and remedies to overcome this problem....

  13. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report - Part 10. Variability in the inorganic content of United States' coals: a multivariate statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Glick, D.C.; Davis, A.

    1984-07-01

    The multivariate statistical techniques of correlation coefficients, factor analysis, and cluster analysis, implemented by computer programs, can be used to process a large data set and produce a summary of relationships between variables and between samples. These techniques were used to find relationships for data on the inorganic constituents of US coals. Three hundred thirty-five whole-seam channel samples from six US coal provinces were analyzed for inorganic variables. After consideration of the attributes of data expressed on ash basis and whole-coal basis, it was decided to perform complete statistical analyses on both data sets. Thirty variables expressed on whole-coal basis and twenty-six variables expressed on ash basis were used. For each inorganic variable, a frequency distribution histogram and a set of summary statistics was produced. These were subdivided to reveal the manner in which concentrations of inorganic constituents vary between coal provinces and between coal regions. Data collected on 124 samples from three stratigraphic groups (Pottsville, Monongahela, Allegheny) in the Appalachian region were studied using analysis of variance to determine degree of variability between stratigraphic levels. Most variables showed differences in mean values between the three groups. 193 references, 71 figures, 54 tables.

  14. Regional trends in short-duration precipitation extremes: a flexible multivariate monotone quantile regression approach

    Science.gov (United States)

    Cannon, Alex

    2017-04-01

    Estimating historical trends in short-duration rainfall extremes at regional and local scales is challenging due to low signal-to-noise ratios and the limited availability of homogenized observational data. In addition to being of scientific interest, trends in rainfall extremes are of practical importance, as their presence calls into question the stationarity assumptions that underpin traditional engineering and infrastructure design practice. Even with these fundamental challenges, increasingly complex questions are being asked about time series of extremes. For instance, users may not only want to know whether or not rainfall extremes have changed over time, they may also want information on the modulation of trends by large-scale climate modes or on the nonstationarity of trends (e.g., identifying hiatus periods or periods of accelerating positive trends). Efforts have thus been devoted to the development and application of more robust and powerful statistical estimators for regional and local scale trends. While a standard nonparametric method like the regional Mann-Kendall test, which tests for the presence of monotonic trends (i.e., strictly non-decreasing or non-increasing changes), makes fewer assumptions than parametric methods and pools information from stations within a region, it is not designed to visualize detected trends, include information from covariates, or answer questions about the rate of change in trends. As a remedy, monotone quantile regression (MQR) has been developed as a nonparametric alternative that can be used to estimate a common monotonic trend in extremes at multiple stations. Quantile regression makes efficient use of data by directly estimating conditional quantiles based on information from all rainfall data in a region, i.e., without having to precompute the sample quantiles. The MQR method is also flexible and can be used to visualize and analyze the nonlinearity of the detected trend. However, it is fundamentally a

  15. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece).

    Science.gov (United States)

    Matiatos, Ioannis

    2016-01-15

    Nitrate (NO3) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ(15)N-NO3 and δ(18)O-NO3) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO3 sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC).

  16. Multivariate statistical analysis of electron energy-loss spectroscopy in anisotropic materials

    International Nuclear Information System (INIS)

    Hu Xuerang; Sun Yuekui; Yuan Jun

    2008-01-01

    Recently, an expression has been developed to take into account the complex dependence of the fine structure in core-level electron energy-loss spectroscopy (EELS) in anisotropic materials on specimen orientation and spectral collection conditions [Y. Sun, J. Yuan, Phys. Rev. B 71 (2005) 125109]. One application of this expression is the development of a phenomenological theory of magic-angle electron energy-loss spectroscopy (MAEELS), which can be used to extract the isotropically averaged spectral information for materials with arbitrary anisotropy. Here we use this expression to extract not only the isotropically averaged spectral information, but also the anisotropic spectral components, without the restriction of MAEELS. The application is based on a multivariate statistical analysis of core-level EELS for anisotropic materials. To demonstrate the applicability of this approach, we have conducted a study on a set of carbon K-edge spectra of multi-wall carbon nanotube (MWCNT) acquired with energy-loss spectroscopic profiling (ELSP) technique and successfully extracted both the averaged and dichroic spectral components of the wrapped graphite-like sheets. Our result shows that this can be a practical alternative to MAEELS for the study of electronic structure of anisotropic materials, in particular for those nanostructures made of layered materials

  17. Multivariate statistical tools for the radiometric features of volcanic islands

    International Nuclear Information System (INIS)

    Basile, S.; Brai, M.; Marrale, M.; Micciche, S.; Lanzo, G.; Rizzo, S.

    2009-01-01

    The Aeolian Islands represents a Quaternary volcanic arc related to the subduction of the Ionian plate beneath the Calabrian Arc. The geochemical variability of the islands has led to a broad spectrum of magma rocks. Volcanic products from calc-alkaline (CA) to calc-alkaline high in potassium (HKCA) are present throughout the Archipelago, but products belonging to shoshonitic (SHO) and potassium (KS) series characterize the southern portion of Lipari, Vulcano and Stromboli. Tectonics also plays an important role in the process of the islands differentiation. In this work, we want to review and cross-analyze the data on Lipari, Stromboli and Vulcano, collected in measurement and sampling campaigns over the last years. Chemical data were obtained by X-ray fluorescence. High resolution gamma-ray spectrometry with germanium detectors was used to measure primordial radionuclide activities. The activity of primordial radionuclides in the volcanic products of these three islands is strongly dependent on their chemism. The highest contents are found in more differentiated products (rhyolites). The CA products have lower concentrations, while the HKCA and Shoshonitic product concentrations are in between. Calculated dose rates have been correlated with the petrochemical features in order to gain further insight in evolution and differentiation of volcanic products. Ratio matching technique and multivariate statistical analyses, such as Principal Component Analysis and Minimum Spanning Tree, have been applied as an additional tool helpful to better describe the lithological affinities of the samples. (Author)

  18. An overview of multivariate gamma distributions as seen from a (multivariate) matrix exponential perspective

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2012-01-01

    Laplace transform. In a longer perspective stochastic and statistical analysis for MVME will in particular apply to any of the previously defined distributions. Multivariate gamma distributions have been used in a variety of fields like hydrology, [11], [10], [6], space (wind modeling) [9] reliability [3......Numerous definitions of multivariate exponential and gamma distributions can be retrieved from the literature [4]. These distribtuions belong to the class of Multivariate Matrix-- Exponetial Distributions (MVME) whenever their joint Laplace transform is a rational function. The majority...... of these distributions further belongs to an important subclass of MVME distributions [5, 1] where the multivariate random vector can be interpreted as a number of simultaneously collected rewards during sojourns in a the states of a Markov chain with one absorbing state, the rest of the states being transient. We...

  19. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    2012-01-01

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  20. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  1. Model for Building a Distribution Network Based on the Multivariate Analysis of the Industrial and Logistical Potential of Regions

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Kirillov

    2015-12-01

    Full Text Available The international integration of the Russian economy is connected to the need of the realization of the competitive advantages of the geopolitical position of Russia, the industrial potential of regions, the logistic infrastructure of transport corridors. This article discusses the design model of the supply chain (distribution network based on the multivariate analysis and the methodology of the substantiation of its configuration based on the cost factors and the level of the logistics infrastructure development. For solving the problem of placing one or more logistics centers in the service area, a two-stage algorithm is used. At the first stage, the decisions on the reasonability of the choice of one or another version of the development are made with А. В. Кириллов, В. Е. Целин 345 ЭКОНОМИКА РЕГИОНА №4 (2015 the use of the “Make or Buy” standard model. The criterion of decision making is the guaranteed overcoming of the threshold of “indifference” taking into account the statistical characteristics of costs for options of “buy” and “make” depending on the volume of consumption of goods or services. At the second stage, the Ardalan’s heuristic method is used for the evaluation of the choice of placing one or more logistics centers in the service area. The model parameters are based on the assessment of the development prospects of the region and its investment potential (existence and composition of employment, production, natural resources, financial and consumer opportunities, institutional, innovation, infrastructure capacity. Furthermore, such criteria as a regional financial appeal, professionally trained specialists, the competitive advantages of the promoted company and others are analyzed. An additional criterion is the development of the priority matrix, which considers such factors as difficulties of customs registration and certification, a level of regional transport

  2. Forensic classification of counterfeit banknote paper by X-ray fluorescence and multivariate statistical methods.

    Science.gov (United States)

    Guo, Hongling; Yin, Baohua; Zhang, Jie; Quan, Yangke; Shi, Gaojun

    2016-09-01

    Counterfeiting of banknotes is a crime and seriously harmful to economy. Examination of the paper, ink and toners used to make counterfeit banknotes can provide useful information to classify and link different cases in which the suspects use the same raw materials. In this paper, 21 paper samples of counterfeit banknotes seized from 13 cases were analyzed by wavelength dispersive X-ray fluorescence. After measuring the elemental composition in paper semi-quantitatively, the normalized weight percentage data of 10 elements were processed by multivariate statistical methods of cluster analysis and principle component analysis. All these paper samples were mainly classified into 3 groups. Nine separate cases were successfully linked. It is demonstrated that elemental composition measured by XRF is a useful way to compare and classify papers used in different cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece)

    International Nuclear Information System (INIS)

    Matiatos, Ioannis

    2016-01-01

    Nitrate (NO_3) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ"1"5N–NO_3 and δ"1"8O–NO_3) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO_3 sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC). - Highlights: • More enriched N-isotope values were observed in the industrial/urban areas. • A Bayesian isotope mixing model was applied in a multiple land-use area. • A 3-component model explained the factors controlling nitrate content in groundwater. • Industrial/urban nitrogen source was

  4. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Matiatos, Ioannis, E-mail: i.matiatos@iaea.org

    2016-01-15

    Nitrate (NO{sub 3}) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ{sup 15}N–NO{sub 3} and δ{sup 18}O–NO{sub 3}) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO{sub 3} sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC). - Highlights: • More enriched N-isotope values were observed in the industrial/urban areas. • A Bayesian isotope mixing model was applied in a multiple land-use area. • A 3-component model explained the factors controlling nitrate content in groundwater. • Industrial

  5. Lasso and probabilistic inequalities for multivariate point processes

    DEFF Research Database (Denmark)

    Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent

    2015-01-01

    Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function parameter to be estimated by linear combinations of a fixed dictionary. To select...... for multivariate Hawkes processes are proven, which allows us to check these assumptions by considering general dictionaries based on histograms, Fourier or wavelet bases. Motivated by problems of neuronal activity inference, we finally carry out a simulation study for multivariate Hawkes processes and compare our...... methodology with the adaptive Lasso procedure proposed by Zou in (J. Amer. Statist. Assoc. 101 (2006) 1418–1429). We observe an excellent behavior of our procedure. We rely on theoretical aspects for the essential question of tuning our methodology. Unlike adaptive Lasso of (J. Amer. Statist. Assoc. 101 (2006...

  6. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia); Omar, O. [Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor (Malaysia)

    2015-05-15

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  7. Classification of Malaysia aromatic rice using multivariate statistical analysis

    Science.gov (United States)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  8. Classification of Malaysia aromatic rice using multivariate statistical analysis

    International Nuclear Information System (INIS)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-01-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC–MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties

  9. A multivariate statistical methodology for detection of degradation and failure trends using nuclear power plant operational data

    International Nuclear Information System (INIS)

    Samanta, P.K.; Teichmann, T.

    1990-01-01

    In this paper, a multivariate statistical method is presented and demonstrated as a means for analyzing nuclear power plant transients (or events) and safety system performance for detection of malfunctions and degradations within the course of the event based on operational data. The study provides the methodology and illustrative examples based on data gathered from simulation of nuclear power plant transients (due to lack of easily accessible operational data). Such an approach, once fully developed, can be used to detect failure trends and patterns and so can lead to prevention of conditions with serious safety implications

  10. Multivariate Regression Analysis and Slaughter Livestock,

    Science.gov (United States)

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  11. Precipitation Interpolation by Multivariate Bayesian Maximum Entropy Based on Meteorological Data in Yun- Gui-Guang region, Mainland China

    Science.gov (United States)

    Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi

    2016-11-01

    Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.

  12. Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics

    Science.gov (United States)

    2012-01-01

    Background The metals bioavailability in soils is commonly assessed by chemical extractions; however a generally accepted method is not yet established. In this study, the effectiveness of Diffusive Gradients in Thin-films (DGT) technique and single extractions in the assessment of metals bioaccumulation in vegetables, and the influence of soil parameters on phytoavailability were evaluated using multivariate statistics. Soil and plants grown in vegetable gardens from mining-affected rural areas, NW Romania, were collected and analysed. Results Pseudo-total metal content of Cu, Zn and Cd in soil ranged between 17.3-146 mg kg-1, 141–833 mg kg-1 and 0.15-2.05 mg kg-1, respectively, showing enriched contents of these elements. High degrees of metals extractability in 1M HCl and even in 1M NH4Cl were observed. Despite the relatively high total metal concentrations in soil, those found in vegetables were comparable to values typically reported for agricultural crops, probably due to the low concentrations of metals in soil solution (Csoln) and low effective concentrations (CE), assessed by DGT technique. Among the analysed vegetables, the highest metal concentrations were found in carrots roots. By applying multivariate statistics, it was found that CE, Csoln and extraction in 1M NH4Cl, were better predictors for metals bioavailability than the acid extractions applied in this study. Copper transfer to vegetables was strongly influenced by soil organic carbon (OC) and cation exchange capacity (CEC), while pH had a higher influence on Cd transfer from soil to plants. Conclusions The results showed that DGT can be used for general evaluation of the risks associated to soil contamination with Cu, Zn and Cd in field conditions. Although quantitative information on metals transfer from soil to vegetables was not observed. PMID:23079133

  13. Multivariate Variables Recognition using Hotelling’s T2 and MEWMA via ANN’s

    Directory of Open Access Journals (Sweden)

    Chiñas-Sánchez Pamela

    2014-01-01

    Full Text Available In this article, a method for multivariate pattern recognition using artificial neural networks (ANN is proposed. The method is useful for monitoring multiple variables during the statistical process control. It employs descriptive statistics and multivariate control techniques. Three different ANN’s are evaluated to identify the network with higher efficiency during pattern recognition of multivariate variables tasks from data bases. Two data bases are analyzed; the first one is generated by simulation using the Montecarlo method, and the second data base was obtained from a public data base repository. The method consists of three stages: multivariate variables generation, multivariate analysis and pattern recognition using ANN’s. Several multivariate scenarios were generated using a combination of 2, 3 and 4 patterns in multivariate variables for the Hotelling’s T2 and MEWMA statistics that were analyzed to know its behavior and to determine their statistical characteristics. The pattern recognition task was evaluated using the ANN. In both study cases, experimental results showed an improved efficiency when using the Perceptron and the Backpropagation networks compared to the RBF network.

  14. Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia

    Directory of Open Access Journals (Sweden)

    Voza Danijela

    2015-12-01

    Full Text Available The aim of this article is to evaluate the quality of the Danube River in its course through Serbia as well as to demonstrate the possibilities for using three statistical methods: Principal Component Analysis (PCA, Factor Analysis (FA and Cluster Analysis (CA in the surface water quality management. Given that the Danube is an important trans-boundary river, thorough water quality monitoring by sampling at different distances during shorter and longer periods of time is not only ecological, but also a political issue. Monitoring was carried out at monthly intervals from January to December 2011, at 17 sampling sites. The obtained data set was treated by multivariate techniques in order, firstly, to identify the similarities and differences between sampling periods and locations, secondly, to recognize variables that affect the temporal and spatial water quality changes and thirdly, to present the anthropogenic impact on water quality parameters.

  15. Multivariate statistical analysis of stream sediments for mineral resources from the Craig NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; McInteer, C.; Broxton, D.E.; Bolivar, S.L.; Luke, M.E.

    1980-06-01

    Multivariate statistical analyses were carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Craig quadrangle, Colorado, to support the National Uranium Resource Evaluation and to evaluate strategic or other important commercial mineral resources. A few areas for favorable uranium mineralization are suggested for parts of the Wyoming Basin, Park Range, and Gore Range. Six potential source rocks for uranium are postulated based on factor score mapping. Vanadium in stream sediments is suggested as a pathfinder for carnotite-type mineralization. A probable northwest trend of lead-zinc-copper mineralization associated with Tertiary intrusions is suggested. A few locations are mapped where copper is associated with cobalt. Concentrations of placer sands containing rare earth elements, probably of commercial value, are indicated for parts of the Sand Wash Basin

  16. Application of multivariate techniques to analytical data on Aegean ceramics

    International Nuclear Information System (INIS)

    Bieber, A.M.; Brooks, D.W.; Harbottle, G.; Sayre, E.V.

    1976-01-01

    The general problems of data collection and handling for multivariate elemental analyses of ancient pottery are considered including such specific questions as the level of analytical precision required, the number and type of elements to be determined and the need for comprehensive multivariate statistical analysis of the collected data in contrast to element by element statistical analysis. The multivariate statistical procedures of clustering in a multidimensional space and determination of the numerical probabilities of specimens belonging to a group through calculation of the Mahalanobis distances for these specimens in multicomponent space are described together with supporting univariate statistical procedures used at Brookhaven. The application of these techniques to the data on Late Bronze Age Aegean pottery (largely previously analysed at Oxford and Brookhaven with some new specimens considered) have resulted in meaningful subdivisions of previously established groups. (author)

  17. MULTIVARIATE GEOGRAPHICAL CHARACTERISATION OF SLOVAK FRUIT DISTILLATES THROUGH MINERAL ELEMENTS PROFILE

    Directory of Open Access Journals (Sweden)

    Mária Koreňovská

    2011-12-01

    Full Text Available Mg, Ca, Zn, Cu, K and Na were determined in some species of Slovakian fruit distillates by atomic absorption spectrometry with the aim to differentiate the spirit drinks according to geographical origin. Potassium, sodium and copper were found as markers with the highest concentrations and variability in the distillates, namely in the apricot and grape brandy. Using the multivariate statistics of principal component and canonical discriminant analysis enabled relative effective differentiation of samples according to their regional origin. Prediction ability of the model resulted in more than 80% of correctly classified samples of the fruit distillates into the relevant Slovakian regions. doi: 10.5219/164

  18. Multivariate approach to matrimonial mobility in Catalonia.

    Science.gov (United States)

    Calafell, F; Hernández, M

    1993-10-01

    Matrimonial mobility in Catalonia was studied using 1986 census data. Comarca (a geographic division) of birth was used as the population unit, and a measure of affinity (a statistical distance) between comarques in spouse geographic origin was defined. This distance was analyzed with multivariate methods drawn from numerical taxonomy to detect any discontinuities in matrimonial mobility and gene flow between comarques. Results show a three-level pattern of gene flow in Catalonia: (1) a strong endogamy within comarques; (2) a 100-km matrimonial circle around every comarca; and (3) the capital, Barcelona, which attracts migrants from all over Catalonia. The regionalization in matrimonial mobility follows the geographically clear-cut groups of comarques almost exactly.

  19. MODEL APPLICATION MULTIVARIATE ANALYSIS OF STATISTICAL TECHNIQUES PCA AND HCA ASSESSMENT QUESTIONNAIRE ON CUSTOMER SATISFACTION: CASE STUDY IN A METALLURGICAL COMPANY OF METAL CONTAINERS

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Rosário

    2012-07-01

    Full Text Available The purpose of this research is to improve the practice on customer satisfaction analysis The article presents an analysis model to analyze the answers of a customer satisfaction evaluation in a systematic way with the aid of multivariate statistical techniques, specifically, exploratory analysis with PCA – Partial Components Analysis with HCA - Hierarchical Cluster Analysis. It was tried to evaluate the applicability of the model to be used by the issue company as a tool to assist itself on identifying the value chain perceived by the customer when applied the questionnaire of customer satisfaction. It was found with the assistance of multivariate statistical analysis that it was observed similar behavior among customers. It also allowed the company to conduct reviews on questions of the questionnaires, using analysis of the degree of correlation between the questions that was not a company’s practice before this research.

  20. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    Science.gov (United States)

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  1. TECHNIQUE OF THE STATISTICAL ANALYSIS OF INVESTMENT APPEAL OF THE REGION

    Directory of Open Access Journals (Sweden)

    А. А. Vershinina

    2014-01-01

    Full Text Available The technique of the statistical analysis of investment appeal of the region is given in scientific article for direct foreign investments. Definition of a technique of the statistical analysis is given, analysis stages reveal, the mathematico-statistical tools are considered.

  2. The iron bars from the ‘Gresham Ship’: employing multivariate statistics to further slag inclusion analysis of ferrous objects

    DEFF Research Database (Denmark)

    Birch, Thomas; Martinón-Torres, Marcos

    2015-01-01

    An assemblage of post-medieval iron bars was found with the Princes Channel wreck, salvaged from the Thames Estuary in 2003. They were recorded and studied, with a focus on metallography and slag inclusion analysis. The investigation provided an opportunity to explore the use of multivariate...... statistical techniques to analyse slag inclusion data. Cluster analysis supplemented by principal components analysis revealed two groups of iron, probably originating from different smelting systems, which were compared to those observed macroscopically and through metallography. The analyses reveal...

  3. Using the expected detection delay to assess the performance of different multivariate statistical process monitoring methods for multiplicative and drift faults.

    Science.gov (United States)

    Zhang, Kai; Shardt, Yuri A W; Chen, Zhiwen; Peng, Kaixiang

    2017-03-01

    Using the expected detection delay (EDD) index to measure the performance of multivariate statistical process monitoring (MSPM) methods for constant additive faults have been recently developed. This paper, based on a statistical investigation of the T 2 - and Q-test statistics, extends the EDD index to the multiplicative and drift fault cases. As well, it is used to assess the performance of common MSPM methods that adopt these two test statistics. Based on how to use the measurement space, these methods can be divided into two groups, those which consider the complete measurement space, for example, principal component analysis-based methods, and those which only consider some subspace that reflects changes in key performance indicators, such as partial least squares-based methods. Furthermore, a generic form for them to use T 2 - and Q-test statistics are given. With the extended EDD index, the performance of these methods to detect drift and multiplicative faults is assessed using both numerical simulations and the Tennessee Eastman process. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process.

    Science.gov (United States)

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A

    2017-08-07

    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  6. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  7. Multivariate survival analysis and competing risks

    CERN Document Server

    Crowder, Martin J

    2012-01-01

    Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.

  8. The value of multivariate model sophistication

    DEFF Research Database (Denmark)

    Rombouts, Jeroen; Stentoft, Lars; Violante, Francesco

    2014-01-01

    We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ in their spec....... In addition to investigating the value of model sophistication in terms of dollar losses directly, we also use the model confidence set approach to statistically infer the set of models that delivers the best pricing performances.......We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ...

  9. Models and Inference for Multivariate Spatial Extremes

    KAUST Repository

    Vettori, Sabrina

    2017-12-07

    The development of flexible and interpretable statistical methods is necessary in order to provide appropriate risk assessment measures for extreme events and natural disasters. In this thesis, we address this challenge by contributing to the developing research field of Extreme-Value Theory. We initially study the performance of existing parametric and non-parametric estimators of extremal dependence for multivariate maxima. As the dimensionality increases, non-parametric estimators are more flexible than parametric methods but present some loss in efficiency that we quantify under various scenarios. We introduce a statistical tool which imposes the required shape constraints on non-parametric estimators in high dimensions, significantly improving their performance. Furthermore, by embedding the tree-based max-stable nested logistic distribution in the Bayesian framework, we develop a statistical algorithm that identifies the most likely tree structures representing the data\\'s extremal dependence using the reversible jump Monte Carlo Markov Chain method. A mixture of these trees is then used for uncertainty assessment in prediction through Bayesian model averaging. The computational complexity of full likelihood inference is significantly decreased by deriving a recursive formula for the nested logistic model likelihood. The algorithm performance is verified through simulation experiments which also compare different likelihood procedures. Finally, we extend the nested logistic representation to the spatial framework in order to jointly model multivariate variables collected across a spatial region. This situation emerges often in environmental applications but is not often considered in the current literature. Simulation experiments show that the new class of multivariate max-stable processes is able to detect both the cross and inner spatial dependence of a number of extreme variables at a relatively low computational cost, thanks to its Bayesian hierarchical

  10. Confidence limits for contribution plots in multivariate statistical process control using bootstrap estimates.

    Science.gov (United States)

    Babamoradi, Hamid; van den Berg, Frans; Rinnan, Åsmund

    2016-02-18

    In Multivariate Statistical Process Control, when a fault is expected or detected in the process, contribution plots are essential for operators and optimization engineers in identifying those process variables that were affected by or might be the cause of the fault. The traditional way of interpreting a contribution plot is to examine the largest contributing process variables as the most probable faulty ones. This might result in false readings purely due to the differences in natural variation, measurement uncertainties, etc. It is more reasonable to compare variable contributions for new process runs with historical results achieved under Normal Operating Conditions, where confidence limits for contribution plots estimated from training data are used to judge new production runs. Asymptotic methods cannot provide confidence limits for contribution plots, leaving re-sampling methods as the only option. We suggest bootstrap re-sampling to build confidence limits for all contribution plots in online PCA-based MSPC. The new strategy to estimate CLs is compared to the previously reported CLs for contribution plots. An industrial batch process dataset was used to illustrate the concepts. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An Introduction to Applied Multivariate Analysis

    CERN Document Server

    Raykov, Tenko

    2008-01-01

    Focuses on the core multivariate statistics topics which are of fundamental relevance for its understanding. This book emphasis on the topics that are critical to those in the behavioral, social, and educational sciences.

  12. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    Science.gov (United States)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  13. The Inappropriate Symmetries of Multivariate Statistical Analysis in Geometric Morphometrics.

    Science.gov (United States)

    Bookstein, Fred L

    In today's geometric morphometrics the commonest multivariate statistical procedures, such as principal component analysis or regressions of Procrustes shape coordinates on Centroid Size, embody a tacit roster of symmetries -axioms concerning the homogeneity of the multiple spatial domains or descriptor vectors involved-that do not correspond to actual biological fact. These techniques are hence inappropriate for any application regarding which we have a-priori biological knowledge to the contrary (e.g., genetic/morphogenetic processes common to multiple landmarks, the range of normal in anatomy atlases, the consequences of growth or function for form). But nearly every morphometric investigation is motivated by prior insights of this sort. We therefore need new tools that explicitly incorporate these elements of knowledge, should they be quantitative, to break the symmetries of the classic morphometric approaches. Some of these are already available in our literature but deserve to be known more widely: deflated (spatially adaptive) reference distributions of Procrustes coordinates, Sewall Wright's century-old variant of factor analysis, the geometric algebra of importing explicit biomechanical formulas into Procrustes space. Other methods, not yet fully formulated, might involve parameterized models for strain in idealized forms under load, principled approaches to the separation of functional from Brownian aspects of shape variation over time, and, in general, a better understanding of how the formalism of landmarks interacts with the many other approaches to quantification of anatomy. To more powerfully organize inferences from the high-dimensional measurements that characterize so much of today's organismal biology, tomorrow's toolkit must rely neither on principal component analysis nor on the Procrustes distance formula, but instead on sound prior biological knowledge as expressed in formulas whose coefficients are not all the same. I describe the problems

  14. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    Science.gov (United States)

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Kalman filter for statistical monitoring of forest cover across sub-continental regions

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...

  16. Evaluation of significantly modified water bodies in Vojvodina by using multivariate statistical techniques

    Directory of Open Access Journals (Sweden)

    Vujović Svetlana R.

    2013-01-01

    Full Text Available This paper illustrates the utility of multivariate statistical techniques for analysis and interpretation of water quality data sets and identification of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Multivariate statistical techniques, such as factor analysis (FA/principal component analysis (PCA and cluster analysis (CA, were applied for the evaluation of variations and for the interpretation of a water quality data set of the natural water bodies obtained during 2010 year of monitoring of 13 parameters at 33 different sites. FA/PCA attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. Factor analysis is applied to physico-chemical parameters of natural water bodies with the aim classification and data summation as well as segmentation of heterogeneous data sets into smaller homogeneous subsets. Factor loadings were categorized as strong and moderate corresponding to the absolute loading values of >0.75, 0.75-0.50, respectively. Four principal factors were obtained with Eigenvalues >1 summing more than 78 % of the total variance in the water data sets, which is adequate to give good prior information regarding data structure. Each factor that is significantly related to specific variables represents a different dimension of water quality. The first factor F1 accounting for 28 % of the total variance and represents the hydrochemical dimension of water quality. The second factor F2 accounting for 18% of the total variance and may be taken factor of water eutrophication. The third factor F3 accounting 17 % of the total variance and represents the influence of point sources of pollution on water quality. The fourth factor F4 accounting 13 % of the total variance and may be taken as an ecological dimension of water quality. Cluster analysis (CA is an

  17. On Multivariate Methods in Robust Econometrics

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 21, č. 1 (2012), s. 69-82 ISSN 1210-0455 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : least weighted squares * heteroscedasticity * multivariate statistics * model selection * diagnostics * computational aspects Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.561, year: 2012 http://www.vse.cz/pep/abstrakt.php?IDcl=411

  18. OECD eXplorer: Making Regional Statistics Come Alive through a Geo-Visual Web-Tool

    Directory of Open Access Journals (Sweden)

    Monica Brezzi

    2011-06-01

    Full Text Available Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing highly interactive Geovisual Analytics applications for the Internet. An emerging and challenging application domain is geovisualization of regional (sub-national statistics. Higher integration drivenby institutional processes and economic globalisation is eroding national borders and creating competition along regional lines in the world market. Sound information at sub-national level and benchmark of regions across borders have gained importance in the policy agenda of many countries. In this paper, we introduce “OECD eXplorer” — an interactive tool for analyzing and communicating gained insights and discoveries about spatial-temporal and multivariate OECD regional data. This database is a potential treasure chest for policy-makers, researchers and citizens to gain a better understanding of a region’s structure and performance and to carry out analysis of territorial trends and disparities based on sound information comparableacross countries. Many approaches and tools have been developed in spatial-related knowledge discovery but generally they do not scale well with dynamic visualization of larger spatial data on the Internet. In this context, we introduce a web-compliant Geovisual Analytics toolkit that supports a broad collection offunctional components for analysis, hypothesis generation and validation. The same tool enables the communicationof results on the basis of a snapshot mechanism that captures, re-uses and shares task-related explorative findings. Further developments underway are in the creation of a generic highly interactive web “eXplorer” platform that can be the foundation for easy customization of similar web applications usingdifferent geographical boundaries and indicators. Given this global dimension, a “generic eXplorer” will be a powerful tool to explore different territorial dimensions

  19. Designing a risk-based surveillance program for Mycobacterium avium ssp. paratuberculosis in Norwegian dairy herds using multivariate statistical process control analysis.

    Science.gov (United States)

    Whist, A C; Liland, K H; Jonsson, M E; Sæbø, S; Sviland, S; Østerås, O; Norström, M; Hopp, P

    2014-11-01

    Surveillance programs for animal diseases are critical to early disease detection and risk estimation and to documenting a population's disease status at a given time. The aim of this study was to describe a risk-based surveillance program for detecting Mycobacterium avium ssp. paratuberculosis (MAP) infection in Norwegian dairy cattle. The included risk factors for detecting MAP were purchase of cattle, combined cattle and goat farming, and location of the cattle farm in counties containing goats with MAP. The risk indicators included production data [culling of animals >3 yr of age, carcass conformation of animals >3 yr of age, milk production decrease in older lactating cows (lactations 3, 4, and 5)], and clinical data (diarrhea, enteritis, or both, in animals >3 yr of age). Except for combined cattle and goat farming and cattle farm location, all data were collected at the cow level and summarized at the herd level. Predefined risk factors and risk indicators were extracted from different national databases and combined in a multivariate statistical process control to obtain a risk assessment for each herd. The ordinary Hotelling's T(2) statistic was applied as a multivariate, standardized measure of difference between the current observed state and the average state of the risk factors for a given herd. To make the analysis more robust and adapt it to the slowly developing nature of MAP, monthly risk calculations were based on data accumulated during a 24-mo period. Monitoring of these variables was performed to identify outliers that may indicate deviance in one or more of the underlying processes. The highest-ranked herds were scattered all over Norway and clustered in high-density dairy cattle farm areas. The resulting rankings of herds are being used in the national surveillance program for MAP in 2014 to increase the sensitivity of the ongoing surveillance program in which 5 fecal samples for bacteriological examination are collected from 25 dairy herds

  20. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  1. Total coliforms, arsenic and cadmium exposure through drinking water in the Western Region of Ghana: application of multivariate statistical technique to groundwater quality.

    Science.gov (United States)

    Affum, Andrews Obeng; Osae, Shiloh Dede; Nyarko, Benjamin Jabez Botwe; Afful, Samuel; Fianko, Joseph Richmond; Akiti, Tetteh Thomas; Adomako, Dickson; Acquaah, Samuel Osafo; Dorleku, Micheal; Antoh, Emmanuel; Barnes, Felix; Affum, Enoch Acheampong

    2015-02-01

    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3

  2. The analysis of multivariate group differences using common principal components

    NARCIS (Netherlands)

    Bechger, T.M.; Blanca, M.J.; Maris, G.

    2014-01-01

    Although it is simple to determine whether multivariate group differences are statistically significant or not, such differences are often difficult to interpret. This article is about common principal components analysis as a tool for the exploratory investigation of multivariate group differences

  3. Application of multivariate statistical methods to classify archaeological pottery from Tel-Alramad site, Syria, based on x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bakraji, E. H.

    2007-01-01

    Radioisotopic x-ray fluorescence (XRF) analysis has been utilized to determine the elemental composition of 55 archaeological pottery samples by the determination of 17 chemical elements. Fifty-four of them came from the Tel-Alramad Site in Katana town, near Damascus city, Syria, and one sample came from Brazil. The XRF results have been processed using two multivariate statistical methods, cluster and factor analysis, in order to determine similarities and correlation between the selected samples based on their elemental composition. The methodology successfully separates the samples where four distinct chemical groups were identified. (author)

  4. Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques

    International Nuclear Information System (INIS)

    Abbas Alkarkhi, F.M.; Ismail, Norli; Easa, Azhar Mat

    2008-01-01

    Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers

  5. Power Estimation in Multivariate Analysis of Variance

    Directory of Open Access Journals (Sweden)

    Jean François Allaire

    2007-09-01

    Full Text Available Power is often overlooked in designing multivariate studies for the simple reason that it is believed to be too complicated. In this paper, it is shown that power estimation in multivariate analysis of variance (MANOVA can be approximated using a F distribution for the three popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk`s likelihood ratio. Consequently, the same procedure, as in any statistical test, can be used: computation of the critical F value, computation of the noncentral parameter (as a function of the effect size and finally estimation of power using a noncentral F distribution. Various numerical examples are provided which help to understand and to apply the method. Problems related to post hoc power estimation are discussed.

  6. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    Science.gov (United States)

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical

  7. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Albrechtsen, Hans-Jørgen; Rootzén, Helle

    1997-01-01

    Different multivariate statistical analyses were applied to phospholipid fatty acids representing the biomass composition and to different biogeochemical parameters measured in 37 samples from a landfill contaminated aquifer at Grindsted Landfill (Denmark). Principal component analysis...... and correspondence analysis were used to identify groups of samples showing similar patterns with respect to biogeochemical variables and phospholipid fatty acid composition. The principal component analysis revealed that for the biogeochemical parameters the first principal component was linked to the pollution...... was used to allocate samples of phospholipid fatty acids into predefined classes. A large percentages of samples were classified correctly when discriminating samples into groups of dissolved organic carbon and specific conductivity, indicating that the biomass is highly influenced by the pollution...

  8. Attitudes toward Advanced and Multivariate Statistics When Using Computers.

    Science.gov (United States)

    Kennedy, Robert L.; McCallister, Corliss Jean

    This study investigated the attitudes toward statistics of graduate students who studied advanced statistics in a course in which the focus of instruction was the use of a computer program in class. The use of the program made it possible to provide an individualized, self-paced, student-centered, and activity-based course. The three sections…

  9. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    Science.gov (United States)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  10. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Bodrud-Doza

    2016-04-01

    Full Text Available This study investigates the groundwater quality in the Faridpur district of central Bangladesh based on preselected 60 sample points. Water evaluation indices and a number of statistical approaches such as multivariate statistics and geostatistics are applied to characterize water quality, which is a major factor for controlling the groundwater quality in term of drinking purposes. The study reveal that EC, TDS, Ca2+, total As and Fe values of groundwater samples exceeded Bangladesh and international standards. Ground water quality index (GWQI exhibited that about 47% of the samples were belonging to good quality water for drinking purposes. The heavy metal pollution index (HPI, degree of contamination (Cd, heavy metal evaluation index (HEI reveal that most of the samples belong to low level of pollution. However, Cd provide better alternative than other indices. Principle component analysis (PCA suggests that groundwater quality is mainly related to geogenic (rock–water interaction and anthropogenic source (agrogenic and domestic sewage in the study area. Subsequently, the findings of cluster analysis (CA and correlation matrix (CM are also consistent with the PCA results. The spatial distributions of groundwater quality parameters are determined by geostatistical modeling. The exponential semivariagram model is validated as the best fitted models for most of the indices values. It is expected that outcomes of the study will provide insights for decision makers taking proper measures for groundwater quality management in central Bangladesh.

  11. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    Science.gov (United States)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  12. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  13. Introduction to multivariate discrimination

    Science.gov (United States)

    Kégl, Balázs

    2013-07-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyperparameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either

  14. Introduction to multivariate discrimination

    International Nuclear Information System (INIS)

    Kegl, B.

    2013-01-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyper-parameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either

  15. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr [National Institute for Applied Sciences – Lyon, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2015-01-15

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling

  16. Statistical analysis of management data

    CERN Document Server

    Gatignon, Hubert

    2013-01-01

    This book offers a comprehensive approach to multivariate statistical analyses. It provides theoretical knowledge of the concepts underlying the most important multivariate techniques and an overview of actual applications.

  17. Combining Statistical Methodologies in Water Quality Monitoring in a Hydrological Basin - Space and Time Approaches

    OpenAIRE

    Costa, Marco; A. Manuela Gonçalves

    2012-01-01

    In this work are discussed some statistical approaches that combine multivariate statistical techniques and time series analysis in order to describe and model spatial patterns and temporal evolution by observing hydrological series of water quality variables recorded in time and space. These approaches are illustrated with a data set collected in the River Ave hydrological basin located in the Northwest region of Portugal.

  18. A statistical approach to evaluate flood risk at the regional level: an application to Italy

    Science.gov (United States)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

    2016-04-01

    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate

  19. Evaluation of strategies to promote learning using ICT: the case of a course on Topics of Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    Mario Miguel Ojeda Ramírez

    2017-01-01

    Full Text Available Currently some teachers implement different methods in order to promote education linked to reality, to provide more effective training and a meaningful learning. Activemethods aim to increase motivation and create scenarios in which student participation is central to achieve a more meaningful learning. This paper reports on the implementation of a process of educational innovation in the course of Topics of Multivariate Statistics offered in the degree in Statistical Sciences and Techniques at the Universidad Veracruzana (Mexico. The strategies used as sets for data collection, design and project development and realization of individual and group presentations are described. Information and communication technologies (ICT used are: EMINUS, distributed education platform of the Universidad Veracruzana, and managing files with Dropbox, plus communication via WhatsApp. The R software was used for statistical analysis and for making presentations in academic forums. To explore students' perceptions depth interviews were conducted and indicators for evaluating the student satisfaction were defined; the results show positive evidence, concluding that students were satisfied with the way that the course was designed and implemented. They also stated that they feel able to apply what they have learned. The opinions put that using these strategies they were feeling in preparation for their professional life. Finally, some suggestions for improving the course in future editions are included.

  20. Identification of Chemical Attribution Signatures of Fentanyl Syntheses Using Multivariate Statistical Analysis of Orthogonal Analytical Data

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, B. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mew, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DeHope, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spackman, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-24

    Attribution of the origin of an illicit drug relies on identification of compounds indicative of its clandestine production and is a key component of many modern forensic investigations. The results of these studies can yield detailed information on method of manufacture, starting material source, and final product - all critical forensic evidence. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods, all previously published fentanyl synthetic routes or hybrid versions thereof, were studied in an effort to identify and classify route-specific signatures. 160 distinct compounds and inorganic species were identified using gas and liquid chromatographies combined with mass spectrometric methods (GC-MS and LCMS/ MS-TOF) in conjunction with inductively coupled plasma mass spectrometry (ICPMS). The complexity of the resultant data matrix urged the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 87 route-specific CAS were classified and a statistical model capable of predicting the method of fentanyl synthesis was validated and tested against CAS profiles from crude fentanyl products deposited and later extracted from two operationally relevant surfaces: stainless steel and vinyl tile. This work provides the most detailed fentanyl CAS investigation to date by using orthogonal mass spectral data to identify CAS of forensic significance for illicit drug detection, profiling, and attribution.

  1. A statistical method (cross-validation) for bone loss region detection after spaceflight

    Science.gov (United States)

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  2. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van' t [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-03-15

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  4. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    International Nuclear Information System (INIS)

    Xu Chengjian; Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van’t

    2012-01-01

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  5. Clustering applications in financial and economic analysis of the crop production in the Russian regions

    Directory of Open Access Journals (Sweden)

    Gromov Vladislav Vladimirovich

    2013-08-01

    Full Text Available We used the complex mathematical modeling, multivariate statistical-analysis, fuzzy sets to analyze the financial and economic state of the crop production in Russian regions. We developed a system of indicators, detecting the state agricultural sector in the region, based on the results of correlation, factor, cluster analysis and statistics of the Federal State Statistics Service. We performed clustering analyses to divide regions of Russia on selected factors into five groups. A qualitative and quantitative characteristics of each cluster was received.

  6. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa

    OpenAIRE

    Vetrimurugan Elumalai; K. Brindha; Elango Lakshmanan

    2017-01-01

    Heavy metals in surface and groundwater were analysed and their sources were identified using multivariate statistical tools for two towns in South Africa. Human exposure risk through the drinking water pathway was also assessed. Electrical conductivity values showed that groundwater is desirable to permissible for drinking except for six locations. Concentration of aluminium, lead and nickel were above the permissible limit for drinking at all locations. Boron, cadmium, iron and manganese ex...

  7. Multivariate statistical process control in product quality review assessment - A case study.

    Science.gov (United States)

    Kharbach, M; Cherrah, Y; Vander Heyden, Y; Bouklouze, A

    2017-11-01

    According to the Food and Drug Administration and the European Good Manufacturing Practices (GMP) guidelines, Annual Product Review (APR) is a mandatory requirement in GMP. It consists of evaluating a large collection of qualitative or quantitative data in order to verify the consistency of an existing process. According to the Code of Federal Regulation Part 11 (21 CFR 211.180), all finished products should be reviewed annually for the quality standards to determine the need of any change in specification or manufacturing of drug products. Conventional Statistical Process Control (SPC) evaluates the pharmaceutical production process by examining only the effect of a single factor at the time using a Shewhart's chart. It neglects to take into account the interaction between the variables. In order to overcome this issue, Multivariate Statistical Process Control (MSPC) can be used. Our case study concerns an APR assessment, where 164 historical batches containing six active ingredients, manufactured in Morocco, were collected during one year. Each batch has been checked by assaying the six active ingredients by High Performance Liquid Chromatography according to European Pharmacopoeia monographs. The data matrix was evaluated both by SPC and MSPC. The SPC indicated that all batches are under control, while the MSPC, based on Principal Component Analysis (PCA), for the data being either autoscaled or robust scaled, showed four and seven batches, respectively, out of the Hotelling T 2 95% ellipse. Also, an improvement of the capability of the process is observed without the most extreme batches. The MSPC can be used for monitoring subtle changes in the manufacturing process during an APR assessment. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  8. 9th Annual UNCG Regional Mathematics and Statistics Conference

    CERN Document Server

    Chhetri, Maya; Gupta, Sat; Shivaji, Ratnasingham

    2015-01-01

    This volume contains rigorously reviewed papers on the topics presented by students at The 9th Annual University of North Carolina at Greensboro Regional Mathematics and Statistics Conference (UNCG RMSC) that took place on November 2, 2013.  All papers are coauthored by student researchers and their faculty mentors. This conference series was inaugurated in 2005, and it now attracts over 150 participants from over 30 universities from North Carolina and surrounding states. The conference is specifically tailored for students to present their research projects that encompass a broad spectrum of topics in mathematics, mathematical biology, statistics, and computer science.

  9. A direct-gradient multivariate index of biotic condition

    Science.gov (United States)

    Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.

    2012-01-01

    Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.

  10. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  11. Simplicial band depth for multivariate functional data

    KAUST Repository

    Ló pez-Pintado, Sara; Sun, Ying; Lin, Juan K.; Genton, Marc G.

    2014-01-01

    sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation

  12. Multivariate Statistical Analysis of Orthogonal Mass Spectral Data for the Identification of Chemical Attribution Signatures of 3-Methylfentanyl

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, B. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Valdez, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DeHope, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spackman, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanner, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martinez, H. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-28

    Critical to many modern forensic investigations is the chemical attribution of the origin of an illegal drug. This process greatly relies on identification of compounds indicative of its clandestine or commercial production. The results of these studies can yield detailed information on method of manufacture, sophistication of the synthesis operation, starting material source, and final product. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3- methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods were studied in an effort to identify and classify route-specific signatures. These methods were chosen to minimize the use of scheduled precursors, complicated laboratory equipment, number of overall steps, and demanding reaction conditions. Using gas and liquid chromatographies combined with mass spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductivelycoupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements were monitored. As seen in our previous work with CAS of fentanyl synthesis the complexity of the resultant data matrix necessitated the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically significant, route-specific CAS were identified. Statistical classification models using a variety of machine learning techniques were then developed with the ability to predict the method of 3-methylfentanyl synthesis from three blind crude samples generated by synthetic chemists without prior experience with these methods.

  13. The Effect of the Multivariate Box-Cox Transformation on the Power of MANOVA.

    Science.gov (United States)

    Kirisci, Levent; Hsu, Tse-Chi

    Most of the multivariate statistical techniques rely on the assumption of multivariate normality. The effects of non-normality on multivariate tests are assumed to be negligible when variance-covariance matrices and sample sizes are equal. Therefore, in practice, investigators do not usually attempt to remove non-normality. In this simulation…

  14. Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece).

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, Apostolos; Godelitsas, Athanasios

    2014-04-01

    The present study involves an integration of the hydrogeological, hydrochemical and isotopic (both stable and radiogenic) data of the groundwater samples taken from aquifers occurring in the region of northeastern Peloponnesus. Special emphasis has been given to health-related ions and isotopes in relation to the WHO and USEPA guidelines, to highlight the concentrations of compounds (e.g., As and Ba) exceeding the drinking water thresholds. Multivariate statistical analyses, i.e. two principal component analyses (PCA) and one discriminant analysis (DA), combined with conventional hydrochemical methodologies, were applied, with the aim to interpret the spatial variations in the groundwater quality and to identify the main hydrogeochemical factors and human activities responsible for the high ion concentrations and isotopic content in the groundwater analysed. The first PCA resulted in a three component model, which explained approximately 82% of the total variance of the data sets and enabled the identification of the hydrogeological processes responsible for the isotopic content i.e., δ(18)Ο, tritium and (222)Rn. The second PCA, involving the trace element presence in the water samples, revealed a four component model, which explained approximately 89% of the total variance of the data sets, giving more insight into the geochemical and anthropogenic controls on the groundwater composition (e.g., water-rock interaction, hydrothermal activity and agricultural activities). Using discriminant analysis, a four parameter (δ(18)O, (Ca+Mg)/(HCO3+SO4), EC and Cl) discriminant function concerning the (222)Rn content was derived, which favoured a classification of the samples according to the concentration of (222)Rn as (222)Rn-safe (11 Bq·L(-1)). The selection of radon builds on the fact that this radiogenic isotope has been generally related to increased health risk when consumed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The assessment of processes controlling the spatial distribution of hydrogeochemical groundwater types in Mali using multivariate statistics

    Science.gov (United States)

    Keita, Souleymane; Zhonghua, Tang

    2017-10-01

    Sustainable management of groundwater resources is a major issue for developing countries, especially in Mali. The multiple uses of groundwater led countries to promote sound management policies for sustainable use of the groundwater resources. For this reason, each country needs data enabling it to monitor and predict the changes of the resources. Also given the importance of groundwater quality changes often marked by the recurrence of droughts; the potential impacts of regional and geological setting of groundwater resources requires careful study. Unfortunately, recent decades have seen a considerable reduction of national capacities to ensure the hydrogeological monitoring and production of qualit data for decision making. The purpose of this work is to use the groundwater data and translate into useful information that can improve water resources management capacity in Mali. In this paper, we used groundwater analytical data from accredited, laboratories in Mali to carry out a national scale assessment of the groundwater types and their distribution. We, adapted multivariate statistical methods to classify 2035 groundwater samples into seven main groundwater types and built a national scale map from the results. We used a two-level K-mean clustering technique to examine the hydro-geochemical records as percentages of the total concentrations of major ions, namely sodium (Na), magnesium (Mg), calcium (Ca), chloride (Cl), bicarbonate (HCO3), and sulphate (SO4). The first step of clustering formed 20 groups, and these groups were then re-clustered to produce the final seven groundwater types. The results were verified and confirmed using Principal Component Analysis (PCA) and RockWare (Aq.QA) software. We found that HCO3 was the most dominant anion throughout the country and that Cl and SO4 were only important in some local zones. The dominant cations were Na and Mg. Also, major ion ratios changed with geographical location and geological, and climatic

  16. Matrix-based introduction to multivariate data analysis

    CERN Document Server

    Adachi, Kohei

    2016-01-01

    This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on ...

  17. Fractional and multivariable calculus model building and optimization problems

    CERN Document Server

    Mathai, A M

    2017-01-01

    This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions. Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable ...

  18. Geographically Sourcing Cocaine’s Origin - Delineation of the Nineteen Major Coca Growing Regions in South America

    Science.gov (United States)

    Mallette, Jennifer R.; Casale, John F.; Jordan, James; Morello, David R.; Beyer, Paul M.

    2016-03-01

    Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.

  19. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: Applying multivariate statistics to identify proteins with prognostic value and biological relevance

    NARCIS (Netherlands)

    Geert Heidema, A.; Thissen, U.; Boer, J.M.A.; Bouwman, F.G.; Feskens, E.J.M.; Mariman, E.C.M.

    2009-01-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch

  20. Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.

    2012-02-27

    The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew-elliptical distributions. We study in detail the cases of the multivariate skew-normal and skew-t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  1. Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions

    KAUST Repository

    Arellano-Valle, Reinaldo B.; Contreras-Reyes, Javier E.; Genton, Marc G.

    2012-01-01

    The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew-elliptical distributions. We study in detail the cases of the multivariate skew-normal and skew-t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  2. Methodological Problems Of Statistical Study Of Regional Tourism And Tourist Expenditure

    Directory of Open Access Journals (Sweden)

    Anton Olegovich Ovcharov

    2015-03-01

    Full Text Available The aim of the work is the analysis of the problems of regional tourism statistics. The subject of the research is the tourism expenditure, the specificity of their recording and modeling. The methods of statistical observation and factor analysis are used. The article shows the features and directions of statistical methodology of tourism. A brief review of international publications on statistical studies of tourist expenditure is made. It summarizes the data from different statistical forms and shows the positive and negative trends in the development of tourism in Russia. It is concluded that the tourist industry in Russia is focused on outbound tourism rather than on inbound or internal. The features of statistical accounting and statistical analysis of tourism expenditure in Russian and international statistics are described. To assess the level of development of regional tourism the necessity of use the coefficient of efficiency of tourism. The reasons of the prevalence of imports over exports of tourism services are revealed using the data of the balance of payments. This is due to the raw material orientation of Russian exports and low specific weight of the account “Services” in the structure of the balance of payments. The additive model is also proposed in the paper. It describes the influence of three factors on the changes in tourist expenditure. These factors are the number of trips, the cost of a trip and structural changes in destinations and travel purposes. On the basis of the data from 2012–2013 we estimate the force and the direction of the influence of each factor. Testing of the model showed that the increase in tourism exports caused by the combined positive impact of all three factors, chief of which is the growing number of foreigners who visited Russia during the concerned period.

  3. Simplicial band depth for multivariate functional data

    KAUST Repository

    López-Pintado, Sara

    2014-03-05

    We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.

  4. Basic elements of computational statistics

    CERN Document Server

    Härdle, Wolfgang Karl; Okhrin, Yarema

    2017-01-01

    This textbook on computational statistics presents tools and concepts of univariate and multivariate statistical data analysis with a strong focus on applications and implementations in the statistical software R. It covers mathematical, statistical as well as programming problems in computational statistics and contains a wide variety of practical examples. In addition to the numerous R sniplets presented in the text, all computer programs (quantlets) and data sets to the book are available on GitHub and referred to in the book. This enables the reader to fully reproduce as well as modify and adjust all examples to their needs. The book is intended for advanced undergraduate and first-year graduate students as well as for data analysts new to the job who would like a tour of the various statistical tools in a data analysis workshop. The experienced reader with a good knowledge of statistics and programming might skip some sections on univariate models and enjoy the various mathematical roots of multivariate ...

  5. A Framework for Diagnosing the Out-of-Control Signals in Multivariate Process Using Optimized Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Tai-fu Li

    2013-01-01

    Full Text Available Multivariate statistical process control is the continuation and development of unitary statistical process control. Most multivariate statistical quality control charts are usually used (in manufacturing and service industries to determine whether a process is performing as intended or if there are some unnatural causes of variation upon an overall statistics. Once the control chart detects out-of-control signals, one difficulty encountered with multivariate control charts is the interpretation of an out-of-control signal. That is, we have to determine whether one or more or a combination of variables is responsible for the abnormal signal. A novel approach for diagnosing the out-of-control signals in the multivariate process is described in this paper. The proposed methodology uses the optimized support vector machines (support vector machine classification based on genetic algorithm to recognize set of subclasses of multivariate abnormal patters, identify the responsible variable(s on the occurrence of abnormal pattern. Multiple sets of experiments are used to verify this model. The performance of the proposed approach demonstrates that this model can accurately classify the source(s of out-of-control signal and even outperforms the conventional multivariate control scheme.

  6. Evaluation of multivariate statistical analyses for monitoring and prediction of processes in an seawater reverse osmosis desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolluri, Srinivas Sahan; Esfahani, Iman Janghorban; Garikiparthy, Prithvi Sai Nadh; Yoo, Chang Kyoo [Kyung Hee University, Yongin (Korea, Republic of)

    2015-08-15

    Our aim was to analyze, monitor, and predict the outcomes of processes in a full-scale seawater reverse osmosis (SWRO) desalination plant using multivariate statistical techniques. Multivariate analysis of variance (MANOVA) was used to investigate the performance and efficiencies of two SWRO processes, namely, pore controllable fiber filterreverse osmosis (PCF-SWRO) and sand filtration-ultra filtration-reverse osmosis (SF-UF-SWRO). Principal component analysis (PCA) was applied to monitor the two SWRO processes. PCA monitoring revealed that the SF-UF-SWRO process could be analyzed reliably with a low number of outliers and disturbances. Partial least squares (PLS) analysis was then conducted to predict which of the seven input parameters of feed flow rate, PCF/SF-UF filtrate flow rate, temperature of feed water, turbidity feed, pH, reverse osmosis (RO)flow rate, and pressure had a significant effect on the outcome variables of permeate flow rate and concentration. Root mean squared errors (RMSEs) of the PLS models for permeate flow rates were 31.5 and 28.6 for the PCF-SWRO process and SF-UF-SWRO process, respectively, while RMSEs of permeate concentrations were 350.44 and 289.4, respectively. These results indicate that the SF-UF-SWRO process can be modeled more accurately than the PCF-SWRO process, because the RMSE values of permeate flowrate and concentration obtained using a PLS regression model of the SF-UF-SWRO process were lower than those obtained for the PCF-SWRO process.

  7. Evaluation of multivariate statistical analyses for monitoring and prediction of processes in an seawater reverse osmosis desalination plant

    International Nuclear Information System (INIS)

    Kolluri, Srinivas Sahan; Esfahani, Iman Janghorban; Garikiparthy, Prithvi Sai Nadh; Yoo, Chang Kyoo

    2015-01-01

    Our aim was to analyze, monitor, and predict the outcomes of processes in a full-scale seawater reverse osmosis (SWRO) desalination plant using multivariate statistical techniques. Multivariate analysis of variance (MANOVA) was used to investigate the performance and efficiencies of two SWRO processes, namely, pore controllable fiber filterreverse osmosis (PCF-SWRO) and sand filtration-ultra filtration-reverse osmosis (SF-UF-SWRO). Principal component analysis (PCA) was applied to monitor the two SWRO processes. PCA monitoring revealed that the SF-UF-SWRO process could be analyzed reliably with a low number of outliers and disturbances. Partial least squares (PLS) analysis was then conducted to predict which of the seven input parameters of feed flow rate, PCF/SF-UF filtrate flow rate, temperature of feed water, turbidity feed, pH, reverse osmosis (RO)flow rate, and pressure had a significant effect on the outcome variables of permeate flow rate and concentration. Root mean squared errors (RMSEs) of the PLS models for permeate flow rates were 31.5 and 28.6 for the PCF-SWRO process and SF-UF-SWRO process, respectively, while RMSEs of permeate concentrations were 350.44 and 289.4, respectively. These results indicate that the SF-UF-SWRO process can be modeled more accurately than the PCF-SWRO process, because the RMSE values of permeate flowrate and concentration obtained using a PLS regression model of the SF-UF-SWRO process were lower than those obtained for the PCF-SWRO process.

  8. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  9. Statistical mixture design and multivariate analysis of inkjet printed a-WO3/TiO2/WOX electrochromic films.

    Science.gov (United States)

    Wojcik, Pawel Jerzy; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2014-01-13

    An efficient mathematical strategy in the field of solution processed electrochromic (EC) films is outlined as a combination of an experimental work, modeling, and information extraction from massive computational data via statistical software. Design of Experiment (DOE) was used for statistical multivariate analysis and prediction of mixtures through a multiple regression model, as well as the optimization of a five-component sol-gel precursor subjected to complex constraints. This approach significantly reduces the number of experiments to be realized, from 162 in the full factorial (L=3) and 72 in the extreme vertices (D=2) approach down to only 30 runs, while still maintaining a high accuracy of the analysis. By carrying out a finite number of experiments, the empirical modeling in this study shows reasonably good prediction ability in terms of the overall EC performance. An optimized ink formulation was employed in a prototype of a passive EC matrix fabricated in order to test and trial this optically active material system together with a solid-state electrolyte for the prospective application in EC displays. Coupling of DOE with chromogenic material formulation shows the potential to maximize the capabilities of these systems and ensures increased productivity in many potential solution-processed electrochemical applications.

  10. Statistical Study of Corruption in the Region (on the Example of the Rostov Region

    Directory of Open Access Journals (Sweden)

    Kirill A. Belokrylov

    2016-09-01

    Full Text Available The paper proves the effectiveness of the using of statistical methods for evaluation of the corruption level as a result of its, on the one hand, latency, concealment of official statistical accounting, and on the other - the scale of corruption in Russia. The comparative analysis of the substantial characteristics of the nature of corruption by Russian and foreign scientists, as well as their reflection in the law has allowed to develop a questionnaire to adequately assess the levels, causes and the effectiveness of implementation of the policy on the fight against corruption as the most important social indicator of inefficient institutions. Analysis of the results of the economic and sociological survey of the population of the Rostov region revealed a shift of corruption performance in the region in the direction of the education system as a result of the dominance in the selection of students, but it led to the conclusion about the need to tighten legislation on the fight against corruption (72% of respondents, including the confiscation of the property (79,1%, the dismissal of corrupt officials, the ban on public office. The necessity of further in-depth statistical studies of corruption on the development of more effective measures is improved to combat it as a tool for removal of the Russian economy from the crisis and ensure that it is more sustainable growth than projected in the 2020s (the lost decade 1,5% positive GDP dynamics.

  11. Multivariate statistical analysis of a multi-step industrial processes

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Høskuldsson, Agnar

    2007-01-01

    Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized...... efficiently, even if this information may reveal significant knowledge about process dynamics or ongoing phenomena. When studying the process data, it may be important to analyse the data in the light of the physical or time-wise development of each process step. In this paper, a unified approach to analyse...... multivariate multi-step processes, where results from each step are used to evaluate future results, is presented. The methods presented are based on Priority PLS Regression. The basic idea is to compute the weights in the regression analysis for given steps, but adjust all data by the resulting score vectors...

  12. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    Science.gov (United States)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and

  13. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    Science.gov (United States)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    , latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.

  14. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    Science.gov (United States)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  15. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary

    International Nuclear Information System (INIS)

    Liu, W.X.; Li, X.D.; Shen, Z.G.; Wang, D.C.; Wai, O.W.H.; Li, Y.S.

    2003-01-01

    Multivariate statistical analysis identified the heavy metal accumulation layers of sediment profiles and showed the various sources of metals in the estuary. - The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206 Pb/ 207 Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary

  16. Multivariate Statistical Analysis Software Technologies for Astrophysical Research Involving Large Data Bases

    Science.gov (United States)

    Djorgovski, S. G.

    1994-01-01

    We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complex database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects of the SKICAT system, and of some of the scientific results achieved to date. We also developed a user-friendly package for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications and has

  17. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    Science.gov (United States)

    Djorgovski, S. George

    1994-01-01

    We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complete database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful, and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications, and has produced real, published results.

  18. A trust region approach with multivariate Padé model for optimal circuit design

    Science.gov (United States)

    Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.

    2017-11-01

    Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.

  19. Multivariate Methods Based Soft Measurement for Wine Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Shen Yin

    2014-01-01

    a decision. However, since the physicochemical indexes of wine can to some extent reflect the quality of wine, the multivariate statistical methods based soft measure can help the oenologist in wine evaluation.

  20. Transition-Region Ultraviolet Explosive Events in IRIS Si IV: A Statistical Analysis

    Science.gov (United States)

    Bartz, Allison

    2018-01-01

    Explosive events (EEs) in the solar transition region are characterized by broad, non-Gaussian line profiles with wings at Doppler velocities exceeding the speed of sound. We present a statistical analysis of 23 IRIS (Interface Region Imaging Spectrograph) sit-and-stare observations, observed between April 2014 and March 2017. Using the IRIS Si IV 1394 Å and 1403 Å spectral windows and the 1400Å Slit Jaw images we have identified 581 EEs. We found that most EEs last less than 20 min. and have a spatial scale on the slit less than 10”, agreeing with measurements in previous work. We observed most EEs in active regions, regardless of date of observation, but selection bias of IRIS observations cannot be ruled out. We also present preliminary findings of optical depth effects from our statistical study.

  1. Robust methods for multivariate data analysis A1

    DEFF Research Database (Denmark)

    Frosch, Stina; Von Frese, J.; Bro, Rasmus

    2005-01-01

    Outliers may hamper proper classical multivariate analysis, and lead to incorrect conclusions. To remedy the problem of outliers, robust methods are developed in statistics and chemometrics. Robust methods reduce or remove the effect of outlying data points and allow the ?good? data to primarily...... determine the result. This article reviews the most commonly used robust multivariate regression and exploratory methods that have appeared since 1996 in the field of chemometrics. Special emphasis is put on the robust versions of chemometric standard tools like PCA and PLS and the corresponding robust...

  2. Perspectives on the application of order-statistics in best-estimate plus uncertainty nuclear safety analysis

    International Nuclear Information System (INIS)

    Martin, Robert P.; Nutt, William T.

    2011-01-01

    Research highlights: → Historical recitation on application of order-statistics models to nuclear power plant thermal-hydraulics safety analysis. → Interpretation of regulatory language regarding 10 CFR 50.46 reference to a 'high level of probability'. → Derivation and explanation of order-statistics-based evaluation methodologies considering multi-variate acceptance criteria. → Summary of order-statistics models and recommendations to the nuclear power plant thermal-hydraulics safety analysis community. - Abstract: The application of order-statistics in best-estimate plus uncertainty nuclear safety analysis has received a considerable amount of attention from methodology practitioners, regulators, and academia. At the root of the debate are two questions: (1) what is an appropriate quantitative interpretation of 'high level of probability' in regulatory language appearing in the LOCA rule, 10 CFR 50.46 and (2) how best to mathematically characterize the multi-variate case. An original derivation is offered to provide a quantitative basis for 'high level of probability.' At root of the second question is whether one should recognize a probability statement based on the tolerance region method of Wald and Guba, et al., for multi-variate problems, one explicitly based on the regulatory limits, best articulated in the Wallis-Nutt 'Testing Method', or something else entirely. This paper reviews the origins of the different positions, key assumptions, limitations, and relationship to addressing acceptance criteria. It presents a mathematical interpretation of the regulatory language, including a complete derivation of uni-variate order-statistics (as credited in AREVA's Realistic Large Break LOCA methodology) and extension to multi-variate situations. Lastly, it provides recommendations for LOCA applications, endorsing the 'Testing Method' and addressing acceptance methods allowing for limited sample failures.

  3. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    Science.gov (United States)

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  4. The studies of post-medieval glass by multivariate and X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kierzek, J.; Kunicki-Goldfinger, J.

    2002-01-01

    Multivariate statistical analysis of the results obtained by energy dispersive X-ray fluorescence analysis has been used in the study of baroque vessel glasses originated from central Europe. X-ray spectrometry can be applied as a completely non-destructive, non-sampling and multi-element method. It is very useful in the studies of valuable historical artefacts. For the last years, multivariate statistical analysis has been developed as an important tool for the archaeometric purposes. Cluster, principal component and discriminant analysis were applied for the classification of the examined objects. The obtained results show that these statistical tools are very useful and complementary in the studies of historical objects. (author)

  5. Multivariate Regression of Liver on Intestine of Mice: A ...

    African Journals Online (AJOL)

    Multivariate Regression of Liver on Intestine of Mice: A Chemotherapeutic Evaluation of Plant ... Using an analysis of covariance model, the effects ... The findings revealed, with the aid of likelihood-ratio statistic, a marked improvement in

  6. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    Directory of Open Access Journals (Sweden)

    Zamani Abbas Ali

    2012-12-01

    Full Text Available Abstract The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP. Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs. Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  7. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    Science.gov (United States)

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  8. Multivariate phase type distributions - Applications and parameter estimation

    DEFF Research Database (Denmark)

    Meisch, David

    The best known univariate probability distribution is the normal distribution. It is used throughout the literature in a broad field of applications. In cases where it is not sensible to use the normal distribution alternative distributions are at hand and well understood, many of these belonging...... and statistical inference, is the multivariate normal distribution. Unfortunately only little is known about the general class of multivariate phase type distribution. Considering the results concerning parameter estimation and inference theory of univariate phase type distributions, the class of multivariate...... projects and depend on reliable cost estimates. The Successive Principle is a group analysis method primarily used for analyzing medium to large projects in relation to cost or duration. We believe that the mathematical modeling used in the Successive Principle can be improved. We suggested a novel...

  9. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study.

    Science.gov (United States)

    Catelani, Tiago A; Santos, João Rodrigo; Páscoa, Ricardo N M J; Pezza, Leonardo; Pezza, Helena R; Lopes, João A

    2018-03-01

    This work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T 2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Notices about using elementary statistics in psychology

    OpenAIRE

    松田, 文子; 三宅, 幹子; 橋本, 優花里; 山崎, 理央; 森田, 愛子; 小嶋, 佳子

    2003-01-01

    Improper uses of elementary statistics that were often observed in beginners' manuscripts and papers were collected and better ways were suggested. This paper consists of three parts: About descriptive statistics, multivariate analyses, and statistical tests.

  11. Determination of sulfamethoxazole and trimethoprim mixtures by multivariate electronic spectroscopy

    OpenAIRE

    Cordeiro, Gilcélia A.; Peralta-Zamora, Patricio; Nagata, Noemi; Pontarollo, Roberto

    2008-01-01

    In this work a multivariate spectroscopic methodology is proposed for quantitative determination of sulfamethoxazole and trimethoprim in pharmaceutical associations. The multivariate model was developed by partial least-squares regression, using twenty synthetic mixtures and the spectral region between 190 and 350 nm. In the validation stage, which involved the analysis of five synthetic mixtures, prediction errors lower that 3% were observed. The predictive capacity of the multivariate model...

  12. Modeling the geochemical distribution of rare earth elements (REEs using multivariate statistics in the eastern part of Marvast placer, the Yazd province

    Directory of Open Access Journals (Sweden)

    Amin Hossein Morshedy

    2017-07-01

    is to maximize both the similarity within each cluster and the difference between clusters, and finally find the structure in the data. Nowadays, cluster analysis is applied in many disciplines: biology, botany, medicine, psychology, geography, marketing, image processing, psychiatry, archaeology, etc. (Everitt et al., 2011. To execute a partitioning algorithm, the principal components analysis (PCA algorithm is applied for feature selection, feature extraction and dimension reduction. Hierarchical clustering can be utilized to provide a nested sequence of partitions with bottom-up or top-down methods based on similarity. The single linkage and complete linkage are the most popular hierarchical algorithms (Jain et al., 1999; Ji et al., 2007. Results and discussion The REE chondrite-normalized pattern for the eastern area in the Marvast placer represents a high match to the standard pattern of monazite. This pattern shows the positive anomaly of Ce and the negative anomaly of Eu. To determine the distribution of REEs concentration, 2D interpolation maps were plotted in three groups of light, middle, and heavy REEs (LREE, MREE, and HREE, which were indicated in the geochemical anomaly at the south and south-west of the area. The relative ratios of (LREE/HREE and (Ce/Eu exposed the high proportion of LREEs to HREEs. In the next section, the hierarchical clustering algorithm was employed to partition the data in the feature and sample levels. The elements portioning demonstrated four separated groups, which can be related to atomic and chemical structures. The studied region was divided into four zones by the clustering approach. The fourth zone confine coincided with the REE anomaly area. Finally, PCA was applied as the multivariate statistical tool to this dataset. Hence three principal components modeled over 90% of the variance. For the first component, the distribution map of load factor has a good agreement with anomaly area. References Alipour-Asll, M., Mirnejad

  13. Assessment of hi-resolution multi-ensemble statistical downscaling regional climate scenarios over Japan

    Science.gov (United States)

    Dairaku, K.

    2017-12-01

    The Asia-Pacific regions are increasingly threatened by large scale natural disasters. Growing concerns that loss and damages of natural disasters are projected to further exacerbate by climate change and socio-economic change. Climate information and services for risk assessments are of great concern. Fundamental regional climate information is indispensable for understanding changing climate and making decisions on when and how to act. To meet with the needs of stakeholders such as National/local governments, spatio-temporal comprehensive and consistent information is necessary and useful for decision making. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 37 GCMs (RCP8.5) and a statistical downscaling (Bias Corrected Spatial Disaggregation (BCSD)) to investigate uncertainty of projected change associated with structural differences of the GCMs for the periods of historical climate (1950-2005) and near future climate (2026-2050). Statistical downscaling regional climate scenarios show good performance for annual and seasonal averages for precipitation and temperature. The regional climate scenarios show systematic underestimate of extreme events such as hot days of over 35 Celsius and annual maximum daily precipitation because of the interpolation processes in the BCSD method. Each model projected different responses in near future climate because of structural differences. The most of CMIP5 37 models show qualitatively consistent increase of average and extreme temperature and precipitation. The added values of statistical/dynamical downscaling methods are also investigated for locally forced nonlinear phenomena, extreme events.

  14. Study on sources of colored glaze of Xiyue Temple in Shanxi province by INAA and multivariable statistical analysis

    International Nuclear Information System (INIS)

    Cheng Lin; Feng Songlin

    2005-01-01

    The major, minor and trace elements in the bodies of ancient colored glazes which came from the site of Xiyue Temple and Lidipo kiln in Shanxi province, and were unearthed from the stratums of Song, Yuan, Ming, Early Qing and Late Qing dynasty were analyzed by instrumental neutron activation analysis (INAA). The results of multivariable statistical analyses show that the chemical compositions of the colored glaze bodies are steady from Song to Early Qing dynasty, but distinctly different from that in Late Qing. Probably, the sources of fired material of ancient colored glaze from Song to Early Qing came from the site of Xiyue Temple. The chemical compositions of three pieces of colored glazes in Ming dynasty and that in Late Qing are similar to that of Lidipo kiln. From this, authors could conclude that the sources of the materials of ancient coloured glazes of Xiyue Temple in Late Qing dynasty were fired in Lidipo kiln. (authors)

  15. [Methods of the multivariate statistical analysis of so-called polyetiological diseases using the example of coronary heart disease].

    Science.gov (United States)

    Lifshits, A M

    1979-01-01

    General characteristics of the multivariate statistical analysis (MSA) is given. Methodical premises and criteria for the selection of an adequate MSA method applicable to pathoanatomic investigations of the epidemiology of multicausal diseases are presented. The experience of using MSA with computors and standard computing programs in studies of coronary arteries aterosclerosis on the materials of 2060 autopsies is described. The combined use of 4 MSA methods: sequential, correlational, regressional, and discriminant permitted to quantitate the contribution of each of the 8 examined risk factors in the development of aterosclerosis. The most important factors were found to be the age, arterial hypertension, and heredity. Occupational hypodynamia and increased fatness were more important in men, whereas diabetes melitus--in women. The registration of this combination of risk factors by MSA methods provides for more reliable prognosis of the likelihood of coronary heart disease with a fatal outcome than prognosis of the degree of coronary aterosclerosis.

  16. On exploiting wavelet bases in statistical region-based segmentation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren

    2002-01-01

    Statistical region-based segmentation methods such as the Active Appearance Models establish dense correspondences by modelling variation of shape and pixel intensities in low-resolution 2D images. Unfortunately, for high-resolution 2D and 3D images, this approach is rendered infeasible due to ex...... 9-7 wavelet on cardiac MRIs and human faces show that the segmentation accuracy is minimally degraded at compression ratios of 1:10 and 1:20, respectively....

  17. Inferring the origin of rare fruit distillates from compositional data using multivariate statistical analyses and the identification of new flavour constituents.

    Science.gov (United States)

    Mihajilov-Krstev, Tatjana M; Denić, Marija S; Zlatković, Bojan K; Stankov-Jovanović, Vesna P; Mitić, Violeta D; Stojanović, Gordana S; Radulović, Niko S

    2015-04-01

    In Serbia, delicatessen fruit alcoholic drinks are produced from autochthonous fruit-bearing species such as cornelian cherry, blackberry, elderberry, wild strawberry, European wild apple, European blueberry and blackthorn fruits. There are no chemical data on many of these and herein we analysed volatile minor constituents of these rare fruit distillates. Our second goal was to determine possible chemical markers of these distillates through a statistical/multivariate treatment of the herein obtained and previously reported data. Detailed chemical analyses revealed a complex volatile profile of all studied fruit distillates with 371 identified compounds. A number of constituents were recognised as marker compounds for a particular distillate. Moreover, 33 of them represent newly detected flavour constituents in alcoholic beverages or, in general, in foodstuffs. With the aid of multivariate analyses, these volatile profiles were successfully exploited to infer the origin of raw materials used in the production of these spirits. It was also shown that all fruit distillates possessed weak antimicrobial properties. It seems that the aroma of these highly esteemed wild-fruit spirits depends on the subtle balance of various minor volatile compounds, whereby some of them are specific to a certain type of fruit distillate and enable their mutual distinction. © 2014 Society of Chemical Industry.

  18. Methods for Analyzing Multivariate Phenotypes in Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Qiong Yang

    2012-01-01

    Full Text Available Multivariate phenotypes are frequently encountered in genetic association studies. The purpose of analyzing multivariate phenotypes usually includes discovery of novel genetic variants of pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the underlying genetic mechanism. In recent years, there have been new method development and application of existing statistical methods to such phenotypes. In this paper, we provide a review of the available methods for analyzing association between a single marker and a multivariate phenotype consisting of the same type of components (e.g., all continuous or all categorical or different types of components (e.g., some are continuous and others are categorical. We also reviewed causal inference methods designed to test whether the detected association with the multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some phenotypes through affecting the others.

  19. Multivariate analysis of eigenvalues and eigenvectors in tensor based morphometry

    Science.gov (United States)

    Rajagopalan, Vidya; Schwartzman, Armin; Hua, Xue; Leow, Alex; Thompson, Paul; Lepore, Natasha

    2015-01-01

    We develop a new algorithm to compute voxel-wise shape differences in tensor-based morphometry (TBM). As in standard TBM, we non-linearly register brain T1-weighed MRI data from a patient and control group to a template, and compute the Jacobian of the deformation fields. In standard TBM, the determinants of the Jacobian matrix at each voxel are statistically compared between the two groups. More recently, a multivariate extension of the statistical analysis involving the deformation tensors derived from the Jacobian matrices has been shown to improve statistical detection power.7 However, multivariate methods comprising large numbers of variables are computationally intensive and may be subject to noise. In addition, the anatomical interpretation of results is sometimes difficult. Here instead, we analyze the eigenvalues and the eigenvectors of the Jacobian matrices. Our method is validated on brain MRI data from Alzheimer's patients and healthy elderly controls from the Alzheimer's Disease Neuro Imaging Database.

  20. Data classification and MTBF prediction with a multivariate analysis approach

    International Nuclear Information System (INIS)

    Braglia, Marcello; Carmignani, Gionata; Frosolini, Marco; Zammori, Francesco

    2012-01-01

    The paper presents a multivariate statistical approach that supports the classification of mechanical components, subjected to specific operating conditions, in terms of the Mean Time Between Failure (MTBF). Assessing the influence of working conditions and/or environmental factors on the MTBF is a prerequisite for the development of an effective preventive maintenance plan. However, this task may be demanding and it is generally performed with ad-hoc experimental methods, lacking of statistical rigor. To solve this common problem, a step by step multivariate data classification technique is proposed. Specifically, a set of structured failure data are classified in a meaningful way by means of: (i) cluster analysis, (ii) multivariate analysis of variance, (iii) feature extraction and (iv) predictive discriminant analysis. This makes it possible not only to define the MTBF of the analyzed components, but also to identify the working parameters that explain most of the variability of the observed data. The approach is finally demonstrated on 126 centrifugal pumps installed in an oil refinery plant; obtained results demonstrate the quality of the final discrimination, in terms of data classification and failure prediction.

  1. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  2. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Bouanani, M E; Persson, L; Hult, M; Jonsson, P; Johnston, P N [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M; Zaring, C [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P N; Bubb, I F; Walker, B R; Stannard, W B [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  3. Modelling the Covariance Structure in Marginal Multivariate Count Models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Olivero, J.; Grande-Vega, M.

    2017-01-01

    The main goal of this article is to present a flexible statistical modelling framework to deal with multivariate count data along with longitudinal and repeated measures structures. The covariance structure for each response variable is defined in terms of a covariance link function combined...... be used to indicate whether there was statistical evidence of a decline in blue duikers and other species hunted during the study period. Determining whether observed drops in the number of animals hunted are indeed true is crucial to assess whether species depletion effects are taking place in exploited...... with a matrix linear predictor involving known matrices. In order to specify the joint covariance matrix for the multivariate response vector, the generalized Kronecker product is employed. We take into account the count nature of the data by means of the power dispersion function associated with the Poisson...

  4. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  5. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    Science.gov (United States)

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  6. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    Science.gov (United States)

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 1H NMR and Multivariate Analysis for Geographic Characterization of Commercial Extra Virgin Olive Oil: A Possible Correlation with Climate Data

    Directory of Open Access Journals (Sweden)

    Domenico Rongai

    2017-11-01

    Full Text Available 1H Nuclear Magnetic Resonance (NMR spectroscopy coupled with multivariate analysis has been applied in order to investigate metabolomic profiles of more than 200 extravirgin olive oils (EVOOs collected in a period of over four years (2009–2012 from different geographic areas. In particular, commercially blended EVOO samples originating from different Italian regions (Tuscany, Sicily and Apulia, as well as European (Spain and Portugal and non-European (Tunisia, Turkey, Chile and Australia countries. Multivariate statistical analysis (Principal Component Analisys (PCA and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA applied on the NMR data revealed the existence of marked differences between Italian (in particular from Tuscany, Sicily and Apulia regions and foreign (in particular Tunisian EVOO samples. A possible correlation with available climate data has been also investigated. These results aim to develop a powerful NMR-based tool able to protect Italian olive oil productions.

  8. Assessment of roadside surface water quality of Savar, Dhaka, Bangladesh using GIS and multivariate statistical techniques

    Science.gov (United States)

    Ahmed, Fahad; Fakhruddin, A. N. M.; Imam, MD. Toufick; Khan, Nasima; Abdullah, Abu Tareq Mohammad; Khan, Tanzir Ahmed; Rahman, Md. Mahfuzur; Uddin, Mohammad Nashir

    2017-11-01

    In this study, multivariate statistical techniques in collaboration with GIS are used to assess the roadside surface water quality of Savar region. Nineteen water samples were collected in dry season and 15 water quality parameters including TSS, TDS, pH, DO, BOD, Cl-, F-, NO3 2-, NO2 -, SO4 2-, Ca, Mg, K, Zn and Pb were measured. The univariate overview of water quality parameters are TSS 25.154 ± 8.674 mg/l, TDS 840.400 ± 311.081 mg/l, pH 7.574 ± 0.256 pH unit, DO 4.544 ± 0.933 mg/l, BOD 0.758 ± 0.179 mg/l, Cl- 51.494 ± 28.095 mg/l, F- 0.771 ± 0.153 mg/l, NO3 2- 2.211 ± 0.878 mg/l, NO2 - 4.692 ± 5.971 mg/l, SO4 2- 69.545 ± 53.873 mg/l, Ca 48.458 ± 22.690 mg/l, Mg 19.676 ± 7.361 mg/l, K 12.874 ± 11.382 mg/l, Zn 0.027 ± 0.029 mg/l, Pb 0.096 ± 0.154 mg/l. The water quality data were subjected to R-mode PCA which resulted in five major components. PC1 explains 28% of total variance and indicates the roadside and brick field dust settle down (TDS, TSS) in the nearby water body. PC2 explains 22.123% of total variance and indicates the agricultural influence (K, Ca, and NO2 -). PC3 describes the contribution of nonpoint pollution from agricultural and soil erosion processes (SO4 2-, Cl-, and K). PC4 depicts heavy positively loaded by vehicle emission and diffusion from battery stores (Zn, Pb). PC5 depicts strong positive loading of BOD and strong negative loading of pH. Cluster analysis represents three major clusters for both water parameters and sampling sites. The site based on cluster showed similar grouping pattern of R-mode factor score map. The present work reveals a new scope to monitor the roadside water quality for future research in Bangladesh.

  9. STATISTICAL INSIGHT INTO THE BINDING REGIONS IN DISORDERED HUMAN PROTEOME

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2016-03-01

    Full Text Available The human proteome contains a significant number of intrinsically disordered proteins (IDPs. They show unusual structural features that enable them to participate in diverse cellular functions and play significant roles in cell signaling and reorganization processes. In addition, the actions of IDPs, their functional cooperativity, conformational alterations and folding often accompany binding to a target macromolecule. Applying bioinformatics approaches and with the aid of statistical methodologies, we investigated the statistical parameters of binding regions (BRs found in disordered human proteome. In this report, we detailed the bioinformatics analysis of binding regions found in the IDPs. Statistical models for the occurrence of BRs, their length distribution and percent occupancy in the parent proteins are shown. The frequency of BRs followed a Poisson distribution pattern with increasing expectancy with the degree of disorderedness. The length of the individual BRs also followed Poisson distribution with a mean of 6 residues, whereas, percentage of residues in BR showed a normal distribution pattern. We also explored the physicochemical properties such as the grand average of hydropathy (GRAVY and the theoretical isoelectric points (pIs. The theoretical pIs of the BRs followed a bimodal distribution as in the parent proteins. However, the mean acidic/basic pIs were significantly lower/higher than that of the proteins, respectively. We further showed that the amino acid composition of BRs was enriched in hydrophobic residues such as Ala, Val, Ile, Leu and Phe compared to the average sequence content of the proteins. Sequences in a BR showed conformational adaptability mostly towards flexible coil structure and followed by helix, however, the ordered secondary structural conformation was significantly lower in BRs than the proteins. Combining and comparing these statistical information of BRs with other methods may be useful for high

  10. Authigenic oxide Neodymium Isotopic composition as a proxy of seawater: applying multivariate statistical analyses.

    Science.gov (United States)

    McKinley, C. C.; Scudder, R.; Thomas, D. J.

    2016-12-01

    The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential

  11. Multivariate Welch t-test on distances

    OpenAIRE

    Alekseyenko, Alexander V.

    2016-01-01

    Motivation: Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns visualized through dimension reduction. This method recognizes that pairwise distance matrix between observations is sufficient to compute within and between group sums of squares necessary to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used. This method...

  12. Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches.

    Science.gov (United States)

    Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar

    2016-02-01

    The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders

  13. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    OpenAIRE

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and C...

  14. Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis

    Science.gov (United States)

    chan, S.

    2013-12-01

    The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources

  15. Statistical methods to monitor the West Valley off-gas system

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1990-01-01

    This paper reports on the of-gas system for the ceramic melter operated at the West Valley Demonstration Project at West Valley, NY, monitored during melter operation. A one-at-a-time method of monitoring the parameters of the off-gas system is not statistically sound. Therefore, multivariate statistical methods appropriate for the monitoring of many correlated parameters will be used. Monitoring a large number of parameters increases the probability of a false out-of-control signal. If the parameters being monitored are statistically independent, the control limits can be easily adjusted to obtain the desired probability of a false out-of-control signal. The principal component (PC) scores have desirable statistical properties when the original variables are distributed as multivariate normals. Two statistics derived from the PC scores and used to form multivariate control charts are outlined and their distributional properties reviewed

  16. Application of the Method of Statistical Equations of Dependences to Assess the Dynamics of Regional Human Development Index for Khmelnytsk Region

    Directory of Open Access Journals (Sweden)

    R. О.

    2017-12-01

    Full Text Available A statistical approach to assessment of the factor values required to have necessary (planned, predicted levels of a resulting indicator achieved, including for purposes of regional socio-economic programs, is developed, by applying the method of statistical equations of dependences. The main problems that can be solved by use of the method of statistical equations of dependences are: direct and inverse problem; computing the factors’ contributions in the resulting indicator; constructing graphs of multiple relation and computing the shares of influence (the weights of selected factors; analysis of functional and correlation dependences, etc. The developed approach is used to assess the dynamics of Regional Human Development Index (RHDI for Khmelnytsk region (Ukraine and its constituent factors, in 2011–2015. The computations show that the factors with the largest contribution in RHDI of Khmelnytsk region are as follows: “number of minimal food baskets that can be purchased for average per capita income in the region” (62.91%, “housing in cities (square area per person” (20.27%, and “total birth rate” (5.33%. The contributions of factors like “planned capacity of ambulatories and policlinics per 10 thousand population” or “coverage of children in school age by secondary education” range from 5.26 to 0.14%. It is concluded that the proposed approach to the application of the method of statistical equations of dependences for modeling of factor and resulting indicators contributing to human development parameters at regional level can be used for assessments at sectoral level, with modifying the nomenclature of indicators measuring the socio-economic development and the financial and economic performance of business entities in an economic sector.

  17. Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model

    Science.gov (United States)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.

    2017-12-01

    Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land

  18. Hierarchical multivariate covariance analysis of metabolic connectivity.

    Science.gov (United States)

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  19. Essentials of multivariate data analysis

    CERN Document Server

    Spencer, Neil H

    2013-01-01

    ""… this text provides an overview at an introductory level of several methods in multivariate data analysis. It contains in-depth examples from one data set woven throughout the text, and a free [Excel] Add-In to perform the analyses in Excel, with step-by-step instructions provided for each technique. … could be used as a text (possibly supplemental) for courses in other fields where researchers wish to apply these methods without delving too deeply into the underlying statistics.""-The American Statistician, February 2015

  20. Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides.

    Science.gov (United States)

    Kalegowda, Yogesh; Harmer, Sarah L

    2012-03-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.

  1. Comparative study of the efficiency of computed univariate and multivariate methods for the estimation of the binary mixture of clotrimazole and dexamethasone using two different spectral regions

    Science.gov (United States)

    Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Lotfy, Hayam Mahmoud; Shehata, Mostafa Abdel-Aty

    2018-04-01

    Three methods of analysis are conducted that need computational procedures by the Matlab® software. The first is the univariate mean centering method which eliminates the interfering signal of the one component at a selected wave length leaving the amplitude measured to represent the component of interest only. The other two multivariate methods named PLS and PCR depend on a large number of variables that lead to extraction of the maximum amount of information required to determine the component of interest in the presence of the other. Good accurate and precise results are obtained from the three methods for determining clotrimazole in the linearity range 1-12 μg/mL and 75-550 μg/mL with dexamethasone acetate 2-20 μg/mL in synthetic mixtures and pharmaceutical formulation using two different spectral regions 205-240 nm and 233-278 nm. The results obtained are compared statistically to each other and to the official methods.

  2. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  3. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    Science.gov (United States)

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms.

    Science.gov (United States)

    Wang, Yalin; Chan, Tony F; Toga, Arthur W; Thompson, Paul M

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer's Disease (AD; 26 subjects), lateral ventricular surface morphometry in HIV/AIDS (19 subjects) and cortical surface morphometry in Williams Syndrome (WS; 80 subjects). Experimental results demonstrated that our method powerfully detected brain surface abnormalities. Multivariate statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.

  5. Multivariate Analysis for Animal Selection in Experimental Research

    Directory of Open Access Journals (Sweden)

    Renan Mercuri Pinto

    2015-02-01

    Full Text Available Background: Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective: To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods: The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA, aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results: The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion: The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate.

  6. Use of multivariate statistical tool for data processing in the analysis of Cu, Cr, Fe, Pb, Mo and Mg in lubricating oil by LIBS

    International Nuclear Information System (INIS)

    Alves, Luana F.N.; Sarkis, Jorge E.S.; Bordon, Isabela C.A.C.

    2015-01-01

    Analysis of industrial lubricants is widely used for monitoring and predicting maintenance requirements in a broad range of mechanical systems. Laser induced breakdown spectroscopy has been used to evaluate the potentiality of the technique for the determination of metals in lubricating oils. Prior to quantitative analysis, the LIBS system was calibrated using standard samples containing the elements investigated (Cu, Cr, Fe, Pb, Mo and Mg). This study presents the usefulness of multivariate statistical techniques for evaluation and interpretation of large complex data sets in order to get more information about concentration of metals in oils lubricants is related to engine wear. (author)

  7. Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods.

    Science.gov (United States)

    Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru

    2014-10-15

    Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Topics in theoretical and applied statistics

    CERN Document Server

    Giommi, Andrea

    2016-01-01

    This book highlights the latest research findings from the 46th International Meeting of the Italian Statistical Society (SIS) in Rome, during which both methodological and applied statistical research was discussed. This selection of fully peer-reviewed papers, originally presented at the meeting, addresses a broad range of topics, including the theory of statistical inference; data mining and multivariate statistical analysis; survey methodologies; analysis of social, demographic and health data; and economic statistics and econometrics.

  9. Decoding the complex brain: multivariate and multimodal analyses of neuroimaging data

    International Nuclear Information System (INIS)

    Salami, Alireza

    2012-01-01

    Functional brain images are extraordinarily rich data sets that reveal distributed brain networks engaged in a wide variety of cognitive operations. It is a substantial challenge both to create models of cognition that mimic behavior and underlying cognitive processes and to choose a suitable analytic method to identify underlying brain networks. Most of the contemporary techniques used in analyses of functional neuroimaging data are based on univariate approaches in which single image elements (i.e. voxels) are considered to be computationally independent measures. Beyond univariate methods (e.g. statistical parametric mapping), multivariate approaches, which identify a network across all regions of the brain rather than a tessellation of regions, are potentially well suited for analyses of brain imaging data. A multivariate method (e.g. partial least squares) is a computational strategy that determines time-varying distributed patterns of the brain (as a function of a cognitive task). Compared to its univariate counterparts, a multivariate approach provides greater levels of sensitivity and reflects cooperative interactions among brain regions. Thus, by considering information across more than one measuring point, additional information on brain function can be revealed. Similarly, by considering information across more than one measuring technique, the nature of underlying cognitive processes become well-understood. Cognitive processes have been investigated in conjunction with multiple neuroimaging modalities (e.g. fMRI, sMRI, EEG, DTI), whereas the typical method has been to analyze each modality separately. Accordingly, little work has been carried out to examine the relation between different modalities. Indeed, due to the interconnected nature of brain processing, it is plausible that changes in one modality locally or distally modulate changes in another modality. This thesis focuses on multivariate and multimodal methods of image analysis applied to

  10. Decoding the complex brain: multivariate and multimodal analyses of neuroimaging data

    Energy Technology Data Exchange (ETDEWEB)

    Salami, Alireza

    2012-07-01

    Functional brain images are extraordinarily rich data sets that reveal distributed brain networks engaged in a wide variety of cognitive operations. It is a substantial challenge both to create models of cognition that mimic behavior and underlying cognitive processes and to choose a suitable analytic method to identify underlying brain networks. Most of the contemporary techniques used in analyses of functional neuroimaging data are based on univariate approaches in which single image elements (i.e. voxels) are considered to be computationally independent measures. Beyond univariate methods (e.g. statistical parametric mapping), multivariate approaches, which identify a network across all regions of the brain rather than a tessellation of regions, are potentially well suited for analyses of brain imaging data. A multivariate method (e.g. partial least squares) is a computational strategy that determines time-varying distributed patterns of the brain (as a function of a cognitive task). Compared to its univariate counterparts, a multivariate approach provides greater levels of sensitivity and reflects cooperative interactions among brain regions. Thus, by considering information across more than one measuring point, additional information on brain function can be revealed. Similarly, by considering information across more than one measuring technique, the nature of underlying cognitive processes become well-understood. Cognitive processes have been investigated in conjunction with multiple neuroimaging modalities (e.g. fMRI, sMRI, EEG, DTI), whereas the typical method has been to analyze each modality separately. Accordingly, little work has been carried out to examine the relation between different modalities. Indeed, due to the interconnected nature of brain processing, it is plausible that changes in one modality locally or distally modulate changes in another modality. This thesis focuses on multivariate and multimodal methods of image analysis applied to

  11. Regional statistical and economic analysis of small and medium-sized businesses development in Zhytomyr region

    Directory of Open Access Journals (Sweden)

    S.I. Pavlova

    2017-08-01

    Full Text Available Small and medium-sized businesses play an important role in the development of the regional economic system in particular and in solving a number of the following local problems: developing competition, developing the market for goods and services, providing jobs for the able-bodied population, raising living standards and improving the social environment in society. The purpose of this paper is to analyze the state and development of small and medium-sized businesses in the Zhytomyr region, to analyze its contribution to the economic development of the region, and to identify the main problems existing in the region. According to the indicators of state statistics, the author presents the general characteristics of enterprises in the Zhytomyr region from 2012 to 2016 in the context of indicators of the number of enterprises, the number of employed workers and the volume of the products sold, highlighting the activities of small enterprises and assessing their share in general levels. In addition, the paper provides the description of the activities of individual entrepreneurs. The structural comparison for the above-listed indicators of the distribution of influence on the economic system of the Zhytomyr region in terms of enterprises by size is presented. In terms of quantity 93,5 % are small enterprises that provide 31,4 % of the total number of employees with work and make up 23,1 % of the total volume of sales. Average enterprises in these indicators have 6,4 %, 62,0 % and 54,8 % respectively. The statistical and economic analysis of the structure of small enterprises by types of economic activity, by indicators of the number of registered enterprises, and by the volumes of sold products is carried out. The uniformity of the distribution is estimated using the index of the concentration coefficient. The indicators of revenues to budgets of different levels from small and medium-sized businesses are set. The paper presents and summarizes the

  12. Determination of geographic provenance of cotton fibres using multi-isotope profiles and multivariate statistical analysis

    Science.gov (United States)

    Daeid, N. Nic; Meier-Augenstein, W.; Kemp, H. F.

    2012-04-01

    The analysis of cotton fibres can be particularly challenging within a forensic science context where discrimination of one fibre from another is of importance. Normally cotton fibre analysis examines the morphological structure of the recovered material and compares this with that of a known fibre from a particular source of interest. However, the conventional microscopic and chemical analysis of fibres and any associated dyes is generally unsuccessful because of the similar morphology of the fibres. Analysis of the dyes which may have been applied to the cotton fibre can also be undertaken though this can be difficult and unproductive in terms of discriminating one fibre from another. In the study presented here we have explored the potential for Isotope Ratio Mass Spectrometry (IRMS) to be utilised as an additional tool for cotton fibre analysis in an attempt to reveal further discriminatory information. This work has concentrated on un-dyed cotton fibres of known origin in order to expose the potential of the analytical technique. We report the results of a pilot study aimed at testing the hypothesis that multi-element stable isotope analysis of cotton fibres in conjunction with multivariate statistical analysis of the resulting isotopic abundance data using well established chemometric techniques permits sample provenancing based on the determination of where the cotton was grown and as such will facilitate sample discrimination. To date there is no recorded literature of this type of application of IRMS to cotton samples, which may be of forensic science relevance.

  13. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    Science.gov (United States)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  14. Quantitative profiling of polar metabolites in herbal medicine injections for multivariate statistical evaluation based on independence principal component analysis.

    Directory of Open Access Journals (Sweden)

    Miaomiao Jiang

    Full Text Available Botanical primary metabolites extensively exist in herbal medicine injections (HMIs, but often were ignored to control. With the limitation of bias towards hydrophilic substances, the primary metabolites with strong polarity, such as saccharides, amino acids and organic acids, are usually difficult to detect by the routinely applied reversed-phase chromatographic fingerprint technology. In this study, a proton nuclear magnetic resonance (1H NMR profiling method was developed for efficient identification and quantification of small polar molecules, mostly primary metabolites in HMIs. A commonly used medicine, Danhong injection (DHI, was employed as a model. With the developed method, 23 primary metabolites together with 7 polyphenolic acids were simultaneously identified, of which 13 metabolites with fully separated proton signals were quantified and employed for further multivariate quality control assay. The quantitative 1H NMR method was validated with good linearity, precision, repeatability, stability and accuracy. Based on independence principal component analysis (IPCA, the contents of 13 metabolites were characterized and dimensionally reduced into the first two independence principal components (IPCs. IPC1 and IPC2 were then used to calculate the upper control limits (with 99% confidence ellipsoids of χ2 and Hotelling T2 control charts. Through the constructed upper control limits, the proposed method was successfully applied to 36 batches of DHI to examine the out-of control sample with the perturbed levels of succinate, malonate, glucose, fructose, salvianic acid and protocatechuic aldehyde. The integrated strategy has provided a reliable approach to identify and quantify multiple polar metabolites of DHI in one fingerprinting spectrum, and it has also assisted in the establishment of IPCA models for the multivariate statistical evaluation of HMIs.

  15. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    Science.gov (United States)

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  16. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    Science.gov (United States)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  17. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Science.gov (United States)

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome. Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  18. Understanding gendered aspects of migration aspiration and motives of university students by multivariate statistical methods

    Directory of Open Access Journals (Sweden)

    Đula Borozan

    2014-03-01

    Full Text Available The paper deals with the application of multivariate analysis of variance and logistic regression in measuring, explaining and evaluating (i gender differences in expressing migration aspirations, and (ii a gender effect on migration motivation of university students in Croatia. The results supported the thesis that migration is a complex gendering process that assumes subjective assessment of the whole set of interrelated motives. According to logistic regression, gender is a significant predictor of migration aspirations among the selected demographic and socio-economic variables. A multivariate analysis of variance showed that gender and migration aspirations in interaction matter when it comes to migration motives, particularly related to the perceived importance of social networks. Females, and especially those who aspire to migrate, assessed these motives as more important than males.

  19. ANALYSIS OF THE INCIDENCE OF PROSTATE CANCER IN THE ROSTOV REGION FOR THE YEARS 2001–2016: SPATIOTEMPORAL STATISTICS

    Directory of Open Access Journals (Sweden)

    O. E. Arhipova

    2017-01-01

    Full Text Available Introduction. Oncological diseases is a serious medico-social problem of modern society. The article presents the analysis of prostate cancer morbidity with consideration of regional health level differences.Objective. To conduct spatial-temporal analysis of prostate cancer incidence in Rostov region; to identify areas with a statistically significant increase in the incidence of prostate cancer; to identify regional differences (environmental determinism in the development of cancer in the southern Federal district.Materials and methods. We’ve analysed incidence of prostate cancer in the Rostov region for the period of 2001-2016. The analysis has been performed using tools spatio-temporal statistics on software ArcGis 10 *.Results. Areas and cities of Rostov region with a statistically significant increase in prostate cancer incidence were identified. It has been shown that in the regions and cities of the Rostov region with a low level of medical-ecological safety had a statistically significant increase in prostate cancer incidenceConclusions. The results can serve as a basis for the directional analysis of factors causing increased risk of cancer and development on this basis strategies for monitoring and prevention of cancer diseases in the Rostov region.

  20. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    Science.gov (United States)

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  1. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    Science.gov (United States)

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants

  2. Practical statistics a handbook for business projects

    CERN Document Server

    Buglear, John

    2013-01-01

    Practical Statistics is a hands-on guide to statistics, progressing by complexity of data (univariate, bivariate, multivariate) and analysis (portray, summarise, generalise) in order to give the reader a solid understanding of the fundamentals and how to apply them.

  3. Introductory statistical inference

    CERN Document Server

    Mukhopadhyay, Nitis

    2014-01-01

    This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist

  4. Vector field statistical analysis of kinematic and force trajectories.

    Science.gov (United States)

    Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos

    2013-09-27

    When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of 'non-directed' hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called 'statistical parametric mapping' (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems. © 2013 Published by Elsevier Ltd. All rights reserved.

  5. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  6. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  7. A Statistical Study of Eiscat Electron and Ion Temperature Measurements In The E-region

    Science.gov (United States)

    Hussey, G.; Haldoupis, C.; Schlegel, K.; Bösinger, T.

    Motivated by the large EISCAT data base, which covers over 15 years of common programme operation, and previous statistical work with EISCAT data (e.g., C. Hal- doupis, K. Schlegel, and G. Hussey, Auroral E-region electron density gradients mea- sured with EISCAT, Ann. Geopshysicae, 18, 1172-1181, 2000), a detailed statistical analysis of electron and ion EISCAT temperature measurements has been undertaken. This study was specifically concerned with the statistical dependence of heating events with other ambient parameters such as the electric field and electron density. The re- sults showed previously reported dependences such as the electron temperature being directly correlated with the ambient electric field and inversely related to the electron density. However, these correlations were found to be also dependent upon altitude. There was also evidence of the so called "Schlegel effect" (K. Schlegel, Reduced effective recombination coefficient in the disturbed polar E-region, J. Atmos. Terr. Phys., 44, 183-185, 1982); that is, the heated electron gas leads to increases in elec- tron density through a reduction in the recombination rate. This paper will present the statistical heating results and attempt to offer physical explanations and interpretations of the findings.

  8. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    Science.gov (United States)

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  9. Multivariate log-skew-elliptical distributions with applications to precipitation data

    KAUST Repository

    Marchenko, Yulia V.

    2009-07-13

    We introduce a family of multivariate log-skew-elliptical distributions, extending the list of multivariate distributions with positive support. We investigate their probabilistic properties such as stochastic representations, marginal and conditional distributions, and existence of moments, as well as inferential properties. We demonstrate, for example, that as for the log-t distribution, the positive moments of the log-skew-t distribution do not exist. Our emphasis is on two special cases, the log-skew-normal and log-skew-t distributions, which we use to analyze US national (univariate) and regional (multivariate) monthly precipitation data. © 2009 John Wiley & Sons, Ltd.

  10. Multivariate log-skew-elliptical distributions with applications to precipitation data

    KAUST Repository

    Marchenko, Yulia V.; Genton, Marc G.

    2009-01-01

    We introduce a family of multivariate log-skew-elliptical distributions, extending the list of multivariate distributions with positive support. We investigate their probabilistic properties such as stochastic representations, marginal and conditional distributions, and existence of moments, as well as inferential properties. We demonstrate, for example, that as for the log-t distribution, the positive moments of the log-skew-t distribution do not exist. Our emphasis is on two special cases, the log-skew-normal and log-skew-t distributions, which we use to analyze US national (univariate) and regional (multivariate) monthly precipitation data. © 2009 John Wiley & Sons, Ltd.

  11. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    Science.gov (United States)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  12. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung

    2013-08-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air pollutant data measured at a single monitoring site or measurements of a single pollutant collected at multiple monitoring sites. Despite the growing availability of multipollutant data collected from multiple monitoring sites, there has not yet been any attempt to incorporate spatial dependence that may exist in such data into multivariate receptor modeling. We propose a spatial statistics extension of multivariate receptor models that enables us to incorporate spatial dependence into estimation of source composition profiles and contributions given the prespecified number of sources and the model identification conditions. The proposed method yields more precise estimates of source profiles by accounting for spatial dependence in the estimation. More importantly, it enables predictions of source contributions at unmonitored sites as well as when there are missing values at monitoring sites. The method is illustrated with simulated data and real multipollutant data collected from eight monitoring sites in Harris County, Texas. Supplementary materials for this article, including data and R code for implementing the methods, are available online on the journal web site. © 2013 Copyright Taylor and Francis Group, LLC.

  13. An Outlyingness Matrix for Multivariate Functional Data Classification

    KAUST Repository

    Dai, Wenlin

    2017-08-25

    The classification of multivariate functional data is an important task in scientific research. Unlike point-wise data, functional data are usually classified by their shapes rather than by their scales. We define an outlyingness matrix by extending directional outlyingness, an effective measure of the shape variation of curves that combines the direction of outlyingness with conventional statistical depth. We propose two classifiers based on directional outlyingness and the outlyingness matrix, respectively. Our classifiers provide better performance compared with existing depth-based classifiers when applied on both univariate and multivariate functional data from simulation studies. We also test our methods on two data problems: speech recognition and gesture classification, and obtain results that are consistent with the findings from the simulated data.

  14. Multivariate statistical study with a factor analysis of foraminiferal fauna from the Chilka Lake, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.; Rao, K.K.

    Harbour, En- gland: a reappraisal using multivariate tech- niques. J. Paleontol., 43 (3) : 660-675. Imbrie, J. and F.B. Phleger. 1963. Analisis por vectores de los foraminiferos bentonicos del area de San Diego, California. Soc. Geol. Mex., Bol., 26...

  15. Multivariate Approaches to Classification in Extragalactic Astronomy

    Directory of Open Access Journals (Sweden)

    Didier eFraix-Burnet

    2015-08-01

    Full Text Available Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono- or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.

  16. Cloud Statistics and Discrimination in the Polar Regions

    Science.gov (United States)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice

  17. Integrated environmental monitoring and multivariate data analysis-A case study.

    Science.gov (United States)

    Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle

    2017-03-01

    The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate

  18. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    Science.gov (United States)

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Statistical modeling of temperature, humidity and wind fields in the atmospheric boundary layer over the Siberian region

    Science.gov (United States)

    Lomakina, N. Ya.

    2017-11-01

    The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.

  20. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  1. EXPLORATORY DATA ANALYSIS AND MULTIVARIATE STRATEGIES FOR REVEALING MULTIVARIATE STRUCTURES IN CLIMATE DATA

    Directory of Open Access Journals (Sweden)

    2016-12-01

    Full Text Available This paper is on data analysis strategy in a complex, multidimensional, and dynamic domain. The focus is on the use of data mining techniques to explore the importance of multivariate structures; using climate variables which influences climate change. Techniques involved in data mining exercise vary according to the data structures. The multivariate analysis strategy considered here involved choosing an appropriate tool to analyze a process. Factor analysis is introduced into data mining technique in order to reveal the influencing impacts of factors involved as well as solving for multicolinearity effect among the variables. The temporal nature and multidimensionality of the target variables is revealed in the model using multidimensional regression estimates. The strategy of integrating the method of several statistical techniques, using climate variables in Nigeria was employed. R2 of 0.518 was obtained from the ordinary least square regression analysis carried out and the test was not significant at 5% level of significance. However, factor analysis regression strategy gave a good fit with R2 of 0.811 and the test was significant at 5% level of significance. Based on this study, model building should go beyond the usual confirmatory data analysis (CDA, rather it should be complemented with exploratory data analysis (EDA in order to achieve a desired result.

  2. A multivariate statistical approaches on physicochemical characteristics of ground water in and around Nagapattinam district, Cauvery deltaic region of Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Venkatramanan Senapathi

    2013-07-01

    Full Text Available Ground water samples collected at different locations in and around the Nagapattinam district were analyzed for their physicochemical characteristics. The ground water samples were collected from fifty two dug and deep wells during the monsoon and summer seasons in June and December, 2011. The present investigation is focused on the determination of physico-chemical parameters such as pH, EC, TDS, Ca, Mg, Na, K, HCO3, SO4 and Cl. Ground water suitability for drinking, domestic and agri- cultural purposes was examined by using WHO standards. Correlation, factor and cluster analyses were applied to classify the ground water qualities and to categorize the geochemical processes controlling ground water geochemistry. Factor analysis indicates that seawater intrusion and agriculture runoff are dominant factors controlling the hydrogeochemistry of ground water in the study area. Cluster analysis was helpful for the classification on the basis of contamination characteristics of ground water quality. This study also elucidates that multivariate statistical analyses can be used to improve the understanding of ground water status and assessment of ground water quality.  Resumen En este estudio se analizan las características fisicoquímicas de muestras de aguas subterráneas tomadas en diferentes locaciones en y alrededor del distrito de Nagapattinam. Las muestras se recolectaron en 52 pozos cavados y perforaciones profundas durante las subestaciones del monzón y el verano, en los meses de junio y diciembre (2011. La presente investigación está enfocada en la determinación de parametros fisicoquímicos como pH, EC, TDS, Ca, Mg, Na, K, HCO3, SO4 y Cl. Se examinó la pertinencia de estas aguas para consumo y para irrigación a la luz de los estándares de la Organización Mundial de la Salud. Se aplicaron análisis de correlación, factores y cúmulos para clasificar las muestras y categorizar los procesos geoquímicos que controlan las aguas subterr

  3. Nonparametric indices of dependence between components for inhomogeneous multivariate random measures and marked sets

    OpenAIRE

    van Lieshout, Maria Nicolette Margaretha

    2018-01-01

    We propose new summary statistics to quantify the association between the components in coverage-reweighted moment stationary multivariate random sets and measures. They are defined in terms of the coverage-reweighted cumulant densities and extend classic functional statistics for stationary random closed sets. We study the relations between these statistics and evaluate them explicitly for a range of models. Unbiased estimators are given for all statistics and applied to simulated examples a...

  4. Age and gender effects on normal regional cerebral blood flow studied using two different voxel-based statistical analyses

    International Nuclear Information System (INIS)

    Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T.; Van Laere, K.; Jamart, J.; D'Asseler, Y.; Minoshima, S.

    2009-01-01

    Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine 99m Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)

  5. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  6. Assessment of Reservoir Water Quality Using Multivariate Statistical Techniques: A Case Study of Qiandao Lake, China

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2016-03-01

    Full Text Available Qiandao Lake (Xin’an Jiang reservoir plays a significant role in drinking water supply for eastern China, and it is an attractive tourist destination. Three multivariate statistical methods were comprehensively applied to assess the spatial and temporal variations in water quality as well as potential pollution sources in Qiandao Lake. Data sets of nine parameters from 12 monitoring sites during 2010–2013 were obtained for analysis. Cluster analysis (CA was applied to classify the 12 sampling sites into three groups (Groups A, B and C and the 12 monitoring months into two clusters (April-July, and the remaining months. Discriminant analysis (DA identified Secchi disc depth, dissolved oxygen, permanganate index and total phosphorus as the significant variables for distinguishing variations of different years, with 79.9% correct assignments. Dissolved oxygen, pH and chlorophyll-a were determined to discriminate between the two sampling periods classified by CA, with 87.8% correct assignments. For spatial variation, DA identified Secchi disc depth and ammonia nitrogen as the significant discriminating parameters, with 81.6% correct assignments. Principal component analysis (PCA identified organic pollution, nutrient pollution, domestic sewage, and agricultural and surface runoff as the primary pollution sources, explaining 84.58%, 81.61% and 78.68% of the total variance in Groups A, B and C, respectively. These results demonstrate the effectiveness of integrated use of CA, DA and PCA for reservoir water quality evaluation and could assist managers in improving water resources management.

  7. Application of multivariate statistical analysis in the pollution and health risk of traffic-related heavy metals.

    Science.gov (United States)

    Ebqa'ai, Mohammad; Ibrahim, Bashar

    2017-12-01

    This study aims to analyse the heavy metal pollutants in Jeddah, the second largest city in the Gulf Cooperation Council with a population exceeding 3.5 million, and many vehicles. Ninety-eight street dust samples were collected seasonally from the six major roads as well as the Jeddah Beach, and subsequently digested using modified Leeds Public Analyst method. The heavy metals (Fe, Zn, Mn, Cu, Cd, and Pb) were extracted from the ash using methyl isobutyl ketone as solvent extraction and eventually analysed by atomic absorption spectroscopy. Multivariate statistical techniques, principal component analysis (PCA), and hierarchical cluster analysis were applied to these data. Heavy metal concentrations were ranked according to the following descending order: Fe > Zn > Mn > Cu > Pb > Cd. In order to study the pollution and health risk from these heavy metals as well as estimating their effect on the environment, pollution indices, integrated pollution index, enrichment factor, daily dose average, hazard quotient, and hazard index were all analysed. The PCA showed high levels of Zn, Fe, and Cd in Al Kurnish road, while these elements were consistently detected on King Abdulaziz and Al Madina roads. The study indicates that high levels of Zn and Pb pollution were recorded for major roads in Jeddah. Six out of seven roads had high pollution indices. This study is the first step towards further investigations into current health problems in Jeddah, such as anaemia and asthma.

  8. Discrimination between glycosylation patterns of therapeutic antibodies using a microfluidic platform, MALDI-MS and multivariate statistics.

    Science.gov (United States)

    Thuy, Tran Thi; Tengstrand, Erik; Aberg, Magnus; Thorsén, Gunnar

    2012-11-01

    Optimal glycosylation with respect to the efficacy, serum half-life time, and immunogenic properties is essential in the generation of therapeutic antibodies. The glycosylation pattern can be affected by several different parameters during the manufacture of antibodies and may change significantly over cultivation time. Fast and robust methods for determination of the glycosylation patterns of therapeutic antibodies are therefore needed. We have recently presented an efficient method for the determination of glycans on therapeutic antibodies using a microfluidic CD platform for sample preparation prior to matrix-assisted laser-desorption mass spectrometry analysis. In the present work, this method is applied to analyse the glycosylation patterns of three commercially available therapeutic antibodies and one intended for therapeutic use. Two of the antibodies produced in mouse myeloma cell line (SP2/0) and one produced in Chinese hamster ovary (CHO) cells exhibited similar glycosylation patterns but could still be readily differentiated from each other using multivariate statistical methods. The two antibodies with most similar glycosylation patterns were also studied in an assessment of the method's applicability for quality control of therapeutic antibodies. The method presented in this paper is highly automated and rapid. It can therefore efficiently generate data that helps to keep a production process within the desired design space or assess that an identical product is being produced after changes to the process. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Multivariate return periods of sea storms for coastal erosion risk assessment

    Directory of Open Access Journals (Sweden)

    S. Corbella

    2012-08-01

    Full Text Available The erosion of a beach depends on various storm characteristics. Ideally, the risk associated with a storm would be described by a single multivariate return period that is also representative of the erosion risk, i.e. a 100 yr multivariate storm return period would cause a 100 yr erosion return period. Unfortunately, a specific probability level may be associated with numerous combinations of storm characteristics. These combinations, despite having the same multivariate probability, may cause very different erosion outcomes. This paper explores this ambiguity problem in the context of copula based multivariate return periods and using a case study at Durban on the east coast of South Africa. Simulations were used to correlate multivariate return periods of historical events to return periods of estimated storm induced erosion volumes. In addition, the relationship of the most-likely design event (Salvadori et al., 2011 to coastal erosion was investigated. It was found that the multivariate return periods for wave height and duration had the highest correlation to erosion return periods. The most-likely design event was found to be an inadequate design method in its current form. We explore the inclusion of conditions based on the physical realizability of wave events and the use of multivariate linear regression to relate storm parameters to erosion computed from a process based model. Establishing a link between storm statistics and erosion consequences can resolve the ambiguity between multivariate storm return periods and associated erosion return periods.

  10. Dating and classification of Syrian excavated pottery from Tell Saka Site, by means of thermoluminescence analysis, and multivariate statistical methods, based on PIXE analysis

    International Nuclear Information System (INIS)

    Bakraji, E.H.; Ahmad, M.; Salman, N.; Haloum, D.; Boutros, N.; Abboud, R.

    2011-01-01

    Thermoluminescence (TL) dating and Proton Induced X-ray Emission (PIXE) techniques have been utilized for the study of archaeological pottery fragment samples from Tell Saka Site, which is located at 25 km south east of Damascus city, Syria. Four samples were chosen randomly from the site, two from third level and two from fourth level for dating using TL technique and the results were in good agreement with the date assigned by archaeologists. Twenty-eight sherds were analyzed using PIXE technique in order to identify and characterize the elemental composition of pottery excavated from third and fourth levels, using 3 MV tandem accelerator in Damascus. The analysis provided almost 20 elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb). However, only 14 elements as follows: K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb were chosen for statistical analysis and have been processed using two multivariate statistical methods, Cluster and Factor analysis. The studied pottery were classify into two well defined groups. (author)

  11. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    Science.gov (United States)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  12. Probability distribution and statistical properties of spherically compensated cosmic regions in ΛCDM cosmology

    Science.gov (United States)

    Alimi, Jean-Michel; de Fromont, Paul

    2018-04-01

    The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.

  13. Multivariate calibration applied to the quantitative analysis of infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, D.M.

    1991-01-01

    Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.

  14. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    Science.gov (United States)

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. An Outlyingness Matrix for Multivariate Functional Data Classification

    KAUST Repository

    Dai, Wenlin; Genton, Marc G.

    2017-01-01

    outlyingness with conventional statistical depth. We propose two classifiers based on directional outlyingness and the outlyingness matrix, respectively. Our classifiers provide better performance compared with existing depth-based classifiers when applied on both univariate and multivariate functional data from simulation studies. We also test our methods on two data problems: speech recognition and gesture classification, and obtain results that are consistent with the findings from the simulated data.

  16. Lasso and probabilistic inequalities for multivariate point processes

    OpenAIRE

    Hansen, Niels Richard; Reynaud-Bouret, Patricia; Rivoirard, Vincent

    2012-01-01

    Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function parameter to be estimated by linear combinations of a fixed dictionary. To select coefficients, we propose an adaptive $\\ell_{1}$-penalization methodology, where data-driven weights of the penalty are derived from new Bernstein type inequalities for martingales. Oracle inequalities...

  17. ASSESSMENT OF SOCIAL AND ECONOMIC DEVELOPMENT ASTRAKHAN REGION AND ITS DISTRICTS

    Directory of Open Access Journals (Sweden)

    Almina B. Eldyaeva

    2014-01-01

    Full Text Available The results of statistical analysis of socio-economic development of Astrakhan region and its districts for the period 2008-2013, on the basis of which it was revealed the strongest economic inequality between the regions and the Krasnoyarsk region, where «Gazprom» that leads to huge imbalances in socio-economic development. Multivariate analysis to identify problem areas and priority directions of socio-economic development of municipal districts of the Astrakhan region was conducted.Application of the results of the analysis can enhance the effectiveness of actions of Executive bodies of various levels in the process of regulation of socio-economic development of society.

  18. Modern nonparametric, robust and multivariate methods festschrift in honour of Hannu Oja

    CERN Document Server

    Taskinen, Sara

    2015-01-01

    Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

  19. Mulch materials in processing tomato: a multivariate approach

    Directory of Open Access Journals (Sweden)

    Marta María Moreno

    2013-08-01

    Full Text Available Mulch materials of different origins have been introduced into the agricultural sector in recent years alternatively to the standard polyethylene due to its environmental impact. This study aimed to evaluate the multivariate response of mulch materials over three consecutive years in a processing tomato (Solanum lycopersicon L. crop in Central Spain. Two biodegradable plastic mulches (BD1, BD2, one oxo-biodegradable material (OB, two types of paper (PP1, PP2, and one barley straw cover (BS were compared using two control treatments (standard black polyethylene [PE] and manual weed control [MW]. A total of 17 variables relating to yield, fruit quality, and weed control were investigated. Several multivariate statistical techniques were applied, including principal component analysis, cluster analysis, and discriminant analysis. A group of mulch materials comprised of OB and BD2 was found to be comparable to black polyethylene regarding all the variables considered. The weed control variables were found to be an important source of discrimination. The two paper mulches tested did not share the same treatment group membership in any case: PP2 presented a multivariate response more similar to the biodegradable plastics, while PP1 was more similar to BS and MW. Based on our multivariate approach, the materials OB and BD2 can be used as an effective, more environmentally friendly alternative to polyethylene mulches.

  20. Clinical Decision Support: Statistical Hopes and Challenges

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan; Zvárová, Jana

    2016-01-01

    Roč. 4, č. 1 (2016), s. 30-34 ISSN 1805-8698 Grant - others:Nadační fond na opdporu vědy(CZ) Neuron Institutional support: RVO:67985807 Keywords : decision support * data mining * multivariate statistics * psychiatry * information based medicine Subject RIV: BB - Applied Statistics, Operational Research

  1. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.

    Science.gov (United States)

    Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan

    2016-05-01

    The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.

  2. Multiparametric statistics

    CERN Document Server

    Serdobolskii, Vadim Ivanovich

    2007-01-01

    This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...

  3. Ultimate compression after impact load prediction in graphite/epoxy coupons using neural network and multivariate statistical analyses

    Science.gov (United States)

    Gregoire, Alexandre David

    2011-07-01

    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.

  4. Fragments analysis of Marajoara pubic covers using a portable system of X-ray fluorescence and multivariate statistics

    International Nuclear Information System (INIS)

    Freitas, Renato; Rabello, Angela; Lima, Tania

    2011-01-01

    Full text: In this work it was characterized the elemental composition of 102 fragments of Marajoara pubic covers, belonging to the National Museum collection, using EDXRF and multivariate statistics analysis. The objective was to identify possible groups of samples that presented similar characteristics. This information will be useful in the development of a systematic classification of these artifacts. Provenance studies of ancient ceramics are based on the assumption that pottery produced from a specific clay will present a similar chemical composition, which will distinguish them from pottery produced from a different clay. In this way, the pottery is assigned to particular production groups, which are then correlated with their respective origins. EDXRF measurements were carried out with a portable system, developed in the Nuclear Instrumentation Laboratory, consisting of an X-ray tube Oxford TF3005 with tungsten (W) anode, operating at 25 kV and 100 μA, and a Si-PIN XR-100CR detector from Amptek. In each one of the 102 fragments, six points were analyzed (three in the front part and three in the reverse) with an acquisition time of 600 s and a beam collimation of 2 mm. The spectra were processed and analyzed using the software QXAS-AXIL from IAEA. PCA was applied to the XRF results revealing a clear cluster separation to the samples. (author)

  5. Bootstrap-based confidence estimation in PCA and multivariate statistical process control

    DEFF Research Database (Denmark)

    Babamoradi, Hamid

    be used to detect outliers in the data since the outliers can distort the bootstrap estimates. Bootstrap-based confidence limits were suggested as alternative to the asymptotic limits for control charts and contribution plots in MSPC (Paper II). The results showed that in case of the Q-statistic......Traditional/Asymptotic confidence estimation has limited applicability since it needs statistical theories to estimate the confidences, which are not available for all indicators/parameters. Furthermore, in case the theories are available for a specific indicator/parameter, the theories are based....... The goal was to improve process monitoring by improving the quality of MSPC charts and contribution plots. Bootstrapping algorithm to build confidence limits was illustrated in a case study format (Paper I). The main steps in the algorithm were discussed where a set of sensible choices (plus...

  6. Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

    Science.gov (United States)

    Li, Yanming; Nan, Bin; Zhu, Ji

    2015-06-01

    We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study. © 2015, The International Biometric Society.

  7. Integration of ecological indices in the multivariate evaluation of an urban inventory of street trees

    Science.gov (United States)

    J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez

    2000-01-01

    Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.

  8. Multivariate Analysis, Mass Balance Techniques, and Statistical Tests as Tools in Igneous Petrology: Application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt)

    Science.gov (United States)

    Velasco-Tapia, Fernando

    2014-01-01

    Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994

  9. Multivariate Analysis, Mass Balance Techniques, and Statistical Tests as Tools in Igneous Petrology: Application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt

    Directory of Open Access Journals (Sweden)

    Fernando Velasco-Tapia

    2014-01-01

    Full Text Available Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC volcanic range (Mexican Volcanic Belt. In this locality, the volcanic activity (3.7 to 0.5 Ma was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward’s linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas in the comingled lavas (binary mixtures.

  10. PIXE multivariate statistics and OSL investigation for the classification and dating of archaeological pottery excavated at Tell Al-Rawda site, Syria

    Energy Technology Data Exchange (ETDEWEB)

    Bakraji, E.H., E-mail: cscientificl@aec.org.sy [Archaeometry Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P. O. Box 6091, Damascus (Syrian Arab Republic); Rihawy, M.S. [Archaeometry Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P. O. Box 6091, Damascus (Syrian Arab Republic); Castel, C. [CNRS – Maison de l’Orient et de la Méditerranée, Laboratoire “Archéorient”, CNRS/Université Lumière-Lyon 2 (France); Abboud, R. [Archaeometry Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P. O. Box 6091, Damascus (Syrian Arab Republic)

    2015-03-15

    Highlights: •PIXE and OSL methods were used to classify and date pottery from Tell Al-Rawda site. •Three groups were classified using PIXE, which suggest different sources of the clay. •OSL was used for dating the site and the date found was consistent with typology. -- Abstract: Particle Induced X-ray Emission (PIXE) technique has been utilised to study 48 Syrian ancient pottery fragments taken from excavations at Tell Al-Rawda site. Eighteen elements (Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Ni, Zn, As, Br, Rb, Sr, Y, and Pb) were determined. The elements concentrations have been processed using two multivariate statistical methods, to classify the pottery where one main group and other two small groups were defined. In addition, four samples from different places on the site were subjected to optically stimulated luminescence (OSL) dating. The average age obtained using a single aliquot regeneration (SAR) protocol was found to be 4350 ± 240 year.

  11. PIXE multivariate statistics and OSL investigation for the classification and dating of archaeological pottery excavated at Tell Al-Rawda site, Syria

    International Nuclear Information System (INIS)

    Bakraji, E.H.; Rihawy, M.S.; Castel, C.; Abboud, R.

    2015-01-01

    Highlights: •PIXE and OSL methods were used to classify and date pottery from Tell Al-Rawda site. •Three groups were classified using PIXE, which suggest different sources of the clay. •OSL was used for dating the site and the date found was consistent with typology. -- Abstract: Particle Induced X-ray Emission (PIXE) technique has been utilised to study 48 Syrian ancient pottery fragments taken from excavations at Tell Al-Rawda site. Eighteen elements (Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Ni, Zn, As, Br, Rb, Sr, Y, and Pb) were determined. The elements concentrations have been processed using two multivariate statistical methods, to classify the pottery where one main group and other two small groups were defined. In addition, four samples from different places on the site were subjected to optically stimulated luminescence (OSL) dating. The average age obtained using a single aliquot regeneration (SAR) protocol was found to be 4350 ± 240 year

  12. [Retrospective statistical analysis of clinical factors of recurrence in chronic subdural hematoma: correlation between univariate and multivariate analysis].

    Science.gov (United States)

    Takayama, Motoharu; Terui, Keita; Oiwa, Yoshitsugu

    2012-10-01

    Chronic subdural hematoma is common in elderly individuals and surgical procedures are simple. The recurrence rate of chronic subdural hematoma, however, varies from 9.2 to 26.5% after surgery. The authors studied factors of the recurrence using univariate and multivariate analyses in patients with chronic subdural hematoma We retrospectively reviewed 239 consecutive cases of chronic subdural hematoma who received burr-hole surgery with irrigation and closed-system drainage. We analyzed the relationships between recurrence of chronic subdural hematoma and factors such as sex, age, laterality, bleeding tendency, other complicated diseases, density on CT, volume of the hematoma, residual air in the hematoma cavity, use of artificial cerebrospinal fluid. Twenty-one patients (8.8%) experienced a recurrence of chronic subdural hematoma. Multiple logistic regression found that the recurrence rate was higher in patients with a large volume of the residual air, and was lower in patients using artificial cerebrospinal fluid. No statistical differences were found in bleeding tendency. Techniques to reduce the air in the hematoma cavity are important for good outcome in surgery of chronic subdural hematoma. Also, the use of artificial cerebrospinal fluid reduces recurrence of chronic subdural hematoma. The surgical procedures can be the same for patients with bleeding tendencies.

  13. Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Jiabo Chen

    2016-10-01

    Full Text Available Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011 on water quality in the Liao River system (China. Cluster analysis (CA classified the 12 months of the year into three groups (May–October, February–April and November–January and the 66 sampling sites into three groups (groups A, B and C based on similarities in water quality characteristics. Discriminant analysis (DA determined that temperature, dissolved oxygen (DO, pH, chemical oxygen demand (CODMn, 5-day biochemical oxygen demand (BOD5, NH4+–N, total phosphorus (TP and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA and positive matrix factorization (PMF identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics.

  14. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China

    Directory of Open Access Journals (Sweden)

    Yunhui Zhang

    2018-01-01

    Full Text Available The utilization for water resource has been of great concern to human life. To assess the natural water system in Kangding County, the integrated methods of hydrochemical analysis, multivariate statistics and geochemical modelling were conducted on surface water, groundwater, and thermal water samples. Surface water and groundwater were dominated by Ca-HCO3 type, while thermal water belonged to Ca-HCO3 and Na-Cl-SO4 types. The analyzing results concluded the driving factors that affect hydrochemical components. Following the results of the combined assessments, hydrochemical process was controlled by the dissolution of carbonate and silicate minerals with slight influence from anthropogenic activity. The mixing model of groundwater and thermal water was calculated using silica-enthalpy method, yielding cold-water fraction of 0.56–0.79 and an estimated reservoir temperature of 130–199 °C, respectively. δD and δ18O isotopes suggested that surface water, groundwater and thermal springs were of meteoric origin. Thermal water should have deep circulation through the Xianshuihe fault zone, while groundwater flows through secondary fractures where it recharges with thermal water. Those analytical results were used to construct a hydrological conceptual model, providing a better understanding of the natural water system in Kangding County.

  15. Music Genre Classification using the multivariate AR feature integration model

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Meng, Anders

    2005-01-01

    informative decisions about musical genre. For the MIREX music genre contest several authors derive long time features based either on statistical moments and/or temporal structure in the short time features. In our contribution we model a segment (1.2 s) of short time features (texture) using a multivariate...... autoregressive model. Other authors have applied simpler statistical models such as the mean-variance model, which also has been included in several of this years MIREX submissions, see e.g. Tzanetakis (2005); Burred (2005); Bergstra et al. (2005); Lidy and Rauber (2005)....

  16. Handbook of univariate and multivariate data analysis with IBM SPSS

    CERN Document Server

    Ho, Robert

    2013-01-01

    Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows.New to the Second EditionThree new chapters on multiple discriminant analysis, logistic regression, and canonical correlationNew section on how to deal with missing dataCoverage of te

  17. Fault detection of a spur gear using vibration signal with multivariable statistical parameters

    Directory of Open Access Journals (Sweden)

    Songpon Klinchaeam

    2014-10-01

    Full Text Available This paper presents a condition monitoring technique of a spur gear fault detection using vibration signal analysis based on time domain. Vibration signals were acquired from gearboxes and used to simulate various faults on spur gear tooth. In this study, vibration signals were applied to monitor a normal and various fault conditions of a spur gear such as normal, scuffing defect, crack defect and broken tooth. The statistical parameters of vibration signal were used to compare and evaluate the value of fault condition. This technique can be applied to set alarm limit of the signal condition based on statistical parameter such as variance, kurtosis, rms and crest factor. These parameters can be used to set as a boundary decision of signal condition. From the results, the vibration signal analysis with single statistical parameter is unclear to predict fault of the spur gears. The using at least two statistical parameters can be clearly used to separate in every case of fault detection. The boundary decision of statistical parameter with the 99.7% certainty ( 3   from 300 referenced dataset and detected the testing condition with 99.7% ( 3   accuracy and had an error of less than 0.3 % using 50 testing dataset.

  18. PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.

    Science.gov (United States)

    Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan

    2009-01-01

    Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.

  19. Automated Segmentation of Coronary Arteries Based on Statistical Region Growing and Heuristic Decision Method

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2016-01-01

    Full Text Available The segmentation of coronary arteries is a vital process that helps cardiovascular radiologists detect and quantify stenosis. In this paper, we propose a fully automated coronary artery segmentation from cardiac data volume. The method is built on a statistics region growing together with a heuristic decision. First, the heart region is extracted using a multi-atlas-based approach. Second, the vessel structures are enhanced via a 3D multiscale line filter. Next, seed points are detected automatically through a threshold preprocessing and a subsequent morphological operation. Based on the set of detected seed points, a statistics-based region growing is applied. Finally, results are obtained by setting conservative parameters. A heuristic decision method is then used to obtain the desired result automatically because parameters in region growing vary in different patients, and the segmentation requires full automation. The experiments are carried out on a dataset that includes eight-patient multivendor cardiac computed tomography angiography (CTA volume data. The DICE similarity index, mean distance, and Hausdorff distance metrics are employed to compare the proposed algorithm with two state-of-the-art methods. Experimental results indicate that the proposed algorithm is capable of performing complete, robust, and accurate extraction of coronary arteries.

  20. Multivariate statistical monitoring as applied to clean-in-place (CIP) and steam-in-place (SIP) operations in biopharmaceutical manufacturing.

    Science.gov (United States)

    Roy, Kevin; Undey, Cenk; Mistretta, Thomas; Naugle, Gregory; Sodhi, Manbir

    2014-01-01

    Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning-in-place (CIP) and steaming-in-place (SIP, also known as sterilization-in-place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real-time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers.

  1. Growth curve models and statistical diagnostics

    CERN Document Server

    Pan, Jian-Xin

    2002-01-01

    Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.

  2. Improved detection of incipient anomalies via multivariate memory monitoring charts: Application to an air flow heating system

    KAUST Repository

    Harrou, Fouzi

    2016-08-11

    Detecting anomalies is important for reliable operation of several engineering systems. Multivariate statistical monitoring charts are an efficient tool for checking the quality of a process by identifying abnormalities. Principal component analysis (PCA) was shown effective in monitoring processes with highly correlated data. Traditional PCA-based methods, nevertheless, often are relatively inefficient at detecting incipient anomalies. Here, we propose a statistical approach that exploits the advantages of PCA and those of multivariate memory monitoring schemes, like the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average (MEWMA) monitoring schemes to better detect incipient anomalies. Memory monitoring charts are sensitive to incipient anomalies in process mean, which significantly improve the performance of PCA method and enlarge its profitability, and to utilize these improvements in various applications. The performance of PCA-based MEWMA and MCUSUM control techniques are demonstrated and compared with traditional PCA-based monitoring methods. Using practical data gathered from a heating air-flow system, we demonstrate the greater sensitivity and efficiency of the developed method over the traditional PCA-based methods. Results indicate that the proposed techniques have potential for detecting incipient anomalies in multivariate data. © 2016 Elsevier Ltd

  3. Cross-covariance functions for multivariate geostatistics

    KAUST Repository

    Genton, Marc G.

    2015-05-01

    Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.

  4. Cross-covariance functions for multivariate geostatistics

    KAUST Repository

    Genton, Marc G.; Kleiber, William

    2015-01-01

    Continuously indexed datasets with multiple variables have become ubiquitous in the geophysical, ecological, environmental and climate sciences, and pose substantial analysis challenges to scientists and statisticians. For many years, scientists developed models that aimed at capturing the spatial behavior for an individual process; only within the last few decades has it become commonplace to model multiple processes jointly. The key difficulty is in specifying the cross-covariance function, that is, the function responsible for the relationship between distinct variables. Indeed, these cross-covariance functions must be chosen to be consistent with marginal covariance functions in such a way that the second-order structure always yields a nonnegative definite covariance matrix. We review the main approaches to building cross-covariance models, including the linear model of coregionalization, convolution methods, the multivariate Matérn and nonstationary and space-time extensions of these among others. We additionally cover specialized constructions, including those designed for asymmetry, compact support and spherical domains, with a review of physics-constrained models. We illustrate select models on a bivariate regional climate model output example for temperature and pressure, along with a bivariate minimum and maximum temperature observational dataset; we compare models by likelihood value as well as via cross-validation co-kriging studies. The article closes with a discussion of unsolved problems. © Institute of Mathematical Statistics, 2015.

  5. Multivariate nonparametric regression and visualization with R and applications to finance

    CERN Document Server

    Klemelä, Jussi

    2014-01-01

    A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generatingmechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functio

  6. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  7. Hydrogeochemical characterization of groundwater of peninsular Indian region using multivariate statistical techniques

    Science.gov (United States)

    Jacintha, T. German Amali; Rawat, Kishan Singh; Mishra, Anoop; Singh, Sudhir Kumar

    2017-10-01

    Groundwater quality of Chennai, Tamil Nadu (India) has been assessed during different seasons of year 2012. Three physical (pH, EC, and TDS) and four chemical parameters (Ca2+, Cl-, TH, Mg2+ and SO4 2-) from 18 bore wells were assessed. The results showed that pH of majority of groundwater samples indicates a slightly basic condition (7.99post-monsoon and 8.35pre-monsoon). TH was slightly hard [322.11 mg/lpre-monsoon, 299.37 mg/lpost-monsoon but lies under World Health Organization (WHO) upper limit]. EC, TDS, Ca2+ and Mg2+ concentrations were under WHO permissible limit during post-monsoon (1503.42 μS/cm, 1009.37, 66.58 and 32.42 mg/l respectively) and pre-monsoon (1371.58 μS/cm, 946.84, 71.79 and 34.79 mg/l, respectively). EC shows a good correlation with SO4 2- ( R 2 = 0.59pre-monsoon, 0.77post-monsoon) which indicates that SO4 2- plays a major role in EC of ground water of bore wells. SO4 2- has also showed positive correlations with TDS ( R 2 = 0.84pre-monsoon, 0.95post-monsoon) and TH ( R 2 = 0.70pre-monsoon, 0.75post-monsoon). The principal component analysis (PCA)/factor analysis (FA) was carried out; Factor1 explains 59.154 and 69.278 % of the total variance during pre- and post-monsoon, respectively, with a strong positive loading on Ca2+, Mg2+, SO4 2-, TDS and a negative loading on pH. Factor2 accounts for 13.94 and 14.22 % of the total variance during pre- and post-monsoon, respectively, and was characterized by strong positive loading of only pH and poor/negative loading of EC, Ca2+, Mg2+, SO4 2-, TDS and TH during pre- and post-monsoon. We recommend routine monitoring and thorough treatment before consumption. Further, this study has demonstrated the effectiveness of PCA/FA to assess the hydrogeochemical processes governing the groundwater chemistry in the area.

  8. Occurrence and multivariate exploratory analysis of the natural radioactivity anomaly in the south coastal region of Kenya

    Science.gov (United States)

    Kaniu, M. I.; Angeyo, K. H.; Darby, I. G.

    2018-05-01

    Characterized by a variety of rock formations, namely alkaline, igneous and sedimentary that contain significant deposits of monazite and pyrochlore ores, the south coastal region of Kenya may be regarded as highly heterogeneous with regard to its geochemistry, mineralogy as well as geological morphology. The region is one of the several alkaline carbonatite complexes of Kenya that are associated with high natural background radiation and therefore radioactivity anomaly. However, this high background radiation (HBR) anomaly has hardly been systematically assessed and delineated with regard to the spatial, geological, geochemical as well as anthropogenic variability and co-dependencies. We conducted wide-ranging in-situ gamma-ray spectrometric measurements in this area. The goal of the study was to assess the radiation exposure as well as determine the underlying natural radioactivity levels in the region. In this paper we report the occurrence, exploratory analysis and modeling to assess the multivariate geo-dependence and spatial variability of the radioactivity and associated radiation exposure. Unsupervised principal component analysis and ternary plots were utilized in the study. It was observed that areas which exhibit HBR anomalies are located along the south coast paved road and in the Mrima-Kiruku complex. These areas showed a trend towards enhanced levels of 232Th and 238U and low 40K. The spatial variability of the radioactivity anomaly was found to be mainly constrained by anthropogenic activities, underlying geology and geochemical processes in the terrestrial environment.

  9. Estimation of extreme risk regions under multivariate regular variation

    NARCIS (Netherlands)

    Cai, J.; Einmahl, J.H.J.; de Haan, L.F.M.

    2011-01-01

    When considering d possibly dependent random variables, one is often interested in extreme risk regions, with very small probability p. We consider risk regions of the form {z ∈ Rd : f (z) ≤ β}, where f is the joint density and β a small number. Estimation of such an extreme risk region is difficult

  10. Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison.

    Science.gov (United States)

    Cardot, J-M; Roudier, B; Schütz, H

    2017-07-01

    The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

  11. Graph-theoretic measures of multivariate association and prediction

    International Nuclear Information System (INIS)

    Friedman, J.H.; Rafsky, L.C.

    1983-01-01

    Interpoint-distance-based graphs can be used to define measures of association that extend Kendall's notion of a generalized correlation coefficient. The authors present particular statistics that provide distribution-free tests of independence sensitive to alternatives involving non-monotonic relationships. Moreover, since ordering plays no essential role, the ideas that fully applicable in a multivariate setting. The authors also define an asymmetric coefficient measuring the extent to which (a vector) X can be used to make single-valued predictions of (a vector) Y. The authors discuss various techniques for proving that such statistics are asymptotically normal. As an example of the effectiveness of their approach, the authors present an application to the examination of residuals from multiple regression. 18 references, 2 figures, 1 table

  12. Measures of dependence for multivariate Lévy distributions

    Science.gov (United States)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  13. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

    2009-01-01

    The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

  14. Multivariate Statistical Process Optimization in the Industrial Production of Enzymes

    DEFF Research Database (Denmark)

    Klimkiewicz, Anna

    of productyield. The potential of NIR technology to monitor the activity of the enzyme has beenthe subject of a feasibility study presented in PAPER I. It included (a) evaluation onwhich of the two real-time NIR flow cell configurations is the preferred arrangementfor monitoring of the retentate stream downstream...... strategies for theorganization of these datasets, with varying number of timestamps, into datastructures fit for latent variable (LV) modeling, have been compared. The ultimateaim of the data mining steps is the construction of statistical ‘soft models’ whichcapture the principle or latent behavior...

  15. Statistical Downscaling Of Local Climate In The Alpine Region

    Science.gov (United States)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  16. Comparison of multivariate methods for studying the G×E interaction

    Directory of Open Access Journals (Sweden)

    Deoclécio Domingos Garbuglio

    2015-12-01

    Full Text Available The objective of this work was to evaluate three statistical multivariate methods for analyzing adaptability and environmental stratification simultaneously, using data from maize cultivars indicated for planting in the State of Paraná-Brazil. Under the FGGE and GGE methods, the genotypic effect adjusts the G×E interactions across environments, resulting in a high percentage of explanation associated with a smaller number of axes. Environmental stratification via the FGGE and GGE methods showed similar responses, while the AMMI method did not ensure grouping of environments. The adaptability analysis revealed low divergence patterns of the responses obtained through the three methods. Genotypes P30F35, P30F53, P30R50, P30K64 and AS 1570 showed high yields associated with general adaptability. The FGGE method allowed differences in yield responses in specific regions and the impact in locations belonging to the same environmental group (through rE to be associated with the level of the simple portion of the G×E interaction.

  17. STATISTICAL ANALYSIS OF COMPETITIVENESS FACTORS OF REGIONS OF THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    O. V. Bakanach

    2015-01-01

    Full Text Available In the conditions of market economy the competition is the main driving force of economic growth. The idea about existence of the interregional competition isn't conventional and demands the proof. The phenomena allowing to state existence of the interregional competitive relations which are realized through system of prerequisites of political, economic, legal and technological character were for this purpose studied. Competitiveness – one of the most important characteristics of the territory which level directly influences formation of positive tendencies in development of subjects of the Russian Federation. Productive indicators of level of competitiveness of the region are: a gross regional product on one occupied in economy, production of a gross regional product for one ruble of fixed assets, a gross regional product for one ruble of investments, a share of balanced financial result in a gross regional product. On the basis of private indicators the Pattern method received an integrated indicator of level of competitiveness of region. The quantitative assessment of the factors determining distinctions of regions of the Russian Federation by competitiveness level allowed to define that the competitiveness variation in the territory of regions in the greatest measure depends on a variation of number of graduates of educational institutions with higher education on 1000 people and the specific weight of investments into the enterprises occupied with mining. Regional values of competitiveness are most elastic relatively the specific weight of own investments, that is increase of this indicator for 1 % causes increase of competitiveness for 0.9 %. The practical importance of this work is caused by possibility of application of results of research by federal and regional executive authorities as information representation when developing programs of increase of level of competitiveness of regions of the Russian Federation. Besides, it is

  18. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    Science.gov (United States)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  19. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  20. Finer discrimination of brain activation with local multivariate distance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organization of human brain function is diverse on different spatial scales.Various cognitive states are alwavs represented as distinct activity patterns across the specific brain region on fine scales.Conventional univariate analysis of functional MRI data seeks to determine how a particular cognitive state is encoded in brain activity by analyzing each voxel separately without considering the fine-scale patterns information contained in the local brain regions.In this paper,a local multivariate distance mapping(LMDM)technique is proposed to detect the brain activation and to map the fine-scale brain activity patterns.LMDM directly represents the local brain activity with the patterns across multiple voxels rather than individual voxels,and it employs the multivariate distance between different patterns to discriminate the brain state on fine scales.Experiments with simulated and real fMRI data demonstrate that LMDM technique can dramatically increase the sensitivity of the detection for the fine-scale brain activity pettems which contain the subtle information of the experimental conditions.

  1. Sparse multivariate measures of similarity between intra-modal neuroimaging datasets

    Directory of Open Access Journals (Sweden)

    Maria J. Rosa

    2015-10-01

    Full Text Available An increasing number of neuroimaging studies are now based on either combining more than one data modality (inter-modal or combining more than one measurement from the same modality (intra-modal. To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA. However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA, overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labelling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  2. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

    Science.gov (United States)

    Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

    2017-02-01

    Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  4. Estrogenic compound profiles in an urbanized industry-impacted coastal bay and potential risk assessment by pollution indices and multivariative statistical methods.

    Science.gov (United States)

    Wang, Zaosheng; Li, Rui; Wu, Fengchang; Feng, Chenglian; Ye, Chun; Yan, Changzhou

    2017-01-15

    The occurrence and distribution of target estrogenic compounds in a highly urbanized industry-impacted coastal bay were investigated, and contamination profiles were evaluated by estimating total estradiol equivalents (∑EEQs) and risk quotients (RQs). Phenolic compounds were the most abundant xenoestrogens, but seldom showed contribution to the ∑EEQs. The diethylstilbestrol (DES) and 17α-ethinylestradiol (EE2) were the major contributors followed by 17β-estradiol (E2) in comparison with a slight contribution from estrone (E1) and estriol (E3). Both ∑EEQs and RQs indicated likely adverse effects posed on resident organisms. Further, multivariate statistical method comprehensively revealed pollution status by visualized factor scores and identified multiple "hotspots" of estrogenic sources, demonstrating the presence of complex pollution risk gradients inside and particularly outside of bay area. Overall, this study favors the integrative utilization of pollution indices and factor analysis as powerful tool to scientifically diagnose the pollution characterization of human-derived chemicals for better management decisions in aquatic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    Science.gov (United States)

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  6. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  7. Source Identification of Heavy Metals in Soils Surrounding the Zanjan Zinc Town by Multivariate Statistical Techniques

    Directory of Open Access Journals (Sweden)

    M.A. Delavar

    2016-02-01

    Full Text Available Introduction: The accumulation of heavy metals (HMs in the soil is of increasing concern due to food safety issues, potential health risks, and the detrimental effects on soil ecosystems. HMs may be considered as the most important soil pollutants, because they are not biodegradable and their physical movement through the soil profile is relatively limited. Therefore, root uptake process may provide a big chance for these pollutants to transfer from the surface soil to natural and cultivated plants, which may eventually steer them to human bodies. The general behavior of HMs in the environment, especially their bioavailability in the soil, is influenced by their origin. Hence, source apportionment of HMs may provide some essential information for better management of polluted soils to restrict the HMs entrance to the human food chain. This paper explores the applicability of multivariate statistical techniques in the identification of probable sources that can control the concentration and distribution of selected HMs in the soils surrounding the Zanjan Zinc Specialized Industrial Town (briefly Zinc Town. Materials and Methods: The area under investigation has a size of approximately 4000 ha.It is located around the Zinc Town, Zanjan province. A regular grid sampling pattern with an interval of 500 meters was applied to identify the sample location, and 184 topsoil samples (0-10 cm were collected. The soil samples were air-dried and sieved through a 2 mm polyethylene sieve and then, were digested using HNO3. The total concentrations of zinc (Zn, lead (Pb, cadmium (Cd, Nickel (Ni and copper (Cu in the soil solutions were determined via Atomic Absorption Spectroscopy (AAS. Data were statistically analyzed using the SPSS software version 17.0 for Windows. Correlation Matrix (CM, Principal Component Analyses (PCA and Factor Analyses (FA techniques were performed in order to identify the probable sources of HMs in the studied soils. Results and

  8. Multivariate Analysis of Multiple Datasets: a Practical Guide for Chemical Ecology.

    Science.gov (United States)

    Hervé, Maxime R; Nicolè, Florence; Lê Cao, Kim-Anh

    2018-03-01

    Chemical ecology has strong links with metabolomics, the large-scale study of all metabolites detectable in a biological sample. Consequently, chemical ecologists are often challenged by the statistical analyses of such large datasets. This holds especially true when the purpose is to integrate multiple datasets to obtain a holistic view and a better understanding of a biological system under study. The present article provides a comprehensive resource to analyze such complex datasets using multivariate methods. It starts from the necessary pre-treatment of data including data transformations and distance calculations, to the application of both gold standard and novel multivariate methods for the integration of different omics data. We illustrate the process of analysis along with detailed results interpretations for six issues representative of the different types of biological questions encountered by chemical ecologists. We provide the necessary knowledge and tools with reproducible R codes and chemical-ecological datasets to practice and teach multivariate methods.

  9. Structure formation from non-Gaussian initial conditions: Multivariate biasing, statistics, and comparison with N-body simulations

    International Nuclear Information System (INIS)

    Giannantonio, Tommaso; Porciani, Cristiano

    2010-01-01

    We study structure formation in the presence of primordial non-Gaussianity of the local type with parameters f NL and g NL . We show that the distribution of dark-matter halos is naturally described by a multivariate bias scheme where the halo overdensity depends not only on the underlying matter density fluctuation δ but also on the Gaussian part of the primordial gravitational potential φ. This corresponds to a non-local bias scheme in terms of δ only. We derive the coefficients of the bias expansion as a function of the halo mass by applying the peak-background split to common parametrizations for the halo mass function in the non-Gaussian scenario. We then compute the halo power spectrum and halo-matter cross spectrum in the framework of Eulerian perturbation theory up to third order. Comparing our results against N-body simulations, we find that our model accurately describes the numerical data for wave numbers k≤0.1-0.3h Mpc -1 depending on redshift and halo mass. In our multivariate approach, perturbations in the halo counts trace φ on large scales, and this explains why the halo and matter power spectra show different asymptotic trends for k→0. This strongly scale-dependent bias originates from terms at leading order in our expansion. This is different from what happens using the standard univariate local bias where the scale-dependent terms come from badly behaved higher-order corrections. On the other hand, our biasing scheme reduces to the usual local bias on smaller scales, where |φ| is typically much smaller than the density perturbations. We finally discuss the halo bispectrum in the context of multivariate biasing and show that, due to its strong scale and shape dependence, it is a powerful tool for the detection of primordial non-Gaussianity from future galaxy surveys.

  10. An uncertain journey around the tails of multivariate hydrological distributions

    Science.gov (United States)

    Serinaldi, Francesco

    2013-10-01

    Moving from univariate to multivariate frequency analysis, this study extends the Klemeš' critique of the widespread belief that the increasingly refined mathematical structures of probability functions increase the accuracy and credibility of the extrapolated upper tails of the fitted distribution models. In particular, we discuss key aspects of multivariate frequency analysis applied to hydrological data such as the selection of multivariate design events (i.e., appropriate subsets or scenarios of multiplets that exhibit the same joint probability to be used in design applications) and the assessment of the corresponding uncertainty. Since these problems are often overlooked or treated separately, and sometimes confused, we attempt to clarify properties, advantages, shortcomings, and reliability of results of frequency analysis. We suggest a selection method of multivariate design events with prescribed joint probability based on simple Monte Carlo simulations that accounts for the uncertainty affecting the inference results and the multivariate extreme quantiles. It is also shown that the exploration of the p-level probability regions of a joint distribution returns a set of events that is a subset of the p-level scenarios resulting from an appropriate assessment of the sampling uncertainty, thus tending to overlook more extreme and potentially dangerous events with the same (uncertain) joint probability. Moreover, a quantitative assessment of the uncertainty of multivariate quantiles is provided by introducing the concept of joint confidence intervals. From an operational point of view, the simulated event sets describing the distribution of the multivariate p-level quantiles can be used to perform multivariate risk analysis under sampling uncertainty. As an example of the practical implications of this study, we analyze two case studies already presented in the literature.

  11. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation.

    Science.gov (United States)

    Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai

    2017-10-01

    Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.

  12. International Conference on Robust Statistics

    CERN Document Server

    Filzmoser, Peter; Gather, Ursula; Rousseeuw, Peter

    2003-01-01

    Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.

  13. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

    1998-01-01

    The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

  14. Joint density of eigenvalues in spiked multivariate models.

    Science.gov (United States)

    Dharmawansa, Prathapasinghe; Johnstone, Iain M

    2014-01-01

    The classical methods of multivariate analysis are based on the eigenvalues of one or two sample covariance matrices. In many applications of these methods, for example to high dimensional data, it is natural to consider alternative hypotheses which are a low rank departure from the null hypothesis. For rank one alternatives, this note provides a representation for the joint eigenvalue density in terms of a single contour integral. This will be of use for deriving approximate distributions for likelihood ratios and 'linear' statistics used in testing.

  15. Characterization of Lavandula spp. Honey Using Multivariate Techniques.

    Science.gov (United States)

    Estevinho, Leticia M; Chambó, Emerson Dechechi; Pereira, Ana Paula Rodrigues; Carvalho, Carlos Alfredo Lopes de; Toledo, Vagner de Alencar Arnaut de

    2016-01-01

    Traditionally, melissopalynological and physicochemical analyses have been the most used to determine the botanical origin of honey. However, when performed individually, these analyses may provide less unambiguous results, making it difficult to discriminate between mono and multifloral honeys. In this context, with the aim of better characterizing this beehive product, a selection of 112 Lavandula spp. monofloral honey samples from several regions were evaluated by association of multivariate statistical techniques with physicochemical, melissopalynological and phenolic compounds analysis. All honey samples fulfilled the quality standards recommended by international legislation, except regarding sucrose content and diastase activity. The content of sucrose and the percentage of Lavandula spp. pollen have a strong positive association. In fact, it was found that higher amounts of sucrose in honey are related with highest percentage of pollen of Lavandula spp.. The samples were very similar for most of the physicochemical parameters, except for proline, flavonoids and phenols (bioactive factors). Concerning the pollen spectrum, the variation of Lavandula spp. pollen percentage in honey had little contribution to the formation of samples groups. The formation of two groups regarding the physicochemical parameters suggests that the presence of other pollen types in small percentages influences the factor termed as "bioactive", which has been linked to diverse beneficial health effects.

  16. A Statistical Model for Regional Tornado Climate Studies.

    Science.gov (United States)

    Jagger, Thomas H; Elsner, James B; Widen, Holly M

    2015-01-01

    Tornado reports are locally rare, often clustered, and of variable quality making it difficult to use them directly to describe regional tornado climatology. Here a statistical model is demonstrated that overcomes some of these difficulties and produces a smoothed regional-scale climatology of tornado occurrences. The model is applied to data aggregated at the level of counties. These data include annual population, annual tornado counts and an index of terrain roughness. The model has a term to capture the smoothed frequency relative to the state average. The model is used to examine whether terrain roughness is related to tornado frequency and whether there are differences in tornado activity by County Warning Area (CWA). A key finding is that tornado reports increase by 13% for a two-fold increase in population across Kansas after accounting for improvements in rating procedures. Independent of this relationship, tornadoes have been increasing at an annual rate of 1.9%. Another finding is the pattern of correlated residuals showing more Kansas tornadoes in a corridor of counties running roughly north to south across the west central part of the state consistent with the dryline climatology. The model is significantly improved by adding terrain roughness. The effect amounts to an 18% reduction in the number of tornadoes for every ten meter increase in elevation standard deviation. The model indicates that tornadoes are 51% more likely to occur in counties served by the CWAs of DDC and GID than elsewhere in the state. Flexibility of the model is illustrated by fitting it to data from Illinois, Mississippi, South Dakota, and Ohio.

  17. A multivariate nonlinear mixed effects method for analyzing energy partitioning in growing pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, André

    2010-01-01

    to the multivariate nonlinear regression model because the MNLME method accounted for correlated errors associated with PD and LD measurements and could also include the random effect of animal. It is recommended that multivariate models used to quantify energy metabolism in growing pigs should account for animal......Simultaneous equations have become increasingly popular for describing the effects of nutrition on the utilization of ME for protein (PD) and lipid deposition (LD) in animals. The study developed a multivariate nonlinear mixed effects (MNLME) framework and compared it with an alternative method...... for estimating parameters in simultaneous equations that described energy metabolism in growing pigs, and then proposed new PD and LD equations. The general statistical framework was implemented in the NLMIXED procedure in SAS. Alternative PD and LD equations were also developed, which assumed...

  18. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Science.gov (United States)

    Pavlacky, David C; Lukacs, Paul M; Blakesley, Jennifer A; Skorkowsky, Robert C; Klute, David S; Hahn, Beth A; Dreitz, Victoria J; George, T Luke; Hanni, David J

    2017-01-01

    Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical

  19. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Directory of Open Access Journals (Sweden)

    David C Pavlacky

    Full Text Available Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1 coordination across organizations and regions, 2 meaningful management and conservation objectives, and 3 rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17. We provide two examples for the Brewer's sparrow (Spizella breweri in BCR 17 demonstrating the ability of the design to 1 determine hierarchical population responses to landscape change and 2 estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous

  20. Study of ionically modified water performance in carbonate reservoir system by multivariate data analysis

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Kucheryavskiy, Sergey V.; Thyne, Geoffrey

    2017-01-01

    the critical mechanisms at the pore scale. Better pore scale physico-chemical understanding will guide to formulate accurate reservoir-scale models. This paper presents a comprehensive meta-analysis of the proposed mechanisms using multivariate data analysis. Detailed review of the subject, including...... mechanisms with supporting and contradictory evidence has been presented by Sohal et al. (2016). In this study, the significance of each contributing factor to EOR was quantified and subjected to rigorous multivariate statistical analysis. The analysis was limited because there is no uniform methodology...

  1. New multi-country evidence on purchasing power parity: multivariate unit root test results

    NARCIS (Netherlands)

    J.J.J. Groen (Jan)

    2000-01-01

    textabstractIn this paper a likelihood-based multivariate unit root testing framework is utilized to test whether the real exchange rates of G10 countries are non-stationary. The framework uses a likelihood ratio statistic which combines the information across all involved countries while retaining

  2. Multivariate analysis of structure and contribution per shares made by potential risk factors at malignant neoplasms in trachea, bronchial tubes and lung

    Directory of Open Access Journals (Sweden)

    G.T. Aydinov

    2017-03-01

    Full Text Available The article gives the results of multivariate analysis of structure and contribution per shares made by potential risk factors at malignant neoplasms in trachea, bronchial tubes and lung. The authors used specialized databases comprising personified records on oncologic diseases in Taganrog, Rostov region, over 1986-2015 (30,684 registered cases of malignant neoplasms, including 3,480 cases of trachea cancer, bronchial tubes cancer, and lung cancer. When carrying out analytical research we applied both multivariate statistical techniques (factor analysis and hierarchical cluster correlation analysis and conventional techniques of epidemiologic analysis including etiologic fraction calculation (EF, as well as an original technique of assessing actual (epidemiologic risk. Average long-term morbidity with trachea, bronchial tubes and lung cancer over 2011-2015 amounts to 46.64 o / oooo . Over the last 15 years a stable decreasing trend has formed, annual average growth being – 1.22 %. This localization holds the 3rd rank place in oncologic morbidity structure, its specific weight being 10.02 %. We determined etiological fraction (EF for smoking as a priority risk factor causing trachea, bronchial tubes and lung cancer; this fraction amounts to 76.19 % for people aged 40 and older, and to 81.99 % for those aged 60 and older. Application of multivariate statistical techniques (factor analysis and cluster correlation analysis in this research enabled us to make factor structure more simple; namely, to highlight, interpret, give a quantitative estimate of self-descriptiveness and rank four group (latent potential risk factors causing lung cancer.

  3. Application of multivariate statistical technique for hydrogeochemical assessment of groundwater within the Lower Pra Basin, Ghana

    Science.gov (United States)

    Tay, C. K.; Hayford, E. K.; Hodgson, I. O. A.

    2017-06-01

    Multivariate statistical technique and hydrogeochemical approach were employed for groundwater assessment within the Lower Pra Basin. The main objective was to delineate the main processes that are responsible for the water chemistry and pollution of groundwater within the basin. Fifty-four (54) (No) boreholes were sampled in January 2012 for quality assessment. PCA using Varimax with Kaiser Normalization method of extraction for both rotated space and component matrix have been applied to the data. Results show that Spearman's correlation matrix of major ions revealed expected process-based relationships derived mainly from the geochemical processes, such as ion-exchange and silicate/aluminosilicate weathering within the aquifer. Three main principal components influence the water chemistry and pollution of groundwater within the basin. The three principal components have accounted for approximately 79% of the total variance in the hydrochemical data. Component 1 delineates the main natural processes (water-soil-rock interactions) through which groundwater within the basin acquires its chemical characteristics, Component 2 delineates the incongruent dissolution of silicate/aluminosilicates, while Component 3 delineates the prevalence of pollution principally from agricultural input as well as trace metal mobilization in groundwater within the basin. The loadings and score plots of the first two PCs show grouping pattern which indicates the strength of the mutual relation among the hydrochemical variables. In terms of proper management and development of groundwater within the basin, communities, where intense agriculture is taking place, should be monitored and protected from agricultural activities. especially where inorganic fertilizers are used by creating buffer zones. Monitoring of the water quality especially the water pH is recommended to ensure the acid neutralizing potential of groundwater within the basin thereby, curtailing further trace metal

  4. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    Science.gov (United States)

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  5. Regional compensation for statistical maximum likelihood reconstruction error of PET image pixels

    International Nuclear Information System (INIS)

    Forma, J; Ruotsalainen, U; Niemi, J A

    2013-01-01

    In positron emission tomography (PET), there is an increasing interest in studying not only the regional mean tracer concentration, but its variation arising from local differences in physiology, the tissue heterogeneity. However, in reconstructed images this physiological variation is shadowed by a large reconstruction error, which is caused by noisy data and the inversion of tomographic problem. We present a new procedure which can quantify the error variation in regional reconstructed values for given PET measurement, and reveal the remaining tissue heterogeneity. The error quantification is made by creating and reconstructing the noise realizations of virtual sinograms, which are statistically similar with the measured sinogram. Tests with physical phantom data show that the characterization of error variation and the true heterogeneity are possible, despite the existing model error when real measurement is considered. (paper)

  6. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  7. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  8. Statistical methods in personality assessment research.

    Science.gov (United States)

    Schinka, J A; LaLone, L; Broeckel, J A

    1997-06-01

    Emerging models of personality structure and advances in the measurement of personality and psychopathology suggest that research in personality and personality assessment has entered a stage of advanced development, in this article we examine whether researchers in these areas have taken advantage of new and evolving statistical procedures. We conducted a review of articles published in the Journal of Personality, Assessment during the past 5 years. Of the 449 articles that included some form of data analysis, 12.7% used only descriptive statistics, most employed only univariate statistics, and fewer than 10% used multivariate methods of data analysis. We discuss the cost of using limited statistical methods, the possible reasons for the apparent reluctance to employ advanced statistical procedures, and potential solutions to this technical shortcoming.

  9. Modeling multivariate time series on manifolds with skew radial basis functions.

    Science.gov (United States)

    Jamshidi, Arta A; Kirby, Michael J

    2011-01-01

    We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.

  10. Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support

    NARCIS (Netherlands)

    C.G.H. Diks (Cees); V. Panchenko (Valentyn); O. Sokolinskiy (Oleg); D.J.C. van Dijk (Dick)

    2013-01-01

    textabstractThis paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample)

  11. Comparing the accuracy of copula-based multivariate density forecasts in selected regions of support

    NARCIS (Netherlands)

    Diks, C.; Panchenko, V.; Sokolinskiy, O.; van Dijk, D.

    2013-01-01

    This paper develops a testing framework for comparing the predictive accuracy of copula-based multivariate density forecasts, focusing on a specific part of the joint distribution. The test is framed in the context of the Kullback-Leibler Information Criterion, but using (out-of-sample) conditional

  12. Multivariate Empirical Orthogonal Function analysis of the upper thermocline structure of the Mediterranean Sea from observations and model simulations

    Directory of Open Access Journals (Sweden)

    S. Sparnocchia

    Full Text Available Multivariate vertical Empirical Orthogonal Functions (EOF are calculated for the entire Mediterranean Sea both from observations and model simulations, in order to find the optimal number of vertical modes to represent the upper thermocline vertical structure. For the first time, we show that the large-scale Mediterranean thermohaline vertical structure can be represented by a limited number of vertical multivariate EOFs, and that the "optimal set" can be selected on the basis of general principles. In particular, the EOFs are calculated for the combined temperature and salinity statistics, dividing the Mediterranean Sea into 9 regions and grouping the data seasonally. The criterion used to establish whether a reduced set of EOFs is optimal is based on the analysis of the root mean square residual error between the original data and the profiles reconstructed by the reduced set of EOFs. It was found that the number of EOFs needed to capture the variability contained in the original data changes with geographical region and seasons. In particular, winter data require a smaller number of modes (4–8, depending on the region than the other seasons (8–9 in summer. Moreover, western Mediterranean regions require more modes than the eastern Mediterranean ones, but this result may depend on the data scarcity in the latter regions. The EOFs computed from the in situ data set are compared to those calculated using data obtained from a model simulation. The main results of this exercise are that the two groups of modes are not strictly comparable but their ability to reproduce observations is the same. Thus, they may be thought of as equivalent sets of basis functions, upon which to project the thermohaline variability of the basin.

    Key words. Oceanography: general (water masses – Oceanography: physical (hydrography; instruments and techniques

  13. Multivariate Empirical Orthogonal Function analysis of the upper thermocline structure of the Mediterranean Sea from observations and model simulations

    Directory of Open Access Journals (Sweden)

    S. Sparnocchia

    2003-01-01

    Full Text Available Multivariate vertical Empirical Orthogonal Functions (EOF are calculated for the entire Mediterranean Sea both from observations and model simulations, in order to find the optimal number of vertical modes to represent the upper thermocline vertical structure. For the first time, we show that the large-scale Mediterranean thermohaline vertical structure can be represented by a limited number of vertical multivariate EOFs, and that the "optimal set" can be selected on the basis of general principles. In particular, the EOFs are calculated for the combined temperature and salinity statistics, dividing the Mediterranean Sea into 9 regions and grouping the data seasonally. The criterion used to establish whether a reduced set of EOFs is optimal is based on the analysis of the root mean square residual error between the original data and the profiles reconstructed by the reduced set of EOFs. It was found that the number of EOFs needed to capture the variability contained in the original data changes with geographical region and seasons. In particular, winter data require a smaller number of modes (4–8, depending on the region than the other seasons (8–9 in summer. Moreover, western Mediterranean regions require more modes than the eastern Mediterranean ones, but this result may depend on the data scarcity in the latter regions. The EOFs computed from the in situ data set are compared to those calculated using data obtained from a model simulation. The main results of this exercise are that the two groups of modes are not strictly comparable but their ability to reproduce observations is the same. Thus, they may be thought of as equivalent sets of basis functions, upon which to project the thermohaline variability of the basin. Key words. Oceanography: general (water masses – Oceanography: physical (hydrography; instruments and techniques

  14. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  15. International Conference on Trends and Perspectives in Linear Statistical Inference

    CERN Document Server

    Rosen, Dietrich

    2018-01-01

    This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference. .

  16. Statistical inference based on divergence measures

    CERN Document Server

    Pardo, Leandro

    2005-01-01

    The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach.Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, prese...

  17. Integration of association statistics over genomic regions using Bayesian adaptive regression splines

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohua

    2003-11-01

    Full Text Available Abstract In the search for genetic determinants of complex disease, two approaches to association analysis are most often employed, testing single loci or testing a small group of loci jointly via haplotypes for their relationship to disease status. It is still debatable which of these approaches is more favourable, and under what conditions. The former has the advantage of simplicity but suffers severely when alleles at the tested loci are not in linkage disequilibrium (LD with liability alleles; the latter should capture more of the signal encoded in LD, but is far from simple. The complexity of haplotype analysis could be especially troublesome for association scans over large genomic regions, which, in fact, is becoming the standard design. For these reasons, the authors have been evaluating statistical methods that bridge the gap between single-locus and haplotype-based tests. In this article, they present one such method, which uses non-parametric regression techniques embodied by Bayesian adaptive regression splines (BARS. For a set of markers falling within a common genomic region and a corresponding set of single-locus association statistics, the BARS procedure integrates these results into a single test by examining the class of smooth curves consistent with the data. The non-parametric BARS procedure generally finds no signal when no liability allele exists in the tested region (ie it achieves the specified size of the test and it is sensitive enough to pick up signals when a liability allele is present. The BARS procedure provides a robust and potentially powerful alternative to classical tests of association, diminishes the multiple testing problem inherent in those tests and can be applied to a wide range of data types, including genotype frequencies estimated from pooled samples.

  18. DETERMINING INDICATORS OF URBAN HOUSEHOLD WATER CONSUMPTION THROUGH MULTIVARIATE STATISTICAL TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Gledsneli Maria Lima Lins

    2010-12-01

    Full Text Available Water has a decisive influence on populations’ life quality – specifically in areas like urban supply, drainage, and effluents treatment – due to its sound impact over public health. Water rational use constitutes the greatest challenge faced by water demand management, mainly with regard to urban household water consumption. This makes it important to develop researches to assist water managers and public policy-makers in planning and formulating water demand measures which may allow urban water rational use to be met. This work utilized the multivariate techniques Factor Analysis and Multiple Linear Regression Analysis – in order to determine the participation level of socioeconomic and climatic variables in monthly urban household consumption changes – applying them to two districts of Campina Grande city (State of Paraíba, Brazil. The districts were chosen based on socioeconomic criterion (income level so as to evaluate their water consumer’s behavior. A 9-year monthly data series (from year 2000 up to 2008 was utilized, comprising family income, water tariff, and quantity of household connections (economies – as socioeconomic variables – and average temperature and precipitation, as climatic variables. For both the selected districts of Campina Grande city, the obtained results point out the variables “water tariff” and “family income” as indicators of these district’s household consumption.

  19. A Statistical Model for Regional Tornado Climate Studies.

    Directory of Open Access Journals (Sweden)

    Thomas H Jagger

    Full Text Available Tornado reports are locally rare, often clustered, and of variable quality making it difficult to use them directly to describe regional tornado climatology. Here a statistical model is demonstrated that overcomes some of these difficulties and produces a smoothed regional-scale climatology of tornado occurrences. The model is applied to data aggregated at the level of counties. These data include annual population, annual tornado counts and an index of terrain roughness. The model has a term to capture the smoothed frequency relative to the state average. The model is used to examine whether terrain roughness is related to tornado frequency and whether there are differences in tornado activity by County Warning Area (CWA. A key finding is that tornado reports increase by 13% for a two-fold increase in population across Kansas after accounting for improvements in rating procedures. Independent of this relationship, tornadoes have been increasing at an annual rate of 1.9%. Another finding is the pattern of correlated residuals showing more Kansas tornadoes in a corridor of counties running roughly north to south across the west central part of the state consistent with the dryline climatology. The model is significantly improved by adding terrain roughness. The effect amounts to an 18% reduction in the number of tornadoes for every ten meter increase in elevation standard deviation. The model indicates that tornadoes are 51% more likely to occur in counties served by the CWAs of DDC and GID than elsewhere in the state. Flexibility of the model is illustrated by fitting it to data from Illinois, Mississippi, South Dakota, and Ohio.

  20. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data.

    Science.gov (United States)

    Duan, L L; Szczesniak, R D; Wang, X

    2017-11-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization.

  1. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data

    Science.gov (United States)

    Duan, L. L.; Szczesniak, R. D.; Wang, X.

    2018-01-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization. PMID:29576735

  2. Advances in statistical models for data analysis

    CERN Document Server

    Minerva, Tommaso; Vichi, Maurizio

    2015-01-01

    This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.

  3. Integrating Expert Knowledge with Statistical Analysis for Landslide Susceptibility Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Christos Chalkias

    2016-03-01

    Full Text Available In this paper, an integration landslide susceptibility model by combining expert-based and bivariate statistical analysis (Landslide Susceptibility Index—LSI approaches is presented. Factors related with the occurrence of landslides—such as elevation, slope angle, slope aspect, lithology, land cover, Mean Annual Precipitation (MAP and Peak Ground Acceleration (PGA—were analyzed within a GIS environment. This integrated model produced a landslide susceptibility map which categorized the study area according to the probability level of landslide occurrence. The accuracy of the final map was evaluated by Receiver Operating Characteristics (ROC analysis depending on an independent (validation dataset of landslide events. The prediction ability was found to be 76% revealing that the integration of statistical analysis with human expertise can provide an acceptable landslide susceptibility assessment at regional scale.

  4. Quantitative analysis and IBM SPSS statistics a guide for business and finance

    CERN Document Server

    Aljandali, Abdulkader

    2016-01-01

    This guide is for practicing statisticians and data scientists who use IBM SPSS for statistical analysis of big data in business and finance. This is the first of a two-part guide to SPSS for Windows, introducing data entry into SPSS, along with elementary statistical and graphical methods for summarizing and presenting data. Part I also covers the rudiments of hypothesis testing and business forecasting while Part II will present multivariate statistical methods, more advanced forecasting methods, and multivariate methods. IBM SPSS Statistics offers a powerful set of statistical and information analysis systems that run on a wide variety of personal computers. The software is built around routines that have been developed, tested, and widely used for more than 20 years. As such, IBM SPSS Statistics is extensively used in industry, commerce, banking, local and national governments, and education. Just a small subset of users of the package include the major clearing banks, the BBC, British Gas, British Airway...

  5. The interprocess NIR sampling as an alternative approach to multivariate statistical process control for identifying sources of product-quality variability.

    Science.gov (United States)

    Marković, Snežana; Kerč, Janez; Horvat, Matej

    2017-03-01

    We are presenting a new approach of identifying sources of variability within a manufacturing process by NIR measurements of samples of intermediate material after each consecutive unit operation (interprocess NIR sampling technique). In addition, we summarize the development of a multivariate statistical process control (MSPC) model for the production of enteric-coated pellet product of the proton-pump inhibitor class. By developing provisional NIR calibration models, the identification of critical process points yields comparable results to the established MSPC modeling procedure. Both approaches are shown to lead to the same conclusion, identifying parameters of extrusion/spheronization and characteristics of lactose that have the greatest influence on the end-product's enteric coating performance. The proposed approach enables quicker and easier identification of variability sources during manufacturing process, especially in cases when historical process data is not straightforwardly available. In the presented case the changes of lactose characteristics are influencing the performance of the extrusion/spheronization process step. The pellet cores produced by using one (considered as less suitable) lactose source were on average larger and more fragile, leading to consequent breakage of the cores during subsequent fluid bed operations. These results were confirmed by additional experimental analyses illuminating the underlying mechanism of fracture of oblong pellets during the pellet coating process leading to compromised film coating.

  6. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    Directory of Open Access Journals (Sweden)

    MELEK ACAR BOYACIOĞLU

    2013-06-01

    Full Text Available Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and working environment of a bank are being evaluated in this context. In this study, a model has been developed in order to predict the financial strength rating of Turkish banks. The methodology of this study is as follows: Selecting variables to be used in the model, creating a data set, choosing the techniques to be used and the evaluation of classification success of the techniques. It is concluded that the artificial neural network system shows a better performance in terms of classification of financial strength rating in comparison to multivariate statistical methods in the raining set. On the other hand, there is no meaningful difference could be found in the validation set in which the prediction performances of the employed techniques are tested.

  7. Rapid differentiation of Chinese hop varieties (Humulus lupulus) using volatile fingerprinting by HS-SPME-GC-MS combined with multivariate statistical analysis.

    Science.gov (United States)

    Liu, Zechang; Wang, Liping; Liu, Yumei

    2018-01-18

    Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Study of Syrian archaeological pottery by the combined application of thermoluminescence (TL) dating, X-ray fluorescence analysis and statistical multivariate analysis

    International Nuclear Information System (INIS)

    Bakraji, E.H.

    2012-01-01

    X-ray fluorescence method and the technique of thermoluminescence (TL) dating have been utilized for the study of archaeological pottery fragment samples, fairly representative of Romanian period between 1 st century B.C. and 4th century A.D, from Judaidet Yabous site, which is located north-west of Damascus city, Syria. Four samples were chosen randomly among the forty six samples for dating using thermoluminescence technique and the results were in good agreement with the date assigned by archaeologists. The samples were irradiated for 1000 s live time twice, first using a Mo X-ray Tube and second using a 109 Cd radioactive source. Fifteen elements (K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, and Pb) were determined. The elemental concentrations have been processed using two multivariate statistical methods. The purpose of the study was to characterize by means of elements contents the pottery paste from Judaidet Yabous archaeological site and providing new data to the Syrian databases for future studies. From an archaeological point of view the results indicated that most of the potteries, were locally produced. (author)

  9. Estimating uncertainty in multivariate responses to selection.

    Science.gov (United States)

    Stinchcombe, John R; Simonsen, Anna K; Blows, Mark W

    2014-04-01

    Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty in the estimates. Here we describe the application of a framework that blends the merits of the Robertson-Price Identity approach and the multivariate breeder's equation to address these challenges. The approach allows genetic covariance matrices, selection differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian-MCMC framework, statistically robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of previously published data. More generally, we suggest that applying both the Robertson-Price Identity and the multivariate breeder's equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  10. Statistical Analysis Of Reconnaissance Geochemical Data From ...

    African Journals Online (AJOL)

    , Co, Mo, Hg, Sb, Tl, Sc, Cr, Ni, La, W, V, U, Th, Bi, Sr and Ga in 56 stream sediment samples collected from Orle drainage system were subjected to univariate and multivariate statistical analyses. The univariate methods used include ...

  11. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French coastlines.

    Science.gov (United States)

    Laugel, Amélie; Menendez, Melisa; Benoit, Michel; Mattarolo, Giovanni; Mendez, Fernando

    2013-04-01

    Wave climate forecasting is a major issue for numerous marine and coastal related activities, such as offshore industries, flooding risks assessment and wave energy resource evaluation, among others. Generally, there are two main ways to predict the impacts of the climate change on the wave climate at regional scale: the dynamical and the statistical downscaling of GCM (Global Climate Model). In this study, both methods have been applied on the French coast (Atlantic , English Channel and North Sea shoreline) under three climate change scenarios (A1B, A2, B1) simulated with the GCM ARPEGE-CLIMAT, from Météo-France (AR4, IPCC). The aim of the work is to characterise the wave climatology of the 21st century and compare the statistical and dynamical methods pointing out advantages and disadvantages of each approach. The statistical downscaling method proposed by the Environmental Hydraulics Institute of Cantabria (Spain) has been applied (Menendez et al., 2011). At a particular location, the sea-state climate (Predictand Y) is defined as a function, Y=f(X), of several atmospheric circulation patterns (Predictor X). Assuming these climate associations between predictor and predictand are stationary, the statistical approach has been used to project the future wave conditions with reference to the GCM. The statistical relations between predictor and predictand have been established over 31 years, from 1979 to 2009. The predictor is built as the 3-days-averaged squared sea level pressure gradient from the hourly CFSR database (Climate Forecast System Reanalysis, http://cfs.ncep.noaa.gov/cfsr/). The predictand has been extracted from the 31-years hindcast sea-state database ANEMOC-2 performed with the 3G spectral wave model TOMAWAC (Benoit et al., 1996), developed at EDF R&D LNHE and Saint-Venant Laboratory for Hydraulics and forced by the CFSR 10m wind field. Significant wave height, peak period and mean wave direction have been extracted with an hourly-resolution at

  12. A Multivariate Study on Genetic Variation in Teak (Tectona grandis (L.))

    DEFF Research Database (Denmark)

    Kjær, Erik Dahl; Siegismund, Hans Redlef; Suangtho, V.

    1996-01-01

    Genetic differentiation between populations of teak (Tectona grandis (L.)) was examined in 9 quantitative characters and 10 allozyme loci. Large differences between populations were revealed in the quantitative traits. Regional patterns were revealed by multivariate analysis of the data, but ther...

  13. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.

    Science.gov (United States)

    Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep

    2017-01-01

    The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.

  14. Multivariate extended skew-t distributions and related families

    KAUST Repository

    Arellano-Valle, Reinaldo B.

    2010-12-01

    A class of multivariate extended skew-t (EST) distributions is introduced and studied in detail, along with closely related families such as the subclass of extended skew-normal distributions. Besides mathematical tractability and modeling flexibility in terms of both skewness and heavier tails than the normal distribution, the most relevant properties of the EST distribution include closure under conditioning and ability to model lighter tails as well. The first part of the present paper examines probabilistic properties of the EST distribution, such as various stochastic representations, marginal and conditional distributions, linear transformations, moments and in particular Mardia’s measures of multivariate skewness and kurtosis. The second part of the paper studies statistical properties of the EST distribution, such as likelihood inference, behavior of the profile log-likelihood, the score vector and the Fisher information matrix. Especially, unlike the extended skew-normal distribution, the Fisher information matrix of the univariate EST distribution is shown to be non-singular when the skewness is set to zero. Finally, a numerical application of the conditional EST distribution is presented in the context of confidential data perturbation.

  15. Multivariate extended skew-t distributions and related families

    KAUST Repository

    Arellano-Valle, Reinaldo B.; Genton, Marc G.

    2010-01-01

    A class of multivariate extended skew-t (EST) distributions is introduced and studied in detail, along with closely related families such as the subclass of extended skew-normal distributions. Besides mathematical tractability and modeling flexibility in terms of both skewness and heavier tails than the normal distribution, the most relevant properties of the EST distribution include closure under conditioning and ability to model lighter tails as well. The first part of the present paper examines probabilistic properties of the EST distribution, such as various stochastic representations, marginal and conditional distributions, linear transformations, moments and in particular Mardia’s measures of multivariate skewness and kurtosis. The second part of the paper studies statistical properties of the EST distribution, such as likelihood inference, behavior of the profile log-likelihood, the score vector and the Fisher information matrix. Especially, unlike the extended skew-normal distribution, the Fisher information matrix of the univariate EST distribution is shown to be non-singular when the skewness is set to zero. Finally, a numerical application of the conditional EST distribution is presented in the context of confidential data perturbation.

  16. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  17. Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes

    KAUST Repository

    Vettori, Sabrina; Huser, Raphaë l; Genton, Marc G.

    2018-01-01

    Capturing the potentially strong dependence among the peak concentrations of multiple air pollutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are conditionally independent given some latent nested $\\alpha$-stable random factors. The hierarchical structure facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex tail dependence structure.

  18. Bayesian Modeling of Air Pollution Extremes Using Nested Multivariate Max-Stable Processes

    KAUST Repository

    Vettori, Sabrina

    2018-03-18

    Capturing the potentially strong dependence among the peak concentrations of multiple air pollutants across a spatial region is crucial for assessing the related public health risks. In order to investigate the multivariate spatial dependence properties of air pollution extremes, we introduce a new class of multivariate max-stable processes. Our proposed model admits a hierarchical tree-based formulation, in which the data are conditionally independent given some latent nested $\\\\alpha$-stable random factors. The hierarchical structure facilitates Bayesian inference and offers a convenient and interpretable characterization. We fit this nested multivariate max-stable model to the maxima of air pollution concentrations and temperatures recorded at a number of sites in the Los Angeles area, showing that the proposed model succeeds in capturing their complex tail dependence structure.

  19. Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics

    Science.gov (United States)

    Xu, Qinzeng; Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2014-11-01

    Fatty acids (FAs) provide energy and also can be used to trace trophic relationships among organisms. Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months. We examined fatty acid profiles in aestivated and non-aestivated A. japonicus using multivariate analyses (PERMANOVA, MDS, ANOSIM, and SIMPER). The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly. The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers. Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation, and long chain FAs such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) that produced from intestinal degradation, are digested during deep aestivation. Specific changes in the fatty acid composition of A. japonicus during aestivation needs more detailed study in the future.

  20. Statistics and data analysis for financial engineering with R examples

    CERN Document Server

    Ruppert, David

    2015-01-01

    The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. Financial engineers now have access to enormous quantities of data. To make use of these data, the powerful methods in this book, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, multivariate volatility and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing fina...

  1. Estimating External Costs of Transportation in Regional Areas: Using Available Statistical Data the Case of the Region of Campania

    Directory of Open Access Journals (Sweden)

    Mariano Gallo

    2010-04-01

    Full Text Available In this paper simplified methods for estimating the external costs due to transportation in regional areas are proposed. The methods are based on data available by national and regional statistical sources and do not need specific surveys; they allow obtaining approximate estimates useful for a preliminary evaluation of transportation plans, policies and projects. In more detail, a negative externality is defined as a cost that is produced by subject A and is borne by subject B; moreover, subject A does not consider the effects of his/her behavior on subject B and does not compensate subject B for the costs that this last one is forced to bear. In this paper after a literature review on methodologies proposed for estimating external costs, in national and international ambits, the main external costs produced by transportation systems in the Region of Campania are estimated. The main external costs considered are: greenhouse gas emissions, air pollution, noise, accidents and congestion. In the paper the secondary external costs are neglected; the main ones are: water and soil pollution; landscape and nature damages; upstream and downstream effects; visual intrusion; separation effects; soil occupancy. In this paper the external costs estimated are the ones produced not only by road traffic, that anyway is the main “culprit”, but also by rail and air transportation systems. The evaluation of external costs has required the collection of several data on the regional mobility and the estimation of veh-kms per year produced in Campania by cars and freight vehicles. The estimation of veh-kms per year is based on circulating vehicles, subdivided by the COPERT classification, and on average yearly distances covered by each vehicle class. Other regional statistical data are collected about regional rail transport and air services at the main airports of the region. Moreover, since the evaluation of some external costs is based on damages on human

  2. Multivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A(1) receptor agonists in rat

    NARCIS (Netherlands)

    Van der Graaf, PH; Nilsson, J; Van Schaick, EA; Danhof, M

    The aim of this study was to investigate the feasibility of a quantitative structure-pharmacokinetic relationships (QSPKR) method based on contemporary three-dimensional (3D) molecular characterization and multivariate statistical analysis. For this purpose, the programs SYBYL/CoMFA, GRID, and

  3. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    Science.gov (United States)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  4. Pre-processing of Fourier transform infrared spectra by means of multivariate analysis implemented in the R environment.

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka; Gajda, Mariusz; Pawlicki, Bohdan; Kwiatek, Wojciech M; Breese, Mark B H

    2015-04-21

    Pre-processing of Fourier transform infrared (FTIR) spectra is typically the first and crucial step in data analysis. Very often hyperspectral datasets include the regions characterized by the spectra of very low intensity, for example two-dimensional (2D) maps where the areas with only support materials (like mylar foil) are present. In that case segmentation of the complete dataset is required before subsequent evaluation. The method proposed in this contribution is based on a multivariate approach (hierarchical cluster analysis), and shows its superiority when compared to the standard method of cutting-off by using only the mean spectral intensity. Both techniques were implemented and their performance was tested in the R statistical environment - open-source platform - that is a favourable solution if the repeatability and transparency are the key aspects.

  5. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    Science.gov (United States)

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  6. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    Science.gov (United States)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with

  7. The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars; Violante, Francesco

    innovation for a Laplace innovation assumption improves the pricing in a smaller way. Apart from investigating directly the value of model sophistication in terms of dollar losses, we also use the model condence set approach to statistically infer the set of models that delivers the best pricing performance.......We assess the predictive accuracy of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set 248 multivariate models that differer...

  8. Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities

    KAUST Repository

    Genton, Marc G.

    2017-09-07

    We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations.

  9. Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities

    KAUST Repository

    Genton, Marc G.; Keyes, David E.; Turkiyyah, George

    2017-01-01

    We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations.

  10. Statistical polarization in greenhouse gas emissions: Theory and evidence.

    Science.gov (United States)

    Remuzgo, Lorena; Trueba, Carmen

    2017-11-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of multivariate statistical methods in analyzing expectation surveys in Central Bank of Nigeria

    OpenAIRE

    Raymond, Ogbuka Obinna

    2017-01-01

    In analyzing survey data, most researchers and analysts make use of statistical methods with straight forward statistical approaches. More common, is the use of one‐way, two‐way or multi‐way tables, and graphical displays such as bar charts, line charts, etc. A brief overview of these approaches and a good discussion on aspects needing attention during the data analysis process can be found in Wilson & Stern (2001). In most cases however, analysis procedures that go beyond simp...

  12. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  13. Statistical dynamics of regional populations and economies

    Science.gov (United States)

    Huo, Jie; Wang, Xu-Ming; Hao, Rui; Wang, Peng

    Quantitative analysis of human behavior and social development is becoming a hot spot of some interdisciplinary studies. A statistical analysis on the population and GDP of 150 cities in China from 1990 to 2013 is conducted. The result indicates the cumulative probability distribution of the populations and that of the GDPs obeying the shifted power law, respectively. In order to understand these characteristics, a generalized Langevin equation describing variation of population is proposed, which is based on the correlations between population and GDP as well as the random fluctuations of the related factors. The equation is transformed into the Fokker-Plank equation to express the evolution of population distribution. The general solution demonstrates a transition of the distribution from the normal Gaussian distribution to a shifted power law, which suggests a critical point of time at which the transition takes place. The shifted power law distribution in the supercritical situation is qualitatively in accordance with the practical result. The distribution of the GDPs is derived from the well-known Cobb-Douglas production function. The result presents a change, in supercritical situation, from a shifted power law to the Gaussian distribution. This is a surprising result-the regional GDP distribution of our world will be the Gaussian distribution one day in the future. The discussions based on the changing trend of economic growth suggest it will be true. Therefore, these theoretical attempts may draw a historical picture of our society in the aspects of population and economy.

  14. Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms

    OpenAIRE

    Wang, Yalin; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer’s Disease (AD; 26 subjects), lateral ventricula...

  15. Improved detection of incipient anomalies via multivariate memory monitoring charts: Application to an air flow heating system

    KAUST Repository

    Harrou, Fouzi; Madakyaru, Muddu; Sun, Ying; Khadraoui, Sofiane

    2016-01-01

    Detecting anomalies is important for reliable operation of several engineering systems. Multivariate statistical monitoring charts are an efficient tool for checking the quality of a process by identifying abnormalities. Principal component analysis

  16. [Study on the factors impacting on early cochlear implantation between the eastern and western region of China].

    Science.gov (United States)

    Xiao, Hanqiong; Li, Wei; Ma, Ruixia; Gong, Zhengpeng; Shi, Haibo; Li, Huawei; Chen, Bing; Jiang, Ye; Dai, Chunfu

    2015-06-01

    To describe tne regional different factors which impact on early cochlear implantation in prelingual deaf children between eastern and western regions of China. The charts of 113 children who received the cochlear implantation after 24 months old were reviewed and analyzed. Forty-five of them came from the eastern region (Jiangsu, Zhejiang or Shanghai) while 68 of them came from the western region (Ningxia or Guizhou). Parental interviews were conducted to collect information regarding the factors that impact on early cochlear implantation. Result:Based on the univariate logistic regression analysis, the odds ratio (OR) value of universal newborn hearing screening (UNHS) was 5. 481, which indicated the correlation of UNHS with early cochlear implantation is significant. There was statistical difference between the 2 groups (P0. 05). The multivariate analysis indicated that the UNHS and financial burden are statistically different between the eastern and western regions (P=0. 00 and 0. 040 respectively). The UNHS and financial burden are statistically different between the eastern reinforced in the western region. In addition, the government and society should provide powerful policy and more financial support in the western region of China. The innovation of management system is also helpful to the early cochlear implantation.

  17. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    Science.gov (United States)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  18. Methods of Multivariate Analysis

    CERN Document Server

    Rencher, Alvin C

    2012-01-01

    Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit

  19. Continuous multivariate exponential extension

    International Nuclear Information System (INIS)

    Block, H.W.

    1975-01-01

    The Freund-Weinman multivariate exponential extension is generalized to the case of nonidentically distributed marginal distributions. A fatal shock model is given for the resulting distribution. Results in the bivariate case and the concept of constant multivariate hazard rate lead to a continuous distribution related to the multivariate exponential distribution (MVE) of Marshall and Olkin. This distribution is shown to be a special case of the extended Freund-Weinman distribution. A generalization of the bivariate model of Proschan and Sullo leads to a distribution which contains both the extended Freund-Weinman distribution and the MVE

  20. Understanding characteristics in multivariate traffic flow time series from complex network structure

    Science.gov (United States)

    Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei

    2017-07-01

    Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.

  1. Ellipsoidal prediction regions for multivariate uncertainty characterization

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Azizipanah-Abarghooee, Rasoul

    2018-01-01

    While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times and vari......While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times...... probability guarantees and minimum conservativeness. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for potential misspecification of ellipsoidal prediction regions...

  2. Damage detection of engine bladed-disks using multivariate statistical analysis

    Science.gov (United States)

    Fang, X.; Tang, J.

    2006-03-01

    The timely detection of damage in aero-engine bladed-disks is an extremely important and challenging research topic. Bladed-disks have high modal density and, particularly, their vibration responses are subject to significant uncertainties due to manufacturing tolerance (blade-to-blade difference or mistuning), operating condition change and sensor noise. In this study, we present a new methodology for the on-line damage detection of engine bladed-disks using their vibratory responses during spin-up or spin-down operations which can be measured by blade-tip-timing sensing technique. We apply a principle component analysis (PCA)-based approach for data compression, feature extraction, and denoising. The non-model based damage detection is achieved by analyzing the change between response features of the healthy structure and of the damaged one. We facilitate such comparison by incorporating the Hotelling's statistic T2 analysis, which yields damage declaration with a given confidence level. The effectiveness of the method is demonstrated by case studies.

  3. Validation of models with multivariate output

    International Nuclear Information System (INIS)

    Rebba, Ramesh; Mahadevan, Sankaran

    2006-01-01

    This paper develops metrics for validating computational models with experimental data, considering uncertainties in both. A computational model may generate multiple response quantities and the validation experiment might yield corresponding measured values. Alternatively, a single response quantity may be predicted and observed at different spatial and temporal points. Model validation in such cases involves comparison of multiple correlated quantities. Multiple univariate comparisons may give conflicting inferences. Therefore, aggregate validation metrics are developed in this paper. Both classical and Bayesian hypothesis testing are investigated for this purpose, using multivariate analysis. Since, commonly used statistical significance tests are based on normality assumptions, appropriate transformations are investigated in the case of non-normal data. The methodology is implemented to validate an empirical model for energy dissipation in lap joints under dynamic loading

  4. Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS.

    Science.gov (United States)

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F; Becker, James T; Aizenstein, Howard J; Lopez, Oscar L; Tamburo, Robert J; Toga, Arthur W; Thompson, Paul M

    2010-02-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics-these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  5. Characterization and discrimination of raw and vinegar-baked Bupleuri radix based on UHPLC-Q-TOF-MS coupled with multivariate statistical analysis.

    Science.gov (United States)

    Lei, Tianli; Chen, Shifeng; Wang, Kai; Zhang, Dandan; Dong, Lin; Lv, Chongning; Wang, Jing; Lu, Jincai

    2018-02-01

    Bupleuri Radix is a commonly used herb in clinic, and raw and vinegar-baked Bupleuri Radix are both documented in the Pharmacopoeia of People's Republic of China. According to the theories of traditional Chinese medicine, Bupleuri Radix possesses different therapeutic effects before and after processing. However, the chemical mechanism of this processing is still unknown. In this study, ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry coupled with multivariate statistical analysis including principal component analysis and orthogonal partial least square-discriminant analysis was developed to holistically compare the difference between raw and vinegar-baked Bupleuri Radix for the first time. As a result, 50 peaks in raw and processed Bupleuri Radix were detected, respectively, and a total of 49 peak chemical compounds were identified. Saikosaponin a, saikosaponin d, saikosaponin b 3 , saikosaponin e, saikosaponin c, saikosaponin b 2 , saikosaponin b 1 , 4''-O-acetyl-saikosaponin d, hyperoside and 3',4'-dimethoxy quercetin were explored as potential markers of raw and vinegar-baked Bupleuri Radix. This study has been successfully applied for global analysis of raw and vinegar-processed samples. Furthermore, the underlying hepatoprotective mechanism of Bupleuri Radix was predicted, which was related to the changes of chemical profiling. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Elemental characterization of herbal medicines used in Ghana by instrumental neutron activation analysis and atomic absorption spectrometry and multivariate statistical analysis

    International Nuclear Information System (INIS)

    Ayivor, J.E.; Nyarko, B.J.B.; Dampare, S.B.; Okine, L.K.

    2010-01-01

    k 0 instrumental neutron activation analysis and atomic absorption spectrometry were applied to determine multi elements in thirteen Ghanaian herbal medicines used for the management of various diseases. Concentrations of AI, Cu, Mg, Mn and Na were determined. As, Br, K, CI, and Na were determined by short and medium irradiations at a thermal neutron flux of 5x10ncm -2 s -1 . Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using atomic absorption spectrometry. Ba, Cu, Li and V were present at trace levels whereas AI, CI, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. The precision and accuracy of the method using real samples and standard reference materials were within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into two statistically significant clusters, reflecting the different chemical compositions. The concentrations of elements were within the recommended daily allowances or maximum permissible levels posing no adverse effects on human health.

  7. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques

    International Nuclear Information System (INIS)

    El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz

    2017-01-01

    Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock–water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. - Highlights: • Hydrochemical investigations were carried out in Dhurma aquifer in Saudi Arabia. • The factors controlling potential groundwater pollution in an arid region were studied. • Chemical and statistical analyses are integrated to assess these factors. • Five main factors were extracted, which explain >77% of the total data variance. • The chemical characteristics of the groundwater were influenced by rock–water interactions

  8. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  9. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  10. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  11. Applied statistics in agricultural, biological, and environmental sciences.

    Science.gov (United States)

    Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...

  12. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions

    Science.gov (United States)

    Santos, João A.; Malheiro, Aureliano C.; Karremann, Melanie K.; Pinto, Joaquim G.

    2011-03-01

    The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.

  13. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    Science.gov (United States)

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A statistical study of ion energization at 1700 km in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2002-12-01

    Full Text Available We present a comprehensive overview of several potentially relevant causes for the oxygen energization in the auroral region. Data from the Freja satellite near 1700 km altitude are used for an unconditional statistical investigation. The data are obtained in the Northern Hemisphere during 21 months in the declining phase of the solar cycle. The importance of various wave types for the ion energization is statistically studied. We also investigate the correlation of ion heating with precipitating protons, accelerated auroral electrons, suprathermal electron bursts, the electron density variations, Kp index and solar illumination of the nearest conjugate ionosphere. We find that sufficiently strong broad-band ELF waves, electromagnetic ion cyclotron waves, and waves around the lower hybrid frequency are foremost associated with the ion heating. However, magnetosonic waves, with a sharp, lower frequency cutoff just below the proton gyrofrequency, are not found to contribute to the ion heating. In the absence of the first three wave emissions, transversely energized ions are rare. These wave types are approximately equally efficient in heating the ions, but we find that the main source for the heating is broadband ELF waves, since they are most common in the auroral region. We have also observed that the conditions for ion heating are more favourable for smaller ratios of the spectral densities SE /SB of the broadband ELF waves at the oxygen gyrofrequency.Key words. Ionosphere (auroral ionosphere; wave propogation Magnetospheric physics (electric fields

  15. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing.

    Science.gov (United States)

    Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel

    2015-01-01

    The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high

  16. Generalized Inferences about the Mean Vector of Several Multivariate Gaussian Processes

    Directory of Open Access Journals (Sweden)

    Pilar Ibarrola

    2015-01-01

    Full Text Available We consider in this paper the problem of comparing the means of several multivariate Gaussian processes. It is assumed that the means depend linearly on an unknown vector parameter θ and that nuisance parameters appear in the covariance matrices. More precisely, we deal with the problem of testing hypotheses, as well as obtaining confidence regions for θ. Both methods will be based on the concepts of generalized p value and generalized confidence region adapted to our context.

  17. Simple and Multivariate Relationships Between Spiritual Intelligence with General Health and Happiness.

    Science.gov (United States)

    Amirian, Mohammad-Elyas; Fazilat-Pour, Masoud

    2016-08-01

    The present study examined simple and multivariate relationships of spiritual intelligence with general health and happiness. The employed method was descriptive and correlational. King's Spiritual Quotient scales, GHQ-28 and Oxford Happiness Inventory, are filled out by a sample consisted of 384 students, which were selected using stratified random sampling from the students of Shahid Bahonar University of Kerman. Data are subjected to descriptive and inferential statistics including correlations and multivariate regressions. Bivariate correlations support positive and significant predictive value of spiritual intelligence toward general health and happiness. Further analysis showed that among the Spiritual Intelligence' subscales, Existential Critical Thinking Predicted General Health and Happiness, reversely. In addition, happiness was positively predicted by generation of personal meaning and transcendental awareness. The findings are discussed in line with the previous studies and the relevant theoretical background.

  18. Clinical patch test data evaluated by multivariate analysis. Danish Contact Dermatitis Group

    DEFF Research Database (Denmark)

    Christophersen, J; Menné, T; Tanghøj, P

    1989-01-01

    The aim of the present study was to evaluate the influence of individual explanatory factors, such as sex, age, atopy, test time and presence of diseased skin, on clinical patch test results, by application of multivariate statistical analysis. The study population was 2166 consecutive patients...... patch tested with the standard series of the International Contact Dermatitis Research Group (ICDRG) by members of the Danish Contact Dermatitis Group (DCDG) over a period of 6 months. For the 8 test allergens most often found positive (nickel, fragrance-mix, cobalt, chromate, balsam of Peru, carba......-mix, colophony, and formaldehyde), one or more individual factors were of significance for the risk of being sensitized, except for chromate and formaldehyde. It is concluded that patch test results can be compared only after stratification of the material or by multivariate analysis....

  19. Multivariate Birkhoff interpolation

    CERN Document Server

    Lorentz, Rudolph A

    1992-01-01

    The subject of this book is Lagrange, Hermite and Birkhoff (lacunary Hermite) interpolation by multivariate algebraic polynomials. It unifies and extends a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate interpolation in order to determine its regularity (which formulas are practically unknown anyways) by determining the regularity through simple geometric manipulations in the Euclidean space. Although interpolation is a classical problem, it is surprising how little is known about its basic properties in the multivariate case. The book therefore starts by exploring its fundamental properties and its limitations. The main part of the book is devoted to a complete and detailed elaboration of the new technique. A chapter with an extensive selection of finite elements follows as well a...

  20. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the