WorldWideScience

Sample records for regions infrared dark

  1. Atomic carbon in an infrared dark cloud

    NARCIS (Netherlands)

    Ossenkopf, Volker; Ormel, Chris W.; Simon, Robert; Sun, Kefeng; Stutzki, Jürgen

    2010-01-01

    Infrared dark clouds (IRDCs) are potential sites of massive star formation, dark in the near-infrared, but in many cases already with indications of active star-formation from far-infrared and submm observations. They are an ideal test bed to study the role of internal and external heating on the

  2. Infrared radiation from dark globules

    International Nuclear Information System (INIS)

    Spencer, R.G.; Leung, C.M.

    1978-01-01

    Theoretical models are constructed by which to study the infrared emission from dark globules heated by the interstellar radiation field (ISRF). The effects of cloud parameters (grain type, optical depth, and density inhomogeneity) on the emergent spectrum and infrared surface brightnesses are studied. Compared with clouds which have internal heat sources, the emergent flux for globules is found to be at least a factor of 10 smaller and to peak at wavelengths 100 μm< or =lambda< or =130 μm for graphite clouds and 310 μm< or =lambda< or =550 μm for silicate clouds. Either limb brightening or limb darkening in the infrared can occur, which depends sensitively on the optical depth. For globules of moderate extinction (greater than approx.10 in the visible), significant infrared limb brightening occurs at wavelengths of grain emission (20 μm< or =lambda< or =600 μm). A physical interpretation of these results is presented. To help remove ambiguities from interpretations of future observations, the observable effects of a grain mixture, variation of the ISRF, as well as beam dilution are examined in detail. The presence of a second grain component alters the emergent spectrum significantly. For a variation of the ISRF within wide limits, the ratio of surface to central temperature (T/sub s//T/sub c/) of an optically thick cloud remains fairly constant (3< or approx. =T/sub s//T/sub c/< or approx. =4). Infrared limb brightening may be smoothed out by beam dilution as well as by density inhomogeneities. Finally, the expected flux densities in the infrared of a typical globule are presented for different beam sizes. The predicted fluxes are within the detection threshold of currently available infrared detectors, using either ground-based or balloon-borne telescopes

  3. Infrared studies of two dark clouds

    International Nuclear Information System (INIS)

    Elias, J.H.

    1978-01-01

    The IC5146 dark cloud complex was surveyed in the infrared in order to identify and study associated young stellar objects. Most of the objects detected in the survey appears to be field stars, predominantly late-type giants. Three young objects were detected in the survey: the BO star BD + 46 x 3474, the Ae star BD + 46 x 3471, and a previously unidentified object which appear to be a heavily obscured FU Ori star. The properties of the last two objects are examined in detail, and an attempt is made to produce reasonable models for them. It is suggested that FU Ori stars are binaries, and some consequences of this model are described. Photometry of the brighter stars in the IC5146 cluster was used to establish a distance to the cluster of 900 +- 100 pc. A near-infrared survey was also conducted of nearly 18 square degrees of the Ophiuchus dark cloud complex. Additional observations were made of selected objects found in this region, in order to identify and study the young stars associated with the cloud. These observations show that very recent star formation has been largely restricted to a small region no more than a few parsecs in extent at the center of the dark cloud complex. Most of the young stars do not appear to be main sequence stars. At least three of these objects appear to be surrounded by infrared reflection nebulae. Many of the objects studies are background K and M giants which can be used to determine the near-infrared extinction due to the dark cloud

  4. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-10

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm{sup –2} in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.

  5. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Lim, Wanggi; Tan, Jonathan C.

    2014-01-01

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm –2 in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions

  6. Infrared polarimetry of dark clouds: Pt. 3

    International Nuclear Information System (INIS)

    Tamura, Motohide; Yamashita, Takuya; Sato, Shuji; Nagata, Tetsuya

    1988-01-01

    The K-band polarization of 15 infrared sources toward the NGC 1333 region has been measured. The distribution of the position angles of polarization vectors is bimodal: one component, composed of the majority (80 per cent) of the observed infrared sources, has a centre at a position angle of 125 0 ± 30 0 , while the other component, composed of three sources (HH7-11 IRS, SGS 1 and LkHα 271), shows position angles of 40 0 ± 20 0 , nearly perpendicular to the first. We assign the origin of the former component to the magnetic field threading the NGC 1333 region, and that of the latter to the anisotropic reflection nebulosity associated with those young stellar objects. The perpendicularity of the position angles between field stars and young stellar objects suggests that star formation and cloud evolution in the NGC 1333 region might have occurred under the influence of the magnetic field. (author)

  7. Organic Species in Infrared Dark Clouds

    Science.gov (United States)

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, Hendrik; Voronkov, Maxim; Britton, Tui; Zinchenko, Igor; Schuller, Frederic

    2014-01-01

    It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars (>8 M ⊙). Submillimeter and millimeter-wave studies performed over the past 15 yr show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H2CO, HNCO, CH3CCH, CH3OH, CH3CHO, CH3OCHO, and CH3OCH3. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules, a zero-dimensional gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The 22 m Mopra antenna is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO. The University of New South Wales Digital Filter Bank used for the observations with the Mopra Telescope was provided with support from the Australian Research Council.

  8. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos.

    Science.gov (United States)

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-29

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45}  cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  9. Characterizing star formation activity in infrared dark cloud MSXDC G048.65-00.29

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; Shipman, R. F.

    2008-01-01

    Context. Infrared dark clouds (IRDCs), condensed regions of the ISM with high column densities, low temperatures and high masses, are suspected sites of star formation. Thousands of IRDCs have already been identified. To date, it has not been resolved whether IRDCs always show star formation

  10. The Relationship Between Infrared Dark Cloud and Stellar Properties

    Science.gov (United States)

    Calahan, Jenny; Hora, Joseph L.

    2018-01-01

    Massive stars are known to form within infrared dark clouds (IRDCs), but many details about how molecular clouds collapse and form stars remain poorly understood.We determine the relationship between the dark cloud mass and the population of young stellar objects (YSOs) associated with the cloud to shed light on the physical processes occurring within these star forming regions. We chose to use a sample of IRDCs and YSOs within the Cygnus-X region, a close-by giant star formation complex that has every stage of star formation represented. Using observations from IRAC, MIPS, PACS, and SPIRE on Spitzer and Herschel we identified a sample of 30,903 YSOs and 167 IRDCs. We derived the class of each YSO as well as the mass of YSO and IRDCs from the flux information. Using these parameters, as well as their locations in the cloud, we were sorted IRDC fragments into larger filaments and associate a set of YSOs with each IRDC. By measuring and comparing parameters such as YSO total mass, number of YSOs, Class 0, Class I, and Class II populations, distance from host filament, and filament mass we tested for correlations between the YSO and IRDC parameters. Using this treasure trove of information, we find that Class 0 and I objects are located more closely to their host IRDC than their Class II counterparts. We also find that high-density IRDCs are better environments for star formation than low-density IRDCs. However, we find no correlation between the total mass of the IRDC and the largest YSO mass in the IRDC, suggesting that IRDCs of any mass can have massive YSOs associated with them.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  11. INFRARED DARK CLOUDS IN THE SMALL MAGELLANIC CLOUD?

    International Nuclear Information System (INIS)

    Lee, Min-Young; Stanimirovic, Snezana; Devine, Kathryn E.; Ott, Juergen; Van Loon, Jacco Th.; Oliveira, Joana M.; Bolatto, Alberto D.; Jones, Paul A.; Cunningham, Maria R.

    2009-01-01

    We have applied the unsharp-masking technique to the 24 μm image of the Small Magellanic Cloud (SMC), obtained with the Spitzer Space Telescope, to search for high-extinction regions. This technique has been used to locate very dense and cold interstellar clouds in the Galaxy, particularly infrared dark clouds (IRDCs). Fifty-five candidate regions of high extinction, namely, high-contrast regions (HCRs), have been identified from the generated decremental contrast image of the SMC. Most HCRs are located in the southern bar region and mainly distributed in the outskirts of CO clouds, but most likely contain a significant amount of H 2 . HCRs have a peak contrast at 24 μm of 2%-2.5% and a size of 8-14 pc. This corresponds to the size of typical and large Galactic IRDCs, but Galactic IRDCs are 2-3 times darker at 24 μm than our HCRs. To constrain the physical properties of the HCRs, we have performed NH 3 , N 2 H + , HNC, HCO + , and HCN observations toward one of the HCRs, HCR LIRS36-east, using the Australia Telescope Compact Array and the Mopra single-dish radio telescope. We did not detect any molecular line emission, however, our upper limits to the column densities of molecular species suggest that HCRs are most likely moderately dense with n ∼ 10 3 cm -3 . This volume density is in agreement with predictions for the cool atomic phase in low-metallicity environments. We suggest that HCRs may be tracing clouds at the transition from atomic to molecule-dominated medium, and could be a powerful way to study early stages of gas condensation in low-metallicity galaxies. Alternatively, if made up of dense molecular clumps <0.5 pc in size, HCRs could be counterparts of Galactic IRDCs, and/or regions with highly unusual abundance of very small dust grains.

  12. STAR FORMATION ACTIVITY OF CORES WITHIN INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Chambers, E. T.; Jackson, J. M.; Rathborne, J. M.; Simon, R.

    2009-01-01

    Infrared Dark Clouds (IRDCs) contain compact cores which probably host the early stages of high-mass star formation. Many of these cores contain regions of extended, enhanced 4.5 μm emission, the so-called 'green fuzzies', which indicate shocked gas. Many cores also contain 24 μm emission, presumably from heated dust which indicates embedded protostars. Because 'green fuzzies' and 24 μm point sources both indicate star formation, we have developed an algorithm to identify star-forming cores within IRDCs by searching for the simultaneous presence of these two distinct indicators. We employ this algorithm on a sample of 190 cores found toward IRDCs, and classify the cores as 'active' if they contain a green fuzzy coincident with an embedded 24 μm source, and as 'quiescent' if they contain neither IR signature. We hypothesize that the 'quiescent' cores represent the earliest 'preprotostellar' (starless) core phase, before the development of a warm protostar, and that the 'active' cores represent a later phase, after the development of a protostar. We test this idea by comparing the sizes, densities, and maser activity of the 'active' and 'quiescent' cores. We find that, on average, 'active' cores have smaller sizes, higher densities, and more pronounced water and methanol maser activity than the 'quiescent' cores. This is expected if the 'quiescent' cores are in an earlier evolutionary state than the 'active' cores. The masses of 'active' cores suggest that they may be forming high-mass stars. The highest mass 'quiescent' cores are excellent candidates for the elusive high-mass starless cores.

  13. Molecular line observations of infrared dark clouds in the galaxy

    Science.gov (United States)

    Finn, Susanna C.

    Although massive stars play many important roles in the universe, their formation is poorly understood. Recently, a class of interstellar clouds known as Infrared Dark Clouds (IRDCs) has been identified as likely progenitors of massive stars and clusters. These clouds are dense (nH 2 > 105 cm--3), cold (T Nessie Nebula," an extreme case of a filamentary IRDC, with predictions from the theory of the fluid instability and then expand the sample to other filamentary IRDCs. The observations are consistent with theoretical predictions of clump spacing, clump masses, and linear mass density. Fragmentation of filaments due to the sausage instability might be the dominant mode of star formation in the Universe.

  14. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  15. Massive protostars in the infrared dark cloud MSXDC G034.43+00.24

    NARCIS (Netherlands)

    Rathborne, JM; Jackson, JM; Chambers, ET; Simon, R; Shipman, R; Frieswijk, W

    2005-01-01

    We present a multiwavelength study of the infrared dark cloud MSXDC G034.43 + 00.24. Dust emission, traced by millimeter/submmillimeter images obtained with the IRAM, JCMT, and CSO telescopes, reveals three compact cores within this infrared dark cloud with masses of 170 - 800 M-circle dot and sizes

  16. Similar complex kinematics within two massive, filamentary infrared dark clouds

    Science.gov (United States)

    Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Jiménez-Serra, I.; Tan, J. C.; Fontani, F.; Pon, A.; Ragan, S.

    2018-04-01

    Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here, we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral resolution IRAM-30m N2H+ (1-0) and C18O (1-0) observations. To disentangle the complex velocity structure within this cloud, we use Gaussian decomposition and hierarchical clustering algorithms. We find that four distinct coherent velocity components are present within Cloud F. The properties of these components are compared to those found in a similar IRDC, G035.39-00.33 (Cloud H). We find that the components in both clouds have high densities (inferred by their identification in N2H+), trans-to-supersonic non-thermal velocity dispersions with Mach numbers of ˜1.5-4, a separation in velocity of ˜3 km s-1, and a mean red-shift of ˜0.3 km s-1 between the N2H+ (dense gas) and C18O emission (envelope gas). The latter of these could suggest that these clouds share a common formation scenario. We investigate the kinematics of the larger-scale Cloud F structures, using lower-density-tracing 13CO(1-0) observations. A good correspondence is found between the components identified in the IRAM-30m observations and the most prominent component in the 13CO data. We find that the IRDC Cloud F is only a small part of a much larger structure, which appears to be an inter-arm filament of the Milky Way.

  17. Far-infrared spectroscopy of HII regions

    International Nuclear Information System (INIS)

    Emery, R.J.; Kessler, M.F.

    1984-01-01

    Interest has developed rapidly in the astrophysics associated with far-infrared line emission from ionised regions, following the development of spectroscopic instruments and observing facilities appropriate to those wavelengths. Far-infrared observations and their interpretation are now at the stage where the need for specific developments in theoretical and laboratory work have been identified. The need is also apparent for the development of models dealing with more realistic astrophysical situations. (Auth.)

  18. 15N fractionation in infrared-dark cloud cores

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  19. SPITZER'S MID-INFRARED VIEW ON AN OUTER-GALAXY INFRARED DARK CLOUD CANDIDATE TOWARD NGC 7538

    NARCIS (Netherlands)

    Frieswijk, W. F.; Spaans, M.; Shipman, R. F.; Teyssier, D.; Carey, S. J.; Tielens, A. G. G. M.

    2008-01-01

    Infrared dark clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the

  20. THE PHYSICAL ENVIRONMENT AROUND IRAS 17599–2148: INFRARED DARK CLOUD AND BIPOLAR NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Dewangan, L. K.; Janardhan, P. [Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Ojha, D. K. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Zinchenko, I. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov st., Nizhny Novgorod 603950 (Russian Federation); Ghosh, S. K. [National Centre for Radio Astrophysics, Ganeshkhind, Pune 411 007 (India); Luna, A., E-mail: lokeshd@prl.res.in [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, Puebla, C.P. 72840 (Mexico)

    2016-12-20

    We present a multiscale and multiwavelength study to investigate the star formation process around IRAS 17599–2148, which is part of an elongated filamentary structure (EFS) (extension ∼21 pc) seen in the Herschel maps. Using the Herschel data analysis, at least six massive clumps (M {sub clump} ∼ 777–7024 M {sub ⊙}) are found in the EFS with a range of temperature and column density of ∼16–39 K and ∼(0.6–11) × 10{sup 22} cm{sup −2} (A {sub V}  ∼ 7–117 mag), respectively. The EFS hosts cold gas regions (i.e., infrared dark cloud) without any radio detection and a bipolar nebula (BN) linked with the H ii region IRAS 17599–2148, tracing two distinct environments inferred through the temperature distribution and ionized emission. Based on virial analysis and higher values of self-gravitating pressure, the clumps are found unstable against gravitational collapse. We find 474 young stellar objects (YSOs) in the selected region, and ∼72% of these YSOs are found in the clusters distributed mainly toward the clumps in the EFS. These YSOs might have spontaneously formed due to processes not related to the expanding H ii region. At the edges of BN, four additional clumps are also associated with YSO clusters, which appear to be influenced by the expanding H ii region. The most massive clump in the EFS contains two compact radio sources traced in the Giant Metre-wave Radio Telescope 1.28 GHz map and a massive protostar candidate, IRS 1, prior to an ultracompact H ii phase. Using the Very Large Telescope/NACO near-infrared images, IRS 1 is resolved with a jet-like feature within a 4200 au scale.

  1. Spectral response, dark current, and noise analyses in resonant tunneling quantum dot infrared photodetectors.

    Science.gov (United States)

    Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas

    2016-10-20

    Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.

  2. Infrared emission from galactic H II regions

    International Nuclear Information System (INIS)

    Zeilik, M. II.

    1975-01-01

    Near-infrared observations are presented of selected galactic HII regions (especially G45.5 + 0.1, G45.1 + 0.1, S88, and W3A) to infer the physical conditions of the dust responsible for the 2 to 25 micron emission. Two-component dust models are developed to match the observed characteristics of the infrared emission from HII regions. The dust, assumed to be bare and well-mixed with the gas in the ionized volume, consists of large (0.1 micron) ''silicate'' grains and small (0.2 micron) graphite grains. The ''silicates'' have their cosmic maximum abundance with respect to hydrogen, but the graphite grains are depleted by factors of 25 to 100 in mass. The Lyman-alpha radiation field predominately heats the ''silicate'' grains, which produce almost all the emission at 20 microns and most of it from 8 to 13 microns. The stellar radiation field predominately heats the graphite grains, which generate most of the emission at 3.5 and 5 microns. Roughly half of the observed 2 to 25 micron luminosity (when corrected for extinction) arises from Lyman-alpha photons and the other half from the Lyman and Balmer continua. The grains are too hot to provide significant emission in the far-infrared; this probably arises from a dust shell around the HII region. This two-component model predicts that HII regions should have smaller sizes at 3.5 and 5 microns than at 10 and 20 microns. The emissivities of fine-structure infrared lines for the regions are calculated. In the one instance where observations of such lines have been published (G29.9 - 0.0), predicted emissivities fall below those observed, especially for the 12.86-micron line of NeII. The discrepancy probably arises from an incorrect modeling of the region's ionization structure, but it might also reflect variations in elemental abundances or deficiencies in model stellar atmospheres for hot stars

  3. Subsonic islands within a high-mass star-forming infrared dark cloud

    Science.gov (United States)

    Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Barnes, Ashley T.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Zhang, Qizhou

    2018-03-01

    High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s-1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.

  4. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  5. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    Science.gov (United States)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  6. Wide-field infrared survey explorer observations of young stellar objects in the Lynds 1509 dark cloud in Auriga

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wilson M.; McCollum, Bruce; Fajardo-Acosta, Sergio [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Padgett, Deborah L. [National Aeronautics and Space Administration, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Terebey, Susan; Angione, John [Department of Physics and Astronomy, California State University, Los Angeles, CA 90032 (United States); Rebull, Luisa M. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Leisawitz, David, E-mail: wliu@ipac.caltech.edu [National Aeronautics and Space Administration, Goddard Space Flight Center, Code 605, Greenbelt, MD 20771 (United States)

    2014-06-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  7. Far infrared spectroscopy of H II regions

    International Nuclear Information System (INIS)

    Ward, D.B.

    1976-01-01

    A fully liquid helium cooled grating spectrometer has been developed for far infrared observations from the NASA Lear Jet. This instrument has been used in observations of the galactic HII regions M42 and M17. The instrument is described, and the results of various performance tests and calibrations are presented. The methods employed in observations from the Lear Jet are described, and the data analysis procedures are discussed. The results of a search for the (O III) 88.16 micron fine structure line are presented. The intensity of the line in M17 is reported, and an upper limit given for the intensity in M42. These results are compared with theoretical predictions, and future applications of infrared line observations are discussed. Coarse resolution spectra of M42 and M17 from 45 to 115 microns are also presented. The emission from M42 is shown to be a very smooth function of wavelength, closely fitting the wavelength dependence of a 105 0 K graybody. The spectrum of M17 is very different, having a bump at approximately 75 microns and a general far infrared excess. The observed spectrum is compared to the predictions of models for M17

  8. Periodic Spacing of Protocluster Clumps in a Filamentary Infrared Dark Cloud

    Science.gov (United States)

    Jackson, James M.; Finn, S.; Rathborne, J. M.; Simon, R.

    2010-05-01

    The ''Nessie'' nebula is an extremely filamentary infrared dark cloud, with an aspect ratio of over 300:1. HNC 1-0 observations with the Australia Telescope National Facility's Mopra Telescope demonstrate that Nessie is a single, coherent cloud with high densities (n > 105 cm-3). The filamentary cloud contains a number of protocluster clumps with a nearly regular, periodic spacing of 5 pc. Such clumps naturally arise from the ''varicose'' fluid instability of a self-gravitating fluid cylinder. Because of the ubiquitous association between massive clusters and filamentary molecular clouds (e.g., Orion, NGC 6334, etc.), we speculate that clusters naturally arise from filamentary infrared dark clouds via fluid instabilities.

  9. Human body region enhancement method based on Kinect infrared imaging

    Science.gov (United States)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  10. THE 'NESSIE' NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

    International Nuclear Information System (INIS)

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert

    2010-01-01

    The 'Nessie' Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1. 0 5 x 0. 0 01 or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within ±3.4 km s -1 , the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ∼4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the 'sausage' or 'varicose' fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the 'sausage' fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  11. The "Nessie" Nebula: Cluster Formation in a Filamentary Infrared Dark Cloud

    Science.gov (United States)

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert

    2010-08-01

    The "Nessie" Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1fdg5 × 0fdg01 or 80 pc × 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within ±3.4 km s-1, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ~4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the "sausage" or "varicose" fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the "sausage" fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  12. The dynamical state of the Serpens South filamentary infrared dark cloud

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Tomohiro; Awazu, Yuya; Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nakamura, Fumitaka; Kawabe, Ryohei [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Shimajiri, Yoshito [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1805 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Yoshida, Hiroshige [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Higuchi, Aya E., E-mail: fumitaka.nakamura@nao.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107 OFC 129, Vitacura (Chile)

    2013-11-20

    We present the results of N{sub 2}H{sup +} (J = 1-0) observations toward Serpens South, the nearest cluster-forming, infrared dark cloud. The physical quantities are derived by fitting the hyperfine structure of N{sub 2}H{sup +}. The Herschel and 1.1 mm continuum maps show that a parsec-scale filament fragments into three clumps with radii of 0.1-0.2 pc and masses of 40-230 M {sub ☉}. We find that the clumps contain smaller-scale (∼0.04 pc) structures, i.e., dense cores. We identify 70 cores by applying CLUMPFIND to the N{sub 2}H{sup +} data cube. In the central cluster-forming clump, the excitation temperature and line-width tend to be large, presumably due to protostellar outflow feedback and stellar radiation. However, for all the clumps, the virial ratios are evaluated to be 0.1-0.3, indicating that the internal motions play only a minor role in the clump support. The clumps exhibit no free fall but exhibit low-velocity infall, and thus the clumps should be supported by additional forces. The most promising force is the globally ordered magnetic field observed toward this region. We propose that the Serpens South filament was close to magnetically critical and ambipolar diffusion triggered the cluster formation. We find that the northern clump, which shows no active star formation, has a mass and radius comparable to the central cluster-forming clump and is therefore a likely candidate of a pre-protocluster clump. The initial condition for cluster formation is likely to be a magnetically supported clump of cold, quiescent gas. This appears to contradict the accretion-driven turbulence scenario, for which the turbulence in the clumps is maintained by the accretion flow.

  13. Infrared study of seven possible compact H II regions

    International Nuclear Information System (INIS)

    Sibille, F.; Lunel, M.; Bergeat, J.

    1976-01-01

    We report observations of seven possible compact H II regions in the infrared with the hydrogen spectrum in order to derive extinction and emission measures. The emission measure is compared with available radio data. For two sources, agreement is found between radio and infrared data. Infrared excess is found in four sources, its origin is discussed. Two sources cannot be interpreted as compact H II regions. (orig.) [de

  14. Physical characteristics of a dark cloud in an early stage of star formation toward NGC 7538 - An outer Galaxy infrared dark cloud?

    NARCIS (Netherlands)

    Frieswijk, W. W. F.; Spaans, M.; Shipman, R. F.; Teyssier, D.; Hily-Blant, P.

    2007-01-01

    Context. In the inner parts of the Galaxy the Infrared Dark Clouds (IRDCs) are presently believed to be the progenitors of massive stars and star clusters. Many of them are predominantly devoid of active star formation and for now they represent the earliest observed stages of massive star

  15. VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07

    International Nuclear Information System (INIS)

    Devine, K. E.; Churchwell, E.; Chandler, C. J.; Borg, K. J.; Brogan, C.; Indebetouw, R.; Shirley, Y.

    2011-01-01

    We present Very Large Array observations of ammonia (NH 3 ) (1,1), (2,2), and dicarbon sulfide (CCS) (2 1 -1 0 ) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at ∼22 GHz. The NH 3 emission closely follows the 8 μm extinction. The NH 3 (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of ∼10-20 K and NH 3 column densities of ∼10 15 cm -2 . The estimated total mass of G19.30+0.07 is ∼1130 M sun . The cloud comprises four compact NH 3 clumps of mass ∼30-160 M sun . Two coincide with 24 μm emission, indicating heating by protostars, and show evidence of outflow in the NH 3 emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH 3 emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 μm sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH 3 and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH 3 predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

  16. Mid-infrared supercontinuum generation in the fingerprint region

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central...... the potential of fibres to emit across the mid-infrared molecular fingerprint region, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control....

  17. A STATISTICAL STUDY OF THE MASS AND DENSITY STRUCTURE OF INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Peretto, N.; Fuller, G. A.

    2010-01-01

    How and when the mass distribution of stars in the Galaxy is set is one of the main issues of modern astronomy. Here, we present a statistical study of mass and density distributions of infrared dark clouds (IRDCs) and fragments within them. These regions are pristine molecular gas structures and progenitors of stars and so provide insights into the initial conditions of star formation. This study makes use of an IRDC catalog, the largest sample of IRDC column density maps to date, containing a total of ∼11,000 IRDCs with column densities exceeding N H 2 = 1x10 22 cm -2 and over 50,000 single-peaked IRDC fragments. The large number of objects constitutes an important strength of this study, allowing a detailed analysis of the completeness of the sample and so statistically robust conclusions. Using a statistical approach to assigning distances to clouds, the mass and density distributions of the clouds and the fragments within them are constructed. The mass distributions show a steepening of the slope when switching from IRDCs to fragments, in agreement with previous results of similar structures. IRDCs and fragments are divided into unbound/bound objects by assuming Larson's relation and calculating their virial parameter. IRDCs are mostly gravitationally bound, while a significant fraction of the fragments are not. The density distribution of gravitationally unbound fragments shows a steep characteristic slope such as ΔN/Δlog(n) ∝ n -4.0±0.5 , rather independent of the range of fragment mass. However, the incompleteness limit at a number density of ∼10 3 cm -3 does not allow us to exclude a potential lognormal density distribution. In contrast, gravitationally bound fragments show a characteristic density peak at n ≅ 10 4 cm -3 but the shape of the density distributions changes with the range of fragment masses. An explanation for this could be the differential dynamical evolution of the fragment density with respect to their mass as more massive

  18. Using far-infrared limb brightening to probe isolated dark globules

    International Nuclear Information System (INIS)

    Leung, C.M.; O'brien, E.V.; Dubisch, R.

    1989-01-01

    The problem of radiation transport in dark globules with or without internal heat source, immersed in an isotropic incident interstellar radiation field, is solved. The phenomenon of infrared limb brightening, its dependence on cloud properties, and its observational implications are addressed. Numerical results regarding the dependence of limb brightening on total cloud opacity, luminosity of internal heat source, grain type, dust density distribution, and wavelength of emitted radiation are discussed. Observational implications concerning the use of limb brightening to place an upper limit on the luminosity of an embedded protostar and to determine the grain emissivity law in the far-infrared are examined. For sufficiently large optical depth, the limb-brightening ratio (LBR) is found to be related to the optical depth by a power-law relation in the 140-300 micron wavelength range, where thermal emission from grains peaks. By observing the LBR in this range, this power-law relationship can be exploited to determine the emissivity law of the dust grain in the far-infrared. Both the LBR and the longest wavelength for which limb brightening still occurs are related linearly to the luminosity of the central source. 37 references

  19. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NARCIS (Netherlands)

    Frieswijk, W. W. F.; Shipman, R. F.

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant

  20. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    Science.gov (United States)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  1. Infrared observations of the dark matter lens candidate Q2345+007

    Science.gov (United States)

    Mcleod, Brian; Rieke, Marcia; Weedman, Daniel

    1994-01-01

    Deep K-band observations are presented of the double image quasar Q2345+007. This has the largest separation (7.1 sec) of any quasar image pair considered as gravitationally lensed, so the required lens is massive (10(exp 13) solar masses). No lens has been detected in previous deep images at visible wavelengths, and we find no lens to limiting K magnitude 20.0 in the infrared image. This constrains any lens to being much less luminous than brightest cluster galaxies, while the lens must be much more massive than such galaxies to produce the observed separation. Because spectral data indicate exceptional intrinsic similarity in the quasar image components, this pair remains as the most intriguing example of an observed configuration requiring the presence of massive, concentrated dark matter acting as a gravitational lens.

  2. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  3. A radio continuum and infrared study of Galactic HII regions

    NARCIS (Netherlands)

    Martin-Hernandez, NL; van der Hulst, JM; Tielens, AGGM

    We present observations of the 4.8 and 8.6 GHz continuum emission towards 11 southern H II regions made with the Australian Telescope Compact Array. The observed objects were selected from the Infrared Space Observatory (ISO) spectral catalogue of compact H II regions (Peeters et al. 2002b). The

  4. MAGNETICALLY DOMINATED PARALLEL INTERSTELLAR FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    International Nuclear Information System (INIS)

    Santos, Fábio P.; Busquet, Gemma; Girart, Josep Miquel; Franco, Gabriel A. P.; Zhang, Qizhou

    2016-01-01

    The infrared dark cloud G14.225-0.506 (IRDC G14.2) displays a remarkable complex of parallel dense molecular filaments projected on the plane of the sky. Previous studies of dust emission and molecular lines have speculated whether magnetic fields could have played an important role in the formation of such elongated structures, which are hosts to numerous young stellar sources. In this work we have conducted a vast polarimetric survey at optical and near-infrared wavelengths in order to study the morphology of magnetic field lines in IRDC G14.2 through the observation of background stars. The orientation of interstellar polarization, which traces magnetic field lines, is perpendicular to most of the filamentary features within the cloud. Additionally, the larger-scale molecular cloud as a whole exhibits an elongated shape also perpendicular to magnetic fields. Estimates of magnetic field strengths indicate values in the range 320–550 μ G, which allow sub-alfvénic conditions, but do not prevent the gravitational collapse of hub–filament structures, which in general are close to the critical state. These characteristics suggest that magnetic fields played the main role in regulating the collapse from large to small scales, leading to the formation of series of parallel elongated structures. The morphology is also consistent with numerical simulations that show how gravitational instabilities develop when subjected to strong magnetic fields. Finally, the results corroborate the hypothesis that strong support from internal magnetic fields might explain why the cloud seems to be contracting on a timescale 2–3 times longer than what is expected from a free-fall collapse.

  5. MAGNETICALLY DOMINATED PARALLEL INTERSTELLAR FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fábio P. [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Busquet, Gemma; Girart, Josep Miquel [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N E-08193 Bellaterra, Catalunya (Spain); Franco, Gabriel A. P. [Departamento de Física—ICEx—UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte, MG (Brazil); Zhang, Qizhou, E-mail: fabiops@northwestern.edu, E-mail: busquet@ice.cat, E-mail: girart@ice.cat, E-mail: franco@fisica.ufmg.br, E-mail: qzhang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60, Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    The infrared dark cloud G14.225-0.506 (IRDC G14.2) displays a remarkable complex of parallel dense molecular filaments projected on the plane of the sky. Previous studies of dust emission and molecular lines have speculated whether magnetic fields could have played an important role in the formation of such elongated structures, which are hosts to numerous young stellar sources. In this work we have conducted a vast polarimetric survey at optical and near-infrared wavelengths in order to study the morphology of magnetic field lines in IRDC G14.2 through the observation of background stars. The orientation of interstellar polarization, which traces magnetic field lines, is perpendicular to most of the filamentary features within the cloud. Additionally, the larger-scale molecular cloud as a whole exhibits an elongated shape also perpendicular to magnetic fields. Estimates of magnetic field strengths indicate values in the range 320–550 μ G, which allow sub-alfvénic conditions, but do not prevent the gravitational collapse of hub–filament structures, which in general are close to the critical state. These characteristics suggest that magnetic fields played the main role in regulating the collapse from large to small scales, leading to the formation of series of parallel elongated structures. The morphology is also consistent with numerical simulations that show how gravitational instabilities develop when subjected to strong magnetic fields. Finally, the results corroborate the hypothesis that strong support from internal magnetic fields might explain why the cloud seems to be contracting on a timescale 2–3 times longer than what is expected from a free-fall collapse.

  6. Near-infrared observations of the far-infrared source V region in NGC 6334

    International Nuclear Information System (INIS)

    Fischer, J.; Joyce, R.R.; Simon, M.; Simon, T.

    1982-01-01

    We have observed a very red near-infrared source at the center of NGC 6334 FIRS V, a far-infrared source suspected of variability by McBreen et al. The near-infrared source has deep ice and silicate absorption bands, and its half-power size at 20 μm is approx.15'' x 10''. Over the past 2 years we have observed no variability in the near-infrared flux. We have also detected an extended source of H 2 line emission in this region. The total luminosity in the H 2 v-1--0 S(1) line, uncorrected for extinction along the line of sight, is 0.3 L/sub sun/. Detection of emission in high-velocity wings of the J = 1--0 12 CO line suggests that the H 2 emission is associated with a supersonic gas flow

  7. Silicon Photonic Waveguides for Near- and Mid-Infrared Regions

    Science.gov (United States)

    Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.

    2007-11-01

    The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.

  8. Current Observational Constraints to Holographic Dark Energy Model with New Infrared cut-off via Markov Chain Monte Carlo Method

    OpenAIRE

    Wang, Yuting; Xu, Lixin

    2010-01-01

    In this paper, the holographic dark energy model with new infrared (IR) cut-off for both the flat case and the non-flat case are confronted with the combined constraints of current cosmological observations: type Ia Supernovae, Baryon Acoustic Oscillations, current Cosmic Microwave Background, and the observational hubble data. By utilizing the Markov Chain Monte Carlo (MCMC) method, we obtain the best fit values of the parameters with $1\\sigma, 2\\sigma$ errors in the flat model: $\\Omega_{b}h...

  9. The Sequential Growth of Star Formation Seeds in the Galactic Snake : Infrared Dark Cloud G11.11-0.12

    NARCIS (Netherlands)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; Wu, Yuefang; Zhang, Huawei; van der Tak, Floris; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah; Henning, Thomas

    We present Submillimeter Array (SMA) 1.3 and 0.88 mm broad band observations, and Very Large Array (VLA) observations in NH3 (J,K) = (1,1) up to (5,5), as well as H2O and CH3OH maser lines toward the two most massive molecular clumps in Infrared Dark Cloud (IRDC) G11.11-0.12, also known as the Snake

  10. Hierarchical fragmentation and differential star formation in the Galactic `Snake': infrared dark cloud G11.11-0.12

    NARCIS (Netherlands)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; van der Tak, Floris; Wu, Yuefang; Zhang, Huawei; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah E.; Henning, Thomas

    We present Submillimeter Array (SMA) λ = 0.88 and 1.3 mm broad-band observations, and Very Large Array (VLA) observations in NH3 (J, K) = (1,1) up to (5,5), H2O and CH3OH maser lines towards the two most massive molecular clumps in infrared dark cloud (IRDC) G11.11-0.12. Sensitive high-resolution

  11. The infrared stage Linkam FTIR 600 for microthermometric studies in dark and opaque minerals associated to uranium mineralization

    International Nuclear Information System (INIS)

    Lima, Tatiana Aparecida Fernandes de; Rios, Francisco Javier; Fuzikawa, Kazuo; Oliveira, Lucilia A. Ramos de; Oliveira, Elizabeth Kerpe; Neves, Jose Marques Correia; Prates, Sonia Pinto

    2009-01-01

    Fluid composition studies, throughout fluid inclusions (FI), contribute to improve the understanding of mineral deposits. FI correspond to small portions of fluids trapped in minerals by many processes that preserve relevant information related to fluid composition which forms ore deposits. Microscopy and microthermometry techniques applied to fluid inclusions studies of opaque and/or dark minerals use infrared light (IR). A specific stage heating/cooling that allows working in the near infrared (NIR). Thus, the infrared stage model FTIR600 Linkam coupled the IR OLYMPUS BX51, with the automatic controllers LNP 94/2 and TMS 94, and software Linksys 32 - Linkam installed in computer was implemented and tested. An infrared QUICAM fast 1394 QIMAGING TM camera with the program QCAPTURE SUITE was acquisition for images capture and adapted the new system. This infrared stage Linkam FTIR600 reach temperatures between -196 deg C to +600 deg C, with the differential of working in the NIR; it is all automated, obtaining computerized data, graphics in real time of analysis and storage the data. It also controls the speed of the experiment (up to 130 deg C/min); it runs consecutively heating and cooling with a small N 2 (l) consuming; besides greater results repeatability, obtaining accurate and precise temperatures. Actually the Linkam stage FTIR600 is operating in the Metallogenesis and Fluid Inclusions Laboratory (LIFM) at CDTN/CNEN. Uranium ore and/or others mineralization studies which shows dark or opaque mineral have been developed. The uranium mineralization in the Lagoa Real Uraniferous Province, Bahia, Brazil, shows several rock-forming minerals together with the dark and opaque minerals (garnet, magnetite, pyroxene) emphasized in the present work. (author)

  12. The effectiveness of a near-infrared vascular imaging device to support intravenous cannulation in children with dark skin color : a cluster randomized clinical trial

    NARCIS (Netherlands)

    van der Woude, Olga C P; Cuper, Natascha J; Getrouw, Chavalleh; Kalkman, Cor J; de Graaff, Jurgen C

    BACKGROUND: Poor vein visibility can make IV cannulation challenging in children with dark skin color. In the operating room, we studied the effectiveness of a near-infrared vascular imaging device (VascuLuminator) to facilitate IV cannulation in children with dark skin color. METHODS: In the

  13. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    International Nuclear Information System (INIS)

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-01-01

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 μm detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 μm imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L IR > 10 11 L sun (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  14. A Regional, Multi-Stakeholder Collaboration for Dark-Sky Protection in Flagstaff, Arizona

    Science.gov (United States)

    Hall, Jeffrey C.

    2018-01-01

    Flagstaff, Arizona is home to almost $200M in astronomical assets, including Lowell Observatory's 4.3-meter Discovery Channel Telescope and the Navy Precision Optical Interferometer, a partnership of Lowell, the U. S. Naval Observatory, and the Naval Research Laboratory. The City of Flagstaff and surrounding Coconino County have comprehensive and effective dark-sky ordinances, but continued regional growth has the potential to degrade the area's dark skies to a level at which observatory missions could be compromised. As a result, a wide array of stakeholders (the observatories, the City, the County, local dark-sky advocates, the business and tourism communities, the national parks and monuments, the Navajo Nation, the U. S. Navy, and others) have engaged in three complementary efforts to ensure that Flagstaff and Coconino County protect the area's dark skies while meeting the needs of the various communities and providing for continued growth and development. In this poster, I will present the status of Flagstaff's conversion to LED outdoor lighting, the Mission Compatibility Study carried out by the Navy to evaluate the dark-sky effects of buildout in Flagstaff, and the Joint Land Use Study (JLUS) presently underway among all the aforementioned stakeholders. Taken in sum, the efforts represent a comprehensive and constructive approach to dark-sky preservation region-wide, and they show what can be achieved when a culture of dark-sky protection is present and deliberate efforts are undertaken to maintain it for decades to come.

  15. The onset of massive star formation: The evolution of temperature and density structure in an infrared dark cloud

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ginsburg, Adam; Bally, John; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2014-06-01

    We present new NH{sub 3} (1, 1), (2, 2), and (4, 4) observations from the Karl G. Jansky Very Large Array compiled with work in the literature to explore the range of conditions observed in young, massive star-forming regions. To sample the effects of evolution independent from those of distance/resolution, abundance, and large-scale environment, we compare clumps in different evolutionary stages within a single infrared dark cloud (IRDC), G32.02+0.06. We find that the early stages of clustered star formation are characterized by dense, parsec-scale filamentary structures interspersed with complexes of dense cores (<0.1 pc cores clustered in complexes separated by ∼1 pc) with masses from about 10 to 100 M {sub ☉}. The most quiescent core is the most extended while the star forming cores are denser and more compact, showing very similar column density structure before and shortly after the onset of massive star formation, with peak surface densities Σ ≳ 1 g cm{sup –2}. Quiescent cores and filaments show smoothly varying temperatures from 10 to 20 K, rising to over 40 K in star-forming cores. We calculate virial parameters for 16 cores and find that the level of support provided by turbulence is generally insufficient to support them against gravitational collapse ((α{sub vir}) ∼ 0.6). The star-forming filaments show smooth velocity fields, punctuated by discontinuities at the sites of active star formation. We discuss the massive molecular filament (M ∼ 10{sup 5} M {sub ☉}, length >60 pc) hosting the IRDC, hypothesizing that it may have been shaped by previous generations of massive stars.

  16. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  17. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  18. Photometric behavior of spectral parameters in Vesta dark and bright regions as inferred by the Dawn VIR spectrometer

    Science.gov (United States)

    Longobardo, Andrea; Palomba, Ernesto; Capaccioni, Fabrizio; De Sanctis, Maria Cristina; Tosi, Federico; Ammannito, Eleonora; Schröder, Stefan E.; Zambon, Francesca; Raymond, Carol A.; Russell, Christopher T.

    2014-09-01

    NASA’s Dawn spacecraft orbited Vesta for approximately one year, collecting thousands of hyperspectral images of its surface. The mission revealed that Vesta’s surface shows the largest variations in surface albedo on asteroids visited thus far, due to the presence of dark and bright materials at the local scale (i.e. 0.1-10 km). The aim of this work is to characterize the photometric properties of bright and dark regions, and thus derive and apply an empirical photometric correction to all the hyperspectral observations of Vesta. The very large dataset (i.e. more than 20 million spectra) provided by the VIR imaging spectrometer onboard Dawn enabled accurate statistical analysis of the spectral dataset, aimed at retrieving empirical relations between several spectral parameters (i.e. visible and infrared reflectance, band depths, band centers, Band Area Ratio) and the illumination/viewing angles. The derived relations made it possible to derive photometrically corrected maps of these spectral parameters and to infer information on the regolith shadowing effect in the Vestan dark and bright regions. As an additional analysis, we also evaluated the correlation between surface temperature and band center position. A general conclusion of this analysis is that, from a photometric point of view, the distinction between bright and dark material units lies mainly in the larger contribution due to multiple scattering in the bright units. We observed reflectance and band depth variations over Vesta’s entire surface, but these variations were much larger in the dark regions than in the bright ones. Band centers have been found to shift to longer wavelengths at increasing temperatures, with a trend that is the same observed for HED meteorites (Reddy et al. [2012]. Icarus 217, 153-158). Finally, the Band Area Ratio (i.e. the ratio between areas of the main pyroxene absorption bands located at 1.9 μm and at 0.9 μm, respectively) did not show any dependence on

  19. Near infrared photometry of violent star formation regions

    International Nuclear Information System (INIS)

    Melnick, J.; Terlevich, R.; Moles, M.

    1985-01-01

    Near infrared broad band photometry and CO indices for a significant number of Violent Star Formation Regions are presented. The existence of a narrow correlation between W (Hβ) and IR colour is confirmed. The interpretation of this relation as an age sequence implies a correlation between CO index and W(Hβ) which is not found. It is argued however that this failure is most likely a consequence of using narrow band filters to determine CO indices in objects with strong emission-line spectra. (author)

  20. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. T.; Martens, P. C. H.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-03-10

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for days and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.

  1. Gravity drives the evolution of infrared dark hubs: JVLA observations of SDC13

    Science.gov (United States)

    Williams, G. M.; Peretto, N.; Avison, A.; Duarte-Cabral, A.; Fuller, G. A.

    2018-05-01

    Context. Converging networks of interstellar filaments, that is hubs, have been recently linked to the formation of stellar clusters and massive stars. Understanding the relationship between the evolution of these systems and the formation of cores and stars inside them is at the heart of current star formation research. Aims: The goal is to study the kinematic and density structure of the SDC13 prototypical hub at high angular resolution to determine what drives its evolution and fragmentation. Methods: We have mapped SDC13, a 1000 M⊙ infrared dark hub, in NH3(1,1) and NH3(2,2) emission lines, with both the Jansky Very Large Array and Green Bank Telescope. The high angular resolution achieved in the combined dataset allowed us to probe scales down to 0.07 pc. After fitting the ammonia lines, we computed the integrated intensities, centroid velocities and line widths, along with gas temperatures and H2 column densities. Results: The mass-per-unit-lengths of all four hub filaments are thermally super-critical, consistent with the presence of tens of gravitationally bound cores identified along them. These cores exhibit a regular separation of 0.37 ± 0.16 pc suggesting gravitational instabilities running along these super-critical filaments are responsible for their fragmentation. The observed local increase of the dense gas velocity dispersion towards starless cores is believed to be a consequence of such fragmentation process. Using energy conservation arguments, we estimate that the gravitational to kinetic energy conversion efficiency in the SDC13 cores is 35%. We see velocity gradient peaks towards 63% of cores as expected during the early stages of filament fragmentation. Another clear observational signature is the presence of the most massive cores at the filaments' junction, where the velocity dispersion is largest. We interpret this as the result of the hub morphology generating the largest acceleration gradients near the hub centre. Conclusions: We

  2. Infrared studies of H II regions: the Sharpless regions S148, 184, 198, 206 and 269

    International Nuclear Information System (INIS)

    Pismis, Paris

    1991-01-01

    We present the results of a combined near-infrared and IRAS mapping study of five H II regions for which fairly complete information at optical and radio wavelengths previously existed. The near-infrared observations, carried out with the 2.1-m telescope at Observatorio de San Pedro Martir (Mexico), allowed us to study the the stellar content at the core of each nebula, while an analysis of extended near-infrared emission zones showed these to arise mainly from ionized gas (S148 and S206) or through scattering and thermal emission from dust grains surrounding a massive young star (S269-IRS2). The analysis of IRAS data, on the other hand, suggests that two different populations of grains contribute to the observed 12- to 100-μm fluxes. (author)

  3. Infrared polarimetry of dark clouds. Pt. 1. Magnetic field structure in Heiles Cloud 2

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Motohide; Nagata, Tetsuya; Sato, Shuji; Tanaka, Masuo

    1987-01-15

    The K-band polarization of 18 stars toward Heiles Cloud 2 in the Taurus dark cloud complex has been measured to investigate the structure of the magnetic field in this cloud. The observed polarization vectors are well aligned, with a mean position angle of approx. 50/sup 0/, which is perpendicular to the direction of the elongation of the cloud. This indicates that Heiles Cloud 2 has formed by contraction along the magnetic field, resulting in the flattened shape.

  4. Core Emergence in a Massive Infrared Dark Cloud: A Comparison between Mid-IR Extinction and 1.3 mm Emission

    Science.gov (United States)

    Kong, Shuo; Tan, Jonathan C.; Arce, Héctor G.; Caselli, Paola; Fontani, Francesco; Butler, Michael J.

    2018-03-01

    Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ⊙) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the “dense gas” detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define “dense gas.” We then estimate the dense gas mass fraction, f dg, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ɛ ff ∼ 10%, with approximately a factor of two systematic uncertainties.

  5. Polarization and infrared imaging of regions of star formation

    International Nuclear Information System (INIS)

    Moneti, A.

    1985-01-01

    Observational studies of two regions of star formation, the Taurus cloud and the BN-KL region of Orion, are presented. The magnetic field structure in the Taurus cloud was studied in order to investigate its possible role in the evolution of the cloud. It was found that the magnetic field is generally perpendicular to the elongated structures that make up the cloud, and it is deduced that the observed structure could be due to the effects of the magnetic field during the early stages of collapse. In addition, it was found that the magnetic field may have prevented the formation of massive stars by inhibiting the collapse of large cores, while not affecting the collapse of the small ones. Using a new near-infrared array camera, high resolution (1'') images of several young stars embedded in the cloud were obtained. Most of these sources have extended, spatially resolved circumstellar shells. High resolution images of the BN-KL region of Orion at four wavelengths between 1.65 and 4.7 μm were also obtained. At 1.65 μm a large trough is seen in the overall nebulosity; it is suggested that the observed trough is due to the doughnut of material around IRc2 as it obscures the background nebulosity

  6. HST images of dark giants as dark matter: Part.I The black cocoon stars of Carina Nebula region

    International Nuclear Information System (INIS)

    Celis, S.L.

    2001-01-01

    In an evolutionary scenario, the existence of isolated dark giant objects known as Post M latest spectral type stars (1) (or black cocoon stars) are in the last stage of their life and, as extremely advanced old age objects, they cease to be stars. The photographic images of Carina nebula taken by the Hubble Space Telescope (HST) have been used to detect the post M-Iatest stars as dark silhouettes. The luminosity attenuation equation of M late stars (1), A = αS 3 , points out the baryonic dark matter envelopes the oldest red giants that produce earlier dark giants. This equation says that when the red giant star finishes to produce baryonic dark matter, the central star is extinguishing and transforms into dark giants and dusty globules that disperse cool gaseous matter into the interstellar space. These old dark objects have a size from 400 to 600 astronomical units (AU). The advanced dark giants, the dusty dark giants, might not contain a star within the molecular cloud that envelops it. In this case, the dark giants might produce the smaller and less massive dark globules of the Thackeray's globules type (less than 4 solar masses) where, Reupurth et al. (2) found that these globules are now in an advanced stage of disintegration and they found no evidence of star formation in any of these objects. The high-resolution of the Hubble images allows: The observation of isolated dark giants, dusty globules with central dark giants, the observation of partial eclipses or transiting of giant stars and the estimation of linear and angular diameters (ionised cocoons) of giant stellar objects. The dark giants of the image are identified them as objects with observed angular diameter. The large quantity of dark giants in a small sector of the sky suggests that they are densely populated (population stars III) and ubiquitous in the galactic disc. They can be located in isolated form or associated in dense Conglomerations of dark giants. At the same time, conglomerates of

  7. Far-infrared and submillimeter spectroscopy of photodissociation regions

    International Nuclear Information System (INIS)

    Qaiyum, A.

    1993-12-01

    The physical properties of the galactic and extragalactic photodissociation regions, warm gas components molecular clouds are, generally, derived through the far-infrared (FIR) fine structure and submillimeter line emissions arising out of these regions. In the theoretical studies of these lines the model of Tielens and Hollenbach (herein after referred as TH) are usually employed in which all the opacity is assumed local in escape probability formalism and inward directed photons do not escape. These assumptions are contrary to the observational facts, where most of the lines are found optically thin except OI (63 μm) and low rotational transitions of CO and some other molecules. The optically thin medium will allow the radiation to escape through any face of the region. These observational evidences let us to assume finite parallel plane slab, instead of semi-infinite parallel slab, in which the photons are allowed to escape from both surfaces (back and front). In the present study an attempt has been made to incorporate the two sided escape of photons from the PDRs and to study its effect on the FIR and submillimeter line emission from the PDRs/molecular clouds. Further the present formalism is also employed to study the clumpy PDRs/molecular clouds. The preliminary results show that now serious consequences are found on the thermal and chemical structure of the regions but individual line emissions are modified by differing factors. Particularly at low density and low kinetic temperature the change is substantial but at density greater than the critical density of the line and temperature close to the excitation temperature its effect is almost negligible. An attempt has also been made to study the physical conditions of the M17 region employing the present formalism. (author). 49 refs, 8 figs, 1 tab

  8. Far-infrared observations of Large Magellanic Cloud H II regions

    International Nuclear Information System (INIS)

    Werner, M.W.; Becklin, E.E.; Gatley, I.; Ellis, M.J.; Hyland, A.R.; Robinson, G.; Thomas, J.A.

    1978-01-01

    Far-infrared emission has been measured from four Large Magellanic Cloud H II regions: the 30 Doradus nebula, MC75, MC76 and MC77. The far-infrared radiation is thermal emission from dust heated by starlight. The results show that the LMC H II regions, like H II regions in the Galaxy, have far-infrared luminosities comparable to the total luminosity of their exciting stars. (author)

  9. Water vapor emission from H II regions and infrared stars

    International Nuclear Information System (INIS)

    Cato, B.T.; Ronnang, B.O.; Rydbeck, O.E.H.; Lewin, P.T.; Yngvesson, K.S.; Cardiasmenos, A.G.; Shanley, J.F.

    1976-01-01

    The spatial structure of water vapor microwave line emission has been investigated with moderate angular resolution in several well-known H II regions. New H 2 O sources have been with infrared (1R) sources. One of these sources, IRC: 20411, has been investigated at optical wavelengths. It is found to be of spectral class M3-M5 and by indirect evidence the luminosity class is preliminarily determined to Ib. The distance is estimated to be approx.2 kpc, and the star must be in front of the dust complex which obscures W28 A2. In NGC 7538 new high-velocity features have been discovered. Two new weak water vapor masers, G30.1: 0.7 and G32.8: 0.3, have been detected in a search among eight class II OH/IR sources. H 2 O emission coinciding with the low-velocity OH features of VY Canis Majoris has also been detected. A search for local thermodynamic equilibrium (LTE) water-vapor line emission in molecular clouds associated with H II regions is also reported. No line was detected with the utilized sensitivity. The physical implications of this are discussed and an upper limit of the H 2 O column density has been estimated. Gaussian analysis of the strong, narrow feature in the spectrum of ON 1 indicates a possible presence of two hyperfine components, viz., F→F'=7→6 and 6→5

  10. High resolution far-infrared observations of the evolved H II region M16

    International Nuclear Information System (INIS)

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-01-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10 6 years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H 2 O maser is associated with this source, but no radio continuum emission has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment

  11. Infrared spectroscopy of dust in the Taurus dark clouds: ice and silicates

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Adamson, A.J.; McFadzean, A.D.; Aitken, D.K.

    1988-01-01

    Low-resolution spectra are presented of the 3 μm water-ice and 10 μm silicate dust features for stars in the direction of the extensive dark cloud complex in Taurus. A total of 22 stars were observed at 3 μm, and 16 at 10 μm. Our sample includes both dust-embedded objects and background field stars seen through the cloud. New and previously published results are combined to investigate the correlation of the strengths of both features with visual extinction A v , and we demonstrate the existence of a very close linear correlation between the peak optical depth in the 3 μm feature and A v for field stars. Ice is detected in all cases where A v exceeds a threshold value of 3.3 ± 0.1 mag, a result which provides a firm observational basis for models of volatile mantle growth on grains in the dark cloud environment. In contrast, the silicate feature is rather poorly correlated with A v . (author)

  12. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light

    KAUST Repository

    Huang, Jianfeng

    2015-10-19

    Engineering broadband light absorbers is crucial to many applications, including energy-harvesting devices and optical interconnects. The performances of an ideal absorber are that of a black body, a dark material that absorbs radiation at all angles and polarizations. Despite advances in micrometre-thick films, the absorbers available to date are still far from an ideal black body. Here, we describe a disordered nanostructured material that shows an almost ideal black-body absorption of 98-99% between 400 and 1,400 nm that is insensitive to the angle and polarization of the incident light. The material comprises nanoparticles composed of a nanorod with a nanosphere of 30 nm diameter attached. When diluted into liquids, a small concentration of nanoparticles absorbs on average 26% more than carbon nanotubes, the darkest material available to date. By pumping a dye optical amplifier with nanosecond pulses of 100 mW power, we harness the structural darkness of the material and create a new type of light source, which generates monochromatic emission (5 nm wide) without the need for any resonance. This is achieved through the dynamics of light condensation in which all absorbed electromagnetic energy spontaneously generates single-colour energy pulses. © 2016 Macmillan Publishers Limited. All rights reserved.

  13. Infrared spectroscopy of dust in the Taurus dark clouds: solid carbon monoxide

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; McFadzean, A.D.

    1989-01-01

    Spectra centred on the spectral feature of solid CO at 4.67 μm wavelength are presented for eight stars in or behind the quiescent dark cloud complex in Taurus. The solid CO profile is dominated by a sharp component centred at 4.673 μm (2140 cm -1 ). As in previous observations of the feature, asymmetry in the profile is consistent with the presence of a weaker, somewhat broader, overlapping component centred at ∼ 4.682 μm (2136 cm -1 ). New and previously published data for Taurus stars are combined to study the correlation of the peak optical depth in the CO feature with visual extinction and with the depth of the water-ice feature at 3.0 μm. (author)

  14. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    Science.gov (United States)

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.

  15. Oriented regions grouping based candidate proposal for infrared pedestrian detection

    Science.gov (United States)

    Wang, Jiangtao; Zhang, Jingai; Li, Huaijiang

    2018-04-01

    Effectively and accurately locating the positions of pedestrian candidates in image is a key task for the infrared pedestrian detection system. In this work, a novel similarity measuring metric is designed. Based on the selective search scheme, the developed similarity measuring metric is utilized to yield the possible locations for pedestrian candidate. Besides this, corresponding diversification strategies are also provided according to the characteristics of the infrared thermal imaging system. Experimental results indicate that the presented scheme can achieve more efficient outputs than the traditional selective search methodology for the infrared pedestrian detection task.

  16. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

    Science.gov (United States)

    Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; Shaner, E. A.

    2015-11-01

    Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292 . The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.

  17. An explanation for the dark region in the western melt zone of the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    I. G. M. Wientjes

    2010-07-01

    Full Text Available The western part of the Greenland ice sheet contains a region that is darker than the surrounding ice. This feature has been analysed with the help of MODIS images. The dark region appears every year during the summer season and can always be found at the same location, which makes meltwater unlikely as the only source for the low albedos. Spectral information indicates that the ice in this region contains more debris than the ice closer to the margin. ASTER images reveal a wavy pattern in the darker ice. Based on these findings we conclude that ice, containing dust from older periods, is presently outcropping near the margin, leading to albedos lower than observed for the remaining ablation area. Therefore it can be concluded that the accumulation of meltwater is a result rather than a cause of the darkening.

  18. Models of infrared emission from dusty and diffuse H II regions

    International Nuclear Information System (INIS)

    Aannestad, P.A.

    1978-01-01

    Models for the infrared emission from amorphous core-mantle dust within diffuse (n/sub e/ 3 cm -3 ) H II regions with neutral shells that are optically thin in the infrared have been calculated. The icy mantles sublimate only within a fractional radius of 0.2--0.5, affecting the overall gas-to-dust ratio only slightly. A region with variable grain composition may have a much smaller infrared luminosity than a similar region with uniform grain properties. Calculations of the total infrared luminosity, the relative contribution by Lα photons, the infrared spectral distribution, and the size of the dust-depleted regions are presented as functions of the ultraviolet optical depths in the ionized and neutral regions and for stellar temperatures of 35,000 and 48,000 K. Comparison with observations indicate that at least 20% of the Lyman-continuum photons are absorbed by the dust, and that the dust optical depth in the Lyman continuum is likely to be of the order of unity. For core-mantle grains most of the infrared energy is emitted between 30 and 70 μm, relatively independent of whether the dust is within or outside the H II region. Amorphous silicate particles tend to emit more energy below 30 μm, but also emit efficiently at far-infrared wavelengths. In order to illustrate the model calculations, we present infrared spectra for the Orion A region and compare them with observed fluxed, accounting for beam-width effects. A reasonable agreement is obtained with most of the near- to middle-infrared observations if the total ultraviolet optical depth is about unity and about equally divided between the ionized region and an outside neutral shell. Intensity profiles for Orion A are presented for wavelengths in the ragne 20--1000 μm, and show a strong increase in width beyond 20 μm

  19. Infrared phenomena in quantum electrodynamics : I. The physical one-electron states in the infrared region

    NARCIS (Netherlands)

    Haeringen, W. van

    In view of remaining obscurities and difficulties in existing treatments of the infrared divergences in quantum electrodynamics this problem has been considered anew. The approximate model introduced in 1937 by Bloch and Nordsieck is rediscussed. It is explicitly shown to be a good substitute for

  20. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming; Liu Rui; Liao Chijian; Shen Chenglong; Zheng Huinan; Miao Bin; Su Zhenpeng; Wang, S. [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Bin, E-mail: ymwang@ustc.edu.cn, E-mail: ymwang@ustc.edu.cn [Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094 (China)

    2012-10-20

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed, compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).

  1. Linear collider capabilities for supersymmetry in dark matter allowed regions of the mSUGRA model

    International Nuclear Information System (INIS)

    Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2004-01-01

    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with (s) 1/2 = 0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided tan βalt30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important 'dark matter allowed' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ and M 2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component. (author)

  2. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225–0.506

    International Nuclear Information System (INIS)

    Busquet, Gemma; Zhang, Qizhou; Ho, Paul T. P.; Palau, Aina; Girart, Josep M.; Liu, Hauyu Baobab; Sánchez-Monge, Álvaro; Estalella, Robert; De Gregorio-Monsalvo, Itziar; Pillai, Thushara; Wyrowski, Friedrich; Santos, Fábio P.; Franco, Gabriel A. P.

    2013-01-01

    We present the results of combined NH 3 (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225–0.506. The NH 3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T rot ∼ 15 K, non-thermal velocity dispersion σ NT ∼ 1 km s –1 , and exhibit signs of star formation, while filaments appear to be more quiescent (T rot ∼ 11 K and σ NT ∼ 0.6 km s –1 ). Filaments are parallel in projection and distributed mainly along two directions, at P.A. ∼ 10° and 60°, and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ∼0.33 ± 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the s ausage - type instability. The network of parallel filaments observed in G14.225–0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  3. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5 parell, E-08193 Bellaterra, Catalunya (Spain); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Sanchez-Monge, Alvaro [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-05125 Firenze (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); De Gregorio-Monsalvo, Itziar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Pillai, Thushara [Caltech Astronomy Department, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Wyrowski, Friedrich [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Santos, Fabio P.; Franco, Gabriel A. P., E-mail: gemma.busquet@iaps.inaf.it [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte-MG (Brazil)

    2013-02-20

    We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  4. Wide-field Infrared Survey Explorer Observations of the Evolution of Massive Star-forming Regions

    OpenAIRE

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from th...

  5. Optimization of Signal Region for Dark Matter Search at the ATLAS Detector

    CERN Document Server

    Yip, Long Sang Kenny

    2015-01-01

    This report focused on the optimization of signal region for the search of dark matter produced in proton-proton collision with final states of a single electron or muon, a minimum of four jets, one or two b-jets, and missing transverse momentum at least 100 GeV. A brute-force approach was proposed to scan for the optimal signal region in rectangularly discretized parameter space. Analysis of the leniency of signal regions motivated event-shortlisting and loop-breaking features that allowed efficient optimization of the signal region. With the refined algorithm for the brute-force search, the computation time slimmed from an estimation of three months to one hour, in a test run of a million Monte-Carlo simulated events over densely discretized parameter space of four million signal regions. Further studies could focus on manipulating random numbers, and the interplay between the maximal figure of merit and the lower bound imposed on the background.

  6. A study of the stellar population in the Lynds 1641 dark cloud - deep near-infrared imaging

    International Nuclear Information System (INIS)

    Strom, K.M.; Margulis, M.; Strom, S.E.

    1989-01-01

    Deep H and K photometry of a selection of IRAS point sources in the L1641 cloud is presented. Using these data in combination with IRAS data and previously published near-infrared photometry for sources in this region, it is found that the L1641 cloud contains newly born stars embedded within cores of unusually large visual extinction. A comparison of the properties of cores in L1641 with those in the Taurus-Auriga star-forming complex reveals that L1641 contains cores with higher visual extinctions, larger ammonia (J, K) = (1, 1) line widths, greater kinetic temperatures, and probably higher optical depths at 100 microns than any cores in Taurus-Auriga. These results are qualitatively consistent with recent suggestions that the process of protostellar collapse in cores in the L1641 cloud is dominated by gravity while this process is dominated by magnetic fields in Taurus-Auriga. 20 refs

  7. WHAT IS CONTROLLING THE FRAGMENTATION IN THE INFRARED DARK CLOUD G14.225–0.506?: DIFFERENT LEVELS OF FRAGMENTATION IN TWIN HUBS

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma; Girart, Josep Miquel [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallès, Catalunya (Spain); Estalella, Robert [Departament d’Astronomia i Meteorologia, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès, 1, E-08028 Barcelona, Catalunya (Spain); Palau, Aina [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico); Liu, Hauyu Baobab; Ho, Paul T. P. [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Gregorio-Monsalvo, Itziar [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Pillai, Thushara [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Anglada, Guillem, E-mail: busquet@ice.cat [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía, s/n, E-18008, Granada (Spain)

    2016-03-20

    We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225–0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 μm obtained with APEX and CSO telescopes. The large-scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is more fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 μm and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be responsible for determining the fragmentation level. We estimated several physical parameters, such as the level of turbulence and the magnetic field strength, and we found no significant differences between these hubs. The Jeans analysis indicates that the observed fragmentation is more consistent with thermal Jeans fragmentation compared with a scenario in which turbulent support is included. The lower fragmentation level observed in hub-N could be explained in terms of stronger UV radiation effects from a nearby H ii region, evolutionary effects, and/or stronger magnetic fields at small scales, a scenario that should be further investigated.

  8. WHAT IS CONTROLLING THE FRAGMENTATION IN THE INFRARED DARK CLOUD G14.225–0.506?: DIFFERENT LEVELS OF FRAGMENTATION IN TWIN HUBS

    International Nuclear Information System (INIS)

    Busquet, Gemma; Girart, Josep Miquel; Estalella, Robert; Palau, Aina; Liu, Hauyu Baobab; Ho, Paul T. P.; Zhang, Qizhou; De Gregorio-Monsalvo, Itziar; Pillai, Thushara; Anglada, Guillem

    2016-01-01

    We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225–0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 μm obtained with APEX and CSO telescopes. The large-scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is more fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 μm and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be responsible for determining the fragmentation level. We estimated several physical parameters, such as the level of turbulence and the magnetic field strength, and we found no significant differences between these hubs. The Jeans analysis indicates that the observed fragmentation is more consistent with thermal Jeans fragmentation compared with a scenario in which turbulent support is included. The lower fragmentation level observed in hub-N could be explained in terms of stronger UV radiation effects from a nearby H ii region, evolutionary effects, and/or stronger magnetic fields at small scales, a scenario that should be further investigated

  9. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    Energy Technology Data Exchange (ETDEWEB)

    Banerji, M.; Jouvel, S.; Lin, H.; McMahon, R. G.; Lahav, O.; Castander, F. J.; Abdalla, F. B.; Bertin, E.; Bosman, S. E.; Carnero, A.; Kind, M. C.; da Costa, L. N.; Gerdes, D.; Gschwend, J.; Lima, M.; Maia, M. A. G.; Merson, A.; Miller, C.; Ogando, R.; Pellegrini, P.; Reed, S.; Saglia, R.; Sanchez, C.; Allam, S.; Annis, J.; Bernstein, G.; Bernstein, J.; Bernstein, R.; Capozzi, D.; Childress, M.; Cunha, C. E.; Davis, T. M.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Findlay, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Glazebrook, K.; Gonzalez-Fernandez, C.; Gonzalez-Solares, E.; Honscheid, K.; Irwin, M. J.; Jarvis, M. J.; Kim, A.; Koposov, S.; Kuehn, K.; Kupcu-Yoldas, A.; Lagattuta, D.; Lewis, J. R.; Lidman, C.; Makler, M.; Marriner, J.; Marshall, J. L.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Peoples, J.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla, I.; Sharp, R.; Soares-Santos, M.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Uddin, S. A.; Wechsler, R.; Wester, W.; Yuan, F.; Zuntz, J.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor of ~4.5 relative to a simple catalogue level matching and results in a ~1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES+VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z ~ 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.

  10. Early phases in the stellar and substellar formation and evolution. Infrared and submillimeter data in the Barnard 30 dark cloud

    Science.gov (United States)

    Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.

    2018-04-01

    Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism

  11. Region descriptors for automatic classification of small sea targets in infrared video

    NARCIS (Netherlands)

    Mouthaan, M.M.; Broek, S.P. van den; Hendriks, E.A.; Schwering, P.B.W.

    2011-01-01

    We evaluate the performance of different key-point detectors and region descriptors when used for automatic classification of small sea targets in infrared video. In our earlier research performed on this subject as well as in other literature, many different region descriptors have been proposed.

  12. Exploring the mid-infrared region for urban remote sensing: seasonal and view angle effects

    Science.gov (United States)

    Krehbiel, C. P.; Kovalskyy, V.; Henebry, G. M.

    2013-12-01

    Spanning 3-5 microns, the mid-infrared (MIR) region is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. While the MIR has been utilized in atmospheric remote sensing, its potential in terrestrial remote sensing--particularly urban remote sensing, has yet to be realized. One major advantage of the MIR is the ability to penetrate most anthropogenic haze and smog. Green vegetation appears MIR-dark, urban building materials appear MIR-grey, and bare soil and dried vegetation appear MIR-bright. Thus, there is an intrinsic seasonality in MIR radiance dynamics due both to surface type differences and to seasonal change in insolation. These factors merit exploration into the potential applications of the MIR for monitoring urban change. We investigated MIR radiance dynamics in relation to (1) the spectral properties of land cover types, (2) time of year and (3) sensor view zenith angle (VZA). We used Aqua MODIS daily swaths for band 23 (~ 4.05 μm) at 1 km spatial resolution from 2009-2010 and the NLCD Percent Impervious Surface Area (%ISA) 30 m product from 2001 and 2006. We found the effects of time of year, sensor VZA, and %ISA to be three principal factors influencing MIR radiance dynamics. We focused on analyzing the relationship between MIR radiance and %ISA over eight major cities in the Great Plains of the USA. This region is characterized by four distinct seasons, relatively flat terrain, and isolated urban centers situated within a vegetated landscape. We used west-east transects beginning in the agricultural areas outside of each city, passing through the urban core and extending back out into the agricultural periphery to observe the spatial pattern of MIR radiance and how it changes seasonally. Sensor VZA influences radiance dynamics by affecting the proportion of surface elements detected--especially pertinent at the coarse spatial resolution (~1 km) of MODIS. For example, smaller VZAs (30°). Larger VZAs detect

  13. Silicon waveguided components for the long-wave infrared region

    Science.gov (United States)

    Soref, Richard A.; Emelett, Stephen J.; Buchwald, Walter R.

    2006-10-01

    We propose that the operational wavelength of waveguided Si-based photonic integrated circuits and optoelectronic integrated circuits can be extended beyond the 1.55 µm telecom range into the wide infrared from 1.55 to 100 µm. The Si rib-membrane waveguide offers low-loss transmission from 1.2 to 6 µm and from 24 to 100 µm. This waveguide, which is compatible with Si microelectronics manufacturing, is constructed from silicon-on-insulator by etching away the oxide locally beneath the rib. Alternatively, low-loss waveguiding from 1.9 to 14.7 µm is assured by employing a crystal Ge rib grown directly upon the Si substrate. The Si-based hollow-core waveguide is an excellent device that minimizes loss due to silicon's 6-24 µm multi-phonon absorption. Here the rectangular air-filled core is surrounded by SiGe/Si multi-layer anti-resonant or Bragg claddings. The hollow channel offers less than 1.7 dB cm-1 loss from 1.2 to 100 µm. .

  14. Zero-Bias Offsets in the Low-Temperature Dark Current of Quantum-Well Infrared Photodetectors

    National Research Council Canada - National Science Library

    Singh, Anjali

    1999-01-01

    .... In this environment, the detector arrays may need to be operated at temperatures lower then 77 K. At these temperatures, tunneling mechanisms such as Fowler-Nordheim and trap-assisted tunneling could dominate the dark current...

  15. THE ORION H ii REGION AND THE ORION BAR IN THE MID-INFRARED

    International Nuclear Information System (INIS)

    Salgado, F.; Tielens, A. G. G. M.; Berné, O.; Adams, J. D.; Herter, T. L.; Keller, L. D.

    2016-01-01

    We present mid-infrared photometry of the Orion bar obtained with the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) on board SOFIA at 6.4, 6.6, 7.7, 19.7, 31.5, and 37.1 μ m. By complementing this observation with archival FORCAST and Herschel /PACS images, we are able to construct a complete infrared spectral energy distribution of the Huygens region in the Orion nebula. Comparing the infrared images with gas tracers, we find that PACS maps trace the molecular cloud, while the FORCAST data trace the photodissociation region (PDR) and the H ii region. Analysis of the energetics of the region reveal that the PDR extends for 0.28 pc along the line of sight and that the bar is inclined at an angle of 4°. The infrared and submillimeter images reveal that the Orion bar represents a swept-up shell with a thickness of 0.1 pc. The mass of the shell implies a shock velocity of ≃3 km s −1 and an age of ≃10 5 years for the H ii region. Our analysis shows that the UV and infrared dust opacities in the H ii region and the PDR are a factor 5 to 10 lower than in the diffuse interstellar medium. In the ionized gas, Ly α photons are a major source of dust heating at distances larger than ≃0.06 pc from θ 1 Ori C. Dust temperatures can be explained if the size of the grains is between 0.1 and 1 μ m. We derive the photoelectric heating efficiency of the atomic gas in the Orion bar. The results are in good qualitative agreement with models and the quantitative differences indicate a decreased polycyclic aromatic hydrocarbon abundance in this region.

  16. THE ORION H ii REGION AND THE ORION BAR IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, F.; Tielens, A. G. G. M. [Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden (Netherlands); Berné, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Adams, J. D.; Herter, T. L. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Keller, L. D. [Department of Physics and Astronomy, Ithaca College, Ithaca, NY 14850 (United States)

    2016-10-20

    We present mid-infrared photometry of the Orion bar obtained with the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) on board SOFIA at 6.4, 6.6, 7.7, 19.7, 31.5, and 37.1 μ m. By complementing this observation with archival FORCAST and Herschel /PACS images, we are able to construct a complete infrared spectral energy distribution of the Huygens region in the Orion nebula. Comparing the infrared images with gas tracers, we find that PACS maps trace the molecular cloud, while the FORCAST data trace the photodissociation region (PDR) and the H ii region. Analysis of the energetics of the region reveal that the PDR extends for 0.28 pc along the line of sight and that the bar is inclined at an angle of 4°. The infrared and submillimeter images reveal that the Orion bar represents a swept-up shell with a thickness of 0.1 pc. The mass of the shell implies a shock velocity of ≃3 km s{sup −1} and an age of ≃10{sup 5} years for the H ii region. Our analysis shows that the UV and infrared dust opacities in the H ii region and the PDR are a factor 5 to 10 lower than in the diffuse interstellar medium. In the ionized gas, Ly α photons are a major source of dust heating at distances larger than ≃0.06 pc from θ {sup 1} Ori C. Dust temperatures can be explained if the size of the grains is between 0.1 and 1 μ m. We derive the photoelectric heating efficiency of the atomic gas in the Orion bar. The results are in good qualitative agreement with models and the quantitative differences indicate a decreased polycyclic aromatic hydrocarbon abundance in this region.

  17. The new Be-type star HD 147196 in the Rho Ophiuchi dark cloud region

    Science.gov (United States)

    The, P. S.; Perez, M. R.; De Winter, D.; Van Den Ancker, M. E.

    1993-01-01

    The newly discovered hot-emission line star, HD 147196 in the Rho Oph dark cloud region was observed spectroscopically and photometrically and high and low resolution IUE spectra were obtained. The finding of Irvine (1990) that this relatively bright star show its H-alpha-line in emission is confirmed. Previous H-alpha-surveys of the Rho Oph star-forming region did not detect HD 147196 as an H-alpha-emission star, meaning that it must recently be very active and has perhaps transformed itself from a B-type star at shell phase to a Be-phase. The Mg II h + k resonance lines are in absorption and they appear to be interstellar in nature, which means that either the abundance of Mg in the extended atmosphere of the star is low or that the shell is not extended enough to produce emission lines of Mg II. Photometric observations of this B8 V type star do not show any variations during at least the years covered by our monitoring or any excess of NIR radiation in its spectral energy distribution up to the M-passband at 4.8 microns.

  18. Orion star-forming region - far-infrared and radio molecular observations

    International Nuclear Information System (INIS)

    Thronson, H.A. Jr.; Harper, D.A.; Bally, J.; Dragovan, M.; Mozurkewich, D.; Yerkes Observatory, Williams Bay, WI; ATandT Bell Labs., Holmdel, NJ; Chicago Uni., IL; E. O. Hulburt Center for Space Research, Washington, DC)

    1986-01-01

    New J = 1-0 CO and far-infrared maps of the Orion star-forming region are presented and discussed. The total infrared luminosity of the Orion star-forming ridge is 250,000 solar luminosities. The material that is emitting strongly at 60 microns is traced and found to be highly centrally concentrated. However, the majority of the extended emission from this region comes from dust that is ultimately heated by the visible Trapezium cluster stars. The luminosity of IRc 2, the most luminous member of the infrared cluster, is estimated to be 40,000-50,000 solar luminosities. A schematic drawing of the Ori MC 1 region is presented. 30 references

  19. Detecting stellar-wind bubbles through infrared arcs in H II regions

    Science.gov (United States)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  20. DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883

    Energy Technology Data Exchange (ETDEWEB)

    Kankare, E.; Mattila, S.; Takalo, A. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Ryder, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Vaeisaenen, P. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Alberdi, A.; Perez-Torres, M.-A.; Romero-Canizales, C. [Instituto de Astrofsica de Andalucia, IAA-CSIC, Apartado 3004, 18080 Granada (Spain); Alonso-Herrero, A.; Colina, L. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, km 4, 28850, Torrejon de Ardoz, Madrid (Spain); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Melinder, J., E-mail: erkki.kankare@utu.fi [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2012-01-10

    We report the discovery of two consecutive supernovae (SNe), 2010cu and 2011hi, located at 0.''37 (180 pc) and 0.''79 (380 pc) projected distance, respectively, from the center of the K-band nucleus of the luminous infrared galaxy (LIRG) IC 883. The SNe were discovered in an ongoing near-infrared K-band search for core-collapse SNe in such galaxies using the ALTAIR/NIRI adaptive optics system with laser guide star at the Gemini-North Telescope. These are thus the closest SNe yet discovered to an LIRG nucleus in optical or near-infrared wavelengths. The near-infrared light curves and colors of both SNe are consistent with core-collapse events. Both SNe seem to suffer from relatively low host galaxy extinction suggesting that regardless of their low projected galactocentric distances, they are not deeply buried in the nuclear regions of the host galaxy.

  1. The effectiveness of a near-infrared vascular imaging device to support intravenous cannulation in children with dark skin color: a cluster randomized clinical trial.

    Science.gov (United States)

    van der Woude, Olga C P; Cuper, Natascha J; Getrouw, Chavalleh; Kalkman, Cor J; de Graaff, Jurgen C

    2013-06-01

    Poor vein visibility can make IV cannulation challenging in children with dark skin color. In the operating room, we studied the effectiveness of a near-infrared vascular imaging device (VascuLuminator) to facilitate IV cannulation in children with dark skin color. In the operating room of a general hospital in Curacao, all consecutive children (0-15 years of age) requiring IV cannulation were included in a pragmatic cluster randomized clinical trial. The VascuLuminator was made available to anesthesiologists at the operating complex in randomized clusters of 1 week. Success at first attempt was 63% (27/43, 95% confidence interval [CI], 47%-77%) in the VascuLuminator group vs 51% (23 of 45 patients, 95% CI, 36%-66%) in the control group (P = 0.27). Median time to successful cannulation was 53 seconds (interquartile range: 34-154) in the VascuLuminator group and 68 seconds (interquartile range: 40-159) in the control group (P = 0.54), and hazard ratio was 1.12 (95% CI, 0.73-1.71). The VascuLuminator has limited value in improving success at first attempt of facilitating IV cannulation in children with dark skin color.

  2. ON THE AVERAGE DENSITY PROFILE OF DARK-MATTER HALOS IN THE INNER REGIONS OF MASSIVE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Grillo, C.

    2012-01-01

    We study a sample of 39 massive early-type lens galaxies at redshift z ∼< 0.3 to determine the slope of the average dark-matter density profile in the innermost regions. We keep the strong-lensing and stellar population synthesis modeling as simple as possible to measure the galaxy total and luminous masses. By rescaling the values of the Einstein radius and dark-matter projected mass with the values of the luminous effective radius and mass, we combine all the data of the galaxies in the sample. We find that between 0.3 and 0.9 times the value of the effective radius the average logarithmic slope of the dark-matter projected density profile is –1.0 ± 0.2 (i.e., approximately isothermal) or –0.7 ± 0.5 (i.e., shallower than isothermal), if, respectively, a constant Chabrier or heavier, Salpeter-like stellar initial mass function is adopted. These results provide positive evidence of the influence of the baryonic component on the contraction of the galaxy dark-matter halos, compared to the predictions of dark-matter-only cosmological simulations, and open a new way to test models of structure formation and evolution within the standard ΛCDM cosmological scenario.

  3. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  4. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Science.gov (United States)

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  5. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  6. Dark catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138 (United States)

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  7. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    Science.gov (United States)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  8. New far infrared images of bright, nearby, star-forming regions

    Science.gov (United States)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  9. New viable region of an inert Higgs doublet dark matter model with scotogenic extension

    Science.gov (United States)

    Borah, Debasish; Gupta, Aritra

    2017-12-01

    We explore the intermediate dark matter mass regime of the inert Higgs doublet model, approximately between 400 and 550 GeV, which is allowed by latest constraints from direct and indirect detection experiments, but the thermal relic abundance remains suppressed. We extend the model by three copies of right-handed neutrinos, odd under the built-in Z2 symmetry of the model. This discrete Z2 symmetry of the model allows these right-handed neutrinos to couple to the usual lepton doublets through the inert Higgs doublet allowing the possibility of radiative neutrino mass in the scotogenic fashion. Apart from generating nonzero neutrino mass, such an extension can also revive the intermediate dark matter mass regime. The late decay of the lightest right-handed neutrino to dark matter makes it possible for the usual thermally underabundant dark matter in this intermediate mass regime to satisfy the correct relic abundance limit. The revival of this wide intermediate mass range can have relevance not only for direct and indirect search experiments but also for neutrino experiments as the long lifetime of the lightest right-handed neutrino also results in almost vanishing lightest neutrino mass.

  10. Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications

    Science.gov (United States)

    Pehlivan, A.; Nilsson, H.; Hartman, H.

    2015-10-01

    Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.

  11. A MID-INFRARED VIEW OF THE HIGH MASS STAR FORMATION REGION W51A

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, C. L. [Laboratório Nacional de Astrofísica, R. dos Estados Unidos, Bairro das Nações, CEP 37504-364, Itajubá—MG (Brazil); Blum, R. D. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Damineli, A. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, Cid. Universitária, São Paulo 05508-900 (Brazil); Conti, P. S. [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Gusmão, D. M., E-mail: cassio.barbosa@pq.cnpq.br, E-mail: rblum@noao.edu, E-mail: augusto.damineli@iag.usp.br, E-mail: pconti@jila.colorado.edu, E-mail: danilo@univap.br [IP and D—Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911. São José dos Campos, SP, 12244-000 (Brazil)

    2016-07-01

    In this paper we present the results of a mid-infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the Spitzer IRAC camera, and Gemini mid-infrared camera T-ReCS at 7.73, 9.69, 12.33, and 24.56 μ m, with a spatial resolution of ∼0.″5, we have identified the mid-infrared counterparts of eight ultracompact H ii regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of the W51 region, revealing massive young stellar candidates. We modeled the spectral energy distribution of the detected sources. The results suggest that the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS 2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction toward the enigmatic source IRS 2E, which amounts to ∼60 mag in the V band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of ∼100–150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid-infrared counterpart of a detected source at millimeter wavelengths that was found by Zapata et al. to be a massive young stellar object undergoing a high accretion rate.

  12. Dating by Infrared Stimulated Luminescence of a prehistoric campfire from Serido region in northeastern Brazil

    International Nuclear Information System (INIS)

    Santana, Sergio T.; Khoury, Helen J.; Borges, Fabio M.; Sullasi, Henry L.; Avila, Gabriela M.; Pessis, Anne-Marie; Guzzo, Pedro L.

    2011-01-01

    This study aimed to determine the age of a prehistoric campfire from Serido region in northeastern Brazil. The dating was performed by Infrared Stimulated Luminescence (IRSL) by the method of multiple aliquot regenerative doses. Samples were collected from five different parts of the campfire in order to determine the accumulated dose, and samples of two parts of the campfire for determine the annual dose rate. After a statistical analysis of these values, we calculated an average age of 3640 +- 710 years. This age allowed to define a time frame for archaeological studies in this region. (author)

  13. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  14. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    Science.gov (United States)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  15. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  16. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.; Assef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  17. Far-infrared observations of M17: The interaction of an H II region with a molecular cloud

    International Nuclear Information System (INIS)

    Gatley, I.; Becklin, E.E.; Sellgren, K.; Werner, M.W.

    1979-01-01

    The central 15' of the M17 H II region--molecular cloud complex has been mapped with 1' resolution simultaneously at 30, 50, and 100 μm. The data suggest that the bulk of the luminosity radiated in the far-infrared is supplied by the exciting stars of the H II region; the far-infrared radiation is thermal emission from dust grains located chiefly outside the ionized gas. Large-scale systematic gradients in both the temperature and the column density of the dust are seen across the source. The appearance of the source in the far-infrared reflects the markedly nonuniform distribution of matter around the exciting stars; the H II region is bounded by the molecular cloud to the southwest. The core of the molecular cloud is heated primarily by infrared radiation from dust within and adjacent to the H II region; no evidence is seen for substantial luminosity sources embedded within the molecular cloud

  18. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  19. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    Science.gov (United States)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  20. NEAR-INFRARED POLARIZATION SOURCE CATALOG OF THE NORTHEASTERN REGIONS OF THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeyeong; Pak, Soojong [School of Space Research, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Jeong, Woong-Seob; Park, Won-Kee [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Tamura, Motohide, E-mail: jaeyeong@khu.ac.kr, E-mail: jeongws@kasi.re.kr [The University of Tokyo/National Astronomical Observatory of Japan/Astrobiology Center, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-01-15

    We present a near-infrared band-merged photometric and polarimetric catalog for the 39′ × 69′ fields in the northeastern part of the Large Magellanic Cloud (LMC), which were observed using SIRPOL, an imaging polarimeter of the InfraRed Survey Facility. This catalog lists 1858 sources brighter than 14 mag in the H band with a polarization signal-to-noise ratio greater than three in the J, H, or K{sub s} bands. Based on the relationship between the extinction and the polarization degree, we argue that the polarization mostly arises from dichroic extinctions caused by local interstellar dust in the LMC. This catalog allows us to map polarization structures to examine the global geometry of the local magnetic field, and to show a statistical analysis of the polarization of each field to understand its polarization properties. In the selected fields with coherent polarization position angles, we estimate magnetic field strengths in the range of 3−25 μG using the Chandrasekhar–Fermi method. This implies the presence of large-scale magnetic fields on a scale of around 100 parsecs. When comparing mid- and far-infrared dust emission maps, we confirmed that the polarization patterns are well aligned with molecular clouds around the star-forming regions.

  1. The LHC can probe small x PDFs; the treatment of the infrared region

    International Nuclear Information System (INIS)

    Martin, A. D.; De Oliveira, E. G.; Ryskin, M. G.

    2013-01-01

    First, we show how to reduce the sensitivity of the NLO predictions of the Drell-Yan production of low-mass, lepton-pairs, at high rapidity, to the choice of factorization scale. In this way, observations of this process at the LHC can make direct measurements of parton distribution functions in the low x domain; x≲10 −4 . Second, we find an inconsistency in the conventional NLO treatment of the infrared region. We illustrate the problem using the NLO coefficient function of Drell-Yan production.

  2. The LHC can probe small x PDFs; the treatment of the infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A. D.; De Oliveira, E. G.; Ryskin, M. G. [Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom)

    2013-04-15

    First, we show how to reduce the sensitivity of the NLO predictions of the Drell-Yan production of low-mass, lepton-pairs, at high rapidity, to the choice of factorization scale. In this way, observations of this process at the LHC can make direct measurements of parton distribution functions in the low x domain; x Less-Than-Or-Equivalent-To 10{sup -4}. Second, we find an inconsistency in the conventional NLO treatment of the infrared region. We illustrate the problem using the NLO coefficient function of Drell-Yan production.

  3. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    Science.gov (United States)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  4. The bright and dark side of cooperation for regional innovation performance

    OpenAIRE

    Broekel, Tom; Meder, Andreas

    2008-01-01

    Studies analyzing the importance of intra- and inter-regional cooperation for regional innovation performance are mainly of qualitative nature and focus strongly on the positive effects that high levels of cooperation can yield. For the case of the German labor market regions and the Electrics + Electronics industry the paper provides a quantitative-empirical analysis taking into account the possibility of negative effects related to regional lock-in, lock-out, and cooperation overload situat...

  5. Simultaneous generation of tunable giant dispersive waves in the visible and mid-infrared regions based on photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Lei; Yang, Si-Gang; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong; Han, Ying

    2013-01-01

    Cherenkov radiation (CR) in both the visible and mid-infrared regions is simultaneously generated experimentally based on a photonic crystal fiber with two zero-dispersion wavelengths. The generation of CR in the visible region originates from solitons located in the anomalous group velocity dispersion (GVD) regime which are perturbed by positive third order dispersion. Conversely, the generation of CR in the mid-infrared region requires that the solitons in the anomalous GVD regime are perturbed by negative third order dispersion. The peak wavelength of the CR in the visible region can be tuned from 498 to 425 nm by increasing the average input pump power from 70 to 400 mW, while the peak wavelength of the CR in the mid-infrared region can be tuned from 1986 to 2279 nm by increasing the average input pump power from 70 to 320 mW. (paper)

  6. The Optical/Near-infrared Extinction Law in Highly Reddened Regions

    Science.gov (United States)

    Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

    2018-03-01

    A precise extinction law is a critical input when interpreting observations of highly reddened sources such as young star clusters and the Galactic Center (GC). We use Hubble Space Telescope observations of a region of moderate extinction and a region of high extinction to measure the optical and near-infrared extinction law (0.8–2.2 μm). The moderate-extinction region is the young massive cluster Westerlund 1 (Wd1; A Ks ∼ 0.6 mag), where 453 proper-motion selected main-sequence stars are used to measure the shape of the extinction law. To quantify the shape, we define the parameter {{ \\mathcal S }}1/λ , which behaves similarly to a color-excess ratio, but is continuous as a function of wavelength. The high-extinction region is the GC (A Ks ∼ 2.5 mag), where 819 red clump stars are used to determine the normalization of the law. The best-fit extinction law is able to reproduce the Wd1 main-sequence colors, which previous laws misestimate by 10%–30%. The law is inconsistent with a single power law, even when only the near-infrared filters are considered, and has A F125W/A Ks and A F814W/A Ks values that are 18% and 24% higher than the commonly used Nishiyama et al. law, respectively. Using this law, we recalculate the Wd1 distance to be 3905 ± 422 pc from published observations of the eclipsing binary W13. This new extinction law should be used for highly reddened populations in the Milky Way, such as the Quintuplet cluster and Young Nuclear Cluster. A python code is provided to generate the law for future use.

  7. Far-infrared and CO observations of NGC 6357 and regions surrounding NGC 6357 and NGC 6334

    International Nuclear Information System (INIS)

    McBreen, B.; Jaffe, D.T.; Fazio, G.G.

    1983-01-01

    We have surveyed two 1.7 square degree sections of the galactic plane at 70 μm with one-arcminute resolution. The scanned areas included the giant southern H II region complexes NGC 6357 and NGC 6334. Nineteen far-infrared sources were observed. The sources range in luminosity from 1.6 x 10 4 to 5.5 x 10 5 L/sub sun/ . We present far-infrared continuum and CO line observations of NGC 6357. Four far-infrared sources were found in this complex and for one of these sources the exciting stars are identified. We present far-infrared and CO observations of sources in the field surrounding NGC 6357 and NGC 6334. The far-infrared sources coincide frequently with CO line temperature peaks. The CO clouds which surround the far-infrared sources have similar 13 CO column densities. Two of the far-infrared sources in the field have associated OH and H 2 O maser emission and compact H II regions

  8. Dark Dark Wood

    DEFF Research Database (Denmark)

    2017-01-01

    2017 student Bachelor film. Synopsis: Young princess Maria has had about enough of her royal life – it’s all lesson, responsibilities and duties on top of each other, every hour of every day. Overwhelmed Maria is swept away on an adventure into the monster-filled dark, dark woods. During 2017...

  9. Optical polarimetric and near-infrared photometric study of the RCW95 Galactic H II region

    Science.gov (United States)

    Vargas-González, J.; Roman-Lopes, A.; Santos, F. P.; Franco, G. A. P.; Santos, J. F. C.; Maia, F. F. S.; Sanmartim, D.

    2018-02-01

    We carried out an optical polarimetric study in the direction of the RCW 95 star-forming region in order to probe the sky-projected magnetic field structure by using the distribution of linear polarization segments which seem to be well aligned with the more extended cloud component. A mean polarization angle of θ = 49.8° ± 7.7°7 was derived. Through the spectral dependence analysis of polarization it was possible to obtain the total-to-selective extinction ratio (RV) by fitting the Serkowski function, resulting in a mean value of RV = 2.93 ± 0.47. The foreground polarization component was estimated and is in agreement with previous studies in this direction of the Galaxy. Further, near-infrared (NIR) images from Vista Variables in the Via Láctea (VVV) survey were collected to improve the study of the stellar population associated with the H II region. The Automated Stellar Cluster Analysis algorithm was employed to derive structural parameters for two clusters in the region, and a set of PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones was superimposed on the decontaminated colour-magnitude diagrams to estimate an age of about 3 Myr for both clusters. Finally, from the NIR photometry study combined with spectra obtained with the Ohio State Infrared Imager and Spectrometer mounted at the Southern Astrophysics Research Telescope we derived the spectral classification of the main ionizing sources in the clusters associated with IRAS 15408-5356 and IRAS 15412-5359, both objects classified as O4V stars.

  10. AN INFRARED/X-RAY SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Mamajek, E. E.; Cruz, K. L.

    2009-01-01

    We present the results of a search for new members of the Taurus star-forming region using data from the Spitzer Space Telescope and the XMM-Newton Observatory. We have obtained optical and near-infrared spectra of 44 sources that exhibit red Spitzer colors that are indicative of stars with circumstellar disks and 51 candidate young stars that were identified by Scelsi and coworkers using XMM-Newton. We also performed spectroscopy on four possible companions to members of Taurus that were reported by Kraus and Hillenbrand. Through these spectra, we have demonstrated the youth and membership of 41 sources, 10 of which were independently confirmed as young stars by Scelsi and coworkers. Five of the new Taurus members are likely to be brown dwarfs based on their late spectral types (>M6). One of the brown dwarfs has a spectral type of L0, making it the first known L-type member of Taurus and the least massive known member of the region (M ∼ 4-7 M Jup ). Another brown dwarf exhibits a flat infrared spectral energy distribution, which indicates that it could be in the protostellar class I stage (star+disk+envelope). Upon inspection of archival images from various observatories, we find that one of the new young stars has a large edge-on disk (r = 2.''5 = 350 AU). The scattered light from this disk has undergone significant variability on a timescale of days in optical images from the Canada-France-Hawaii Telescope. Using the updated census of Taurus, we have measured the initial mass function for the fields observed by XMM-Newton. The resulting mass function is similar to previous ones that we have reported for Taurus, showing a surplus of stars at spectral types of K7-M1 (0.6-0.8 M sun ) relative to other nearby star-forming regions, such as IC 348, Chamaeleon I, and the Orion Nebula Cluster.

  11. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  12. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  13. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  14. Observations of far-infrared line profiles in the Orion-KL region

    International Nuclear Information System (INIS)

    Crawford, M.K.; Lugten, J.B.; Fitelson, W.; Genzel, R.; Melnick, G.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    Measurements of several far-infrared emission line profiles in the Orion-KL region are reported. The emission from the CO, OH, and forbidden O I emission lines toward the BN-KL and H2 peak 1 positions probably comes from dense, hot molecular gas in the Orion-KL shock. The CO and forbidden O I lines have similar profiles, suggesting that the high-velocity forbidden O I emission also arises in magnetohydrodynamic cloud shocks. The velocity centroids of the lines are somewhat blueshifted. The far-infrared data thus support the interpretation that the blue asymmetry of the H2 2 micron lines is not mainly due to differential dust extinction, but rather to the kinematics and geometry of the shocked gas in the Orion-KL outflow. The forbidden O I and CO lines, however, have significantly less extreme blueshifted emission than the H2 lines. Both the forbidden O I 63 micron and forbidden C II 158 micron lines have features strongly supporting a common origin near the surface of the Orion molecular cloud. 28 references

  15. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Solookinejad, G., E-mail: ghsolooki@gmail.com

    2016-09-15

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  16. Infrared speckle observations of Io - an eruption in the Loki region

    International Nuclear Information System (INIS)

    Howell, R.R.; Mcginn, M.T.

    1985-01-01

    Speckle observations of Jupiter's satellite Io at a wavelength of 5 micrometers during July 1984 resolved the disk and showed emission from a hot spot in the Loki region. The hot spot contributed a flux approximately equal to 60 percent of that from the disk.Images reconstructed by means of the Knox-Thompson algorithm showed the spot moving across the disk as the satellite rotated. It was located at 301 deg + or - 6 deg west longitude, 10 deg + or - 6 deg north latitude, and had a radiance of (2.96 + or - 0.54) x 10 to the 22nd ergs/sec cm sr/A where A is the area of the spot. For an assumed temperature of 400 K, the area of the source would be 11,400 square kilometers. An active lava lake similar to that seen by Voyager may be the source of the infrared emission. 10 references

  17. Infrared Spectroscopy in the region X-Ray Diffraction and the mineral trioxide aggregate

    International Nuclear Information System (INIS)

    Barros, C.M.B.; Oliveira, S.V.; Silva, M.C.; Cartaxo, J.M.; Fook, M.V.L.

    2011-01-01

    In the nineties was introduced into the search field of biomaterials to mineral trioxide aggregate (MTA). It is a derivative of Portland cement with similar chemical properties and was initially developed as a root filling material in dentistry. This material is presented characteristics of mechanical, physical and biological meaningful when applied to biological environment. It was used to search a commercial MTA manipulated with distilled water and propylene glycol in order to verify chemical composition, infrared absorption bands and stages in the samples. The MTA has been characterized by XRF, XRD and FTIR. In X-ray fluorescence was found that the MTA has a characteristic composition of hydraulic cement. Through FTIR MTA mixed with water presents an enlargement in the absorption bands in the region 1467 and 873 cm-1. By means of XRD showed that there is no presence of toxic materials in the majority and secondary phases. (author)

  18. Tunable Fano resonator using multilayer graphene in the near-infrared region

    Science.gov (United States)

    Zhou, Chaobiao; Liu, Guoqin; Ban, Guoxun; Li, Shiyu; Huang, Qingzhong; Xia, Jinsong; Wang, Yi; Zhan, Mingsheng

    2018-03-01

    Fano resonance (FR) holds promising applications for high performance optoelectronic devices due to its strong enhancement of light-matter interactions. In this work, we experimentally demonstrate a tunable FR in a photonic crystal nanoresonator (PCR), including the effects of structural parameters and graphene nanosheets with different layer numbers. The results show that the intensity and position of Fano peaks can be tuned via altering the lattice constant and the hole radius of PCR due to the variation of the effective refractive index. More importantly, we experimentally study the interaction between sharp FR with multilayer graphene. The results indicate that the FR transmission spectrum can be efficiently adjusted with the layer number of graphene, and the largest change in transmission (˜44%) is achieved with three-layer graphene because of high conductivity. These consequences may lead to efficient and tunable electro-optical modulators, biosensors, and optical switches in the near-infrared region.

  19. Globules, dark clouds, and low mass pre-main sequence stars

    International Nuclear Information System (INIS)

    Hyland, A.R.

    1981-01-01

    The current observational and theoretical literature on Bok globules and their relationship to star formation is reviewed. Recent observations of globules at optical, infrared, and far infrared wavelengths are shown to provide important constraints on their structure and evolutionary status, and the suggestion that many globules are gravitationally unstable is seriously questioned. Dark clouds associated with T associations are well-known sites of recent and continuing star formation. In recent years molecular observations and far infrared surveys have provided maps of such regions from which possible sites of star formation may be identified. Optical (Hα) and near infrared surveys have enabled a clear identification of pre-main sequence (PMS) objects within the clouds. Methods of distinguishing these from background objects and the nature of their infrared excesses are examined in the light of recent observations in the near and far infrared. The perennial question as to the existence of anomalous reddening within dark clouds is also investigated. (Auth.)

  20. Counts of galaxies in the region of the 'intergalactic dark cloud' near iota Microscopii

    International Nuclear Information System (INIS)

    Meinunger, I.

    1976-01-01

    The distribution of the total numbers of galaxies down to about 18th magnitude on 84 squares is largely in agreement with the structure of the hypothetic intergalactic absorbing cloud near iota Microscopii found by C. Hoffmeister. The counts of galaxies were performed on the Whiteoak prints covering that region. (author)

  1. MOLECULAR CLUMPS AND INFRARED CLUSTERS IN THE S247, S252, AND BFS52 REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shimoikura, Tomomi; Dobashi, Kazuhito [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Saito, Hiro; Nakamura, Fumitaka [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Matsumoto, Tomoaki [Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Nishimura, Atsushi; Kimura, Kimihiro; Onishi, Toshikazu; Ogawa, Hideo, E-mail: ikura@u-gakugei.ac.jp [Department of Physical Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2013-05-01

    We present results of the observations carried out toward the S247, S252, and BFS52 H II regions with various molecular lines using the 1.85 m radio telescope and the 45 m telescope at Nobeyama Radio Observatory. There are at least 11 young infrared clusters (IR clusters) within the observed region. We found that there are two velocity components in {sup 12}CO (J = 2-1), and also that their spatial distributions show an anti-correlation. The IR clusters are located at their interfaces, suggesting that two distinct clouds with different velocities are colliding with each other, which may have induced the cluster formation. Based on {sup 13}CO (J = 1-0) and C{sup 18}O (J = 1-0) observations, we identified 16 clumps in and around the three H II regions. Eleven of the clumps are associated with the IR clusters and the other five clumps are not associated with any known young stellar objects. We investigated variations in the velocity dispersions of the 16 clumps as a function of the distance from the center of the clusters or the clumps. Clumps with clusters tend to have velocity dispersions that increase with distance from the cluster center, while clumps without clusters show a flat velocity dispersion over the clump extents. A {sup 12}CO outflow has been found in some of the clumps with IR clusters but not in the other clumps, supporting a strong relation of these clumps to the broader velocity dispersion region. We also estimated a mean star formation efficiency of {approx}30% for the clumps with IR clusters in the three H II regions.

  2. Shedding Light on the Dark Continent: A Historical Perspective for U.S. Army Regional Alignment

    Science.gov (United States)

    2013-12-10

    importantly, to identify gaps in understanding, training, and doctrine. In the early stages of regional alignment, operational planners would benefit from a...average soldier could expect access to a steady diet of maize , meat, tea, beans, and rice. In fact, at various times, more Ugandans volunteered than...presence or limited use of paramilitary agencies which yields relative stability. Senegal is a prime example of both ideas given its history of an

  3. Dense cores in dark clouds. I. CO observations and column densities of high-extinction regions

    International Nuclear Information System (INIS)

    Meyers, P.C.; Linke, R.A.; Benson, P.J.

    1983-01-01

    Ninety small (approx.5') visually opaque regions have been selected from Palomar Sky Atlas prints and surveyed in the 2.7 mm J = 1→0 lines of C 18 O and 13 CO. The regions are primarily in complexes of obscuration, including those in Taurus and Ophiuchus. The typical C 18 O emission region has C 18 O line width 0.6 km s - 1 , optical depth 0.4, excitation temperature 10 K, and column density 2 x 10 15 cm - 2 . It has size 0.3 pc, visual extinction approx.11 mag, and mass approx.30 M/sub sun/. Comparison with equilibrium and collapse models indicates that purely thermal supporting motions are consistent with the present data, but unlikely. If the full C 18 O line width reflects turbulent supporting motions, nearly all of the observed clouds are consistent with stable equilibrium. If only part of the C 18 O line width reflects supporting motions, many clouds are also consistent with turbulent contraction. More than half of the clouds have significant departures from Gaussian line shape. The most common asymmetry is a blueshifted peak in the 13 CO line, which is consistent with contracting motion

  4. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  5. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Finlay, Chris; Hesse, M.

    2017-01-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagneticmain field. Observations from...... the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine...

  6. Near-infrared spectroscopy (NIRS evaluation and regional analysis of Chinese faba bean (Vicia faba L.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Wang

    2014-02-01

    Full Text Available To analyze the nutritional composition of faba bean (Vicia faba L. seed, estimation models were developed for protein, starch, oil, and total polyphenol using near infrared spectroscopy (NIRS. Two hundred and forty-four samples from twelve producing regions were measured in both milled powder and intact seed forms. Partial least squares (PLS regression was applied for model development. The model based on ground seed powder was generally superior to that based on the intact seed. The optimal seed powder-based models for protein, starch, and total polyphenol had coefficients of correlation (r2 of 0.97, 0.93 and 0.89, respectively. The relationship between nutrient contents and twelve producing areas was determined by two-step cluster analysis. Three distinct groupings were obtained with region-constituent features, i.e., Group 1 of high oil, Group 2 of high protein, and Group 3 of high starch as well as total polyphenol. The clustering accuracy was 79.5%. Moreover, the nutrition contents were affected by seeding date, longitude, latitude, and altitude of plant location. Cluster analysis revealed that the differences in the seed were strongly influenced by geographical factors.

  7. Hunting the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Penning, Bjoern [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.

    2017-05-15

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  8. Hunting the dark Higgs

    International Nuclear Information System (INIS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian; Penning, Bjoern

    2017-05-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  9. Functional near-infrared spectroscopy to probe sensorimotor region activation during electrical stimulation-evoked movement.

    Science.gov (United States)

    Muthalib, Makii; Ferrari, Marco; Quaresima, Valentina; Kerr, Graham; Perrey, Stephane

    2017-11-07

    This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O 2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. NMES-evoked movements induced significantly greater activation (increase in O 2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O 2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O 2 Hb (P = 0·144) and HHb (P = 0·958). fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing...

  11. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.II; Brown, R.L.

    1985-12-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy H II regions G30.8-0.0 (in the W43 complex) and G25.4-02., along with radio and molecular line measurements at selected positions. An effort is made to understand far infrared wavelingths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. For G25.4-0.2, the radio recombination line and CO line data permit resolution of the distance ambiguity for this source. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright H II regions. Using revised distances of 4.3 kpc for G26.4SE and 12 kpc for G25.4NW, that the latter, which is apparently the fainter of the two sources, is actually the more luminous. Though it is not seen on the Palomar Sky Survey, G25.4SE is easily visible in the 9532A line of S III and is mapped in this line. The ratio of total luminosity to ionizing luminosity is very similar to that of H II regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  12. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.; Brown, R.L.

    1985-09-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  13. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Science.gov (United States)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; hide

    2016-01-01

    By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.

  14. YSOVAR: Mid-infrared variability in the star-forming region Lynds 1688

    Energy Technology Data Exchange (ETDEWEB)

    Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Covey, K. R. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Allen, L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bayo, A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Meng, H. Y. A. [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Morales-Calderón, M. [Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Canada (Spain); Parks, J. R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place South, Atlanta, GA 30303 (United States); Song, Inseok, E-mail: hguenther@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2014-12-01

    The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ∼800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6 yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.

  15. Soft gluon resummation in the infrared region and the Froissart bound

    CERN Document Server

    Pancheri, Giulia; Godbole, Rohini M; Srivastava, Yogendra N

    2010-01-01

    We describe the taming effect induced by soft gluon $k_t$-resummation on the rapid rise of QCD mini-jet contributions to the total cross-sections.This results from an eikonal model in which the rise of the total cross-section is due to mini-jet contribution. We perform the calculation with current Parton Density Functions (PDFs). The impact parameter distribution we use is obtained as the Fourier transform of the resummed $k_t$-distribution of soft gluons emitted from the initial state during the collision.The emission, which is energy dependent, destroys the initial collinearity of partons.In this model, the strong power-like rise due to the increasing number of low-x gluon collisions is tamed by the acollinearity induced by soft gluon kt-resummation down to zero gluon momenta. It explicitly links a singular soft gluon coupling in the infrared region to the behaviour dictated by the Froissart bound for the total cross-section. The model describes well both proton and photon processes at present accelerator e...

  16. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  17. YSOVAR: MID-INFRARED VARIABILITY AMONG YSOs IN THE STAR FORMATION REGION GGD12-15

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Günther, H. Moritz; Poppenhaeger, Katja; Forbrich, J. [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [NASA Ames Research Center, M/S 244-5 Moffett Field, CA 94035 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [Department of Physics Astronomy and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Covey, K. R. [Department of Physics and Astronomy, Western Washington Univ., Bellingham, WA 98225-9164 (United States); Song, Inseok, E-mail: swolk@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2015-11-15

    We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5′, which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5′ are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs.

  18. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer

    Science.gov (United States)

    Comiso, Josefino C.

    1994-01-01

    Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation

  19. The Seahorse Nebula: New views of the filamentary infrared dark cloud G304.74+01.32 from SABOCA, Herschel, and WISE

    Science.gov (United States)

    Miettinen, O.

    2018-02-01

    Context. Filamentary molecular clouds, such as many of the infrared dark clouds (IRDCs), can undergo hierarchical fragmentation into substructures (clumps and cores) that can eventually collapse to form stars. Aims: We aim to determine the occurrence of fragmentation into cores in the clumps of the filamentary IRDC G304.74+01.32 (hereafter, G304.74). We also aim to determine the basic physical characteristics (e.g. mass, density, and young stellar object (YSO) content) of the clumps and cores in G304.74. Methods: We mapped the G304.74 filament at 350 μm using the Submillimetre APEX Bolometer Camera (SABOCA) bolometer. The new SABOCA data have a factor of 2.2 times higher resolution than our previous Large APEX BOlometer CAmera (LABOCA) 870 μm map of the cloud (9″ vs. 19\\farcs86). We also employed the Herschel far-infrared (IR) and submillimetre, and Wide-field Infrared Survey Explorer (WISE) IR imaging data available for G304.74. The WISE data allowed us to trace the IR emission of the YSOs associated with the cloud. Results: The SABOCA 350 μm data show that G304.74 is composed of a dense filamentary structure with a mean width of only 0.18 ± 0.05 pc. The percentage of LABOCA clumps that are found to be fragmented into SABOCA cores is 36% ± 16%, but the irregular morphology of some of the cores suggests that this multiplicity fraction could be higher. The WISE data suggest that 65% ± 18% of the SABOCA cores host YSOs. The mean dust temperature of the clumps, derived by comparing the Herschel 250, 350, and 500 μm flux densities, was found to be 15.0 ± 0.8 K. The mean mass, beam-averaged H2 column density, and H2 number density of the LABOCA clumps are estimated to be 55 ± 10M⊙, (2.0 ± 0.2) × 1022 cm-2, and (3.1 ± 0.2) × 104 cm-3. The corresponding values for the SABOCA cores are 29 ± 3M⊙, (2.9 ± 0.3) × 1022 cm-2, and (7.9 ± 1.2) × 104 cm-3. The G304.74 filament is estimated to be thermally supercritical by a factor of ≳ 3.5 on the scale

  20. NEAR-INFRARED PERIODIC AND OTHER VARIABLE FIELD STARS IN THE FIELD OF THE CYGNUS OB7 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin A. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-04-15

    We present a subset of the results of a three-season, 124 night, near-infrared monitoring campaign of the dark clouds Lynds 1003 and Lynds 1004 in the Cygnus OB7 star-forming region. In this paper, we focus on the field star population. Using three seasons of UKIRT J, H, and K-band observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. After excluding known disk-bearing stars we identify 149 variables-1.6% of the sample. Of these, about 60 are strictly periodic, with periods predominantly <2 days. We conclude this group is dominated by eclipsing binaries. A few stars have long period signals of between 20 and 60 days. About 25 stars have weak modulated signals, but it was not clear if these were periodic. Some of the stars in this group may be diskless young stellar objects with relatively large variability due to cool starspots. The remaining {approx}60 stars showed variations which appear to be purely stochastic.

  1. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  2. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  3. Controlling plasmonic properties of epitaxial thin films of indium tin oxide in the near-infrared region

    Science.gov (United States)

    Kamakura, R.; Fujita, K.; Murai, S.; Tanaka, K.

    2015-06-01

    Epitaxial thin films of indium tin oxide (ITO) were grown on yttria-stabilized zirconia single-crystal substrates by using a pulsed laser deposition to examine their plasmonic properties. The dielectric function of ITO was characterized by spectroscopic ellipsometry. Through the concentration of SnO2 in the target, the carrier concentration in the films was modified, which directly leads to the tuning of the dielectric function in the near-infrared region. Variable-angle reflectance spectroscopy in the Kretschmann geometry shows the dip in the reflection spectrum of p-polarized light corresponding to the excitation of surface plasmon polaritions (SPPs) in the near-infrared region. The excitation wavelength of the SPPs was shifted with changing the dielectric functions of ITO, which is reproduced by the calculation using transfer matrix method.

  4. NEAR-INFRARED IMAGING OF THE STAR-FORMING REGIONS SH2-157 AND SH2-152

    International Nuclear Information System (INIS)

    Chen Yafeng; Yang Ji; Zeng Qin; Yao Yongqiang; Sato, Shuji

    2009-01-01

    Near-infrared JHK' and H 2 v = 1-0 S (1) imaging observations of the star-forming regions Sh2-157 and Sh2-152 are presented. The data reveal a cluster of young stars associated with H 2 line emission in each region. Additionally, many IR point sources are found in the dense core of each molecular cloud. Most of these sources exhibit infrared color excesses typical of T Tauri stars, Herbig Ae/Be stars, and protostars. Several display the characteristics of massive stars. We calculate histograms of the K'-magnitude and [H - K'] color for all sources, as well as two-color and color-magnitude diagrams. The stellar populations inside and outside the clusters are similar, suggesting that these systems are rather evolved. Shock-driven H 2 emission knots are also detected, which may be related to evident subclusters in an earlier evolutionary stage.

  5. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  6. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  7. NEW YOUNG STAR CANDIDATES IN THE TAURUS-AURIGA REGION AS SELECTED FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    International Nuclear Information System (INIS)

    Rebull, L. M.; Padgett, D. L.; Noriega-Crespo, A.

    2011-01-01

    The Taurus Molecular Cloud subtends a large solid angle on the sky, in excess of 250 deg 2 . The search for legitimate Taurus members to date has been limited by sky coverage as well as the challenge of distinguishing members from field interlopers. The Wide-field Infrared Survey Explorer has recently observed the entire sky, and we take advantage of the opportunity to search for young stellar object (YSO) candidate Taurus members from a ∼260 deg 2 region designed to encompass previously identified Taurus members. We use near- and mid-infrared colors to select objects with apparent infrared excesses and incorporate other catalogs of ancillary data to present a list of rediscovered Taurus YSOs with infrared excesses (taken to be due to circumstellar disks), a list of rejected YSO candidates (largely galaxies), and a list of 94 surviving candidate new YSO-like Taurus members. There is likely to be contamination lingering in this candidate list, and follow-up spectra are warranted.

  8. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  9. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  10. Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region

    Science.gov (United States)

    Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan

    2018-05-01

    Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.

  11. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  12. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  13. Design and analysis of dual-resonant filters in visible and infra-red region based on polymer LPWG

    Science.gov (United States)

    Sharma, Mukesh; Kushwaha, Aniruddha Singh; Pal, Suchandan

    2013-01-01

    Long-period waveguide gratings (LPWGs), by using a SU-8 polymer-based channel waveguide along with NOA61 optical epoxy coated upper- and lower-cladding, are designed and theoretical analyzed. Grating period of ~ 68μm is considered with optimized grating tooth-heights, so that the transmission spectra of the gratings show strong rejection bands both at visible (450 - 460 nm) and infrared (1530 - 1540 nm) wavelength regions. Phase-matching graphs are studied in order to observe the change in resonance wavelength of the grating with the variation of waveguide parameters. LPWG-based band pass filter are also designed and analyzed by considering the same set of polymer materials. Further, temperature sensitivity of these LPWGs is analyzed theoretically. These types of waveguide gratingbased filters can widely be used for visible and infrared wavelength sensing applications.

  14. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  15. Radiation transport in dense interstellar dust clouds. II. Infrared emission from molecular clouds associated with H II regions

    International Nuclear Information System (INIS)

    Leung, C.M.

    1976-01-01

    Theoretical models are constructed to study the distribution of grain temperature (T/sub d/) and infrared emission from molecular clouds associated with H II regions (with embedded O: B stars). The effects of the following parameters on the temperature structure and the emergent spectrum are studied: grain type (graphite, silicate, and core-mantle grains), optical depth, density inhomogeneity, cloud size, anisotropic scattering, radiation field anisotropy, and characteristics of central heat source. T/sub d/ varies from approximately-greater-than100 K to approximately-less-than20 K throughout the major portion of a cloud, and dielectric grains attain lower temperatures. Due to an inward increase in T/sub d/, the radiation field is strongly forward-peaking, thereby producing a pronounced limb-darkening in the surface brightness. Important features of the computed emission spectra from typical models are compared with available observations, and the importance of beam dilution is emphasized. Theoretical surface brightnesses at selected infrared wavelengths are also presented. The outward radiation pressure on the dust grains is found to exceed the self-gravitational force of the gas over a large portion of a cloud, thus possibly causing the gas in the inner region to expand. Assumptions commonly used in the analysis of infrared observations are examined. Finally, observational methods of deriving the temperature structure (from color and brightness temperatures in the far-infrared), density distribution (from surface brightness at lambdaapproximately-greater-than1 mm), and optical depth (from multiaperture photometry) for the dust component in simple sources are discussed

  16. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  17. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  18. Identification of Spectral Regions for Quantification of Red Wine Tannins with Fourier Transform Mid-Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Jacob Skibsted; Egebo, Max; Meyer, Anne S.

    2008-01-01

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due...... to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included...... to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69−79 mg of CE/L; r = 0...

  19. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena [Instituto de Astrofísica de Andalucía-CSIC, P.O. Box 3004, E-18008 Granada (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Colina, Luis [Centro de Astrobiología (INTA-CSIC), Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Efstathiou, Andreas [School of Sciencies, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Miralles-Caballero, Daniel [Instituto de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Väisänen, Petri [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 Cape Town (South Africa); Packham, Christopher C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Rajpaul, Vinesh [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Zijlstra, Albert A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  20. Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions

    Science.gov (United States)

    Huang, Hailong; Xia, Hui; Xie, Wenke; Guo, Zhibo; Li, Hongjian

    2018-06-01

    A size-efficient tunable metamaterial absorber (MA) composed of metallic leaf-shaped cell, graphene layer, silicon substrate, and bottom metal film is investigated theoretically and numerically at near-infrared (NIR) regions. Simulation results reveal that the single-band high absorption of 91.9% is obtained at 1268.7 nm. Further results show that the single-band can be simply changed into dual-band high absorption by varying the geometric parameters of top metallic layer at same wavelength regions, yielding two high absorption coefficients of 96.6% and 95.3% at the wavelengths of 1158.7 nm and 1323.6 nm, respectively. And the effect of related geometric parameter on dual-band absorption intensities is also investigated to obtain the optimized one. The peak wavelength can be tuned via modifying the Fermi energy of the graphene layer through controlling the external gate voltage. The work shows that the proposed strategy can be applied to other design of the dual-band structure at infrared regions.

  1. SPECTRORADIOMETRY IN THE VISIBLE AND NEAR INFRARED REGION ON A STAND OF Eucalyptus grandis Hill ex-Maiden

    Directory of Open Access Journals (Sweden)

    Catize Brandelero

    2012-03-01

    Full Text Available http://dx.doi.org/10.5902/198050985093Reflectance readings in border and inner tree leaves in a Eucalyptus grandis stand, in São Pedro das Missões, Rio Grande do Sul state, were analyzed in the regions of the visible electromagnetic spectrum and the nearby infrared, by using spectrum radiometry. The area was divided in two parts: border and center stands. In order to collect the material, the crown was divided in three parts (superior, medium and inferior, so that it would be possible to differentiate the positions of leaf collections in each area. Three trees were sampled in each area, adding up to six trees, for each tree, 60 isolated leaves were collected, 20 in each position. The reflectance readings were carried out through FieldSpec®3 spectrum radiometer and the final results were segmented in the visible and nearby infrared spectral bands. The statistical analysis was made on the basis of several tests, among them Tukey HSD test, in order to compare the averages of the visible region, which, according to ANOVA, present significant differences. It is concluded that the collecting indicating class of leaves for the spectrum radiometric analysis in the visible region are preferably the 5 one (tree in the center, reading in the medium part and #3 one (border tree, reading superior part.

  2. NGC 985 - Extended ionized regions and the far-infrared luminosity of a ring-shaped Seyfert galaxy

    International Nuclear Information System (INIS)

    Rodriguez Espinosa, J.M.; Stanga, R.M.

    1990-01-01

    Narrow-band H-alpha images and long-slit spectroscopy of the Seyfert galaxy NGC 985 are presented. Large-scale extended ionized zones are seen to cover a significant fraction of the ring of this object. These ionized zones are responsible for a considerable fraction (greater than 35 percent) of the far-infrared emission of NGC 985. These ionized zones are interpreted as giant H II region complexes, formed in a recent burst of star formation. It is also argued that that starburst was triggered by a galaxy interaction. 41 refs

  3. Infrared absorption cross sections for ethane (C2H6) in the 3 μm region

    International Nuclear Information System (INIS)

    Harrison, Jeremy J.; Allen, Nicholas D.C.; Bernath, Peter F.

    2010-01-01

    Infrared absorption cross sections for ethane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Results are presented for pure ethane gas from spectra recorded at 0.004 cm -1 resolution and for mixtures with dry synthetic air from spectra obtained at 0.015 cm -1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using three ethane spectra (recorded at 278, 293, and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  4. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  5. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  6. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  7. Characterization of image converter tubes and photodiodes in the infrared region

    International Nuclear Information System (INIS)

    Fleurot, N.; Nail, M.; Verrecchia, R.; Clement, G.

    1979-01-01

    The detection of near infrared picosecond luminous events is of the highest interest in the laser fusion research. The temporal profile of the 1.06 μm laser pulse, has to be carefully measured with S1 streak cameras which present limitations in the picosecond range. We have undertaken measurement on S1 photodiodes to situate their fatigue threshold and try to understand the limitations of image converter tubes we also present the work undertaken at R.T.C./L.E.P. to produce stable and highly sensitive image converter tubes in the micron range with the ''transfer sensitization method''. (author)

  8. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  9. Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Janek, M., E-mail: marian.janek@fns.uniba.sk [Comenius University, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Mlynská dolina CH1, SK-84215 Bratislava (Slovakia); Zich, D. [Comenius University, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Mlynská dolina CH1, SK-84215 Bratislava (Slovakia); Naftaly, M., E-mail: mira.naftaly@npl.co.uk [National Physical Laboratory, Hampton Rd, Teddington, Middlesex TW11 0LW (United Kingdom)

    2014-06-01

    Layered clay minerals from the smectite group with different chemical composition and resulting layer charge (e.g. pyrophyllite, illite, hectorite and montmorillonite) were characterised for their dielectric properties in the far-infrared region using terahertz-time domain spectroscopy (THz-TDS). Samples with distinct cation exchange capacity such as hectorite and montmorillonite were modified using cation exchange reaction with alkylamines or amino acids. The presence of these species in 2D gallery was proved by X-ray diffraction and Fourier transform infrared spectroscopy. The frequency-dependent refractive index of these minerals was determined in the experimentally accessible range of 0.1–3.0 THz (3–100 cm{sup −1}) using THz-TDS. Pristine samples revealed their refractive indices to be 1.82–2.15 at about 1 THz while the modified montmorillonite samples had their refractive indices changed by organic molecules used for their modification to 1.70–2.35 for amines and 1.97–2.36 for amino acids. The presence of organic substances in 2D gallery of clays was detectable despite the relatively high absorption of smectites with magnitude of 100 cm{sup −1}. - Graphical abstract: Display Omitted - Highlights: • “Guest” molecules in “host” layered material were investigated. • Amines and amino-acids were selected as guest molecules. • Natural and synthetic host with smectite phyllosilicate structure were used. • Dielectric properties were investigated by terahertz time domain spectroscopy. • Resonance absorption peaks of guest were detected in far infrared region.

  10. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  11. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  12. On the instability of a modified cup-burner flame in the infrared spectral region

    Directory of Open Access Journals (Sweden)

    Petr Bitala

    2016-03-01

    Full Text Available This study describes the modification of a standardised cup-burner apparatus. The replacement of the original glass chimney is performed by shielding a nitrogen co-flow enabled measurement at a wavelength of 3.9 μm. This modification, together with a special arrangement of the measuring system (spectral filtering, data acquisition and post-processing, permitted the observation of various types of hydrodynamic instabilities, including transition states. The advantages of our arrangement are demonstrated with an ethylene non-premixed flame with high sooting tendency. Two known modes of hydrodynamic instability (varicose and sinuous that occur in buoyant flames were studied and described quantitatively. Based on the intensity of the infrared emissions, we identified and qualitatively described the modes of periodic hydrodynamic instability that are accompanied by flame tip opening, which has not been observed for this type of flame.

  13. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Jensen, Jacob S; Egebo, Max; Meyer, Anne S

    2008-05-28

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485-1425 and 1060-995 cm(-1)), which therefore were concluded to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69-79 mg of CE/L; r = 0.93-0.94) as compared to a calibration model developed using all variables (RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable selection methods were observed.

  14. REGIONAL VARIATIONS IN THE DENSE GAS HEATING AND COOLING IN M51 FROM HERSCHEL FAR-INFRARED SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, T. J.; Wilson, C. D.; Schirm, M. R. P.; Foyle, K. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Baes, M.; De Looze, I. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Boquien, M.; Boselli, A. [Laboratoire d' Astrophysique de Marseille-LAM, Université d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Cormier, D. [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Karczewski, O. Ł. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lebouteiller, V.; Madden, S. C.; Sauvage, M. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Roussel, H. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Université Pierre and Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Spinoglio, L., E-mail: parkintj@mcmaster.ca [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2013-10-20

    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in M51, [C II](158 μm), [N II](122 and 205 μm), [O I](63 and 145 μm), and [O III](88 μm). We compare the observed flux of these lines with the predicted flux from a photon-dominated region model to determine characteristics of the cold gas such as density, temperature, and the far-ultraviolet (FUV) radiation field, G{sub 0}, resolving details on physical scales of roughly 600 pc. We find an average [C II]/F{sub TIR} of 4 × 10{sup –3}, in agreement with previous studies of other galaxies. A pixel-by-pixel analysis of four distinct regions of M51 shows a radially decreasing trend in both the FUV radiation field, G{sub 0}, and the hydrogen density, n, peaking in the nucleus of the galaxy, and then falling off out to the arm and interarm regions. We see for the first time that the FUV flux and gas density are similar in the differing environments of the arm and interarm regions, suggesting that the inherent physical properties of the molecular clouds in both regions are essentially the same.

  15. Far-infrared investigation of the Taurus star-forming region using the IRAS database

    International Nuclear Information System (INIS)

    Hughes, J.D.

    1986-01-01

    The Taurus-Auriga complex was selected as the first molecular cloud to be investigated in this study. The Taurus clouds were defined as lying between 04h and 05h in R.A. and +16 to +31 degrees in Dec., then the IRAS point-source catalogue was searched for sources with good or moderate quality fluxes in all three of the shortest IRAS bands. The sources selected were then classified into subgroups according to their IRAS colors. Taurus is generally believed to be an area of low-mass star formation, having no luminous O-B associations within or near to the cloud complex. Once field stars, galaxies and planetary nebulae had been removed from the sample only the molecular cloud cores, T Tauri stars and a few emission-line A and B stars remained. The great majority of these objects are pre-main sequence in nature and, as stated by Chester (1985), main sequence stars without excess far-infrared emission would only be seen in Taurus if their spectral types were earlier than about A5 and then not 25 microns. By choosing our sample in this way we are naturally selecting the hotter and thus more evolved sources. To counteract this, the molecular cloud core-criterion was applied to soruces with good or moderate quality flux at 25, 60 and 100 microns, increasing the core sample by about one third. The candidate protostar B335 is only detected by IRAS at 60 and 100 microns while Taurus is heavily contaminated by cirrus at 100 microns. This means that detection at 25 microns is also required with those at 60 and 100 microns to avoid confusing a ridge of cirrus with a genuine protostar. The far-infrared luminosity function of these sources is then calculated and converted to the visual band by a standard method to compare with the field star luminosity function of Miller and Scalo

  16. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  17. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  18. Linear geologic structure and magic rock discrimination as determined from infrared data

    Science.gov (United States)

    Offield, T. W.; Rowan, L. C.; Watson, R. D.

    1970-01-01

    Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.

  19. Quality evaluation of regional forage resources by means of near infrared reflectance spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruno Ronchi

    2010-01-01

    Full Text Available Quality parameters of grassland and pasture samples collected during a three-year period at two environmentally andgeographically different areas were analysed by Near Infrared Reflectance Spectroscopy (NIRS. Chemical analysis forcrude protein (CP, crude fibre (CF, neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADLand crude ash (ASH carried out on two-thirds of the samples were used in calibration processes. The remaining onethirdof the data was used to validate the best calibrations obtained. Samples selection is discussed. Different math pretreatments(derivative, gap, primary smoothing and secondary smoothing, light scattering correction methods and calibrationalgorithms were tested to achieve the better predictive performances. We obtained the best results using differentregression algorithms to correlate spectral information to chemical data. For CP (R2 = 0.94, SEP=1.3, NDF (R2 =0.95, SEP = 2.14 and ADF (R2 = 0.92, SEP=2.06 Multiple Linear Regression (MLR models fit chemical data better thanMean Partial Least Square (MPLS regression. A molecular basis explanation of wavelengths selected was carried out.MPLS models worked well for CF (R2 = 0.93, SEP=1.57, and ASH (R2 = 0.95, SEP=1.17 while poor calibrations wereobtained for ADL using both algorithms. To confirm the reliability of the models developed, uncertainties of predictionswere compared with findings on nutritional variations and animal performances.

  20. The pituitary gland under infrared light - in search of a representative spectrum for homogeneous regions.

    Science.gov (United States)

    Banas, A; Banas, K; Furgal-Borzych, A; Kwiatek, W M; Pawlicki, B; Breese, M B H

    2015-04-07

    The pituitary gland is a small but vital organ in the human body. It is located at the base of the brain and is often described as the master gland due to its multiple functions. The pituitary gland secretes and stores hormones, such as the thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), growth hormone (hGH), prolactin, gonadotropins, and luteinizing hormones, as well as the antidiuretic hormone (ADH). A proper diagnosis of pituitary disorders is of utmost importance as this organ participates in regulating a variety of body functions. Typical histopathological analysis provides much valuable information, but it gives no insight into the biochemical background of the changes that occur within the gland. One approach that could be used to evaluate the biochemistry of tissue sections obtained from pituitary disorders is Fourier Transform Infra-Red (FTIR) spectromicroscopy. In order to collect diagnostically valuable information large areas of tissue must be investigated. This work focuses on obtaining a unique and representative FTIR spectrum characteristic of one type of cell architecture within a sample. The idea presented is based on using hierarchical cluster analysis (HCA) for data evaluation to search for uniform patterns within samples from the perspective of FTIR spectra. The results obtained demonstrate that FTIR spectromicroscopy, combined with proper statistical evaluation, can be treated as a complementary method for histopathological analysis and ipso facto can increase the sensitivity and specificity for detecting various disorders not only for the pituitary gland, but also for other human tissues.

  1. Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region

    Science.gov (United States)

    Sharma, Anuj K.

    2018-05-01

    Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.

  2. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  3. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  4. Signatures of dark radiation in neutrino and dark matter detectors

    Science.gov (United States)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  5. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  6. VizieR Online Data Catalog: Infrared morphology of HII regions (Topchieva+, 2017)

    Science.gov (United States)

    Topchieva, A. P.; Wiebe, D. S.; Kirsanova, M. S.; Krushinskii, V. V.

    2018-03-01

    The 20-cm New GPS survey (http://third.ucllnl.org/gps), created using the MAGPIS database of radio images of regions with Galactic coordinates |bGal|MIPS (Rieke et al., 2004ApJS..154...25R) cameras of the Spitzer Telescope. The resulting list contains objects having the appearance of rings at 8um, inside of which IR emission at 24um and radio emission at 20cm is observed. (2 data files).

  7. NEAR-INFRARED IMAGING AND SPECTROSCOPIC SURVEY OF THE SOUTHERN REGION OF THE YOUNG OPEN CLUSTER NGC 2264

    Energy Technology Data Exchange (ETDEWEB)

    Marinas, Naibi; Lada, Elizabeth A. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Teixiera, Paula S. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Lada, Charles J. [Harvard-Smithsonian CFA, Cambridge, MA (United States)

    2013-08-01

    We have obtained JHK near-IR images and JH band low-resolution spectra of candidate members of the southern region of the young open cluster NGC 2264. We have determined spectral types from H-band spectra for 54 sources, 25 of which are classified for the first time. The stars in our sample cover a large range of spectral types (A8-M8). Using a cluster distance of 780 pc, we determined a median age of 1 Myr for this region of NGC 2264, with 90% of the stars being 5 Myr or younger. To improve the statistical significance of our sample, we included 66 additional cluster members within our field of view with optical spectral classification in the literature. We derived infrared excesses using stellar properties to model the photospheric emission for each source and the extinction to correct FLAMINGOS near-IR and Spitzer mid-IR photometry, and obtained a disk fraction of 51% {+-} 5% for the region. Binning the stars by stellar mass, we find a disk fraction of 38% {+-} 9% for the 0.1-0.3 solar mass group, 55% {+-} 6% for 0.3-1 solar masses, and 58% {+-} 10% for the higher than 1 solar mass group. The lower disk fraction for the lower mass stars is similar to the results found in non-cluster regions like Taurus and Chamaeleon, but differs from the older 3 Myr cluster IC 348 in which the disk fraction is lower for the higher mass stars. This mass-dependent disk fraction is accentuated in the sample with isochrone ages younger than 2 Myr. Here, we find that 45% {+-} 11% of the 0.1-0.3 solar mass stars have disks, 60% {+-} 7% of the 0.3-1 solar mass stars have disks, and all 1-3 solar mass stars have disks. Stellar masses might be an important factor in the ability of a system to form or retain a disk early on. However, regardless of the stellar mass, the large infrared excesses expected from optically thick disks disappear within the first 2 Myr for all stars in our study and small excesses from optically thin disks are found mostly in sources younger than 4 Myr.

  8. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  9. Dark matter. A light move

    International Nuclear Information System (INIS)

    Redondo, Javier; Doebrich, Babette

    2013-11-01

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  10. Covariant generalized holographic dark energy and accelerating universe

    Science.gov (United States)

    Nojiri, Shin'ichi; Odintsov, S. D.

    2017-08-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.

  11. Excitation of Molecular Hydrogen in the Orion Bar Photodissociation Region from a Deep Near-infrared IGRINS Spectrum

    Science.gov (United States)

    Kaplan, Kyle F.; Dinerstein, Harriet L.; Oh, Heeyoung; Mace, Gregory N.; Kim, Hwihyun; Sokal, Kimberly R.; Pavel, Michael D.; Lee, Sungho; Pak, Soojong; Park, Chan; Sok Oh, Jae; Jaffe, Daniel T.

    2017-04-01

    We present a deep near-infrared spectrum of the Orion Bar Photodissociation Region (PDR) taken with the Immersion Grating INfrared Spectrometer (IGRINS) on the 2.7 m telescope at the McDonald Observatory. IGRINS has high spectral resolution (R˜ {{45,000}}) and instantaneous broad wavelength coverage (1.45-2.45 μm), enabling us to detect 87 emission lines from rovibrationally excited molecular hydrogen (H2) that arise from transitions out of 69 upper rovibration levels of the electronic ground state. These levels cover a large range of rotational and vibrational quantum numbers and excitation energies, making them excellent probes of the excitation mechanisms of H2 and physical conditions within the PDR. The Orion Bar PDR is thought to consist of cooler high density clumps or filaments (T=50{--}250 K, {n}H={10}5{--}{10}7 cm-3) embedded in a warmer lower density medium (T=250{--}1000 K, {n}H={10}4{--}{10}5 cm-3). We fit a grid of constant temperature and density Cloudy models, which recreate the observed H2 level populations well, to constrain the temperature to a range of 600-650 K and the density to {n}H=2.5× {10}3{--}{10}4 cm-3. The best-fit model gives T = 625 K and {n}H=5× {10}3 cm-3. This well-constrained warm temperature is consistent with kinetic temperatures found by other studies for the Orion Bar’s lower density medium. However, the range of densities well fit by the model grid is marginally lower than those reported by other studies. We could be observing lower density gas than the surrounding medium, or perhaps a density-sensitive parameter in our models is not properly estimated.

  12. Magnitude of Solar Radiation Torque in the Transition Region from the Umbra to the Dark Shadow of the Earth

    International Nuclear Information System (INIS)

    Cabette, R E S; Kolesnikov, I; Zanardi, M C

    2015-01-01

    The analysis of solar radiation pressure force and its influence on the motion of artificial satellites has been developed by researchers. Accurate models to describe the influence of the Earth's shadow on the torque and force due to solar radiation pressure have been presented. In this work the solar radiation torque (SRT) and its influence on the attitude of an artificial satellite are taken into account by the introduction of the Earth's shadow function in the equations of motion. This function assumes a unitary value when the satellite is in the fully illuminated region of its orbit, and the value zero for the full shade region. The main objective of this study is to analyze the magnitude of SRT using the equations described by quaternions during a 35 day period and to compare the results with the satellite transition through the shadow region and the time interval in this region. The duration and transition through the shadow region were obtained using the software 'Shadow Conditions of Earth Satellites'. The formulation is applied to the Brazilian Data Collection Satellites SCD1 and SCD2, and the torque model is presented in terms of the satellite attitude quaternion, distance of the satellite to the Sun, orbital elements, right ascension and declination of the Sun. (paper)

  13. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  14. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  15. Quality control of the paracetamol drug by chemometrics and imaging spectroscopy in the near infrared region

    Science.gov (United States)

    Baptistao, Mariana; Rocha, Werickson Fortunato de Carvalho; Poppi, Ronei Jesus

    2011-09-01

    In this work, it was used imaging spectroscopy and chemometric tools for the development and analysis of paracetamol and excipients in pharmaceutical formulations. It was also built concentration maps to study the distribution of the drug in the tablets surface. Multivariate models based on PLS regression were developed for paracetamol and excipients concentrations prediction. For the construction of the models it was used 31 samples in the tablet form containing the active principle in a concentration range of 30.0-90.0% (w/w) and errors below to 5% were obtained for validation samples. Finally, the study of the distribution in the drug was performed through the distribution maps of concentration of active principle and excipients. The analysis of maps showed the complementarity between the active principle and excipients in the tablets. The region with a high concentration of a constituent must have, necessarily, absence or low concentration of the other one. Thus, an alternative method for the paracetamol drug quality monitoring is presented.

  16. Evaluation of low level laser and interferential current in the therapy of complex regional pain syndrome by infrared thermographic camera

    Directory of Open Access Journals (Sweden)

    Kocić Mirjana

    2010-01-01

    Full Text Available Background/Aim. Complex regional pain syndrome type I (CRPS I is characterized by continuous regional pain, disproportional according to duration and intensity and to the sort of trauma or other lesion it was caused by. The aim of the study was to evaluate and compare, by using thermovison, the effects of low level laser therapy and therapy with interferential current in treatment of CRPS I. Methods. The prospective randomized controlled clinical study included 45 patients with unilateral CRPS I, after a fracture of the distal end of the radius, of the tibia and/or the fibula, treated in the Clinical Centre in Nis from 2004 to 2007. The group A consisted of 20 patients treated by low level laser therapy and kinesy-therapy, while the patients in the group B (n = 25 were treated by interferential current and kinesy-therapy. The regions of interest were filmed by a thermovision camera on both sides, before and after the 20 therapeutic procedures had been applied. Afterwards, the quantitative analysis and the comparing of thermograms taken before and after the applied therapy were performed. Results. There was statistically significant decrease of the mean maximum temperature difference between the injured and the contralateral extremity after the therapy in comparison to the status before the therapy, with the patients of the group A (p < 0.001 as well as those of the group B (p < 0.001. The decrease was statistically significantly higher in the group A than in the group B (p < 0.05. Conclusions. By the use of the infrared thermovision we showed that in the treatment of CRPS I both physical medicine methods were effective, but the effectiveness of laser therapy was statistically significantly higher compared to that of the interferential current therapy.

  17. Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2010-01-01

    As soon as an interaction between holographic dark energy and dark matter is taken into account, the identification of an IR cutoff with the Hubble radius H -1 , in a flat universe, can simultaneously drive accelerated expansion and solve the coincidence problem. Based on this, we demonstrate that in a non-flat universe the natural choice for the IR cutoff could be the apparent horizon radius, r-tilde A =1/√(H 2 +k/a 2 ). We show that any interaction of dark matter with holographic dark energy, whose infrared cutoff is set by the apparent horizon radius, implies an accelerated expansion and a constant ratio of the energy densities of both components thus solving the coincidence problem. We also verify that for a universe filled with dark energy and dark matter, the Friedmann equation can be written in the form of the modified first law of thermodynamics, dE = T h dS h + WdV, at the apparent horizon. In addition, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon. These results hold regardless of the specific form of dark energy and interaction term. Our study might reveal that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

  18. Stable dark energy stars

    International Nuclear Information System (INIS)

    Lobo, Francisco S N

    2006-01-01

    The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole

  19. Levitating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  20. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  1. Dark Matter

    Indian Academy of Sciences (India)

    As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...

  2. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  3. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Chen, Tao; Chang, Qingrui; Clevers, J.G.P.W.; Kooistra, L.

    2015-01-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. - Highlights: • Soil reflectance spectroscopy provides a promising tool for detecting soil contaminants. • Orthogonal signal correction efficiently extracted information from noisy spectra. • Back propagation neural network achieved a more accurate estimation for soil Cd. • Soil Cd pollution hotspots could be identified by interpolating the predicted Cd. - Combining spectral analysis and geostatistics can provide a rapid method for identifying the pollution hotspot of soil heavy metal at regional scale.

  4. Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions

    Science.gov (United States)

    Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen

    2018-03-01

    Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.

  5. Discovery of the Linear Region of Near Infrared Diffuse Reflectance Spectra Using the Kubelka-Munk Theory

    Directory of Open Access Journals (Sweden)

    Shengyun Dai

    2018-05-01

    Full Text Available Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS models of harpagoside. Data showed that the particle size distribution of 125–150 μm for Radix Scrophulariae exhibited the best prediction ability with Rpre2 = 0.9513, RMSEP = 0.1029 mg·g−1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90–180 μm exhibited the best prediction ability with Rpre2 = 0.8919, RMSEP = 0.1632 mg·g−1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent and scatter coefficient s (particle size-dependent. The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was >4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90–180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  6. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    Directory of Open Access Journals (Sweden)

    K. Korzeniowska

    2017-10-01

    Full Text Available Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR ADS80-SH92 aerial imagery using an object-based image analysis (OBIA approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI, the normalised difference water index (NDWI, and its standard deviation (SDNDWI to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  7. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  8. Correlation between dark matter and dark radiation in string compactifications

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N eff with lower bounds on the reheating temperature as a function of the dark matter mass m DM from Fermi data, we obtain strong constraints on the (N eff , m DM )-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s

  9. Make dark matter charged again

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  10. Natural Implementation of Neutralino Dark Matter

    CERN Document Server

    King, S F

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simu...

  11. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  12. Spectral Characterization of RDX, ETN, PETN, TATP, HMTD, HMX, and C-4 in the Mid-Infrared Region

    Science.gov (United States)

    2014-04-01

    Germany, 1996. 12. Bertie, J.E. and Keefe , C.D. “Infrared intensities of liquids XXIV: Optical constants of liquid benzene-h6 at 25°C extended to...Bertie, J.E.; Apelblat, Y.; Keefe , C.D. “Infrared intensities of liquids XXV: Optical constants of liquid toluene at 25°C between 4800 and 400 cm−1

  13. Composite Dark Sectors

    International Nuclear Information System (INIS)

    Carmona, Adrian

    2015-06-01

    We introduce a new paradigm in Composite Dark Sectors, where the full Standard Model (including the Higgs boson) is extended with a strongly-interacting composite sector with global symmetry group G spontaneously broken to H is contained in G. We show that, under well-motivated conditions, the lightest neutral pseudo Nambu-Goldstone bosons are natural dark matter candidates for they are protected by a parity symmetry not even broken in the electroweak phase. These models are characterized by only two free parameters, namely the typical coupling g D and the scale f D of the composite sector, and are therefore very predictive. We consider in detail two minimal scenarios, SU(3)/[SU(2) x U(1)] and [SU(2) 2 x U(1)]/[SU(2) x U(1)], which provide a dynamical realization of the Inert Doublet and Triplet models, respectively. We show that the radiatively-induced potential can be computed in a five-dimensional description with modified boundary conditions with respect to Composite Higgs models. Finally, the dark matter candidates are shown to be compatible, in a large region of the parameter space, with current bounds from dark matter searches as well as electroweak and collider constraints on new resonances.

  14. Casting light on dark matter

    International Nuclear Information System (INIS)

    Ellis, John

    2012-01-01

    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.

  15. AN IN-DEPTH VIEW OF THE MID-INFRARED PROPERTIES OF POINT SOURCES AND THE DIFFUSE ISM IN THE SMC GIANT H II REGION, N66

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Rémy; Lebouteiller, Vianney; Galliano, Frédéric; Peeters, Els; Bernard-Salas, Jeronimo; Brandl, Bernhard R.

    2013-01-01

    The focus of this work is to study mid-infrared point sources and the diffuse interstellar medium (ISM) in the low-metallicity (∼0.2 Z ☉ ) giant H II region N66 in order to determine properties that may shed light on star formation in these conditions. Using the Spitzer Space Telescope's Infrared Spectrograph, we study polycyclic aromatic hydrocarbon (PAH), dust continuum, silicate, and ionic line emission from 14 targeted infrared point sources as well as spectra of the diffuse ISM that is representative of both the photodissociation regions (PDRs) and the H II regions. Among the point source spectra, we spectroscopically confirm that the brightest mid-infrared point source is a massive embedded young stellar object, we detect silicates in emission associated with two young stellar clusters, and we see spectral features of a known B[e] star that are commonly associated with Herbig Be stars. In the diffuse ISM, we provide additional evidence that the very small grain population is being photodestroyed in the hard radiation field. The 11.3 μm PAH complex emission exhibits an unexplained centroid shift in both the point source and ISM spectra that should be investigated at higher signal-to-noise and resolution. Unlike studies of other regions, the 6.2 μm and 7.7 μm band fluxes are decoupled; the data points cover a large range of I 7.7 /I 11.3 PAH ratio values within a narrow band of I 6.2 /I 11.3 ratio values. Furthermore, there is a spread in PAH ionization, being more neutral in the dense PDR where the radiation field is relatively soft, but ionized in the diffuse ISM/PDR. By contrast, the PAH size distribution appears to be independent of local ionization state. Important to unresolved studies of extragalactic low-metallicity star-forming regions, we find that emission from the infrared-bright point sources accounts for only 20%-35% of the PAH emission from the entire region. These results make a comparative data set to other star-forming regions with

  16. An electron storage ring as primary standard for the realization of radiation optical units from the infrared to the soft X-ray region

    International Nuclear Information System (INIS)

    Riehle, F.; Wende, B.

    1987-01-01

    The electron storage ring BESSY optimized for radiometry is shown to be a primary standard of spectral photon flux with a relative uncertainty increasing from 0.3% in the infrared (photon energy ≅ 1 eV) to 2% in the soft X-ray region (photon energy ≅ 5 keV). The small uncertainties at high photon energies were achieved by measuring the spatial and angular distributions of the electrons around the mean electron orbit and by calculating the corresponding distributions of the emitted synchrotron radiation. Results of various intercomparisons with other standards in the near infrared, visible, and soft X-ray region support the low uncertainties of this new primary standard. (orig.)

  17. Dark Tourism

    OpenAIRE

    Bali-Hudáková, Lenka

    2008-01-01

    This thesis is focused on the variability of the demand and the development of new trends in the fields of the tourism industry. Special attention is devoted to a new arising trend of the Dark Tourism. This trend has appeared in the end of the 20th century and it has gained the attraction of media, tourists, tourism specialists and other stakeholders. First part of the thesis is concerned with the variety of the tourism industry and the ethic question of the tourism development. The other par...

  18. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  19. Radio and infrared study of southern H II regions G346.056-0.021 and G346.077-0.056

    Science.gov (United States)

    Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.

    2018-04-01

    Aim. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust, and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods: The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density, and dust emissivity maps were generated using modified blackbody fits in the far-infrared wavelength range 160-500 μm. Various near- and mid-infrared color and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results: The radio maps reveal the presence of diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to zero age main sequence spectral types in the range O7.5V-O7V and O8.5V-O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimeter image shows the presence of two additional clumps, one being associated with G346.056-0.021. The masses of the clumps are estimated to range between 1400 and 15250 M⊙. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model. GMRT data (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via

  20. Phenomenology of ELDER dark matter

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  1. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  2. DUST IN THE POLAR REGION AS A MAJOR CONTRIBUTOR TO THE INFRARED EMISSION OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, S. F.; Antonucci, R. [Department of Physics, University of California in Santa Barbara, Broida Hall, Santa Barbara, CA 93109 (United States); Kishimoto, M.; Tristram, K. R. W.; Asmus, D.; Weigelt, G. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Prieto, M. A. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Gandhi, P. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Burtscher, L. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrae, D-85748 Garching (Germany); Duschl, W. J., E-mail: shoenig@physics.ucsb.edu [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts-Universitaet zu Kiel, Leibnizstr. 15, D-24098, Kiel (Germany)

    2013-07-10

    Dust around active galactic nuclei (AGNs) is distributed over a wide range of spatial scales and can be observed in the infrared (IR). It is generally assumed that the distribution on parsec scales forms a geometrically and optically thick entity in the equatorial plane around the accretion disk and broad-line region-dubbed {sup d}ust torus{sup -}that emits the bulk of the subarcsecond-scale IR emission and gives rise to orientation-dependent obscuration. However, recent IR interferometry studies with unprecedented position angle (P.A.) and baseline coverage on these small scales in two obscured (type 2) AGNs have revealed that the majority of the mid-IR emission in these objects is elongated in the polar direction. These observations are difficult to reconcile with the standard interpretation that most of the parsec-scale mid-IR emission in AGNs originate from the torus and challenges the justification of using simple torus models to model the broadband IR emission. Here, we report detailed interferometry observations of the unobscured (type 1) AGN in NGC 3783 that allow us to constrain the size, elongation, and direction of the mid-IR emission with high accuracy. The mid-IR emission is characterized by a strong elongation toward position angle P.A. -52 Degree-Sign , closely aligned with the polar axis (P.A. -45 Degree-Sign ). We determine half-light radii along the major and minor axes at 12.5 {mu}m of (20.0 {+-} 3.0) mas Multiplication-Sign (6.7 {+-} 1.0) mas or (4.23 {+-} 0.63) pc Multiplication-Sign (1.42 {+-} 0.21) pc, which corresponds to intrinsically scaled sizes of (69.4 {+-} 10.8) r{sub in} Multiplication-Sign (23.3 {+-} 3.5) r{sub in} for the inner dust radius of r{sub in} = 0.061 pc as inferred from near-IR reverberation mapping. This implies an axis ratio of 3:1, with about 60%-90% of the 8-13 {mu}m emission associated with the polar-elongated component. It is quite likely that the hot-dust emission as recently resolved by near-IR interferometry is

  3. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy

    NARCIS (Netherlands)

    Chen, T.; Changa, Q.; Clevers, J.G.P.W.; Kooistra, L.

    2015-01-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool.

  4. Fourier transform infrared spectroscopy of D212CO in the 2500-4500 cm-1 region and the first rovibrational analysis of its v2 = 2 state

    Science.gov (United States)

    A'dawiah, Rabia'tul; Tan, T. L.; Ng, L. L.

    2018-03-01

    A low-resolution (0.5 cm-1) Fourier transform infrared (FTIR) spectrum of formaldehyde-d2 (D212CO) in the 2500-4500 cm-1 region was recorded to study the combination bands in this region. The bands ν2 +ν4,ν2 +ν6 , ν2 +ν3 , ν1 +ν2 , ν2 +ν5 , 3ν3 , 2ν2 and 2ν5 were identified and their band centers (with an uncertainty of ± 0.1 cm-1) and band types were determined. Furthermore, the high-resolution FTIR spectrum of the 2ν2 overtone band (3315-3440 cm-1) of D212CO was recorded at an unapodized resolution of 0.0063 cm-1 and its infrared lines were analyzed. A total of 970 rovibrational transitions have been assigned and fitted up to J‧ = 35 and Ka‧ = 14 using the Watson's A-reduced Hamiltonian in the Ir representation. Upper state (v2 = 2) rovibrational constants inclusive of three rotational and five quartic centrifugal distortion constants were accurately determined for the first time. The band center of the 2ν2 band was determined as 3385.200666 ± 0.000035 cm-1. The rms deviation of the rovibrational fit was 0.00093 cm-1. From the fitting of 451 ground state combination differences (GSCDs) of D212CO which were derived from the infrared transitions of the 2ν2 band of this work, together with 360 microwave frequencies from a previous study, new and accurate ground state constants of D212CO up to three octic terms were obtained. The combination and overtone bands and the newly assigned high-resolution infrared lines of the 2ν2 band in the 2500-4500 cm-1 region can be used to detect D212CO in this infrared region. In addition, the results derived from this study give information on the rovibrational molecular structure of D212CO.

  5. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    transmission cell controlled within 0.02 degreesC. Pathlengths of 50 mum and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between......Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...

  6. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  7. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  8. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  9. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks

    OpenAIRE

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J; Damiano, Diane L

    2014-01-01

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, ...

  10. Dark material in the polar layered deposits and dunes on Mars

    Science.gov (United States)

    Herkenhoff, Ken E.; Vasavada, Ashwin R.

    1999-07-01

    Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245-280Jm-2s-1/2K-1(5.9-6.7×10-3calcm-2s-1/2K-1) for the Proctor dune field and 25-150Jm-2s-1/2K-1(0.6-3.6×10-3calcm-2s-1/2K-1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near-infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent with the dark material being composed of basaltic ash or filamentary sublimate residue (FSR) particles derived from erosion of the layered deposits. Dark dust may be preferentially concentrated at the surface of the layered deposits by the formation of FSR particles upon sublimation of water ice. Further weathering and erosion of these areas of exposed layered deposits may form the dark, saltating material that is found in both polar regions. Dark FSR particles may saltate for great distances before eventually breaking down into dust grains, re-mixing with the global dust reservoir, and being recycled into the polar layered deposits via atmospheric suspension.

  11. Natural implementation of neutralino dark matter

    International Nuclear Information System (INIS)

    King, Steve F.; Roberts, Jonathan P.

    2006-01-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to 'supernatural dark matter' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed 'well tempered neutralino' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of 'supernatural dark matter' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains

  12. Natural implementation of neutralino dark matter

    Science.gov (United States)

    King, Steve F.; Roberts, Jonathan P.

    2006-09-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of ``supernatural dark matter'' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains.

  13. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  14. Ricci-Gauss-Bonnet holographic dark energy

    Science.gov (United States)

    Saridakis, Emmanuel N.

    2018-03-01

    We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.

  15. Polarized BRDF measurement of steel E235B in the near-infrared region: Based on a self-designed instrument with absolute measuring method

    Science.gov (United States)

    Liu, Yanlei; Yu, Kun; Liu, Zilong; Zhao, Yuejin; Liu, Yufang

    2018-06-01

    The spectral bidirectional reflectance distribution (BRDF) offers a complete description of the optical properties of the opaque material. Numerous studies on BRDF have been conducted for its important role in scientific research and industrial production. However, most of these studies focus on the visible region and unpolarized BRDF, and the spectral polarized BRDF in the near-infrared region is rarely reported. In this letter, we propose an absolute method to measure the spectral BRDF in the near-infrared region, and the detailed derivation is presented. A self-designed instrument is set up for the absolute measurement of BRDF. The reliability of this method is verified by comparing the experimental data of the three metal (aluminum, silver and gold) mirrors with the reference data. The in-plane polarized BRDF of steel E235B are measured, and the influence of incident angle and roughness on the BRDF are discussed. The degree of linear polarization (DOLP) are determined based on the polarized BRDF. The results indicate that both the roughness and incident angle have distinct influence on the BRDF and DOLP.

  16. Continuous-wave near-photon counting spectral imaging detector in the mid-infrared by upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    is usually measured in number of electrons. The second noise source is usually referred to as dark noise, which is the background signal generated over time. Dark noise is usually measured in electrons per pixel per second. For silicon cameras certain models like EM-CCD have close to zero read noise, whereas...... high-end IR cameras have read noise of hundreds of electrons. The dark noise for infrared cameras based on semiconductor materials is also substantially higher than for silicon cameras, typical values being millions of electrons per pixel per second for cryogenically cooled cameras whereas peltier...... cooled CCD cameras have dark noise measured in fractions of electrons per pixel per second. An ideal solution thus suggest the combination of an efficient low noise image wavelength conversion system combined with low noise silicon based cameras for low noise imaging in the IR region. We discuss image...

  17. Dark Tourism in Budapest

    OpenAIRE

    Shen, Cen; Li, Jin

    2011-01-01

    A new trend is developing in the tourism market nowadays – dark tourism. The main purpose of the study was to explore the marketing strategies of dark tourism sites in Budapest based on the theoretical overview of dark tourism and data gathering of quantitative research. The study started with a theoretical overview of dark tourism in Budapest. Then, the authors focused on the case study of House of Terror, one of the most important dark tourism sites in Budapest. Last, the research has ...

  18. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    2018-05-03

    We consider the generic possibility that the Universe’s energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  19. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with non-gravitational interactions with Standard Model (SM) particles. Such dark radiation may consist of SM singlets or a non-thermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  20. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  1. Infrared, x-ray, and xuv astrophysics. Semiannual status report, 1 Apr.--30 Sep. 1975

    International Nuclear Information System (INIS)

    1975-01-01

    An observational program convering wavelengths from the near infrared to 1 millimeter is reviewed. The program of millimeter observations consisted largely of analyzing previous observations, since the summer humidity was too high for new observations. Maps of millimeter emission from W3, Sgr B2, W49, and M42 were made. Five extragalactic sources were detected and are discussed. Energy distributions of several of the discrete sources at the Galactic Center were studied. A 5-year visual/infrared program on Markarian galaxies is discussed which showed the presence of both thermal and nonthermal infrared radiation sources, and established correlations between the infrared sources and the emission line regions. The Nova Cygnus 1975, caught during its rise as well as subsequent dimming, is also discussed. Several other continuing programs are described, including studies of dark clouds and CO maser sources

  2. Covariant generalized holographic dark energy and accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya (Japan); Odintsov, S.D. [ICREA, Barcelona (Spain); Institute of Space Sciences (IEEC-CSIC), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2017-08-15

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  3. Covariant generalized holographic dark energy and accelerating universe

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, S.D.

    2017-01-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  4. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  5. A multilevel multispectral data set analysis in the visible and infrared wavelength regions. [for land use remote sensing

    Science.gov (United States)

    Biehl, L. L.; Silva, L. F.

    1975-01-01

    Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.

  6. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  7. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  8. 10th Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe

    CERN Document Server

    UCLA Dark Matter 2012

    2012-01-01

    These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field.  Topics covered at the symposium:  •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search  

  9. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  10. Optimal extraction parameters of Theabrownin from Sichuan Dark Tea

    African Journals Online (AJOL)

    Background: Sichuan Dark Tea is a popular beverage with hypolipidemic and lifting greasy properties in the minority neighborhoods of Sichuan and Tibet regions. The theabrownin, an important pigment of dark tea, has been proven for the role of the hypolipidemic property in Sichuan Dark Tea. The objective of the study ...

  11. Scalar Dark Matter From Theory Space

    Energy Technology Data Exchange (ETDEWEB)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  12. Scalar dark matter from theory space

    International Nuclear Information System (INIS)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2004-01-01

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass O(100 GeV), the second region has a candidate with a mass greater than O(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible weakly interacting massive particle

  13. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  14. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  15. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  16. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  17. Dark matter from decaying topological defects

    International Nuclear Information System (INIS)

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M.

    2014-01-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits

  18. Use of Multichannel Near Infrared Spectroscopy to Study Relationships Between Brain Regions and Neurocognitive Tasks of Selective/Divided Attention and 2-Back Working Memory.

    Science.gov (United States)

    Tomita, Nozomi; Imai, Shoji; Kanayama, Yusuke; Kawashima, Issaku; Kumano, Hiroaki

    2017-06-01

    While dichotic listening (DL) was originally intended to measure bottom-up selective attention, it has also become a tool for measuring top-down selective attention. This study investigated the brain regions related to top-down selective and divided attention DL tasks and a 2-back task using alphanumeric and Japanese numeric sounds. Thirty-six healthy participants underwent near-infrared spectroscopy scanning while performing a top-down selective attentional DL task, a top-down divided attentional DL task, and a 2-back task. Pearson's correlations were calculated to show relationships between oxy-Hb concentration in each brain region and the score of each cognitive task. Different brain regions were activated during the DL and 2-back tasks. Brain regions activated in the top-down selective attention DL task were the left inferior prefrontal gyrus and left pars opercularis. The left temporopolar area was activated in the top-down divided attention DL task, and the left frontopolar area and left dorsolateral prefrontal cortex were activated in the 2-back task. As further evidence for the finding that each task measured different cognitive and brain area functions, neither the percentages of correct answers for the three tasks nor the response times for the selective attentional task and the divided attentional task were correlated to one another. Thus, the DL and 2-back tasks used in this study can assess multiple areas of cognitive, brain-related dysfunction to explore their relationship to different psychiatric and neurodevelopmental disorders.

  19. On the capture of dark matter by neutron stars

    International Nuclear Information System (INIS)

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall

    2014-01-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10 3 GeV/cm 3 and dark matter mass m χ ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m χ ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ χn ∼ 10 −52 cm 2 to σ χn ∼ 10 −57 cm 2 , the dark matter self-interaction cross section limit is σ χχ ∼< 10 −33 cm 2 , which is about ten orders of magnitude stronger than the Bullet Cluster limit

  20. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  1. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  2. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.

    Science.gov (United States)

    Chen, Tao; Chang, Qingrui; Clevers, J G P W; Kooistra, L

    2015-11-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks.

    Science.gov (United States)

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J; Damiano, Diane L

    2014-12-05

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions.

  4. The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum

    Science.gov (United States)

    Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita

    2011-06-01

    We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.

  5. Very heavy dark Skyrmions

    International Nuclear Information System (INIS)

    Dick, Rainer

    2017-01-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  6. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  7. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  8. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  9. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  10. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  11. Very heavy dark Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Rainer [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada)

    2017-12-15

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  12. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  13. Dark Sky Education | CTIO

    Science.gov (United States)

    Calendar Activities NOAO-S EPO Programs CADIAS Astro Chile Hugo E. Schwarz Telescope Dark Sky Education ‹› You are here CTIO Home » Outreach » NOAO-S EPO Programs » Dark Sky Education Dark Sky Education Dark Sky Education (in progress) Is an EPO Program. It runs Globe at Night, an annual program to

  14. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  15. Natural SUSY dark matter model

    International Nuclear Information System (INIS)

    Mohanty, Subhendra; Rao, Soumya; Roy, D.P.

    2013-01-01

    The most natural region of cosmologically compatible dark matter relic density in terms of low fine-tuning in a minimal supersymmetric standard model with nonuniversal gaugino masses is the so called bulk annihilation region. We study this region in a simple and predictive SUSY- GUT model of nonuniversal gaugino masses, where the latter transform as a combination of singlet plus a nonsinglet representation of the GUTgroup SU(5). The model prediction for the direct dark matter detection rates is well below the present CDMS and XENON100 limits, but within the reach of a future 1Ton XENON experiment. The most interesting and robust model prediction is an indirect detection signal of hard positron events, which resembles closely the shape of the observed positron spectrum from the PAMELA experiment. (author)

  16. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  17. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  18. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  19. A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri

    2015-10-01

    Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.

  20. Diode Laser Detection of Greenhouse Gases in the Near-Infrared Region by Wavelength Modulation Spectroscopy: Pressure Dependence of the Detection Sensitivity

    Directory of Open Access Journals (Sweden)

    Takashi Asakawa

    2010-05-01

    Full Text Available We have investigated the pressure dependence of the detection sensitivity of CO2, N2O and CH4 using wavelength modulation spectroscopy (WMS with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO2, N2O and CH4, by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO2, N2O and CH4, the limits of detection in the present system were determined.

  1. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  2. ETA CARINAE ACROSS THE 2003.5 MINIMUM: ANALYSIS IN THE VISIBLE AND NEAR-INFRARED SPECTRAL REGION

    International Nuclear Information System (INIS)

    Nielsen, K. E.; Kober, G. Vieira; Weis, K.; Bomans, D. J.; Gull, T. R.; Stahl, O.

    2009-01-01

    We present an analysis of the visible through near-infrared spectrum of Eta Carinae (η Car) and its ejecta obtained during the 'η Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)'. This is a part of larger effort to present a complete η Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid- and near-UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow-emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground-based seeing and contributions of nebular-scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.

  3. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  4. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  5. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    Doetinchem, H Gast, T Kirn and S Schael Axion searches with helioscopes and astrophysical signatures for axion(-like) particles K Zioutas, M Tsagri, Y Semertzidis, T Papaevangelou, T Dafni and V Anastassopoulos The indirect search for dark matter with IceCube Francis Halzen and Dan Hooper DIRECT DARK MATTER SEARCHES:EXPERIMENTS Gaseous dark matter detectors G Sciolla and C J Martoff Search for dark matter with CRESST Rafael F Lang and Wolfgang Seidel DIRECT AND INDIRECT PARTICLE DARK MATTER SEARCHES:THEORY Dark matter annihilation around intermediate mass black holes: an update Gianfranco Bertone, Mattia Fornasa, Marco Taoso and Andrew R Zentner Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses John Ellis, Keith A Olive and Pearl Sandick Dark stars: a new study of the first stars in the Universe Katherine Freese, Peter Bodenheimer, Paolo Gondolo and Douglas Spolyar Determining the mass of dark matter particles with direct detection experiments Chung-Lin Shan The detection of subsolar mass dark matter halos Savvas M Koushiappas Neutrino coherent scattering rates at direct dark matter detectors Louis E Strigari Gamma rays from dark matter annihilation in the central region of the Galaxy Pasquale Dario Serpico and Dan Hooper DARK MATTER MODELS The dark matter interpretation of the 511 keV line Céline Boehm Axions as dark matter particles Leanne D Duffy and Karl van Bibber Sterile neutrinos Alexander Kusenko Dark matter candidates Lars Bergström Minimal dark matter: model and results Marco Cirelli and Alessandro Strumia Shedding light on the dark sector with direct WIMP production Partha Konar, Kyoungchul Kong, Konstantin T Matchev and Maxim Perelstein Axinos as dark matter particles Laura Covi and Jihn E Kim

  6. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  7. Dark Matter Searches

    International Nuclear Information System (INIS)

    Moriyama, Shigetaka

    2008-01-01

    Recent cosmological as well as historical observations of rotational curves of galaxies strongly suggest the existence of dark matter. It is also widely believed that dark matter consists of unknown elementary particles. However, astrophysical observations based on gravitational effects alone do not provide sufficient information on the properties of dark matter. In this study, the status of dark matter searches is investigated by observing high-energy neutrinos from the sun and the earth and by observing nuclear recoils in laboratory targets. The successful detection of dark matter by these methods facilitates systematic studies of its properties. Finally, the XMASS experiment, which is due to start at the Kamioka Observatory, is introduced

  8. Infrared technique for decoding of invisible laser markings

    Science.gov (United States)

    Haferkamp, Heinz; Jaeschke, Peter; Stein, Johannes; Goede, Martin

    2002-03-01

    Counterfeiting and product piracy continues to be an important issue not only for the Western industry, but also for the society in general. Due to the drastic increase in product imitation and the request for plagiarism protection as well as for reducing thefts there is a high interest in new protection methods providing new security features. The method presented here consists of security markings which are included below paint layers. These markings are invisible for the human eye due to the non-transparency of the upper layers in the visible spectral range. However, the markings can be detected by an infrared technique taking advantage on the partial transparency of the upper paint layers in the IR-region. Metal sheets are marked using laser radiation. The beam of a Nd:YAG-laser provides a modification of the surface structure, resulting in dark markings due to the annealing effect. After coating of the laser-marked material, the markings are invisible for the bare eye. In order to read out the invisible information below the coating, an infrared reflection technique is used. The samples are illuminated with halogen lamps or infrared radiators. Many coating materials (i. e. paints) show a certain transparency in the mid-infrared region, especially between 3 - 5 micrometers . The reflected radiation is detected using an IR-camera with a sensitivity range from 3.4 - 5 micrometers . Due to the different reflection properties between the markings and their surrounding, the information can be detected.

  9. Detection of diabetic foot hyperthermia by using a regionalization method, based on the plantar angiosomes, on infrared images.

    Science.gov (United States)

    Liu, Y; Polo, A; Zequera, M; Harba, R; Canals, R; Vilcahuaman, L; Bello, Y

    2016-08-01

    Prevention of serious diabetic foot complication like ulceration or infection is an important issue. As the development of thermal graphic technologies, foot temperature-guided avoidance therapy has been recommended. Doctors from Hospital National Dos de Mayo are studying on the risk of the diabetic foot passing from Grade 0 to Grade 1 in the Wagner Scale. This risk to develop ulcers is related to the temperature difference of corresponding area between left and right foot. Generally speaking, the diabetic foot with greater mean temperature difference has more potential to develop ulcers; especially, area whose temperature difference of more than 2.2°C is where doctors and patients must pay much attention to potential problems like ulceration or infection. A system in Visual Studio was developed taking the thermal images as input and producing image with absolute mean temperature difference of 7different regions or four plantar angiosomes as output. The program process contained essential medical image processing issues such as segmentation, location and regionalization, in which adapted algorithms were implemented. From a database of 85 patients provided only 60 were used due to the quality of acquisition.

  10. A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography

    Science.gov (United States)

    Li, Yan; Zhang, Ji; Li, Tao; Liu, Honggao

    2016-01-01

    Nowadays, Wolfiporia extensa as a popular raw material in food and medicine industry has received increasing interests. Due to supply shortage, this species of edible and medicinal mushroom has been cultivated in some provinces of China. In the present study, cultivated W. extensa collected from six regions in Yunnan Province of China were analyzed by an integrated method based on Fourier transform infrared (FT-IR) spectroscopy and ultra-fast liquid chromatography (UFLC) coupled with multivariate analysis including partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) in order to investigate the differences and similarities in different origins and parts. In the tested mushroom samples, characteristic FT-IR spectra were obtained for acquiring comprehensive fuzz chemical information and pachymic acid was determinated as a biomarker in the meantime. From the results, the comparison of samples was achieved successfully according to their geographical regions and different parts. All the samples displayed regional dependence and the inner parts showed better quality consistency. In addition, the chemical constituents of cultivated W. extensa could be also affected by the cultivation methods. Meanwhile, there was an interesting finding that the soil properties of cultivation regions may have a relationship with the chemical constituents of the epidermis of soil-cultured W. extensa, rather than the inner parts. Collectively, it demonstrated that the present study could provide comprehensive chemical evidence for the critical complement of quality evaluation on the cultivated W. extensa. Moreover, it may be available for the further researches of complicated mushrooms in practice. PMID:28036354

  11. A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Nowadays, Wolfiporia extensa as a popular raw material in food and medicine industry has received increasing interests. Due to supply shortage, this species of edible and medicinal mushroom has been cultivated in some provinces of China. In the present study, cultivated W. extensa collected from six regions in Yunnan Province of China were analyzed by an integrated method based on Fourier transform infrared (FT-IR spectroscopy and ultra-fast liquid chromatography (UFLC coupled with multivariate analysis including partial least squares discriminant analysis (PLS-DA and hierarchical cluster analysis (HCA in order to investigate the differences and similarities in different origins and parts. In the tested mushroom samples, characteristic FT-IR spectra were obtained for acquiring comprehensive fuzz chemical information and pachymic acid was determinated as a biomarker in the meantime. From the results, the comparison of samples was achieved successfully according to their geographical regions and different parts. All the samples displayed regional dependence and the inner parts showed better quality consistency. In addition, the chemical constituents of cultivated W. extensa could be also affected by the cultivation methods. Meanwhile, there was an interesting finding that the soil properties of cultivation regions may have a relationship with the chemical constituents of the epidermis of soil-cultured W. extensa, rather than the inner parts. Collectively, it demonstrated that the present study could provide comprehensive chemical evidence for the critical complement of quality evaluation on the cultivated W. extensa. Moreover, it may be available for the further researches of complicated mushrooms in practice.

  12. Comparing holographic dark energy models with statefinder

    International Nuclear Information System (INIS)

    Cui, Jing-Lei; Zhang, Jing-Fei

    2014-01-01

    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)

  13. PROPER MOTIONS OF YOUNG STELLAR OUTFLOWS IN THE MID-INFRARED WITH SPITZER (IRAC). I. THE NGC 1333 REGION

    International Nuclear Information System (INIS)

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Arce, H. G.

    2013-01-01

    We use two 4.5 μm Spitzer (IRAC) maps of the NGC 1333 region taken over a ∼7 yr interval to determine proper motions of its associated outflows. This is a first successful attempt at obtaining proper motions of stellars' outflow from Spitzer observations. For the outflow formed by the Herbig-Haro objects HH7, 8, and 10, we find proper motions of ∼9-13 km s –1 , which are consistent with previously determined optical proper motions of these objects. We determine proper motions for a total of eight outflows, ranging from ∼10 to 100 km s –1 . The derived proper motions show that out of these eight outflows, three have tangential velocities ≤20 km s –1 . This result shows that a large fraction of the observed outflows have low intrinsic velocities and that the low proper motions are not merely a projection effect.

  14. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Bouy, Hervé [Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, F-33615 Pessac (France); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 91023 (United States); Calvet, Nuria [Astronomy Department, University of Michigan, Ann Arbor, MI 48109 (United States); Naylor, David A.; Van der Wiel, Matthijs H. D. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Lethbridge (Canada); Riviere-Marichalar, Pablo, E-mail: aribas@bu.edu [Instituto de Ciencia de Materiales de Madrid (CSIC). Calle Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain)

    2017-11-01

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β . We find the fluxes at 70 μ m to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.

  15. Analysis of dust and marine aerosol optical depth spectral-curvature information in the UV to SWIR (Short Wave Infrared) wavelength regions.

    Science.gov (United States)

    O'Neill, N. T.; Smirnov, A.; Eck, T. F.; Sakerin, S.; Kabanov, D.

    2005-12-01

    Traditional sunphotometry in the UV, visible and very NIR (Near Infrared) spectral regions is weighted, in terms of spectral information content, towards sub-micron (fine mode) particles. Sunphotometry in the NIR and SWIR increases the diversity and information content of spectral aerosol optical depth (AOD) measurements for supermicron (coarse mode) particles. Two data sets representing dust aerosols from the UAE (United Arab Emirates) region and marine aerosols from the northern, tropical and southern Atlantic Ocean were analyzed in terms of their spectral curvature diversity and information content. The former data set was acquired using NIR-enhanced CIMEL sunphotometers (340, 340, 380, 440, 500, 670, 870, 1020, 1640 nm) as part of the August to October, 2004 UAE2 field campaign while the latter data set was acquired using an automated Russian UV to SWIR SP-5 sunphotometer (339, 423, 438, 484, 552, 633, 677, 777, 869, 1241, 1560, 2148, 4000 nm) as part of a October/December 2004 cruise campaign in the northern, tropical and south Atlantic Ocean. A Microtops hand-held sunphotometer was also employed to acquire VIS to NIR AOD spectra during the latter field campaign. Results will be presented in terms of robust micro-physical and spectral curvature parameters which characterize super-micron aerosols and, in a more general sense, in terms of what universal/fundamental optical inferences can be drawn from the two disperse data sets.

  16. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  17. String theory and the dark glueball problem

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, James; Nelson, Brent D. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Ruehle, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-09-15

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and ΔN{sub eff} bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  18. String theory and the dark glueball problem

    International Nuclear Information System (INIS)

    Halverson, James; Nelson, Brent D.

    2016-09-01

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and ΔN_e_f_f bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  19. Analysis of pilgrim dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Jawad, Abdul [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2013-04-15

    The proposal of pilgrim dark energy is based on the idea that phantom dark energy possesses enough resistive force to preclude black hole formation. We work on this proposal by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble as well as event horizon and conformal age of the universe. We present a graphical analysis and focus our study on the pilgrim dark energy as well as interacting parameters. It is found that these parameters play an effective role on the equation of state parameter for exploring the phantom region of the universe. We also make the analysis of {omega}-{omega}' and point out freezing region in the {omega}-{omega}' plane. Finally, it turns out that the {Lambda}CDM is achieved in the statefinders plane for all models. (orig.)

  20. Water deuterium fractionation in the high-mass star-forming region G34.26+0.15 based on Herschel/HIFI data

    DEFF Research Database (Denmark)

    Coutens, Audrey; Vastel, C.; Hincelin, U.

    2014-01-01

    Understanding water deuterium fractionation is important for constraining the mechanisms of water formation in interstellar clouds. Observations of HDO and H_2^{18}O transitions were carried out towards the high-mass star-forming region G34.26+0.15 with the Heterodyne Instrument for the Far...... to an age of ˜105 yr after the infrared dark cloud stage....

  1. Infrared radiation parameterizations for the minor CO2 bands and for several CFC bands in the window region

    Science.gov (United States)

    Kratz, David P.; Chou, Ming-Dah; Yan, Michael M.-H.

    1993-01-01

    Fast and accurate parameterizations have been developed for the transmission functions of the CO2 9.4- and 10.4-micron bands, as well as the CFC-11, CFC-12, and CFC-22 bands located in the 8-12-micron region. The parameterizations are based on line-by-line calculations of transmission functions for the CO2 bands and on high spectral resolution laboratory measurements of the absorption coefficients for the CFC bands. Also developed are the parameterizations for the H2O transmission functions for the corresponding spectral bands. Compared to the high-resolution calculations, fluxes at the tropopause computed with the parameterizations are accurate to within 10 percent when overlapping of gas absorptions within a band is taken into account. For individual gas absorption, the accuracy is of order 0-2 percent. The climatic effects of these trace gases have been studied using a zonally averaged multilayer energy balance model, which includes seasonal cycles and a simplified deep ocean. With the trace gas abundances taken to follow the Intergovernmental Panel on Climate Change Low Emissions 'B' scenario, the transient response of the surface temperature is simulated for the period 1900-2060.

  2. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  3. Detecting dark matter

    International Nuclear Information System (INIS)

    Dixon, Roger L.

    2000-01-01

    Dark matter is one of the most pressing problems in modern cosmology and particle physic research. This talk will motivate the existence of dark matter by reviewing the main experimental evidence for its existence, the rotation curves of galaxies and the motions of galaxies about one another. It will then go on to review the corroborating theoretical motivations before combining all the supporting evidence to explore some of the possibilities for dark matter along with its expected properties. This will lay the ground work for dark matter detection. A number of differing techniques are being developed and used to detect dark matter. These will be briefly discussed before the focus turns to cryogenic detection techniques. Finally, some preliminary results and expectations will be given for the Cryogenic Dark Matter Search (CDMS) experiment

  4. Dark photons from the center of the Earth: Smoking-gun signals of dark matter

    Science.gov (United States)

    Feng, Jonathan L.; Smolinsky, Jordan; Tanedo, Philip

    2016-01-01

    Dark matter may be charged under dark electromagnetism with a dark photon that kinetically mixes with the Standard Model photon. In this framework, dark matter will collect at the center of the Earth and annihilate into dark photons, which may reach the surface of the Earth and decay into observable particles. We determine the resulting signal rates, including Sommerfeld enhancements, which play an important role in bringing the Earth's dark matter population to their maximal, equilibrium value. For dark matter masses mX˜100 GeV - 10 TeV , dark photon masses mA'˜MeV -GeV , and kinetic mixing parameters ɛ ˜1 0-9- 1 0-7 , the resulting electrons, muons, photons, and hadrons that point back to the center of the Earth are a smoking-gun signal of dark matter that may be detected by a variety of experiments, including neutrino telescopes, such as IceCube, and space-based cosmic ray detectors, such as Fermi-LAT and AMS. We determine the signal rates and characteristics and show that large and striking signals—such as parallel muon tracks—are possible in regions of the (mA',ɛ ) plane that are not probed by direct detection, accelerator experiments, or astrophysical observations.

  5. NEAR-INFRARED SPECTROSCOPY OF NEARBY SEYFERT GALAXIES: IS THERE EVIDENCE FOR SHOCK EXCITATION IN NARROW-LINE REGIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Terao, K. [Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Nagao, T.; Toba, Y. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Hashimoto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan (China); Yanagisawa, K. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Honjo 3037-5, Kamogata-cho, Asaguchi, Okayama 719-0232 (Japan); Matsuoka, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Ikeda, H. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, 181-8588 (Japan); Taniguchi, Y., E-mail: terao@cosmos.phys.sci.ehime-u.ac.jp [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan)

    2016-12-20

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257  μ m and [P ii]1.188  μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition to our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.

  6. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  7. Charming dark matter

    Science.gov (United States)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  8. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  9. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  10. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  11. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  12. Dark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  13. Dark U (1)

    International Nuclear Information System (INIS)

    Chang, Chia-Feng; Ma, Ernest; Yuan, Tzu-Chiang

    2015-01-01

    In this talk we will explore the possibility of adding a local U(1) dark sector to the standard model with the Higgs boson as a portal connecting the visible standard model sector and the dark one. We will discuss existing experimental constraint on the model parameters from the invisible width of Higgs decay. Implications of such a dark U(1) sector on phenomenology at the Large Hardon Collider will be addressed. In particular, detailed results for the non-standard signals of multi-lepton-jets that arise from this simple dark sector will be presented. (paper)

  14. Searching for dark matter

    Science.gov (United States)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  15. Chaplygin dark star

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.

    2005-01-01

    We study the general properties of a spherically symmetric body described through the generalized Chaplygin equation of state. We conclude that such an object, dubbed generalized Chaplygin dark star, should exist within the context of the generalized Chaplygin gas (GCG) model of unification of dark energy and dark matter, and derive expressions for its size and expansion velocity. A criteria for the survival of the perturbations in the GCG background that give origin to the dark star are developed, and its main features are analyzed

  16. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  17. The dark matter distribution of M87 and NGC 1399

    Science.gov (United States)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  18. Infrared astronomy

    International Nuclear Information System (INIS)

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  19. On the Effective Equation of State of Dark Energy

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2010-01-01

    In an effective field theory model with an ultraviolet momentum cutoff, there is a relation between the effective equation of state of dark energy and the ultraviolet cutoff scale. It implies that a measure of the equation of state of dark energy different from minus one, does not rule out vacuum...... energy as dark energy. It also indicates an interesting possibility that precise measurements of the infrared properties of dark energy can be used to probe the ultraviolet cutoff scale of effective quantum field theory coupled to gravity. In a toy model with a vacuum energy dominated universe...... with a Planck scale cutoff, the dark energy effective equation of state is -0.96....

  20. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  1. Selections from 2016: Primordial Black Holes as Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background AnisotropiesPublished May2016Main takeaway:A study by Alexander Kashlinsky (NASA Goddard SFC) proposes that the cold dark matter that makes up the majority of the universes matter may be made of black holes. These black holes, Kashlinsky suggests, are primordial: they collapsed directly from dense regions of the universe soon after the Big Bang.Why its interesting:This model would simultaneously explain several observations. In particular, we see similarities in patterns between the cosmic infrared and X-ray backgrounds. This would make sense if accretion onto primordial black holes in halos produced the X-ray background in the same regions where the first stars also formed, producing the infrared background.What this means for current events:In Kashlinskys model, primordial black holes would occasionally form binary pairs and eventually spiral in and merge. The release of energy from such an event would then be observable by gravitational-wave detectors. Could the gravitational-wave signal that LIGO detected last year have been two primordial black holes merging? More observations will be needed to find out.CitationA. Kashlinsky 2016 ApJL 823 L25. doi:10.3847/2041-8205/823/2/L25

  2. Hier ist wahrhaftig ein Loch im Himmel. The NGC 1999 dark globule is not a globule

    Science.gov (United States)

    Stanke, T.; Stutz, A. M.; Tobin, J. J.; Ali, B.; Megeath, S. T.; Krause, O.; Linz, H.; Allen, L.; Bergin, E.; Calvet, N.; di Francesco, J.; Fischer, W. J.; Furlan, E.; Hartmann, L.; Henning, T.; Manoj, P.; Maret, S.; Muzerolle, J.; Myers, P. C.; Neufeld, D.; Osorio, M.; Pontoppidan, K.; Poteet, C. A.; Watson, D. M.; Wilson, T.

    2010-07-01

    The NGC 1999 reflection nebula features a dark patch with a size of 10 000 AU, which has been interpreted as a small, dense foreground globule and possible site of imminent star formation. We present Herschel PACS far-infrared 70 and 160 μm maps, which reveal a flux deficit at the location of the globule. We estimate the globule mass needed to produce such an absorption feature to be a few tenths to a few {M}⊙. Inspired by this Herschel observation, we obtained APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC near-infrared images of the region. We do not detect a submillimer source at the location of the Herschel flux decrement; furthermore our observations place an upper limit on the mass of the globule of 2.4×10-2 {M}⊙. Indeed, the submillimeter maps appear to show a flux depression as well. Furthermore, the near-infrared images detect faint background stars that are less affected by extinction inside the dark patch than in its surroundings. We suggest that the dark patch is in fact a hole or cavity in the material producing the NGC 1999 reflection nebula, excavated by protostellar jets from the V 380 Ori multiple system. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASAThis publication includes data acquired with the Atacama Pathfinder Experiment (APEX; proposal E-082.F-9807 and E-284.C-5015). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.Appendices A and B are only available in electronic form at http://www.aanda.org

  3. Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region.

    Science.gov (United States)

    Gui, Rijun; Wan, Ajun; Liu, Xifeng; Yuan, Wen; Jin, Hui

    2014-05-21

    Hydrodynamic size-minimized quantum dots (QDs) have outstanding physicochemical properties for applications in multicolor molecular and cellular imaging at the level of single molecules and nanoparticles. In this study, we have reported the aqueous synthesis of Ag2S QDs by using thiol-based multidentate polymers as capping reagents. By regulating the composition of the precursors (AgNO3 and sulfur-N2H4·H2O complex) and multidentate polymers (poly(acrylic acid)-graft-cysteamine-graft-ethylenediamine), as well as the reaction time, Ag2S QDs (2.6-3.7 nm) are prepared, displaying tunable photoluminescence (PL) emission from red to the second near-infrared region (687-1096 nm). The small hydrodynamic thickness (1.6-1.9 nm) of the multidentate polymers yields a highly compact coating for the QDs, which results in the bright fluorescent QDs with high PL quantum yields (QYs: 14.2-16.4%). Experimental results confirm that the QDs have high PL stability and ultralow cytotoxicity, as well as high PLQYs and small hydrodynamic sizes (4.5-5.6 nm) similar to fluorescent proteins (27-30 kDa), indicating the feasibility of highly effective PL imaging in cells and living animals.

  4. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  5. Simultaneous determination of ordinary and extraordinary refractive index dispersions of nematic liquid crystals in the visible and near-infrared regions from an interference spectrum

    Science.gov (United States)

    Ozaki, Ryotaro; Nishi, Koji; Kan, Takayuki; Kadowaki, Kazunori

    2016-10-01

    An improved interference method is proposed to determine ordinary and extraordinary refractive index dispersions of nematic liquid crystals (LCs). In this method, an LC cell coated with a thin metal layer is used as a Fabry-Perot interferometer, which shows us a sharp transmission fringe. To ensure high reliability, the wavelength dispersion of the refractive index of the metal is taken into account in fitting calculation. In spite of measuring ordinary and extraordinary components, the LC cell, polarizers, and other equipment are not rotated during the experiment. The index evaluation from a single spectrum avoids errors depending on the measurement position owing to non-uniformities of molecular orientation and cell thickness because we can obtain the two indices at exactly the same position. This system can adapt to a wide frequency range and does not require any specific wavelength light source or laser. We demonstrate the determination of ordinary and extraordinary refractive index dispersions of a nematic liquid crystal in the visible and near-infrared regions. Furthermore, we quantitatively reproduce the measured spectrum by calculation using the measured refractive indices.

  6. Patterns of Cell Activity in the Subthalamic Region Associated with the Neuroprotective Action of Near-Infrared Light Treatment in MPTP-Treated Mice

    Directory of Open Access Journals (Sweden)

    Victoria E. Shaw

    2012-01-01

    Full Text Available We have shown previously that near-infrared light (NIr treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP in mice. The present study explores whether NIr treatment changes the patterns of Fos expression in the subthalamic region, namely, the subthalamic nucleus (STN and zona incerta (ZI; both cell groups have abnormally overactive cells in parkinsonian cases. BALB/c mice were treated with MPTP (100–250 mg/kg or saline either over 30 hours followed by either a two-hour or six-day survival period (acute model or over five weeks followed by a three-week survival period (chronic model. NIr and MPTP were applied simultaneously. Brains were processed for Fos immunochemistry, and cell number was estimated using stereology. Our major finding was that NIr treatment reduced (30–45% the increase in Fos+ cell number evident in the STN and ZI after MPTP insult. This reduction was concurrent with the neuroprotection of dopaminergic SNc cells shown previously and was evident in both MPTP models (except for the 2 hours survival period which showed no changes in cell number. In summary, our results indicated that NIr had long lasting effects on the activity of cells located deep in the brain and had repaired partially the abnormal activity generated by the parkinsonian toxin.

  7. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  8. Radiative inflation and dark energy

    International Nuclear Information System (INIS)

    Di Bari, Pasquale; King, Stephen F.; Luhn, Christoph; Merle, Alexander; Schmidt-May, Angnis

    2011-01-01

    We propose a model based on radiative symmetry breaking that combines inflation with dark energy and is consistent with the Wilkinson Microwave Anisotropy Probe 7-year regions. The radiative inflationary potential leads to the prediction of a spectral index 0.955 S < or approx. 0.967 and a tensor to scalar ratio 0.142 < or approx. r < or approx. 0.186, both consistent with current data but testable by the Planck experiment. The radiative symmetry breaking close to the Planck scale gives rise to a pseudo Nambu-Goldstone boson with a gravitationally suppressed mass which can naturally play the role of a quintessence field responsible for dark energy. Finally, we present a possible extra dimensional scenario in which our model could be realized.

  9. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.

    Science.gov (United States)

    Bogomolov, Andrey; Belikova, Valeria; Galyanin, Vladislav; Melenteva, Anastasiia; Meyer, Hans

    2017-05-15

    New technique of diffuse reflectance spectroscopic analysis of milk fat and total protein content in the visible (Vis) and adjacent near infrared (NIR) region (400-995nm) has been developed and tested. Sample analysis was performed through a probe having eight 200-µm fiber channels forming a linear array. One of the end fibers was used for the illumination and other seven - for the spectroscopic detection of diffusely reflected light. One of the detection channels was used as a reference to normalize the spectra and to convert them into absorbance-equivalent units. The method has been tested experimentally using a designed sample set prepared from industrial raw milk standards with widely varying fat and protein content. To increase the modelling robustness all milk samples were measured in three different homogenization degrees. Comprehensive data analysis has shown the advantage of combining both spectral and spatial resolution in the same measurement and revealed the most relevant channels and wavelength regions. The modelling accuracy was further improved using joint variable selection and preprocessing optimization method based on the genetic algorithm. The root mean-square errors of different validation methods were below 0.10% for fat and below 0.08% for total protein content. Based on the present experimental data, it was computationally shown that the full-spectrum analysis in this method can be replaced by a sensor measurement at several specific wavelengths, for instance, using light-emitting diodes (LEDs) for illumination. Two optimal sensor configurations have been suggested: with nine LEDs for the analysis of fat and seven - for protein content. Both simulated sensors exhibit nearly the same component determination accuracy as corresponding full-spectrum analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  11. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  12. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  13. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  14. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  15. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  16. Low-Mass Dark Matter Search with the DarkSide-50 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; et al.

    2018-02-20

    We present the results of a search for dark matter WIMPs in the mass range below 20 GeV/c^2 using a target of low-radioactivity argon. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso (LNGS). The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 events/keVee/kg/day and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^2 for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^2.

  17. An Optical and Infrared Photometric Study of the Young Open Cluster IC 1805 in the Giant H II Region W4 †

    Science.gov (United States)

    Sung, Hwankyung; Bessell, Michael S.; Chun, Moo-Young; Yi, Jonghyuk; Nazé, Y.; Lim, Beomdu; Karimov, R.; Rauw, G.; Park, Byeong-Gon; Hur, Hyeonoh

    2017-05-01

    We present deep wide-field optical CCD photometry and mid-infrared Spitzer/IRAC and MIPS 24 μm data for about 100,000 stars in the young open cluster IC 1805. The members of IC 1805 were selected from their location in the various color-color and color-magnitude diagrams, and the presence of Hα emission, mid-infrared excess emission, and X-ray emission. The reddening law toward IC 1805 is nearly normal (R V = 3.05 ± 0.06). However, the distance modulus of the cluster is estimated to be 11.9 ± 0.2 mag (d=2.4+/- 0.2 kpc) from the reddening-free color-magnitude diagrams, which is larger than the distance to the nearby massive star-forming region W3(OH) measured from the radio VLBA astrometry. We also determined the age of IC 1805 ({τ }{MSTO}=3.5 Myr). In addition, we critically compared the age and mass scale from two pre-main-sequence evolution models. The initial mass function with a Salpeter-type slope of Γ = -1.3 ± 0.2 was obtained and the total mass of IC 1805 was estimated to be about 2700 ± 200 {M}⊙ . Finally, we found our distance determination to be statistically consistent with the Tycho-Gaia Astrometric Solution Data Release 1, within the errors. The proper motion of the B-type stars shows an elongated distribution along the Galactic plane, which could be explained by some of the B-type stars being formed in small clouds dispersed by previous episodes of star formation or supernova explosions. The optical imaging data in this article were gathered with two facilities: the AZT-22 1.5 m telescope at Maidanak Astronomical Observatory in Uzbekistan and the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  18. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  19. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  20. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  1. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  2. FTIR Study of Comustion Species in Several Regions of a Candle Flame

    Science.gov (United States)

    White, Allen R.

    2013-06-01

    The complex chemical structure of the fuel in a candle flame, parafin, is broken down into smaller hydrocarbons in the dark region just above the candle wick during combustion. This creates fuel-rich, fuel-lean, hydrocarbon reaction, and combustion product regions in the flame during combustion that are spectroscopically rich, particularly in the infrared. IR emissions were measured for each reaction region via collection optics focused into an FTIR and used to identify IR active species present in that region and, when possible, temperature of the sampling region. The results of the measurements are useful for combustion reaction modeling as well as for future validation of mass spectroscopy sampling systems.

  3. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  4. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  5. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  6. Scalar dark matter: real vs complex

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2017-03-27

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  7. Scalar dark matter: real vs complex

    International Nuclear Information System (INIS)

    Wu, Hongyan; Zheng, Sibo

    2017-01-01

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  8. Self-interacting dark matter

    Science.gov (United States)

    Mavromatos, Nick E.; Argüelles, Carlos R.; Ruffini, Remo; Rueda, Jorge A.

    Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard ΛCDM and ΛWDM cosmologies are reported.

  9. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  10. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  11. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  12. Working the Dark Side

    DEFF Research Database (Denmark)

    Bjering, Jens Christian Borrebye

    A few days after the terror attacks of 9/11, then Vice President Dick Cheney appeared on television with a call for “working the dark side.” While still unclear what this expression entailed at the time, Cheney's comment appears in retrospect to almost have been prophetic for the years to come....... By analyzing official reports and testimonies from soldiers partaking in the War On Terror, the dissertation's second part—dark arts—focuses on the transformation of the dark side into a productive space in which “information” and the hunt for said information overshadowed all legal, ethical, or political...

  13. Films and dark room

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    After we know where the radiographic come from, then we must know about the film and also dark room. So, this chapter 5 discusses the two main components for radiography work that is film and dark room, places to process the film. Film are structured with three structured that are basic structured, emulsion and protection structured. So, this film can be classified either with their speed, screen and standard that used. The process to wash the film must be done in dark room otherwise the radiographer cannot get what are they inspected. The processing of film will be discussed briefly in next chapter.

  14. Auschwitz dark tourism -kohteena

    OpenAIRE

    Kuusimäki, Karita

    2015-01-01

    Dark tourism eli synkkä matkailu on matkustamista kohteisiin, jotka liittyvät jollain tavalla kuolemaan, kauhuun, kärsimykseen tai katastrofeihin. Dark tourism on ilmiönä suhteellisen tuore, mutta sen historia juontaa juurensa jo antiikin ajan gladiaattoritaisteluihin. Ilmiötä on tutkittu jonkin verran ja siitä on tehty muutamia opinnäytetöitä. Yksi tunnetuimmista ja eniten vierailluista dark tourism -kohteista on Auschwitzin keskitysleiri. Auschwitz aloitti toimintansa vuonna 1940 ja le...

  15. Non-neuronal evoked and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of functional near-infrared spectroscopy signals.

    Science.gov (United States)

    Zimeo Morais, Guilherne Augusto; Scholkmann, Felix; Balardin, Joana Bisol; Furucho, Rogério Akira; de Paula, Renan Costa Vieira; Biazoli, Claudinei Eduardo; Sato, João Ricardo

    2018-01-01

    Several functional near-infrared spectroscopy (fNIRS) studies report their findings based on changes of a single chromophore, usually concentration changes of oxygenated hemoglobin ([[Formula: see text

  16. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  17. Inflation, Dark Matter, and Dark Energy in the String Landscape

    OpenAIRE

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  18. Do micro brown dwarf detections explain the galactic dark matter?

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Schild, R.E; Gibson, C.H.

    2011-01-01

    The baryonic dark matter dominating the structures of galaxies is widely considered as mysterious, but hints for it have been in fact detected in several astronomical observations at optical, infrared, and radio wavelengths. We call attention to the pattern of star formation in a galaxy merger, the

  19. Understanding Dark Energy

    Science.gov (United States)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum

  20. Dark energy in systems of galaxies

    Science.gov (United States)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  1. Genome features of "Dark-fly", a Drosophila line reared long-term in a dark environment.

    Directory of Open Access Journals (Sweden)

    Minako Izutsu

    Full Text Available Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed "Dark-fly", which has been maintained in constant dark conditions for 57 years (1400 generations. We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs and 4,700 insertions or deletions (InDels in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products. Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation.

  2. FAR-INFRARED OBSERVATIONS OF THE VERY LOW LUMINOSITY EMBEDDED SOURCE L1521F-IRS IN THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Terebey, Susan; Fich, Michel; Noriega-Crespo, Alberto; Padgett, Deborah L.; Brooke, Tim; Carey, Sean; McCabe, Caer-Eve; Rebull, Luisa; Fukagawa, Misato; Audard, Marc; Evans, Neal J.; Guedel, Manuel; Hines, Dean; Huard, Tracy; Knapp, Gillian R.; Menard, Francois; Monin, Jean-Louis

    2009-01-01

    We investigate the environment of the very low luminosity object L1521F-IRS using data from the Taurus Spitzer Legacy Survey. The MIPS 160 μm image shows both extended emission from the Taurus cloud and emission from multiple cold cores over a 1 0 x 2 0 region. Analysis shows that the cloud dust temperature is 14.2 ± 0.4 K and the extinction ratio is A 160 /A K = 0.010 ± 0.001 up to A V ∼ 4 mag. We find κ 160 = 0.23 ± 0.046 cm 2 g -1 for the specific opacity of the gas-dust mixture. Therefore, for dust in the Taurus cloud we find that the 160 μm opacity is significantly higher than that measured for the diffuse interstellar medium, but not too different from dense cores, even at modest extinction values. Furthermore, the 160 μm image shows features that do not appear in the IRAS 100 μm image. We identify six regions as cold cores, i.e., colder than 14.2 K, all of which have counterparts in extinction maps or C 18 O maps. Three of the six cores contain embedded young stellar objects, which demonstrates the cores are sites of current star formation. We compare the effects of L1521F-IRS on its natal core and find there is no evidence for dust heating at 160 or 100 μm by the embedded source. From the infrared luminosity L TIR = 0.024 L sun we find L bol-int =0.034-0.046 L odot , thus confirming the source's low luminosity. Comparison of L1521F-IRS with theoretical simulations for the very early phases of star formation appears to rule out the first core collapse phase. The evolutionary state appears similar to or younger than the class 0 phase, and the estimated mass is likely to be substellar.

  3. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  4. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  5. Dark matter search

    International Nuclear Information System (INIS)

    Bernabei, R.

    2003-01-01

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  6. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  7. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  8. Lectures on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Seljak, U [Department of Physics, Princeton University, Princeton, NJ (United States)

    2001-11-15

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  9. Dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R [Dipto. di Fisica, Universita di Roma ' Tor Vergata' and INFN, sez. Roma2, Rome (Italy)

    2003-08-15

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  10. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Salucci, P.

    1990-01-01

    The Tully-Fisher relation is used to probe dark matter (DM) in the optical regions of spiral galaxies. By establishing it at several different isophotal radii in an appropriate sample of 58 galaxies with good B-band photometry and rotation curves, it is shown that some of its attributes (such as scatter, residuals, nonlinearity, and bias) dramatically decrease moving from the disk edge inward. This behavior challenges any mass model which assumes no DM or a luminosity-independent DM mass fraction interior to the optical radius of spiral galaxies. 58 refs

  11. Gravity's dark side: Doing without dark matte

    International Nuclear Information System (INIS)

    Chalmers, M.

    2006-01-01

    Despite decades of searching, the 'dark matter' thought to hold galaxies together is still nowhere to be found. Matthew Chalmers describes how some physicists think it makes more sense to change our theory of gravity instead. Einstein's general theory of relativity is part of the bedrock of modern physics. It describes in elegant mathematical terms how matter causes space-time to curve, and therefore how objects move in a gravitational field. Since it was published in 1916, general relativity has passed every test asked of it with flying colours, and to many physicists the notion that it is wrong is sacrilege. But the motivation for developing an alternative theory of gravity is compelling. Over the last few years cosmologists have arrived at a simple yet extraordinarily successful model of universe. The trouble is that it requires most of the cosmos to be filled with mysterious stuff that we cannot see. In particular, general relativity - or rather its non-relativistic limit otherwise known as Newtonian gravity - can only correctly describe the dynamics of galaxies if we invoke huge quantities of 'dark matter'. Furthermore, an exotic entity called dark energy is necessary to account for the recent discovery that the expansion of the universe is accelerating. Indeed, in the standard model of cosmology, visible matter such as stars, planets and physics textbooks accounts for just 4% of the total universe. (U.K.)

  12. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  13. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  14. Superheavy dark matter through Higgs portal operators

    Science.gov (United States)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  15. Chilly dark sectors and asymmetric reheating

    International Nuclear Information System (INIS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-01-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  16. Chilly dark sectors and asymmetric reheating

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Cui, Yanou [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Shelton, Jessie [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States)

    2016-06-06

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N{sub eff}, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  17. Chilly dark sectors and asymmetric reheating

    Science.gov (United States)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  18. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  19. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  20. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  1. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  2. Effective fluid description of the dark universe

    Directory of Open Access Journals (Sweden)

    M. Cadoni

    2018-01-01

    Full Text Available We propose an effective anisotropic fluid description for a generic infrared-modified theory of gravity. In our framework, the additional component of the acceleration, commonly attributed to dark matter, is explained as a radial pressure generated by the reaction of the dark energy fluid to the presence of baryonic matter. Using quite general assumptions, and a microscopic description of the fluid in terms of a Bose–Einstein condensate of gravitons, we find the static, spherically symmetric solution for the metric in terms of the Misner–Sharp mass function and the fluid pressure. At galactic scales, we correctly reproduce the leading MOND-like log⁡(r and subleading (1/rlog⁡(r terms in the weak-field expansion of the potential. Our description also predicts a tiny (of order 10−6 for a typical spiral galaxy Machian modification of the Newtonian potential at galactic scales, which is controlled by the cosmological acceleration.

  3. Gamma-ray excess and the minimal dark matter model

    International Nuclear Information System (INIS)

    Duerr, Michael; Fileviez Perez, Pavel; Smirnov, Juri

    2015-10-01

    We point out that the gamma-ray excesses in the galactic center and in the dwarf galaxy Reticulum II can both be well explained within the simplest dark matter model. We find that the corresponding region of parameter space will be tested by direct and indirect dark matter searches in the near future.

  4. Dark Tourism and Destination Marketing

    OpenAIRE

    Jahnke, Daniela

    2013-01-01

    This thesis is about the dark tourism and destination marketing. The aim of the thesis is to display how these two terms can be combined. The term dark tourism is a relatively new research area; therefore the thesis will provide an outlook of the current situation of dark tourism. It starts with the beginning of dark tourism and continuous to the managerial aspects of dark tourism sites. The second part of the theoretical background is about destination marketing. It provides an overvie...

  5. Dark Matter Decay between Phase Transitions at the Weak Scale.

    Science.gov (United States)

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  6. Two-singlet model for light cold dark matter

    International Nuclear Information System (INIS)

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-01-01

    We extend the standard model by adding two gauge-singlet Z 2 -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  7. Solid CO in the Taurus dark clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; McFadzean, A.D.

    1985-01-01

    The infrared vibrational feature of solid state CO at 4.67 μm wavelength is detected towards five sources in or behind the dark cloud complex in Taurus. A comparison with millimetre-wave data suggests that a significant fraction (up to 40 per cent) of the CO may be depleted on to grains. The adjacent CN feature at 4.62 μm observed in W33A by previous authors is absent from the present spectra, suggesting that the grain mantles in Taurus are unannealed. (author)

  8. On the gain properties of “thin” elastically strained InGaAs/InGaAlAs quantum wells emitting in the near-infrared spectral region near 1550 nm

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, I. I.; Karachinsky, L. Ya. [Connector Optics LLC (Russian Federation); Kolodeznyi, E. S.; Bougrov, V. E. [National Research University of Information Technologies, Mechanics and Optics (Russian Federation); Kurochkin, A. S.; Gladyshev, A. G.; Babichev, A. V. [Connector Optics LLC (Russian Federation); Gadzhiev, I. M.; Buyalo, M. S. [National Research University of Information Technologies, Mechanics and Optics (Russian Federation); Zadiranov, Yu. M.; Usikova, A. A., E-mail: anton@beam.ioffe.ru; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Savelyev, A. V.; Nyapshaev, I. A. [National Research University of Information Technologies, Mechanics and Optics (Russian Federation); Egorov, A. Yu. [Connector Optics LLC (Russian Federation)

    2016-10-15

    The results of experimental studies of the gain properties of “thin” (3.2 nm thick) elastically strained InGaAs/InGaAlAs quantum wells emitting in the near-infrared spectral region near 1550 nm are presented. The results of studying the threshold and gain characteristics of stripe laser diodes with active regions based on “thin” quantum wells with a lattice–substrate mismatch of +1.0% show that the quantum wells under study exhibit a high modal gain of 11 cm{sup –1} and a low transparency current density of 46 A/cm{sup 2} per quantum well.

  9. Recent developments in dark matter searches

    Indian Academy of Sciences (India)

    results from indirect and direct detection dark matter search experiments is given. .... Such particles can be very light but still be CDM since their interaction was so extremely weak that they could not thermalize in the early Universe. ..... was caused by the report of two events in the signal region, the first time direct detection.

  10. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  11. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  12. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  13. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  14. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  15. Dark matter as a weakly coupled dark baryon

    Science.gov (United States)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  16. THE MAGIC OF DARK TOURISM

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2015-10-01

    Full Text Available The dark tourism is a form of tourism that is not unanimously accepted by the whole society, but in spite of this fact, the practitioners of dark tourism is a viable segment. Indeed the concept that defines dark tourism is none other than death, and perhaps this is why it will always be a segment that will not be attracted by this form of tourism. Many questions about dark tourism arise. Among them: (1 is dark tourism an area of science attractive for researches? (2 which is the typology of dark tourism? (3 what are the motivating factors that determine practicing dark tourism? This paper provides a detailed analysis of publication behaviour in the field of dark tourism. The article also includes the main results obtained by achieving a quantitative marketing research among students of Sfantu Gheorghe University Extension in order to know their opinion, attitude towards dark tourism.

  17. Evaluation of flaA short variable region sequencing, multilocus sequence typing and Fourier transform infrared spectroscopy for discrimination between Campylobacter jejuni strains

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas T.

    2012-01-01

    and Fourier transform infrared (FTIR) spectroscopy were applied on a collection of 102 epidemiologically related and unrelated Campylobacter jejuni strains. Previous application of FTIR spectroscopy for subtyping of Campylobacter has been limited. A subset of isolates, initially discriminated by flaA SVR...

  18. Dark Matter: What, How and Where?

    International Nuclear Information System (INIS)

    Mambrini, Y.

    2010-01-01

    Dark Matter experiments reached an incredible range of sensitivities these last years. They are now able to probe large regions of parameter space of the more popular extensions of the Standard Model (MSSM, KK modes, extra dark forces). They even become competitive with LHC discovery prospects. We try in this presentation to summarize the specific characteristics of the most favored candidates (what?), the theoretical difficulties inherent to the calculation of their different detection rates (how?) and the uncertainties related to their presence in our galaxy (where?). (author)

  19. IceCube potential for detecting Q-ball dark matter in gauge mediation

    International Nuclear Information System (INIS)

    Kasuya, Shinta; Kawasaki, Masahiro; Yanagida, Tsutomu T.

    2015-01-01

    We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark matter. In particular, the Q ball is a good dark matter candidate for low reheating temperature, which may be suitable for the Affleck–Dine baryogenesis and/or nonthermal leptogenesis. Dark matter Q balls are detectable by IceCube-like experiments in the future, which is a peculiar feature compared to the case of gravitino dark matter

  20. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  1. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  2. Nearly Supersymmetric Dark Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  3. Periodically modulated dark states

    Science.gov (United States)

    Han, Yingying; Zhang, Jun; Zhang, Wenxian

    2018-04-01

    Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.

  4. Dark Energy. What the ...?

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, Risa

    2007-10-30

    What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.

  5. Dark chocolate exacerbates acne.

    Science.gov (United States)

    Vongraviopap, Saivaree; Asawanonda, Pravit

    2016-05-01

    The effects of chocolate on acne exacerbations have recently been reevaluated. For so many years, it was thought that it had no role in worsening acne. To investigate whether 99% dark chocolate, when consumed in regular daily amounts, would cause acne to worsen in acne-prone male subjects, twenty-five acne prone male subjects were asked to consume 25 g of 99% dark chocolate daily for 4 weeks. Assessments which included Leeds revised acne scores as well as lesion counts took place weekly. Food frequency questionnaire was used, and daily activities were recorded. Statistically significant changes of acne scores and numbers of comedones and inflammatory papules were detected as early as 2 weeks into the study. At 4 weeks, the changes remained statistically significant compared to baseline. Dark chocolate when consumed in normal amounts for 4 weeks can exacerbate acne in male subjects with acne-prone skin. © 2015 The International Society of Dermatology.

  6. Dark-Skies Awareness

    Science.gov (United States)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  7. Braneworlds and dark energy

    International Nuclear Information System (INIS)

    Neves, Rui; Vaz, Cenalo

    2006-01-01

    In the Randall-Sundrum scenario, we analyse the dynamics of an AdS 5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS 5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane

  8. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  9. Dark Side of the Universe

    CERN Document Server

    2016-01-01

    The Dark Side of the Universe (DSU) workshops bring together a wide range of theorists and experimentalists to discuss current ideas on models of the dark side, and relate them to current and future experiments. This year's DSU will take place in the colorful Norwegian city of Bergen. Topics include dark matter, dark energy, cosmology, and physics beyond the standard model. One of the goals of the workshop is to expose in particular students and young researchers to the fascinating topics of dark matter and dark energy, and to provide them with the opportunity to meet some of the best researchers in these areas .

  10. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  11. Electroweak baryogenesis, large Yukawas and dark matter

    International Nuclear Information System (INIS)

    Provenza, Alessio; Quiros, Mariano; Ullio, Piero

    2005-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  12. Neutralino dark matter in BMSSM effective theory

    International Nuclear Information System (INIS)

    Berg, Marcus; Edsjö, Joakim; Lundström, Erik; Sjörs, Stefan; Gondolo, Paolo

    2009-01-01

    We study thermal neutralino dark matter in an effective field theory extension of the MSSM, called ''Beyond the MSSM'' (BMSSM) in Dine, Seiberg and Thomas (2007). In this class of effective field theories, the field content of the MSSM is unchanged, but the little hierarchy problem is alleviated by allowing small corrections to the Higgs/higgsino part of the Lagrangian. We perform parameter scans and compute the dark matter relic density. The light higgsino LSP scenario is modified the most; we find new regions of parameter space compared to the standard MSSM. This involves interesting interplay between the WMAP dark matter bounds and the LEP chargino bound. We also find some changes for gaugino LSPs, partly due to annihilation through a Higgs resonance, and partly due to coannihilation with light top squarks in models that are ruled in by the new effective terms

  13. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  14. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  15. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  16. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  17. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  18. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  19. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  20. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly

  1. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  2. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  3. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... November 2012 physics pp. 1271–1274. Radiative see-saw formula in ... on neutrino physics, dark matter and all fermion masses and mixings. ... as such, high-energy accelerators cannot directly test the underlying origin of ...

  4. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  5. Simplified Dark Matter Models

    OpenAIRE

    Morgante, Enrico

    2018-01-01

    I review the construction of Simplified Models for Dark Matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.

  6. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  7. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  8. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  9. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  10. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  11. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  12. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  13. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  14. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  15. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  16. Welcome to the dark side

    CERN Multimedia

    Hogan, Jenny

    2007-01-01

    "Physicists says that 96% of the Universe is unseen, and appeal tot he ideas of "dark matter" and "dark energy" to make up the difference. In the first of two articles, jeanny hogan reports that attempts to identify the mysterious dark matter are on the verge of success. In the second, Geoff Brumfiel asks why dark energy, hailed as a breakthrough when discovered a decade ago, is proving more frustrating than ever tot he scientists who study it." (4,5 pages)

  17. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  18. How dark chocolate is processed

    Science.gov (United States)

    This month’s column will continue the theme of “How Is It Processed?” The column will focus on dark chocolate. The botanical name for the cacao tree is Theobroma cacao, which literally means “food of the Gods.” Dark chocolate is both delicious and nutritious. Production of dark chocolate will be des...

  19. The DarkSide Program

    Directory of Open Access Journals (Sweden)

    Rossi B.

    2016-01-01

    Full Text Available DarkSide-50 at Gran Sasso underground laboratory (LNGS, Italy, is a direct dark matter search experiment based on a liquid argon TPC. DS-50 has completed its first dark matter run using atmospheric argon as target. The detector performances and the results of the first physics run are presented in this proceeding.

  20. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  1. A couplet from flavored dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek [Fermilab,P.O. Box 500, Batavia, IL, 60510 (United States); Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD, 20742-4111 (United States); Kilic, Can [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin, 2515 Speedway Stop C1608, Austin, TX, 78712-1197 (United States); Verhaaren, Christopher B. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD, 20742-4111 (United States)

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In such a scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to three photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. For dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. The next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.

  2. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara; Ginsburg, Adam; Bally, John [CASA, University of Colorado, UCB 389, University of Colorado, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics and Astronomy, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Evans, Neal J. II [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shirley, Yancy L., E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA) for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular

  3. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  4. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  5. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  6. Mid-infrared spectroscopic investigation

    International Nuclear Information System (INIS)

    Walter, L.; Vergo, N.; Salisbury, J.W.

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed

  7. Infrared Radiation and Blackbody Radiation

    OpenAIRE

    2005-01-01

    tut present graph Tutorial Presentation Graph Interactive Media Element This interactive tutorial covers the following: How infrared radiation was discovered., The regions of infrared radiation and their relations to temperature., The nature of blackbody radiation and Planck's radiation law., The relationship between temperature and the power emitted by radiation.The interactions in this tutorial include clicking to reveal new information, and questions that help students...

  8. CP violating scalar Dark Matter

    Science.gov (United States)

    Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.

    2016-12-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  9. The dark side of gloss.

    Science.gov (United States)

    Kim, Juno; Marlow, Phillip J; Anderson, Barton L

    2012-11-01

    Our visual system relies on the image structure generated by the interaction of light with objects to infer their material properties. One widely studied surface property is gloss, which can provide information that an object is smooth, shiny or wet. Studies have historically focused on the role of specular highlights in modulating perceived gloss. Here we show in human observers that glossy surfaces can generate both bright specular highlights and dark specular 'lowlights', and that the presence of either is sufficient to generate compelling percepts of gloss. We show that perceived gloss declines when the image structure generated by specular lowlights is blurred or misaligned with surrounding surface shading and that perceived gloss can arise from the presence of lowlights in surface regions isolated from highlights. These results suggest that the image structure generated by specular highlights and lowlights is used to construct our experience of surface gloss.

  10. THE MAGIC OF DARK TOURISM

    OpenAIRE

    Erika KULCSÁR; PhD Rozalina Zsófia SIMON

    2015-01-01

    The dark tourism is a form of tourism that is not unanimously accepted by the whole society, but in spite of this fact, the practitioners of dark tourism is a viable segment. Indeed the concept that defines dark tourism is none other than death, and perhaps this is why it will always be a segment that will not be attracted by this form of tourism. Many questions about dark tourism arise. Among them: (1) is dark tourism an area of science attractive for researches? (2) which is the typology of...

  11. Dark matter in the universe

    International Nuclear Information System (INIS)

    Kormendy, J.; Knapp, G.R.

    1987-01-01

    Until recently little more was known than that dark matter appears to exist; there was little systematic information about its properties. Only in the past several years was progress made to the point where dark matter density distributions can be measured. For example, with accurate rotation curves extending over large ranges in radius, decomposing the effects of visible and dark matter to measure dark matter density profiles can be tried. Some regularities in dark matter behaviour have already turned up. This volume includes review and invited papers, poster papers, and the two general discussions. (Auth.)

  12. Examining spectral variations in localized lunar dark mantle deposits

    Science.gov (United States)

    Jawin, Erica; Besse, Sebastien; Gaddis, Lisa R.; Sunshine, Jessica; Head, James W.; Mazrouei, Sara

    2015-01-01

    The localized lunar dark mantle deposits (DMDs) in Alphonsus, J. Herschel, and Oppenheimer craters were analyzed using visible-near-infrared spectroscopy data from the Moon Mineralogy Mapper. Spectra of these localized DMDs were analyzed for compositional and mineralogical variations within the deposits and were compared with nearby mare basalt units. Spectra of the three localized DMDs exhibited mafic absorption features indicating iron-rich compositions, although the DMDs were spectrally distinct from nearby mare basalts. All of the DMDs contained spectral signatures of glassy materials, suggesting the presence of volcanic glass in varying concentrations across the individual deposits. In addition, the albedo and spectral signatures were variable within the Alphonsus and Oppenheimer crater DMDs, suggesting variable deposit thickness and/or variations in the amount of mixing with the local substrate. Two previously unidentified localized DMDs were discovered to the northeast of Oppenheimer crater. The identification of high concentrations of volcanic glass in multiple localized DMDs in different locations suggests that the distribution of volcanic glass across the lunar surface is much more widespread than has been previously documented. The presence of volcanic glass implies an explosive, vulcanian eruption style for localized DMDs, as this allows volcanic glass to rapidly quench, inhibiting crystallization, compared to the larger hawaiian-style eruptions typical of regional DMD emplacement where black beads indicate a higher degree of crystallization. Improved understanding of the local and global distributions of volcanic glass in lunar DMDs will further constrain lunar degassing and compositional evolution throughout lunar volcanic history.

  13. Dark matter scenarios in a constrained model with Dirac gauginos

    CERN Document Server

    Goodsell, Mark D.; Müller, Tobias; Porod, Werner; Staub, Florian

    2015-01-01

    We perform the first analysis of Dark Matter scenarios in a constrained model with Dirac Gauginos. The model under investigation is the Constrained Minimal Dirac Gaugino Supersymmetric Standard model (CMDGSSM) where the Majorana mass terms of gauginos vanish. However, $R$-symmetry is broken in the Higgs sector by an explicit and/or effective $B_\\mu$-term. This causes a mass splitting between Dirac states in the fermion sector and the neutralinos, which provide the dark matter candidate, become pseudo-Dirac states. We discuss two scenarios: the universal case with all scalar masses unified at the GUT scale, and the case with non-universal Higgs soft-terms. We identify different regions in the parameter space which fullfil all constraints from the dark matter abundance, the limits from SUSY and direct dark matter searches and the Higgs mass. Most of these points can be tested with the next generation of direct dark matter detection experiments.

  14. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    Science.gov (United States)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  15. Reconstructing the dark sector interaction with LISA

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Rong-Gen; Yang, Tao [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Tamanini, Nicola, E-mail: cairg@itp.ac.cn, E-mail: nicola.tamanini@cea.fr, E-mail: yangtao@itp.ac.cn [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    We perform a forecast analysis of the ability of the LISA space-based interferometer to reconstruct the dark sector interaction using gravitational wave standard sirens at high redshift. We employ Gaussian process methods to reconstruct the distance-redshift relation in a model independent way. We adopt simulated catalogues of standard sirens given by merging massive black hole binaries visible by LISA, with an electromagnetic counterpart detectable by future telescopes. The catalogues are based on three different astrophysical scenarios for the evolution of massive black hole mergers based on the semi-analytic model of E. Barausse, Mon. Not. Roy. Astron. Soc. 423 (2012) 2533. We first use these standard siren datasets to assess the potential of LISA in reconstructing a possible interaction between vacuum dark energy and dark matter. Then we combine the LISA cosmological data with supernovae data simulated for the Dark Energy Survey. We consider two scenarios distinguished by the time duration of the LISA mission: 5 and 10 years. Using only LISA standard siren data, the dark sector interaction can be well reconstructed from redshift z ∼1 to z ∼3 (for a 5 years mission) and z ∼1 up to z ∼5 (for a 10 years mission), though the reconstruction is inefficient at lower redshift. When combined with the DES datasets, the interaction is well reconstructed in the whole redshift region from 0 z ∼ to z ∼3 (5 yr) and z ∼0 to z ∼5 (10 yr), respectively. Massive black hole binary standard sirens can thus be used to constrain the dark sector interaction at redshift ranges not reachable by usual supernovae datasets which probe only the z ∼< 1.5 range. Gravitational wave standard sirens will not only constitute a complementary and alternative way, with respect to familiar electromagnetic observations, to probe the cosmic expansion, but will also provide new tests to constrain possible deviations from the standard ΛCDM dynamics, especially at high redshift.

  16. Spectroscopic Needs for Imaging Dark Energy Experiments

    International Nuclear Information System (INIS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Coupon, Jean; Cunha, Carlos E.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Matthews, Daniel J.; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Rhodes, Jason; Ricol, Jean-Stepane; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; Von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-01-01

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our ''training set'' of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ∼30,000 objects over >∼15 widely-separated regions, each at least ∼20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo

  17. Flipped dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.; Olive, K.A.

    1988-08-04

    We study candidates for dark matter in a minimal flipped SU(5) x U(1) supersymmetric GUT. Since the model has no R-parity, spin-1/2 supersymmetric partners of conventional particles mix with other neutral fermions including neutrinos, and can decay into them. The lighest particle which is predominantly a gaugino/higgsino mixture decays with a lifetime tau/sub chi/ approx. = 1-10/sup 9/ s. The model contains a scalar 'flaton' field whose coherent oscillations decay before cosmological nucleosynthesis, and whose pseudoscalar partner contributes negligibly to ..cap omega.. if it is light enough to survive to the present epoch. The fermionic 'flatino' partner of the flaton has a lifetime tau/sub PHI/ approx. = 10/sup 28/-10/sup 34/ yr and is a viable candiate for metastable dark matter with ..cap omega.. < or approx. 1.

  18. CN in dark clouds

    International Nuclear Information System (INIS)

    Churchwell, E.; Bieging, J.H.

    1983-01-01

    We have detected CN (N = 1--0) emission toward six locations in the Taurus dark cloud complex, but not toward L183 or B227. The two hyperfine components, F = 3/2--1/2 and F = 5/2--3/2 (of J = 3/2--1/2), have intensity ratios near unity toward four locations in Taurus, consistent with large line optical depths. CN column densities are found to be > or approx. =6 x 10 13 cm -2 in those directions where the hyperfine ratios are near unity. By comparing CN with NH 3 and C 18 O column densities, we find that the relative abundance of CN in the Taurus cloudlets is at least a factor of 10 greater than in L183. In this respect, CN fits the pattern of enhanced abundances of carbon-bearing molecules (in partricular the cyanopolyynes) in the Taurus cloudlets relative to similar dark clouds outside Taurus

  19. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  20. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  1. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  2. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  3. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  4. A dark energy multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F

    2007-01-01

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  5. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  6. A dark energy multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 121, 28006 Madrid (Spain)

    2007-05-21

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  7. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  8. Dark Energy in Practice

    CERN Document Server

    Sapone, Domenico

    2010-01-01

    In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper shou...

  9. Comprehensive asymmetric dark matter model

    Science.gov (United States)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  10. Subaru/COMICS Mid-Infrared Observation of the Near-Nucleus Region of Comet 17P/Holmes at the Early Phase of an Outburst

    Science.gov (United States)

    Watanabe, Jun-Ichi; Honda, Mitsuhiko; Ishiguro, Masateru; Ootsubo, Takafumi; Sarugaku, Yuki; Kadono, Toshihiko; Sakon, Itsuki; Fuse, Tetsuharu; Takato, Naruhisa; Furusho, Reiko

    2009-08-01

    Mid-infrared 8--25μm imaging and spectroscopic observations of the comet 17P/Holmes in the early phase of its outburst in brightness were performed on 2007 October 25--28UT using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2-m Subaru Telescope. We detected an isolated dust cloud that moved toward the south-west direction from the nucleus. The 11.2μm peak of a crystalline silicate feature onto a broad amorphous silicate feature was also detected both in the central condensation of the nucleus and an isolated dust cloud. The color temperature of the isolated dust cloud was estimated to be ˜200K, which is slightly higher than the black-body temperature. Our analysis of the motion indicates that the isolated cloud moved anti-sunward. We propose several possibilities for the motion of the cloud: fluffy dust particles in the isolated cloud started to depart from the nucleus due to radiation pressure almost as soon as the main outburst occurred, or dust particles moved by some other anti-sunward forces, such as a rocket effect and photophoresis when the surrounding dust coma became optically thin. The origin and the nature of the isolated dust cloud are discussed in this paper.

  11. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  12. Cold dark matter plus not-so-clumpy dark relics

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Ando, Shin' ichiro; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Gariazzo, Stefano; Mena, Olga, E-mail: r.diamanti@uva.nl, E-mail: s.ando@uva.nl, E-mail: gariazzo@to.infn.it, E-mail: omena@ific.uv.es, E-mail: c.weniger@uva.nl [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Apartado de Correos 22085, E-46071, Valencia (Spain)

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.

  13. Searching for light dark matter with the SLAC millicharge experiment.

    Science.gov (United States)

    Diamond, M; Schuster, P

    2013-11-27

    New sub-GeV gauge forces ("dark photons") that kinetically mix with the photon provide a promising scenario for MeV-GeV dark matter and are the subject of a program of searches at fixed-target and collider facilities around the world. In such models, dark photons produced in collisions may decay invisibly into dark-matter states, thereby evading current searches. We reexamine results of the SLAC mQ electron beam dump experiment designed to search for millicharged particles and find that it was strongly sensitive to any secondary beam of dark matter produced by electron-nucleus collisions in the target. The constraints are competitive for dark photon masses in the ~1-30 MeV range, covering part of the parameter space that can reconcile the apparent (g-2)(μ) anomaly. Simple adjustments to the original SLAC search for millicharges may extend sensitivity to cover a sizable portion of the remaining (g-2)(μ) anomaly-motivated region. The mQ sensitivity is therefore complementary to ongoing searches for visible decays of dark photons. Compared to existing direct-detection searches, mQ sensitivity to electron-dark-matter scattering cross sections is more than an order of magnitude better for a significant range of masses and couplings in simple models.

  14. Warm and cold fermionic dark matter via freeze-in

    International Nuclear Information System (INIS)

    Klasen, Michael; Yaguna, Carlos E.

    2013-01-01

    The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z 2 symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of the model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs

  15. Scalar dark matter in the B−L model

    International Nuclear Information System (INIS)

    Rodejohann, Werner; Yaguna, Carlos E.

    2015-01-01

    The U(1) B−L extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ DM , that is a singlet of the Standard Model but charged under U(1) B−L . An advantage of this scenario is that the stability of ϕ DM can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles

  16. Scalar field dark matter and the Higgs field

    Directory of Open Access Journals (Sweden)

    O. Bertolami

    2016-08-01

    Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  17. On physical scales of dark matter halos

    International Nuclear Information System (INIS)

    Zemp, Marcel

    2014-01-01

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  18. Analysis of the 3’ untranslated regions of α-tubulin and S-crystallin mRNA and the identification of CPEB in dark- and light-adapted octopus retinas

    Science.gov (United States)

    Kelly, Shannan; Yamamoto, Hideki

    2008-01-01

    Purpose We previously reported the differential expression and translation of mRNA and protein in dark- and light-adapted octopus retinas, which may result from cytoplasmic polyadenylation element (CPE)–dependent mRNA masking and unmasking. Here we investigate the presence of CPEs in α-tubulin and S-crystallin mRNA and report the identification of cytoplasmic polyadenylation element binding protein (CPEB) in light- and dark-adapted octopus retinas. Methods 3’-RACE and sequencing were used to isolate and analyze the 3’-UTRs of α-tubulin and S-crystallin mRNA. Total retinal protein isolated from light- and dark-adapted octopus retinas was subjected to western blot analysis followed by CPEB antibody detection, PEP-171 inhibition of CPEB, and dephosphorylation of CPEB. Results The following CPE-like sequence was detected in the 3’-UTR of isolated long S-crystallin mRNA variants: UUUAACA. No CPE or CPE-like sequences were detected in the 3’-UTRs of α-tubulin mRNA or of the short S-crystallin mRNA variants. Western blot analysis detected CPEB as two putative bands migrating between 60-80 kDa, while a third band migrated below 30 kDa in dark- and light-adapted retinas. Conclusions The detection of CPEB and the identification of the putative CPE-like sequences in the S-crystallin 3’-UTR suggest that CPEB may be involved in the activation of masked S-crystallin mRNA, but not in the regulation of α-tubulin mRNA, resulting in increased S-crystallin protein synthesis in dark-adapted octopus retinas. PMID:18682811

  19. Infrared Heaters

    Science.gov (United States)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  20. Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi

    International Nuclear Information System (INIS)

    Cirelli, Marco; Panci, Paolo; Serpico, Pasquale D.

    2010-01-01

    We consider the diffuse gamma ray data from Fermi first year observations and compare them to the gamma ray fluxes predicted by Dark Matter annihilation or decay (both from prompt emission and from Inverse Compton Scattering), for different observation regions of the sky and a range of Dark Matter masses, annihilation/decay channels and Dark Matter galactic profiles. We find that the data exclude large regions of the Dark Matter parameter space not constrained otherwise and discuss possible directions for future improvements. Also, we further constrain Dark Matter interpretations of the e ± PAMELA/Fermi spectral anomalies, both for the annihilating and the decaying Dark Matter case: under very conservative assumptions, only models producing dominantly μ ± and assuming a cored Dark Matter galactic profile can fit the lepton data with masses around ∼2 TeV.