WorldWideScience

Sample records for regions including prefrontal

  1. Major Thought Restructuring: The Roles of Different Prefrontal Cortical Regions.

    Science.gov (United States)

    Seyed-Allaei, Shima; Avanaki, Zahra Nasiri; Bahrami, Bahador; Shallice, Tim

    2017-07-01

    An important question for understanding the neural basis of problem solving is whether the regions of human prefrontal cortices play qualitatively different roles in the major cognitive restructuring required to solve difficult problems. However, investigating this question using neuroimaging faces a major dilemma: either the problems do not require major cognitive restructuring, or if they do, the restructuring typically happens once, rendering repeated measurements of the critical mental process impossible. To circumvent these problems, young adult participants were challenged with a one-dimensional Subtraction (or Nim) problem [Bouton, C. L. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3, 35-39, 1901] that can be tackled using two possible strategies. One, often used initially, is effortful, slow, and error-prone, whereas the abstract solution, once achieved, is easier, quicker, and more accurate. Behaviorally, success was strongly correlated with sex. Using voxel-based morphometry analysis controlling for sex, we found that participants who found the more abstract strategy (i.e., Solvers) had more gray matter volume in the anterior medial, ventrolateral prefrontal, and parietal cortices compared with those who never switched from the initial effortful strategy (i.e., Explorers). Removing the sex covariate showed higher gray matter volume in Solvers (vs. Explorers) in the right ventrolateral prefrontal and left parietal cortex.

  2. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Bang, Soong Ae; Yoon, Eun Jin; Cho, Sang Soo; Kim, Sang Hee; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8±0.75 y, 5 IGAs: male, 22.6±2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA

  3. Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making.

    Science.gov (United States)

    Clarke, Hannah F; Horst, Nicole K; Roberts, Angela C

    2015-03-31

    Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach-avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala-anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.

  4. Dorsolateral Prefrontal Cortex Drives Mesolimbic Dopaminergic Regions to Initiate Motivated Behavior

    OpenAIRE

    Ballard, Ian C.; Murty, Vishnu P.; Carter, R. McKell; MacInnes, Jeffrey J.; Huettel, Scott A.; Adcock, R. Alison

    2011-01-01

    How does the brain translate information signaling potential rewards into motivation to get them? Motivation to obtain reward is thought to depend on the midbrain, (particularly the ventral tegmental area, VTA), the nucleus accumbens (NAcc), and the dorsolateral prefrontal cortex (dlPFC), but it is not clear how the interactions amongst these regions relate to reward-motivated behavior. To study the influence of motivation on these reward-responsive regions and on their interactions, we used ...

  5. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    Science.gov (United States)

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  6. Beyond the medial regions of prefrontal cortex in the regulation of fear and anxiety

    Directory of Open Access Journals (Sweden)

    Yoshiro eShiba

    2016-02-01

    Full Text Available Fear and anxiety are adaptive responses but if left unregulated, or inappropriately regulated, they become biologically and socially maladaptive. Dysregulated emotions are manifest in a wide variety of psychiatric and neurological conditions but the external expression gives little indication of the underlying causes, which are inevitably multi-determined. To go beyond the overt phenotype and begin to understand the causal mechanisms leading to conditions characterized by anxiety and disorders of mood, it is necessary to identify the base psychological processes that have become dysregulated, and map them on to their associated neural substrates. So far, attention has been focused primarily on the medial regions of prefrontal cortex (PFC and in particular their contribution to the expression and extinction of conditioned fear. However, functional neuroimaging studies have shown that the sphere of influence within the PFC is not restricted to its medial regions, but extends into dorsal, ventrolateral (vlPFC and orbitofrontal (OFC regions too; although the causal role of these other areas in the regulation of fear and anxiety remains to be determined and in the case of the OFC, existing findings are conflicting. Here we review the evidence for the contribution of these other regions in negative emotion regulation in rodents and old world and new world monkeys. We consider a variety of different contexts, including conditioned and innate fear, learned and unlearned anxiety and cost-benefit decision-making, and a range of physiological and behavioral measures of emotion. It is proposed that both the OFC and vlPFC contribute to emotion regulation via their involvement, respectively, in the prediction of future outcomes and higher-order attentional control. The fractionation of these neurocognitive and neurobehavioral systems that regulate fear and anxiety opens up new opportunities for diagnostic stratification and personalized treatment strategies.

  7. I find you more attractive … after (prefrontal cortex) stimulation

    NARCIS (Netherlands)

    Ferrari, C.; Lega, C.; Tamietto, M.; Nadal, M.; Cattaneo, Z.

    2015-01-01

    Facial attractiveness seems to be perceived immediately. Neuroimaging evidence suggests that the appraisal of facial attractiveness is mediated by a network of cortical and subcortical regions, mainly encompassing the reward circuit, but also including prefrontal cortices. The prefrontal cortex is

  8. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks

    NARCIS (Netherlands)

    Fleck, M.S.; Daselaar, S.M.; Dobbins, I.G.; Cabeza, R.

    2006-01-01

    In the episodic retrieval (ER) domain, activations in right dorsolateral prefrontal cortex (DLPFC) are often attributed to postretrieval monitoring. Yet, right DLPFC activations are also frequently found during nonmemory tasks. To investigate the role of this region across different cognitive

  9. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity

    International Nuclear Information System (INIS)

    Berman, K.F.; Illowsky, B.P.; Weinberger, D.R.

    1988-01-01

    In previous studies we found that patients with chronic schizophrenia had lower regional cerebral blood flow (rCBF) in dorsolateral prefrontal cortex (DLPFC) than did normal subjects during performance of the Wisconsin Card Sort Test, an abstract reasoning task linked to DLPFC function. This was not the case during less complex tasks. To examine further whether this finding represented regionally circumscribed pathophysiology or a more general correlate of abstract cognition, 24 medication-free patients and 25 age- and sex-matched normal control subjects underwent rCBF measurements with the xenon 133 technique while they performed two tasks: Raven's Progressive Matrices (RPM) and an active baseline control task. While performing RPM, normal subjects activated posterior cortical areas over baseline, but did not activate DLPFC, as had been seen during the Wisconsin Card Sort Test. Like normal subjects, patients showed maximal rCBF elevations posteriorly and, moreover, they had no significant DLPFC or other cortical deficit while performing RPM. These results suggest that DLPFC dysfunction in schizophrenia is linked to pathophysiology of a regionally specific neural system rather than to global cortical dysfunction, and that this pathophysiology is most apparent under prefrontally specific cognitive demand

  10. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

    DEFF Research Database (Denmark)

    Karstensen, Helena Gásdal; Vestergaard, Martin; Baaré, William F C

    2018-01-01

    differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI...... in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks...... piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory....

  11. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  12. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  13. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Bang, Soong Ae; Yoon, Eun Jin; Cho, Sang Soo; Kim, Sang Hee; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8{+-}0.75 y, 5 IGAs: male, 22.6{+-}2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA.

  14. Contribution of different regions of the prefrontal cortex and lesion laterality to deficit of decision-making on the Iowa Gambling Task.

    Science.gov (United States)

    Ouerchefani, Riadh; Ouerchefani, Naoufel; Allain, Philippe; Ben Rejeb, Mohamed Riadh; Le Gall, Didier

    2017-02-01

    Few studies have examined the contribution of different sub-regions of the prefrontal cortex and lesion laterality to decision-making abilities. In addition, there are inconsistent findings about the role of ventromedial and dorsolateral lesions in decision-making deficit. In this study, decision-making processes are investigated following different damaged areas of the prefrontal cortex. We paid particular attention to the contribution of laterality, lesion location and lesion volume in decision-making deficit. Twenty-seven patients with discrete ventromedial lesions, dorsolateral lesions or extended-frontal lesions were compared with normal subjects on the Iowa Gambling Task (IGT). Our results showed that all frontal subgroups were impaired on the IGT in comparison with normal subjects. We noted also that IGT performance did not vary systematically based on lesion laterality or location. More precisely, our lesion analysis revealed that decision-making processes depend on a large cerebral network, including both ventromedial and dorsolateral areas of the prefrontal cortex. Consistent with past findings, our results support the claim that IGT deficit is not solitarily associated with ventromedial prefrontal cortex lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    Science.gov (United States)

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2017-05-13

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Plasticity in the Prefrontal Cortex of Adult Rats

    Directory of Open Access Journals (Sweden)

    Bryan eKolb

    2015-02-01

    Full Text Available We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions.

  17. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  18. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  19. Regionally Selective Requirement for D[subscript 1]/D[subscript 5] Dopaminergic Neurotransmission in the Medial Prefrontal Cortex in Object-in-Place Associative Recognition Memory

    Science.gov (United States)

    Savalli, Giorgia; Bashir, Zafar I.; Warburton, E. Clea

    2015-01-01

    Object-in-place (OiP) memory is critical for remembering the location in which an object was last encountered and depends conjointly on the medial prefrontal cortex, perirhinal cortex, and hippocampus. Here we examined the role of dopamine D[subscript 1]/D[subscript 5] receptor neurotransmission within these brain regions for OiP memory. Bilateral…

  20. Stress induced a shift from dorsal hippocampus to prefrontal cortex-dependent memory retrieval: role of regional corticosterone.

    Directory of Open Access Journals (Sweden)

    Gaelle eDominguez

    2014-05-01

    Full Text Available Most of the deleterious effects of stress on memory retrieval are due to a dysfunction of the hippocampo-prefrontal cortex interplay. The role of the stress-induced regional corticosterone increase in such dysfunction remains however unclear, since there is no published study as yet dedicated to measuring corticosterone concentrations simultaneously in both the prefrontal cortex (mPFC and the hippocampus (dHPC in relation with memory impairments. To that aim, we first showed in Experiment 1 that an acute stress (3 electric footschocks; 0.9 mA each delivered before memory testing reversed the memory retrieval pattern (MRP in a serial discrimination task in which mice learned two successive discriminations. More precisely, whereas non-stressed animals remembered accurately the first learned discrimination and not the second one, stressed mice remembered more accurately the second discrimination but not the first one. We demonstrated that local inactivation of dHPC or mPFC with the anesthetic lidocaine recruited the dHPC activity in non-stress conditions whereas the stress-induced MRP inversion recruited the mPFC activity. In a second experiment, we showed that acute stress induced a very similar time-course evolution of corticosterone rises within both the mPFC and dHPC. In a 3rd experiment, we found however that in situ injections of corticosterone either within the mPFC or the dHPC before memory testing favored the emergence of the mPFC-dependent MRP but blocked the emergence of the dHPC-dependent one. Overall, our study evidences that the simultaneous increase of corticosterone after stress in both areas induces a shift from dHPC (non stress condition to mPFC-dependent memory retrieval pattern and that corticosterone is critically involved in mediating the deleterious effects of stress on cognitive functions involving the mPFC-HPC interplay.

  1. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  2. Compulsive Sexual Behavior: Prefrontal and Limbic Volume and Interactions

    DEFF Research Database (Denmark)

    Schmidt, Casper; Morris, Laurel S.; Kvamme, Timo L.

    2017-01-01

    prefrontal cortex (whole brain, cluster corrected FWE P motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions...

  3. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  4. Memory Contextualization: The Role of Prefrontal Cortex in Functional Integration across Item and Context Representational Regions.

    Science.gov (United States)

    Zhang, Wei; van Ast, Vanessa A; Klumpers, Floris; Roelofs, Karin; Hermans, Erno J

    2018-04-01

    Memory recall is facilitated when retrieval occurs in the original encoding context. This context dependency effect likely results from the automatic binding of central elements of an experience with contextual features (i.e., memory "contextualization") during encoding. However, despite a vast body of research investigating the neural correlates of explicit associative memory, the neural interactions during encoding that predict implicit context-dependent memory remain unknown. Twenty-six participants underwent fMRI during encoding of salient stimuli (faces), which were overlaid onto unique background images (contexts). To index subsequent context-dependent memory, face recognition was tested either in intact or rearranged contexts, after scanning. Enhanced face recognition in intact relative to rearranged contexts evidenced successful memory contextualization. Overall subsequent memory effects (brain activity predicting whether items were later remembered vs. forgotten) were found in the left inferior frontal gyrus (IFG) and right amygdala. Effective connectivity analyses showed that stronger context-dependent memory was associated with stronger coupling of the left IFG with face- and place-responsive areas, both within and between participants. Our findings indicate an important role for the IFG in integrating information across widespread regions involved in the representation of salient items and contextual features.

  5. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Directory of Open Access Journals (Sweden)

    Nancy Raitano Lee

    2014-07-01

    Full Text Available While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT, relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females, ages 9-14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form. TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing and the difference in time between Trails B and A (number sequencing only. Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  6. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Science.gov (United States)

    Lee, Nancy Raitano; Wallace, Gregory L.; Raznahan, Armin; Clasen, Liv S.; Giedd, Jay N.

    2014-01-01

    While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT), relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females), ages 9–14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form). TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing) and the difference in time between Trails B and A (number sequencing only). Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT) across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal, and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  7. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  8. Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions.

    Directory of Open Access Journals (Sweden)

    Gary B Kaplan

    Full Text Available Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12 with either subcutaneous morphine (10 mg/kg or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1, consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL and infralimbic (IL cortex, nucleus accumbens (NAc core, dorsomedial caudate-putamen (CPU, basolateral amygdala (BLA and central nucleus of the amygdala (CNA but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc, motor outputs (CPU, and associative learning (PL, IL, BLA and stress pathways (CNA.

  9. Resting-state functional connectivity of antero-medial prefrontal cortex sub-regions in major depression and relationship to emotional intelligence.

    Science.gov (United States)

    Sawaya, Helen; Johnson, Kevin; Schmidt, Matthew; Arana, Ashley; Chahine, George; Atoui, Mia; Pincus, David; George, Mark S; Panksepp, Jaak; Nahas, Ziad

    2015-03-05

    Major depressive disorder has been associated with abnormal resting-state functional connectivity (FC), especially in cognitive processing and emotional regulation networks. Although studies have found abnormal FC in regions of the default mode network (DMN), no study has investigated the FC of specific regions within the anterior DMN based on cytoarchitectonic subdivisions of the antero-medial pre-frontal cortex (PFC). Studies from different areas in the field have shown regions within the anterior DMN to be involved in emotional intelligence. Although abnormalities in this region have been observed in depression, the relationship between the ventromedial PFC (vmPFC) function and emotional intelligence has yet to be investigated in depressed individuals. Twenty-one medication-free, non-treatment resistant, depressed patients and 21 healthy controls underwent a resting state functional magnetic resonance imaging session. The participants also completed an ability-based measure of emotional intelligence: the Mayer-Salovey-Caruso Emotional Intelligence Test. FC maps of Brodmann areas (BA) 25, 10 m, 10r, and 10p were created and compared between the two groups. Mixed-effects analyses showed that the more anterior seeds encompassed larger areas of the DMN. Compared to healthy controls, depressed patients had significantly lower connectivity between BA10p and the right insula and between BA25 and the perigenual anterior cingulate cortex. Exploratory analyses showed an association between vmPFC connectivity and emotional intelligence. These results suggest that individuals with depression have reduced FC between antero-medial PFC regions and regions involved in emotional regulation compared to control subjects. Moreover, vmPFC functional connectivity appears linked to emotional intelligence. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive.

    Science.gov (United States)

    Goldman-Rakic, P S

    1996-10-29

    The functional architecture of prefrontal cortex is central to our understanding of human mentation and cognitive prowess. This region of the brain is often treated as an undifferentiated structure, on the one hand, or as a mosaic of psychological faculties, on the other. This paper focuses on the working memory processor as a specialization of prefrontal cortex and argues that the different areas within prefrontal cortex represent iterations of this function for different information domains, including spatial cognition, object cognition and additionally, in humans, semantic processing. According to this parallel processing architecture, the 'central executive' could be considered an emergent property of multiple domain-specific processors operating interactively. These processors are specializations of different prefrontal cortical areas, each interconnected both with the domain-relevant long-term storage sites in posterior regions of the cortex and with appropriate output pathways.

  11. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome.

    Science.gov (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D

    2018-03-14

    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  12. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.

    Science.gov (United States)

    Gass, Natalia; Becker, Robert; Sack, Markus; Schwarz, Adam J; Reinwald, Jonathan; Cosa-Linan, Alejandro; Zheng, Lei; von Hohenberg, Christian Clemm; Inta, Dragos; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang; Gass, Peter; Sartorius, Alexander

    2018-04-01

    Evidence indicates that ketamine's rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile. We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action. The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties. Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect. The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.

  13. Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption.

    Science.gov (United States)

    Richard, Jocelyn M; Berridge, Kent C

    2013-02-15

    Corticolimbic circuits, including direct projections from prefrontal cortex to nucleus accumbens (NAc), permit top-down control of intense motivations generated by subcortical circuits. In rats, localized disruptions of glutamate signaling within medial shell of NAc generate desire or dread, anatomically organized along a rostrocaudal gradient analogous to a limbic keyboard. At rostral locations in shell, these disruptions generate appetitive eating, but at caudal locations the disruptions generate progressively fearful behaviors (distress vocalizations, escape attempts, and antipredator reactions). Here, we asked whether medial prefrontal cortex can modulate intense motivations generated by subcortical NAc disruptions. We used simultaneous microinjections in medial prefrontal cortex regions and in NAc shell to examine whether the desire or dread generated by NAc shell disruptions is modulated by activation/inhibition of three specific regions of prefrontal cortex: medial orbitofrontal cortex, infralimbic cortex (homologous to area 25 or subgenual anterior cingulate in the human), or prelimbic cortex (midventral anterior cingulate). We found that activation of medial orbitofrontal cortex biased intense bivalent motivation in an appetitive direction by amplifying generation of eating behavior by middle to caudal NAc disruptions, without altering fear. In contrast, activation of infralimbic prefrontal cortex powerfully and generally suppressed both appetitive eating and fearful behaviors generated by NAc shell disruptions. These results suggest that corticolimbic projections from discrete prefrontal regions can either bias motivational valence or generally suppress subcortically generated intense motivations of desire or fear. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  15. Environmental radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1985

    International Nuclear Information System (INIS)

    Aarkrog, A.; Boelskifte, S.; Dahlgaard, H.; Hansen, H.; Buch, E.; Christensen, G.C.; Hallstadius, L.; Rioseco, J.; Holm, E.

    1987-06-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr a 137 Cs in human diet in the Faroes and Greenland in 1985. Results from samplings of surface sea water and seaweed in the English Channel, the Fram Strait and along the Norwegian and Greenland coast are reported. Beside radiocesium and 90 Sr some of these samples have also been analysed for tritium, plutonium and americium. Finally technetium-99 data on seaweed and sea water samples collected in the North Atlantic region are presented. 14 refs. (author)

  16. Environmental radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1983

    International Nuclear Information System (INIS)

    Aarkrog, A.; Boelskifte, S.; Buch, E.; Christensen, G.C.; Dahlgaard, H.; Hallstadius, L.; Hansen, H.; Holm, E.; Mattsson, S.; Meide, A.

    1984-12-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1983. Results from samplings of surface sea water and seaweed in the Norwegian and Greenland Seas and along the Norwegian and Greenland west coasts are reported. Beside radiocesium and 90 Sr some of these samples have also been anlysed for tritium,plutonium and americium. Finally technetium-99 data on seaweed samples collected in the North Atlantic region since the beginning of the sixties are presented. (author)

  17. Environmental radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1984

    International Nuclear Information System (INIS)

    Aarkrog, A.; Boelskifte, S.; Buch, E.; Christensen, G.C.; Dahlgaard, H.; Hallstadius, L.; Hansen, H.; Holm, E.

    1985-12-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1984. Results from samplings of surface sea water and seaweed in the Norwegian and Greenland Seas and along the Norwegian and Greenland west coasts are reported. Beside radiocesium and 90 Sr some of these samples have also been anlysed for tritium, polonium, plutonium and americium. Finally technetium-99 data on seaweed samples collected in the North Atlantic region since the beginning of the sixties are presented. (author)

  18. The Stressed Female Brain: Neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress

    Directory of Open Access Journals (Sweden)

    Lisa Y. Maeng

    2013-12-01

    Full Text Available Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD, indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL and infralimbic (IL subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. 24h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similar to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful

  19. Environmental radioactivity in the North Atlantic region including the Faroe Islands and Greenland. 1990 and 1991

    International Nuclear Information System (INIS)

    Aarkrog, A.; Chen, Q.J.; Dahlgaard, H.; Hansen, H.; Nielsen, S.P.; Strandberg, M.; Buch, E.; Christensen, G.C.; Holm, E.

    1994-01-01

    Measurements of fallout radioactivity in the North Atlantic region including Faroe Islands and Greenland are reported. Strontium-90, cesium-137 and cesium-134 were determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes), and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1990 and 1991. 99 Tc data on marine samples, in particular sea water from the Greenland Sea, are reported. (au) (77 tabs., 46 ills., 8 refs.)

  20. Environmental radioactivity in the North Atlantic region including the Faroe Islands and Greenland

    International Nuclear Information System (INIS)

    Aarkrog, A.; Chen, Q.J.; Dahlgaard, H.; Hansen, H.; Nielsen, S.P.; Buch, E.; Christensen, G.C.; Holm, E.

    1992-01-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90, cesium-137 and cesium-134 were determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes), and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1988 and 1989. 99 Tc data on marine samples, in particular sea water from the Greenland Sea, are reported. (au) (91 taps., 51 ills., 7 refs.)

  1. An ArcGIS approach to include tectonic structures in point data regionalization.

    Science.gov (United States)

    Darsow, Andreas; Schafmeister, Maria-Theresia; Hofmann, Thilo

    2009-01-01

    Point data derived from drilling logs must often be regionalized. However, aquifers may show discontinuous surface structures, such as the offset of an aquitard caused by tectonic faults. One main challenge has been to incorporate these structures into the regionalization process of point data. We combined ordinary kriging and inverse distance weighted (IDW) interpolation to account for neotectonic structures in the regionalization process. The study area chosen to test this approach is the largest porous aquifer in Austria. It consists of three basins formed by neotectonic events and delimited by steep faults with a vertical offset of the aquitard up to 70 m within very short distances. First, ordinary kriging was used to incorporate the characteristic spatial variability of the aquitard location by means of a variogram. The tectonic faults could be included into the regionalization process by using breaklines with buffer zones. All data points inside the buffer were deleted. Last, IDW was performed, resulting in an aquitard map representing the discontinuous surface structures. This approach enables one to account for such surfaces using the standard software package ArcGIS; therefore, it could be adopted in many practical applications.

  2. A novel large deletion of the ICR1 region including H19 and putative enhancer elements.

    Science.gov (United States)

    Fryssira, Helen; Amenta, Stella; Kanber, Deniz; Sofocleous, Christalena; Lykopoulou, Evangelia; Kanaka-Gantenbein, Christina; Cerrato, Flavia; Lüdecke, Hermann-Josef; Bens, Susanne; Riccio, Andrea; Buiting, Karin

    2015-05-06

    Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2

  3. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Friberg, L

    1991-01-01

    To measure prefrontal and subcortical activity during a cognitive task, we examined 19 newly diagnosed schizophrenics and patients with schizophreniform psychosis. Seven healthy volunteers served as controls. The patients were drug naive or had received neuroleptics for a few days only. Cerebral ...

  4. [Functional results of cryosurgical procedures in rhegmatogenous retinal detachment including macula region - our experience].

    Science.gov (United States)

    Chrapek, O; Sín, M; Jirková, B; Jarkovský, J; Rehák, J

    2013-10-01

    Aim of this study is to evaluate retrospectively functional results of cryosurgical treatment of uncomplicated, idiopathic rhegmatogenous retinal detachment including macula region in phakic patients operated on at the Department of Ophthalmology, Faculty Hospital, Palacký University, Olomouc, Czech Republic, E.U., during the period 2002 -2013, and to evaluate the significance of the macula detachment duration for the final visual acuity. In the study group were included 56 eyes of 56 patients operated in the years 2003 - 2012 at the Department of Ophthalmology, Faculty Hospital, Palacký University, Olomouc. All patients were phakic and in all of them, the retinal detachment including the macula region was diagnosed. The mean follow-up period of the patients was 8,75 months. The initial and final visual acuity testing were performed. Comparing the initial and final visual acuity we rated the level of the visual acuity change. The result was stated as improved, if the visual acuity improved by 1 or more lines on the ETDRS chart. The result was rated as stabilized, if the visual acuity remained the same or it changed by 1 line of the ETDRS chart only. The result was evaluated as worsened, if the visual acuity decreased by 1 or more lines of the ETDRS chart. In the followed-up group, the authors compared visual acuity levels in patients with the macula detachment duration 10 days and 11 days. For the statistical evaluation of achieved results, the Mann - Whitney U test was used. The visual acuity improved in 49 (87 %), did not changed in 5 (9 %) and worsened in 2 (4 %) patients. The patients with macula detachment duration 10 days achieved statistically significant better visual acuity than patients with macula detachment duration 11 days. Patients with macula detachment duration 10 days have better prognosis for functional result than patients with macula detachment duration 11 days.

  5. 77 FR 62535 - Hydro Aluminum North America, Inc., Midwest Region, Including On-Site Leased Workers From...

    Science.gov (United States)

    2012-10-15

    ... Aluminum North America, Inc., Midwest Region, Including On- Site Leased Workers From Employment Group, Aerotek, and Manpower, Kalamazoo, Michigan; Hydro Aluminum North America, Inc., Midwest Region, Including... Aluminum North America, Inc., Kalamazoo, Michigan. The subject worker group includes on-site leased workers...

  6. Automatic treatment of multiple wound coils in 3D finite element problems including multiply connected regions

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.J.; Lai, H.C.; Eastham, J.F.; Al-Akayshee, Q.H. [Univ. of Bath (United Kingdom)

    1996-05-01

    This paper describes an efficient scheme for incorporating multiple wire wound coils into 3D finite element models. The scheme is based on the magnetic scalar representation with an additional basis for each coil. There are no restrictions on the topology of coils with respect to ferromagnetic and conductor regions. Reduced scalar regions and cuts are automatically generated.

  7. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour

    DEFF Research Database (Denmark)

    Rowe, James B.; Stephan, Klaas E.; Friston, Karl

    2005-01-01

    The role of the prefrontal cortex remains controversial. Neuroimaging studies support modality-specific and process-specific functions related to working memory and attention. Its role may also be defined by changes in its influence over other brain regions including sensory and motor cortex. We...... used functional magnetic imaging (fMRI) to study the free selection of actions and colours. Control conditions used externally specified actions and colours. The prefrontal cortex was activated during free selection, regardless of modality, in contrast to modality-specific activations outside...... included high-order interactions between modality, selection and regional activity. There was greater coupling between prefrontal cortex and motor cortex during free selection and action tasks, and between prefrontal cortex and visual cortex during free selection of colours. The results suggest...

  8. Neurological complications after 434 MHz microwave hyperthermia of the rat lumbar region including the spinal cord

    NARCIS (Netherlands)

    Franken, N. A.; de Vrind, H. H.; Sminia, P.; Haveman, J.; Troost, D.; Gonzalez Gonzalez, D.

    1992-01-01

    Hyperthermia was applied in the region of the vertebral column from the second to the fifth lumbar vertebra using a ring-shaped 434 MHz microwave radiator. In all experiments temperatures were measured at a 'reference' thermocouple which was placed against the fourth lumbar vertebra. After 60 min of

  9. Is variation management included in regional healthcare governance systems? Some proposals from Italy.

    Science.gov (United States)

    Nuti, Sabina; Seghieri, Chiara

    2014-01-01

    The Italian National Health System, which follows a Beveridge model, provides universal healthcare coverage through general taxation. Universal coverage provides uniform healthcare access to citizens and is the characteristic usually considered the added value of a welfare system financed by tax revenues. Nonetheless, wide differences in practice patterns, health outcomes and regional usages of resources that cannot be justified by differences in patient needs have been demonstrated to exist. Beginning with the experience of the health care system of the Tuscany region (Italy), this study describes the first steps of a long-term approach to proactively address the issue of geographic variation in healthcare. In particular, the study highlights how the unwarranted variation management has been addressed in a region with a high degree of managerial control over the delivery of health care and a consolidated performance evaluation system, by first, considering it a high priority objective and then by actively integrating it into the regional planning and control mechanism. The implications of this study can be useful to policy makers, professionals and managers, and will contribute to the understanding of how the management of variation can be implemented with performance measurements and financial incentives. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. The Development of the Ventral Prefrontal Cortex and Social Flexibility

    Science.gov (United States)

    Nelson, Eric E.; Guyer, Amanda E.

    2011-01-01

    Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context. PMID:21804907

  11. 75 FR 6355 - Manufacturing Extension Partnership (MEP) Availability of Funds for Three Regions Including the...

    Science.gov (United States)

    2010-02-09

    ... working with manufacturers. The proposal should include plans for integration into the MEP national system... Center? i. Organizational Structure. Completeness and appropriateness of the organizational structure...

  12. Capacity-speed relationships in prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Vivek Prabhakaran

    Full Text Available Working memory (WM capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.

  13. Land Use in LCA: Including Regionally Altered Precipitation to Quantify Ecosystem Damage.

    Science.gov (United States)

    Lathuillière, Michael J; Bulle, Cécile; Johnson, Mark S

    2016-11-01

    The incorporation of soil moisture regenerated by precipitation, or green water, into life cycle assessment has been of growing interest given the global importance of this resource for terrestrial ecosystems and food production. This paper proposes a new impact assessment model to relate land and water use in seasonally dry, semiarid, and arid regions where precipitation and evapotranspiration are closely coupled. We introduce the Precipitation Reduction Potential midpoint impact representing the change in downwind precipitation as a result of a land transformation and occupation activity. Then, our end-point impact model quantifies terrestrial ecosystem damage as a function of precipitation loss using a relationship between woody plant species richness, water and energy regimes. We then apply the midpoint and end-point models to the production of soybean in Southeastern Amazonia which has resulted from the expansion of cropland into tropical forest, with noted effects on local precipitation. Our proposed cause-effect chain represents a complementary approach to previous contributions which have focused on water consumption impacts and/or have represented evapotranspiration as a loss to the water cycle.

  14. Khat distorts the prefrontal cortex histology and function of adult ...

    African Journals Online (AJOL)

    Khat is a psychoactive herbal drug of pronounced ethno-pharmacological significance often abused due to its unregulated use. It affects many brain centers including the prefrontal cortex which is the anterior most part of the frontal lobe. The prefrontal cortex modulates working memory, planning complex cognitive ...

  15. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    Science.gov (United States)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  16. Evidence for a Specific Integrative Mechanism for Episodic Memory Mediated by AMPA/kainate Receptors in a Circuit Involving Medial Prefrontal Cortex and Hippocampal CA3 Region.

    Science.gov (United States)

    de Souza Silva, Maria A; Huston, Joseph P; Wang, An-Li; Petri, David; Chao, Owen Yuan-Hsin

    2016-07-01

    We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Differential Effects of Inactivation of Discrete Regions of Medial Prefrontal Cortex on Memory Consolidation of Moderate and Intense Inhibitory Avoidance Training

    Directory of Open Access Journals (Sweden)

    María E. Torres-García

    2017-11-01

    Full Text Available It has been found that the medial prefrontal cortex (mPFC is involved in memory encoding of aversive events, such as inhibitory avoidance (IA training. Dissociable roles have been described for different mPFC subregions regarding various memory processes, wherein the anterior cingulate cortex (ACC, prelimbic cortex (PL, and infralimbic cortex (IL are involved in acquisition, retrieval, and extinction of aversive events, respectively. On the other hand, it has been demonstrated that intense training impedes the effects on memory of treatments that typically interfere with memory consolidation. The aim of this work was to determine if there are differential effects on memory induced by reversible inactivation of neural activity of ACC, PL, or IL produced by tetrodotoxin (TTX in rats trained in IA using moderate (1.0 mA and intense (3.0 mA foot-shocks. We found that inactivation of ACC has no effects on memory consolidation, regardless of intensity of training. PL inactivation impairs memory consolidation in the 1.0 mA group, while no effect on consolidation was produced in the 3.0 mA group. In the case of IL, a remarkable amnestic effect in LTM was observed in both training conditions. However, state-dependency can explain the amnestic effect of TTX found in the 3.0 mA IL group. In order to circumvent this effect, TTX was injected into IL immediately after training (thus avoiding state-dependency. The behavioral results are equivalent to those found after PL inactivation. Therefore, these findings provide evidence that PL and IL, but not ACC, mediate LTM of IA only in moderate training.

  18. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  19. Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase

    NARCIS (Netherlands)

    Wouterlood, F.G.; Steinbusch, H.W.M.; Luiten, P.G.M.; Bol, J.G.J.M.

    1987-01-01

    We investigated the projection from the infralimbic division of the prefrontal cortex (area 25) to histaminergic neurons in the posterior hypothalamic area. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in the prefrontal cortex of rats. Frozen brain sections were subjected to combined

  20. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Report on a collection of Hydroida from the Caribbean region, including an annotated checklist of Caribbean Hydroids

    NARCIS (Netherlands)

    Vervoort, W.

    1968-01-01

    INTRODUCTION The present report deals with a collection of Hydroids from the Zoological Museum, Munich, German Federal Republic (Zoologische Sammlung des Bayerischen Staates, München), collected during various expeditions in the Caribbean region. I have thought it advisable to include in this report

  2. Levels of conflict in reasoning modulate right lateral prefrontal cortex.

    Science.gov (United States)

    Stollstorff, Melanie; Vartanian, Oshin; Goel, Vinod

    2012-01-05

    Right lateral prefrontal cortex (rlPFC) has previously been implicated in logical reasoning under conditions of conflict. A functional magnetic resonance imaging (fMRI) study was conducted to explore its role in conflict more precisely. Specifically, we distinguished between belief-logic conflict and belief-content conflict, and examined the role of rlPFC under each condition. The results demonstrated that a specific region of rlPFC is consistently activated under both types of conflict. Moreover, the results of a parametric analysis demonstrated that the same region was modulated by the level of conflict contained in reasoning arguments. This supports the idea that this specific region is engaged to resolve conflict, including during deductive reasoning. This article is part of a Special Issue entitled "The Cognitive Neuroscience of Thought". Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  4. Compulsive Sexual Behavior: Prefrontal and Limbic Volume and Interactions

    DEFF Research Database (Denmark)

    Schmidt, Casper; Morris, Laurel S.; Kvamme, Timo L.

    2017-01-01

    with matched healthy volunteers (HV). Methods: Structural MRI (MPRAGE) data were collected in 92 subjects (23 CSB males and 69 age-matched male HV) and analyzed using voxel-based morphometry. Resting state functional MRI data using multi-echo planar sequence and independent components analysis (ME-ICA) were...... prefrontal cortex (whole brain, cluster corrected FWE P motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions...

  5. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    Science.gov (United States)

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  6. Decreased prefrontal functional brain response during memory testing in women with Cushing's syndrome in remission.

    Science.gov (United States)

    Ragnarsson, Oskar; Stomby, Andreas; Dahlqvist, Per; Evang, Johan A; Ryberg, Mats; Olsson, Tommy; Bollerslev, Jens; Nyberg, Lars; Johannsson, Gudmundur

    2017-08-01

    Neurocognitive dysfunction is an important feature of Cushing's syndrome (CS). Our hypothesis was that patients with CS in remission have decreased functional brain responses in the prefrontal cortex and hippocampus during memory testing. In this cross-sectional study we included 19 women previously treated for CS and 19 controls matched for age, gender, and education. The median remission time was 7 (IQR 6-10) years. Brain activity was studied with functional magnetic resonance imaging during episodic- and working-memory tasks. The primary regions of interest were the prefrontal cortex and the hippocampus. A voxel-wise comparison of functional brain responses in patients and controls was performed. During episodic-memory encoding, patients displayed lower functional brain responses in the left and right prefrontal gyrus (pright inferior occipital gyrus (pbrain responses in the left posterior hippocampus in patients (p=0.05). During episodic-memory retrieval, the patients displayed lower functional brain responses in several brain areas with the most predominant difference in the right prefrontal cortex (pbrain response during a more complex working memory task compared with a simpler one. In conclusion, women with CS in long-term remission have reduced functional brain responses during episodic and working memory testing. This observation extends previous findings showing long-term adverse effects of severe hypercortisolaemia on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2017-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  8. Including capabilities of local actors in regional economic development: Empirical results of local seaweed industries in Sulawesi

    Directory of Open Access Journals (Sweden)

    Mark T.J. Vredegoor

    2013-11-01

    Full Text Available Stimson, et al. (2009 developed one of the most relevant and well known model for Regional Economic Development. This model covers the most important factors related to economic development question. However, this model excludes the social components of development. Local community should be included in terms of the development of a region. This paper introduced to the Stimson model “Skills” and “Knowledge” at the individual level for local actors indicating the capabilities at the individual level and introduced “Human Coordination” for the capabilities at the collective level. In our empirical research we looked at the Indonesian seaweed market with a specific focus on the region of Baubau. This region was chosen because there are hardly any economic developments. Furthermore this study focuses on the poorer community who are trying to improve their situation by the cultivation of Seaweed. Eighteen local informants was interviewed besides additional interviews of informants from educational and governmental institutions in the cities of Jakarta, Bandung and Yogyakarta. The informants selected had a direct or indirect relationship with the region of Baubau. With the support of the empirical data from this region we can confirm that it is worthwhile to include the local community in the model for regional economic development.  The newly added variables: at the individual level; Skills and Knowledge and at the level of the collective: Human Coordination was supported by the empirical material. It is an indication that including the new variables can give regional economic an extra dimension.  In this way we think that it becomes more explicit that “endogenous” means that the people, or variables closely related to them, should be more explicitly included in models trying to capture Regional Economic Development or rephrased as Local Economic Development Keywords:Regional and endogenous development; Fisheries and seaweed

  9. Neurons responsive to face-view in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Romanski, L M; Diehl, M M

    2011-08-25

    Studies have indicated that temporal and prefrontal brain regions process face and vocal information. Face-selective and vocalization-responsive neurons have been demonstrated in the ventrolateral prefrontal cortex (VLPFC) and some prefrontal cells preferentially respond to combinations of face and corresponding vocalizations. These studies suggest VLPFC in nonhuman primates may play a role in communication that is similar to the role of inferior frontal regions in human language processing. If VLPFC is involved in communication, information about a speaker's face including identity, face-view, gaze, and emotional expression might be encoded by prefrontal neurons. In the following study, we examined the effect of face-view in ventrolateral prefrontal neurons by testing cells with auditory, visual, and a set of human and monkey faces rotated through 0°, 30°, 60°, 90°, and -30°. Prefrontal neurons responded selectively to either the identity of the face presented (human or monkey) or to the specific view of the face/head, or to both identity and face-view. Neurons which were affected by the identity of the face most often showed an increase in firing in the second part of the stimulus period. Neurons that were selective for face-view typically preferred forward face-view stimuli (0° and 30° rotation). The neurons which were selective for forward face-view were also auditory responsive compared to other neurons which responded to other views or were unselective which were not auditory responsive. Our analysis showed that the human forward face (0°) was decoded better and also contained the most information relative to other face-views. Our findings confirm a role for VLPFC in the processing and integration of face and vocalization information and add to the growing body of evidence that the primate ventrolateral prefrontal cortex plays a prominent role in social communication and is an important model in understanding the cellular mechanisms of communication

  10. Amodal processing in human prefrontal cortex.

    Science.gov (United States)

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  11. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  12. Stress amplifies sex differences in primate prefrontal profiles of gene expression.

    Science.gov (United States)

    Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M

    2017-11-02

    Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.

  13. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    Directory of Open Access Journals (Sweden)

    Anders H. Andersen

    2015-01-01

    Full Text Available Parkinson’s disease (PD is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD patients. Participants included 18 ndPD patients (11 men, 7 women and 10 dPD patients (7 men, 3 women. Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN. DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients.

  14. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M

    2006-10-25

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.

  15. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Rebecca M Shansky

    2013-04-01

    Full Text Available The mechanisms and neural circuits that drive emotion and cognition are inextricably linked. Activation of the hypothalamic-pituitary-adrenal (HPA axis as a result of stress or other causes of arousal initiates a flood of hormone and neurotransmitter release throughout the brain, affecting the way we think, decide, and behave. This review will focus on factors that influence the function of the prefrontal cortex (PFC, a brain region that governs higher-level cognitive processes and executive function. The PFC becomes markedly impaired by stress, producing measurable deficits in working memory. These deficits arise from the interaction of multiple neuromodulators, including glucocorticoids, catecholamines, and gonadal hormones; here we will discuss the non- human primate and rodent literature that has furthered our understanding of the circuitry, receptors, and signaling cascades responsible for stress-induced prefrontal dysfunction.

  16. Application of Observed Precipitation in NCEP Global and Regional Data Assimilation Systems, Including Reanalysis and Land Data Assimilation

    Science.gov (United States)

    Mitchell, K. E.

    2006-12-01

    The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global

  17. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    Full Text Available Rikuei Hirosawa,1 Jin Narumoto,1 Yuki Sakai,1 Seiji Nishida,2 Takuya Ishida,1 Takashi Nakamae,1 Yuichi Takei,3 Kenji Fukui1 1Department of Psychiatry, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 2Maizuru Medical Center, Kyoto, 3Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan Background: Near-infrared spectroscopy has helped our understanding of the neurobiological mechanisms of psychiatric disorders and has advantages including noninvasiveness, lower cost, and ease of use compared with other imaging techniques, like functional magnetic resonance imaging. The verbal fluency task is the most common and well established task used to assess cognitive activation during near-infrared spectroscopy. Recent functional neuroimaging studies have shown that the orbitofrontal cortex and other brain regions, including the dorsolateral prefrontal cortex, may play important roles in the pathophysiology of obsessive-compulsive disorder (OCD. This study aimed to evaluate hemodynamic responses in the dorsolateral prefrontal cortex in patients with OCD using near-infrared spectroscopy during the verbal fluency task and to compare these with dorsolateral prefrontal cortex responses in healthy controls. Methods: Twenty patients with OCD and 20 controls matched for age, gender, handedness, and estimated intelligence quotient participated in this study. The verbal fluency task was used to elicit near-infrared spectroscopic activation and consisted of a 30-second pre-task, followed by three repetitions of a 20-second verbal fluency task (total 60 seconds, followed by a 70-second post-task period. The near-infrared spectroscopy experiment was conducted on the same day as surveys of obsessive-compulsive symptoms, depression, and anxiety. Z-scores for changes in the concentration of oxygenated hemoglobin were compared between the OCD patients and controls in 14 channels set over the

  18. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  19. Impaired prefrontal hemodynamic maturation in autism and unaffected siblings.

    Directory of Open Access Journals (Sweden)

    Yuki Kawakubo

    Full Text Available BACKGROUND: Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD. Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb] in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs. CONCLUSION/SIGNIFICANCE: Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena.

  20. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Directory of Open Access Journals (Sweden)

    Annabella Di Giorgio

    Full Text Available BACKGROUND: Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560 and in the nicotinic receptor α5 gene (CHRNA5, rs16969968 on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. METHODS: A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T and CHNRA5 rs16969968 (G>A on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. RESULTS: We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. CONCLUSIONS: The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  1. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Science.gov (United States)

    Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro

    2014-01-01

    Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  2. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    Science.gov (United States)

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-12-13

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  3. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  4. Bird species and numbers of birds in oak savannas of the Southwestern Borderlands region including effects of burning

    Science.gov (United States)

    Peter F. Ffolliott; Hui Chen; Gerald J. Gottfried

    2011-01-01

    Oak savannas of the Southwestern Borderlands region provide food, cover, and sites for nesting, roosting, and perching for a diversity of bird species. The results of a five-year (2003-2007) study of bird species, numbers of birds, and their diversities in the naturally occurring (unburned) oak savannas of the region are reported in this paper. Effects of cool-season...

  5. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Science.gov (United States)

    Prendergast, Garreth; Limbrick-Oldfield, Eve; Ingamells, Ed; Gathercole, Susan; Baddeley, Alan; Green, Gary G R

    2013-01-01

    The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG). Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  6. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Garreth Prendergast

    Full Text Available The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG. Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  7. Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Ryu Takizawa

    Full Text Available BACKGROUND: "Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE: These data suggest that the prefrontal NIRS signals can noninvasively detect the impact

  8. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    Science.gov (United States)

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    Science.gov (United States)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  10. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  11. Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits.

    Science.gov (United States)

    Friedman, Lauren G; Riemslagh, Fréderike W; Sullivan, Josefa M; Mesias, Roxana; Williams, Frances M; Huntley, George W; Benson, Deanna L

    2015-01-01

    Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. © 2014 Wiley Periodicals, Inc.

  12. Enhanced prefrontal functional–structural networks to support postural control deficits after traumatic brain injury in a pediatric population

    Directory of Open Access Journals (Sweden)

    Ibai Diez

    2017-06-01

    Full Text Available Traumatic brain injury (TBI affects structural connectivity, triggering the reorganization of structural–functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants. TBI patients (but not controls recruited prefrontal regions to interact with two separated networks: (1 a subcortical network, including parts of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulate gyrus, and precuneus; and (2 a task-positive network, involving regions of the dorsal attention system, together with dorsolateral and ventrolateral prefrontal regions. We also found that the increased prefrontal connectivity in TBI patients was correlated with some postural control indices, such as the amount of body sway, whereby patients with worse balance increased their connectivity in frontal regions more strongly. The increased prefrontal connectivity found in TBI patients may provide the structural scaffolding for stronger cognitive control of certain behavioral functions, consistent with the observations that various motor tasks are performed less automatically following TBI and that more cognitive control is associated with such actions. Using a new hierarchical atlas whose modules are relevant for both structure and function, we found increased structural and functional connectivity in prefrontal regions in TBI patients as compared to controls, in addition to a general pattern of overall decreased connectivity across the TBI brain. Although this increased prefrontal connectivity reflected interactions between brain areas when participants were at rest, the enhanced connectivity was found to be negatively correlated with active behavior such as postural control performance. Thus our findings, obtained

  13. [Affective and cognitive decision making in major depression: influence of the prefrontal cortex, serotonin transporter genotype and personality traits].

    Science.gov (United States)

    Must, Anita; Horváth, Szatmár; Janka, Zoltán

    2008-05-30

    Patients with major depressive disorder (MDD) show neuropsychological impairments, including deficient executive functions and suboptimal decision-making strategies, which are mediated by several brain regions. In the development of these symptoms the pathology of the prefrontal cortex (PFC), including the dorsolateral, ventromedial and orbitofrontal regions, may also play an important role. Neuropsychological assessment is a useful tool in detecting and measuring these deficiencies, showing that patients with MDD exhibit altered sensitivity to reward and punishment. However, impairment of emotional decision-making strategies in MDD is influenced by genetic variations (5-HTTLPR polymorphism) and personality traits, which seem to have a higher predictive value on decision making performance than the clinical symptoms.

  14. Dorsolateral Prefrontal Contributions to Human Intelligence

    Science.gov (United States)

    Barbey, Aron K.; Colom, Roberto; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control functions for human intelligence, the necessity of the dorsolateral prefrontal cortex (dlPFC) for key competencies of general intelligence and executive function remains to be well established. Here we studied human brain lesion patients with dlPFC lesions to investigate whether this region is computationally necessary for performance on neuropsychological tests of general intelligence and executive function, administering the Wechsler Adult Intelligence Scale (WAIS) and subtests of the Delis Kaplan Executive Function System (D-KEFS) to three groups: dlPFC lesions (n = 19), non-dlPFC lesions (n = 152), and no brain lesions (n = 55). The key results indicate that: (1) patients with focal dlPFC damage exhibit lower scores, at the latent variable level, than controls in general intelligence (g) and executive function; (2) dlPFC patients demonstrate lower scores than controls in several executive measures; and (3) these latter differences are no longer significant when the pervasive influence of the general factor of intelligence (g) is statistically removed. The observed findings support a central role for the dlPFC in general intelligence and make specific recommendations for the interpretation and application of the WAIS and D-KEFS to the study of high-level cognition in health and disease. PMID:22634247

  15. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the total body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10/sup -4/ millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references.

  16. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  17. Medial prefrontal cortex subserves diverse forms of self-reflection.

    Science.gov (United States)

    Jenkins, Adrianna C; Mitchell, Jason P

    2011-01-01

    The ability to think about oneself--to self--reflect--is one of the defining features of the human mind. Recent research has suggested that this ability may be subserved by a particular brain region: the medial prefrontal cortex (MPFC). However, although humans can contemplate a variety of different aspects of themselves, including their stable personality traits, current feelings, and physical attributes, no research has directly examined the extent to which these different forms of self-reflection are subserved by common mechanisms. To address this question, participants were scanned using functional magnetic resonance imaging (fMRI) while making judgments about their own personality traits, current mental states, and physical attributes as well as those of another person. Whereas some brain regions responded preferentially during only one form of self-reflection, a robust region of MPFC was engaged preferentially during self-reflection across all three types of judgment. These results suggest that--although dissociable--diverse forms of self-referential thought draw on a shared cognitive process subserved by MPFC.

  18. Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Meier, Sandra L; Charleston, Alison J; Tippett, Lynette J

    2010-11-01

    Amyotrophic lateral sclerosis, a progressive disease affecting motor neurons, may variably affect cognition and behaviour. We tested the hypothesis that functions associated with orbitomedial prefrontal cortex are affected by evaluating the behavioural and cognitive performance of 18 participants with amyotrophic lateral sclerosis without dementia and 18 healthy, matched controls. We measured Theory of Mind (Faux Pas Task), emotional prosody recognition (Aprosodia Battery), reversal of behaviour in response to changes in reward (Probabilistic Reversal Learning Task), decision making without risk (Holiday Apartment Task) and aberrant behaviour (Neuropsychiatric Inventory). We also assessed dorsolateral prefrontal function, using verbal and written fluency and planning (One-touch Stockings of Cambridge), to determine whether impairments in tasks sensitive to these two prefrontal regions co-occur. The patient group was significantly impaired at identifying social faux pas, recognizing emotions and decision-making, indicating mild, but consistent impairment on most measures sensitive to orbitomedial prefrontal cortex. Significant levels of aberrant behaviour were present in 50% of patients. Patients were also impaired on verbal fluency and planning. Individual subject analyses involved computing classical dissociations between tasks sensitive to different prefrontal regions. These revealed heterogeneous patterns of impaired and spared cognitive abilities: 33% of participants had classical dissociations involving orbitomedial prefrontal tasks, 17% had classical dissociations involving dorsolateral prefrontal tasks, 22% had classical dissociations between tasks of both regions, and 28% had no classical dissociations. These data indicate subtle changes in behaviour, emotional processing, decision-making and altered social awareness, associated with orbitomedial prefrontal cortex, may be present in a significant proportion of individuals with amyotrophic lateral sclerosis

  19. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    Science.gov (United States)

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  20. khat distorts the prefrontal cortex histology and function of adult

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... It affects many brain centers including the prefrontal cortex which is the ... cognitive behaviors however; it is linked to many psychological ... by traumatic events while others experience ... scientific research in exposing the effects. ... between 3 to 5pm daily. ... needle attached a plastic tubing was connected.

  1. Social cognition in patients following surgery to the prefrontal cortex

    NARCIS (Netherlands)

    Jenkins, L.M.; Andrewes, D.G.; Nicholas, C.L.; Drummond, K.J.; Moffat, B.A.; Phal, P.; Desmond, P.; Kessels, R.P.C.

    2014-01-01

    Impaired social cognition, including emotion recognition, may explain dysfunctional emotional and social behaviour in patients with lesions to the ventromedial prefrontal cortex (VMPFC). However, the VMPFC is a large, poorly defined area that can be sub-divided into orbital and medial sectors. We

  2. Selective reductions in prefrontal glucose metabolism in murderers.

    Science.gov (United States)

    Raine, A; Buchsbaum, M S; Stanley, J; Lottenberg, S; Abel, L; Stoddard, J

    1994-09-15

    This study tests the hypothesis that seriously violent offenders pleading not guilty by reason of insanity or incompetent to stand trial are characterized by prefrontal dysfunction. This hypothesis was tested in a group of 22 subjects accused of murder and 22 age-matched and gender-matched controls by measuring local cerebral uptake of glucose using positron emission tomography during the continuous performance task. Murderers had significantly lower glucose metabolism in both lateral and medial prefrontal cortex relative to controls. No group differences were observed for posterior frontal, temporal, and parietal glucose metabolism, indicating regional specificity for the prefrontal deficit. Group differences were not found to be a function of raised levels of left-handedness, schizophrenia, ethnic minority status, head injury, or motivation deficits in the murder group. These preliminary results suggest that deficits localized to the prefrontal cortex may be related to violence in a selected group of offenders, although further studies are needed to establish the generalizability of these findings to violent offenders in the community.

  3. Prefrontal Cortex and Social Cognition in Mouse and Man

    Science.gov (United States)

    Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi

    2015-01-01

    Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701

  4. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making.

    Science.gov (United States)

    van 't Wout, Mascha; Kahn, René S; Sanfey, Alan G; Aleman, André

    2005-11-07

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task. This is restricted to correlational evidence, however, and it remains unclear whether the dorsolateral prefrontal cortex is crucial for strategic decision-making. The present study used repetitive transcranial magnetic stimulation in order to investigate the causal role of the dorsolateral prefrontal cortex in strategic decision-making in the Ultimatum Game. The results showed that repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex resulted in an altered decision-making strategy compared with sham stimulation. We conclude that the dorsolateral prefrontal cortex is causally implicated in strategic decision-making in healthy human study participants.

  5. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  6. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  7. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Perrodin, Catherine; Markram, Henry

    2008-01-01

    of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions...

  8. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation.

    Directory of Open Access Journals (Sweden)

    Vadim Zotev

    Full Text Available We observed in a previous study (PLoS ONE 6:e24522 that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC, bilateral dorsomedial prefrontal cortex (DMPFC, bilateral superior frontal gyrus (SFG, and right medial frontopolar cortex (MFPC. Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA, potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training is also accompanied by significant increases in the instantaneous (contemporaneous effects of the left rACC on four other regions - the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly posttraumatic stress

  9. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  10. Prefrontal cortex and drug abuse vulnerability: translation to prevention and treatment interventions.

    Science.gov (United States)

    Perry, Jennifer L; Joseph, Jane E; Jiang, Yang; Zimmerman, Rick S; Kelly, Thomas H; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P; Bardo, Michael T

    2011-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and humans. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    Science.gov (United States)

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  12. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  13. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  14. Monkey prefrontal neurons during Sternberg task performance: full contents of working memory or most recent item?

    Science.gov (United States)

    Konecky, R O; Smith, M A; Olson, C R

    2017-06-01

    To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or

  15. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers.

    Science.gov (United States)

    Raine, A; Meloy, J R; Bihrle, S; Stoddard, J; LaCasse, L; Buchsbaum, M S

    1998-01-01

    There appear to be no brain imaging studies investigating which brain mechanisms subserve affective, impulsive violence versus planned, predatory violence. It was hypothesized that affectively violent offenders would have lower prefrontal activity, higher subcortical activity, and reduced prefrontal/subcortical ratios relative to controls, while predatory violent offenders would show relatively normal brain functioning. Glucose metabolism was assessed using positron emission tomography in 41 comparisons, 15 predatory murderers, and nine affective murderers in left and right hemisphere prefrontal (medial and lateral) and subcortical (amygdala, midbrain, hippocampus, and thalamus) regions. Affective murderers relative to comparisons had lower left and right prefrontal functioning, higher right hemisphere subcortical functioning, and lower right hemisphere prefrontal/subcortical ratios. In contrast, predatory murderers had prefrontal functioning that was more equivalent to comparisons, while also having excessively high right subcortical activity. Results support the hypothesis that emotional, unplanned impulsive murderers are less able to regulate and control aggressive impulses generated from subcortical structures due to deficient prefrontal regulation. It is hypothesized that excessive subcortical activity predisposes to aggressive behaviour, but that while predatory murderers have sufficiently good prefrontal functioning to regulate these aggressive impulses, the affective murderers lack such prefrontal control over emotion regulation.

  16. Neural mechanisms of memory retrieval: role of the prefrontal cortex.

    Science.gov (United States)

    Hasegawa, I

    2000-01-01

    In the primate brain, long-term memory is stored in the neocortical association area which is also engaged in sensory perception. The coded representation of memory is retrieved via interactions of hierarchically different cortical areas along bottom-up and top-down anatomical connections. The functional significance of the fronto-cortical top-down neuronal projections has been relevantly assessed in a new experimental paradigm using posterior-split-brain monkeys. When the splenium of the corpus callosum and the anterior commissure were selectively split, the bottom-up visual signal originating from the unilateral striate cortex could not reach the contralateral visual cortical areas. In this preparation, long-term memory acquired through visual stimulus-stimulus association learning was prevented from transferring across hemispheres. Nonetheless, following the presentation of a visual cue to one hemisphere, the prefrontal cortex could instruct the contralateral hemisphere to retrieve the correct stimulus specified by the cue. These results support the hypothesis that the prefrontal cortex can regulate memory recall in the absence of bottom-up sensory input. In humans, functional neuroimaging studies have revealed activation of a distributed neural network, including the prefrontal cortex, during memory retrieval tasks. Thus, the prefrontal cortex is consistently involved in retrieval of long-term memory in primates.

  17. Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon

    2013-11-01

    Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation

  18. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region.

    NARCIS (Netherlands)

    Reutlinger, C.; Helbig, I.; Gawelczyk, B.; Subero, J.I.; Tonnies, H.; Muhle, H.; Finsterwalder, K.; Vermeer, S.; Pfundt, R.; Sperner, J.; Stefanova, I.; Gillessen-Kaesbach, G.; Spiczak, S. von; Baalen, A. van; Boor, R.; Siebert, R.; Stephani, U.; Caliebe, A.

    2010-01-01

    Seizure disorders of the rolandic region comprise a spectrum of different epilepsy syndromes ranging from benign rolandic epilepsy to more severe seizure disorders including atypical benign partial epilepsy/pseudo-Lennox syndrome,electrical status epilepticus during sleep, and Landau-Kleffner

  19. Specialization of the Rostral Prefrontal Cortex for Distinct Analogy Processes

    Science.gov (United States)

    Gilbert, Sam J.; Benoit, Roland G.; Burgess, Paul W.

    2010-01-01

    Analogical reasoning is central to learning and abstract thinking. It involves using a more familiar situation (source) to make inferences about a less familiar situation (target). According to the predominant cognitive models, analogical reasoning includes 1) generation of structured mental representations and 2) mapping based on structural similarities between them. This study used functional magnetic resonance imaging to specify the role of rostral prefrontal cortex (PFC) in these distinct processes. An experimental paradigm was designed that enabled differentiation between these processes, by temporal separation of the presentation of the source and the target. Within rostral PFC, a lateral subregion was activated by analogy task both during study of the source (before the source could be compared with a target) and when the target appeared. This may suggest that this subregion supports fundamental analogy processes such as generating structured representations of stimuli but is not specific to one particular processing stage. By contrast, a dorsomedial subregion of rostral PFC showed an interaction between task (analogy vs. control) and period (more activated when the target appeared). We propose that this region is involved in comparison or mapping processes. These results add to the growing evidence for functional differentiation between rostral PFC subregions. PMID:20156841

  20. Reduced but broader prefrontal activity in patients with schizophrenia during n-back working memory tasks: a multi-channel near-infrared spectroscopy study.

    Science.gov (United States)

    Koike, Shinsuke; Takizawa, Ryu; Nishimura, Yukika; Kinou, Masaru; Kawasaki, Shingo; Kasai, Kiyoto

    2013-09-01

    Caudal regions of the prefrontal cortex, including the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex, are involved in essential cognitive functions such as working memory. In contrast, more rostral regions, such as the frontopolar cortex (FpC), have integrative functions among cognitive functions and thereby contribute crucially to real-world social activity. Previous functional magnetic resonance imaging studies have shown patients with schizophrenia had different DLPFC activity pattern in response to cognitive load changes compared to healthy controls; however, the spatial relationship between the caudal and rostral prefrontal activation has not been evaluated under less-constrained conditions. Twenty-six patients with schizophrenia and 26 age-, sex-, and premorbid-intelligence-matched healthy controls participated in this study. Hemodynamic changes during n-back working memory tasks with different cognitive loads were measured using multi-channel near-infrared spectroscopy (NIRS). Healthy controls showed significant task-related activity in the bilateral VLPFC and significant task-related decreased activity in the DLPFC, with greater signal changes when the task required more cognitive load. In contrast, patients with schizophrenia showed activation in the more rostral regions, including bilateral DLPFC and FpC. Neither decreased activity nor greater activation in proportion to elevated cognitive load occurred. This multi-channel NIRS study demonstrated that activation intensity did not increase in patients with schizophrenia associated with cognitive load changes, suggesting hypo-frontality as cognitive impairment in schizophrenia. On the other hand, patients had broader prefrontal activity in areas such as the bilateral DLPFC and FpC regions, thus suggesting a hyper-frontality compensatory response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Prefrontal Cortex, Emotion, and Approach/Withdrawal Motivation.

    Science.gov (United States)

    Spielberg, Jeffrey M; Stewart, Jennifer L; Levin, Rebecca L; Miller, Gregory A; Heller, Wendy

    2008-01-01

    This article provides a selective review of the literature and current theories regarding the role of prefrontal cortex, along with some other critical brain regions, in emotion and motivation. Seemingly contradictory findings have often appeared in this literature. Research attempting to resolve these contradictions has been the basis of new areas of growth and has led to more sophisticated understandings of emotional and motivational processes as well as neural networks associated with these processes. Progress has, in part, depended on methodological advances that allow for increased resolution in brain imaging. A number of issues are currently in play, among them the role of prefrontal cortex in emotional or motivational processes. This debate fosters research that will likely lead to further refinement of conceptualizations of emotion, motivation, and the neural processes associated with them.

  2. Impact of Vortioxetine on Synaptic Integration in Prefrontal-Subcortical Circuits: Comparisons with Escitalopram

    Directory of Open Access Journals (Sweden)

    Shreaya Chakroborty

    2017-10-01

    Full Text Available Prefrontal-subcortical circuits support executive functions which often become dysfunctional in psychiatric disorders. Vortioxetine is a multimodal antidepressant that is currently used in the clinic to treat major depressive disorder. Mechanisms of action of vortioxetine include serotonin (5-HT transporter blockade, 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, and 5-HT1D, 5-HT3, and 5-HT7 receptor antagonism. Vortioxetine facilitates 5-HT transmission in the medial prefrontal cortex (mPFC, however, the impact of this compound on related prefrontal-subcortical circuits is less clear. Thus, the current study examined the impact of systemic vortioxetine administration (0.8 mg/kg, i.v. on spontaneous spiking and spikes evoked by electrical stimulation of the mPFC in the anterior cingulate cortex (ACC, medial shell of the nucleus accumbens (msNAc, and lateral septal nucleus (LSN in urethane-anesthetized rats. We also examined whether vortioxetine modulated afferent drive in the msNAc from hippocampal fimbria (HF inputs. Similar studies were performed using the selective 5-HT reuptake inhibitor [selective serotonin reuptake inhibitors (SSRI] escitalopram (1.6 mg/kg, i.v. to enable comparisons between the multimodal actions of vortioxetine and SSRI-mediated effects. No significant differences in spontaneous activity were observed in the ACC, msNAc, and LSN across treatment groups. No significant impact of treatment on mPFC-evoked responses was observed in the ACC. In contrast, vortioxetine decreased mPFC-evoked activity recorded in the msNAc as compared to parallel studies in control and escitalopram treated groups. Thus, vortioxetine may reduce mPFC-msNAc afferent drive via a mechanism that, in addition to an SSRI-like effect, requires 5-HT receptor modulation. Recordings in the LSN revealed a significant increase in mPFC-evoked activity following escitalopram administration as compared to control and vortioxetine treated groups

  3. Male carriers of the FMR1 premutation show altered hippocampal-prefrontal function during memory encoding

    Directory of Open Access Journals (Sweden)

    John M Wang

    2012-10-01

    Full Text Available Previous functional MRI (fMRI studies have shown that fragile X mental retardation 1 (FMR1 premutation allele carriers (FXPCs exhibit decreased hippocampal activation during a recall task and lower inferior frontal activation during a working memory task compared to matched controls. The molecular characteristics of FXPCs includes 55 to 200 CGG trinucleoutide expansions, increased FMR1 mRNA levels, and decreased FMRP levels especially at higher repeat sizes. In the current study, we utilized MRI to examine differences in hippocampal volume and function during an encoding task in young male FXPCs. While no decreases in either hippocampal volume or hippocampal activity were observed during the encoding task in FXPCs, FMRP level (measured in blood correlated with decreases in parahippocampal activation. In addition, activity in the right dorsolateral prefrontal cortex during correctly encoded trials correlated negatively with mRNA levels. These results, as well as the established biological effects associated with elevated mRNA levels and decreased FMRP levels on dendritic maturation and axonal growth, prompted us to explore functional connectivity between the hippocampus, prefrontal cortex, and parahippocampal gyrus using a psychophysiological interaction analysis. In FXPCs, the right hippocampus evinced significantly lower connectivity with right ventrolateral prefrontal cortex (VLPFC and right parahippocampal gyrus. Furthermore, the weaker connectivity between the right hippocampus and VLPFC was associated with reduced FMRP in the FXPC group. These results suggest that while FXPCs show relatively typical brain response during encoding, faulty connectivity between frontal and hippocampal regions may have subsequent effects on recall and working memory.

  4. Gonorrhoea and gonococcal antimicrobial resistance surveillance networks in the WHO European Region, including the independent countries of the former Soviet Union.

    Science.gov (United States)

    Unemo, Magnus; Ison, Catherine A; Cole, Michelle; Spiteri, Gianfranco; van de Laar, Marita; Khotenashvili, Lali

    2013-12-01

    Antimicrobial resistance (AMR) in Neisseria gonorrhoeae has emerged for essentially all antimicrobials following their introduction into clinical practice. During the latest decade, susceptibility to the last remaining options for antimicrobial monotherapy, the extended-spectrum cephalosporins (ESC), has markedly decreased internationally and treatment failures with these ESCs have been verified. In response to this developing situation, WHO and the European Centre for Disease Prevention and Control (ECDC) have published global and region-specific response plans, respectively. One main component of these action/response plans is to enhance the surveillance of AMR and treatment failures. This paper describes the perspectives from the diverse WHO European Region (53 countries), including the independent countries of the former Soviet Union, regarding gonococcal AMR surveillance networks. The WHO European Region has a high prevalence of resistance to all previously recommended antimicrobials, and most of the first strictly verified treatment failures with cefixime and ceftriaxone were also reported from Europe. In the European Union/European Economic Area (EU/EEA), the European gonococcal antimicrobial surveillance programme (Euro-GASP) funded by the ECDC is running. In 2011, the Euro-GASP included 21/31 (68%) EU/EEA countries, and the programme is further strengthened annually. However, in the non-EU/EEA countries, internationally reported and quality assured gonococcal AMR data are lacking in 87% of the countries and, worryingly, appropriate support for establishment of a GASP is still lacking. Accordingly, national and international support, including political and financial commitment, for gonococcal AMR surveillance in the non-EU/EEA countries of the WHO European Region is essential.

  5. The Working Memory and Dorsolateral Prefrontal-Hippocampal Functional Connectivity Changes in Long-Term Survival Breast Cancer Patients Treated with Tamoxifen

    Science.gov (United States)

    Chen, Xingui; Tao, Longxiang; Li, Jingjing; Wu, Jiaonan; Zhu, Chunyan; Yu, Fengqiong; Zhang, Lei; Zhang, Jingjie; Qiu, Bensheng; Yu, Yongqiang; He, Xiaoxuan

    2017-01-01

    Abstract Background: Tamoxifen is the most widely used drug for treating patients with estrogen receptor-sensitive breast cancer. There is evidence that breast cancer patients treated with tamoxifen exhibit cognitive dysfunction. However, the underlying neural mechanism remains unclear. The present study aimed to investigate the neural mechanisms underlying working memory deficits in combination with functional connectivity changes in premenopausal women with breast cancer who received long-term tamoxifen treatment. Methods: A total of 31 premenopausal women with breast cancer who received tamoxifen and 32 matched healthy control participants were included. The participants completed n-back tasks and underwent resting-state functional magnetic resonance imaging, which measure working memory performance and brain functional connectivity, respectively. A seed-based functional connectivity analysis within the whole brain was conducted, for which the dorsolateral prefrontal cortex was chosen as the seed region. Results: Our results indicated that the tamoxifen group had significant deficits in working memory and general executive function performance and significantly lower functional connectivity of the right dorsolateral prefrontal cortex with the right hippocampus compared with the healthy controls. There were no significant changes in functional connectivity in the left dorsolateral prefrontal cortex within the whole brain between the tamoxifen group and healthy controls. Moreover, significant correlations were found in the tamoxifen group between the functional connectivity strength of the dorsolateral prefrontal cortex with the right hippocampus and decreased working memory performance. Conclusion: This study demonstrates that the prefrontal cortex and hippocampus may be affected by tamoxifen treatment, supporting an antagonistic role of tamoxifen in the long-term treatment of breast cancer patients. PMID:28177081

  6. Language experience differentiates prefrontal and subcortical activation of the cognitive control network in novel word learning.

    Science.gov (United States)

    Bradley, Kailyn A L; King, Kelly E; Hernandez, Arturo E

    2013-02-15

    The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only 2h of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    Science.gov (United States)

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  8. Prefrontal-hippocampal interactions for spatial navigation.

    Science.gov (United States)

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  9. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  10. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi; Audenaert, Kurt

    2004-01-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  11. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    Science.gov (United States)

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.

  14. White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.

    Science.gov (United States)

    Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano

    2012-01-16

    Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Reduced prefrontal connectivity in psychopathy.

    Science.gov (United States)

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  16. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2.

    Science.gov (United States)

    Siomou, Elisavet; Manolakos, Emmanouil; Petersen, Michael; Thomaidis, Loretta; Gyftodimou, Yolanda; Orru, Sandro; Papoulidis, Ioannis

    2012-11-01

    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited

    Directory of Open Access Journals (Sweden)

    Shintaro eFunahashi

    2015-02-01

    Full Text Available Working memory is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of working memory in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that working memory is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.

  19. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    Science.gov (United States)

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  20. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    Science.gov (United States)

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  1. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards.

    Science.gov (United States)

    Smith, David V; Clithero, John A; Boltuck, Sarah E; Huettel, Scott A

    2014-12-01

    According to many studies, the ventromedial prefrontal cortex (VMPFC) encodes the subjective value of disparate rewards on a common scale. Yet, a host of other reward factors-likely represented outside of VMPFC-must be integrated to construct such signals for valuation. Using functional magnetic resonance imaging (fMRI), we tested whether the interactions between posterior VMPFC and functionally connected brain regions predict subjective value. During fMRI scanning, participants rated the attractiveness of unfamiliar faces. We found that activation in dorsal anterior cingulate cortex, anterior VMPFC and caudate increased with higher attractiveness ratings. Using data from a post-scan task in which participants spent money to view attractive faces, we quantified each individual's subjective value for attractiveness. We found that connectivity between posterior VMPFC and regions frequently modulated by social information-including the temporal-parietal junction (TPJ) and middle temporal gyrus-was correlated with individual differences in subjective value. Crucially, these additional regions explained unique variation in subjective value beyond that extracted from value regions alone. These findings indicate not only that posterior VMPFC interacts with additional brain regions during valuation, but also that these additional regions carry information employed to construct the subjective value for social reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling.

    Directory of Open Access Journals (Sweden)

    Amy C Janes

    Full Text Available Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state functional magnetic imaging (fMRI in nicotine dependent participants. We focused on craving-related changes in the orbital and medial prefrontal cortex (OMPFC network, which also included the subgenual anterior cingulate cortex (sgACC extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward, but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions. Subjective craving and resting state fMRI were evaluated twice with an ∼1 hour delay between the scans. Cigarette craving was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play a role in the experience of craving.

  3. Working Memory in the Prefrontal Cortex

    Science.gov (United States)

    Funahashi, Shintaro

    2017-01-01

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453

  4. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    Science.gov (United States)

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    Science.gov (United States)

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  6. Neural correlates of memory retrieval in the prefrontal cortex.

    Science.gov (United States)

    Nácher, Verónica; Ojeda, Sabiela; Cadarso-Suárez, Carmen; Roca-Pardiñas, Javier; Acuña, Carlos

    2006-08-01

    Working memory includes short-term representations of information that were recently experienced or retrieved from long-term representations of sensory stimuli. Evidence is presented here that working memory activates the same dorsolateral prefrontal cortex neurons that: (a) maintained recently perceived visual stimuli; and (b) retrieved visual stimuli from long-term memory (LTM). Single neuron activity was recorded in the dorsolateral prefrontal cortex while trained monkeys discriminated between two orientated lines shown sequentially, separated by a fixed interstimulus interval. This visual task required the monkey to compare the orientation of the second line with the memory trace of the first and to decide the relative orientation of the second. When the behavioural task required the monkey to maintain in working memory a first stimulus that continually changed from trial to trial, the discharge in these cells was related to the parameters--the orientation--of the memorized item. Then, what the monkey had to recall from memory was manipulated by switching to another task in which the first stimulus was not shown, and had to be retrieved from LTM. The discharge rates of the same neurons also varied depending on the parameters of the memorized stimuli, and their response was progressively delayed as the monkey performed the task. These results suggest that working memory activates dorsolateral prefrontal cortex neurons that maintain parametrical visual information in short-term and LTM, and that the contents of working memory cannot be limited to what has recently happened in the sensory environment.

  7. Schizophrenia: a tale of two critical periods for prefrontal cortical development

    Science.gov (United States)

    Selemon, L D; Zecevic, N

    2015-01-01

    Schizophrenia is a disease of abnormal brain development. Considerable evidence now indicates that environmental factors have a causative role in schizophrenia. Elevated incidence of the disease has been linked to a wide range of disturbances in the prenatal environment and to social factors and drug intake during adolescence. Here we examine neurodevelopment of the prefrontal cortex in the first trimester of gestation and during adolescence to gain further insight into the neurodevelopmental processes that may be vulnerable in schizophrenia. Early embryonic development of the prefrontal cortex is characterized by cell proliferation, including renewal of progenitor cells, generation of early transient cell populations and neurogenesis of subcortical populations. Animal models show that curtailing early gestational cell proliferation produces schizophrenia-like pathology in the prefrontal cortex and mimics key behavioral and cognitive symptoms of the disease. At the other end of the spectrum, elimination of excitatory synapses is the fundamental process occurring during adolescent maturation in the prefrontal cortex. Adverse social situations that elevate stress increase dopamine stimulation of the mesocortical pathway and may lead to exaggerated synaptic pruning during adolescence. In a non-human primate model, dopamine hyperstimulation has been shown to decrease prefrontal pyramidal cell spine density and to be associated with profound cognitive dysfunction. Development of the prefrontal cortex in its earliest stage in gestation and in its final stage in adolescence represents two critical periods of vulnerability for schizophrenia in which cell proliferation and synaptic elimination, respectively, may be influenced by environmental factors. PMID:26285133

  8. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay.

    Science.gov (United States)

    Burnside, Rachel D; Pasion, Romela; Mikhail, Fady M; Carroll, Andrew J; Robin, Nathaniel H; Youngs, Erin L; Gadi, Inder K; Keitges, Elizabeth; Jaswaney, Vikram L; Papenhausen, Peter R; Potluri, Venkateswara R; Risheg, Hiba; Rush, Brooke; Smith, Janice L; Schwartz, Stuart; Tepperberg, James H; Butler, Merlin G

    2011-10-01

    The proximal long arm of chromosome 15 has segmental duplications located at breakpoints BP1-BP5 that mediate the generation of NAHR-related microdeletions and microduplications. The classical Prader-Willi/Angelman syndrome deletion is flanked by either of the proximal BP1 or BP2 breakpoints and the distal BP3 breakpoint. The larger Type I deletions are flanked by BP1 and BP3 in both Prader-Willi and Angelman syndrome subjects. Those with this deletion are reported to have a more severe phenotype than individuals with either Type II deletions (BP2-BP3) or uniparental disomy 15. The BP1-BP2 region spans approximately 500 kb and contains four evolutionarily conserved genes that are not imprinted. Reports of mutations or disturbed expression of these genes appear to impact behavioral and neurological function in affected individuals. Recently, reports of deletions and duplications flanked by BP1 and BP2 suggest an association with speech and motor delays, behavioral problems, seizures, and autism. We present a large cohort of subjects with copy number alteration of BP1 to BP2 with common phenotypic features. These include autism, developmental delay, motor and language delays, and behavioral problems, which were present in both cytogenetic groups. Parental studies demonstrated phenotypically normal carriers in several instances, and mildly affected carriers in others, complicating phenotypic association and/or causality. Possible explanations for these results include reduced penetrance, altered gene dosage on a particular genetic background, or a susceptibility region as reported for other areas of the genome implicated in autism and behavior disturbances.

  9. Altered communicative decisions following ventromedial prefrontal lesions.

    Science.gov (United States)

    Stolk, Arjen; D'Imperio, Daniela; di Pellegrino, Giuseppe; Toni, Ivan

    2015-06-01

    Damage to the human ventromedial prefrontal cortex (vmPFC) leads to profound changes in everyday social interactions [1, 2]. Yet, in the lab, vmPFC patients show surprising proficiency in reasoning about other agents [3-8]. These conflicting observations suggest that what vmPFC patients lack in everyday social interactions might be the ability to guide their decisions with knowledge about a social partner [9-13], despite preserved access to that knowledge [2, 14]. Quantification of socially relevant decisions during live interaction with different partners offers the possibility of testing this hypothesis. Eight patients with vmPFC damage, eight patients with brain damage elsewhere, and 15 healthy participants were asked to communicate non-verbally with two different addressees, an adult or a child, in an experimentally controlled interactive setting [15, 16]. In reality, a confederate blindly performed the role of both adult and child addressee, with matched performance and response times, such that the two addressees differed only in terms of the communicator's beliefs. Patients with vmPFC damage were able-and motivated-to generate communicatively effective behaviors. However, unlike patient and healthy controls, vmPFC patients failed to adjust their communicative decisions to the presumed abilities of their addressee. These findings indicate that the human vmPFC is necessarily involved in social interactions, insofar as those interactions need to be tailored toward knowledge about a social partner. In this perspective, the known contribution of this region to disparate domains like value-based decision-making [17-19], schema-based memory-processing [20-22], and person-specific mentalizing [11-13] might be instances of decisions based on contingently updated conceptual knowledge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    Science.gov (United States)

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Noradrenergic Action in Prefrontal Cortex in the Late Stage of Memory Consolidation

    Science.gov (United States)

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively motivated foraging task based on olfactory…

  12. Noradrenergic action in prefrontal cortex in the late stage of memory consolidation

    NARCIS (Netherlands)

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively

  13. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  14. Lateral, Not Medial, Prefrontal Cortex Contributes to Punishment and Aversive Instrumental Learning

    Science.gov (United States)

    Jean-Richard-dit-Bressel , Philip; McNally, Gavan P.

    2016-01-01

    Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral…

  15. Role of Medial Prefrontal Cortex Narp in the Extinction of Morphine Conditioned Place Preference

    Science.gov (United States)

    Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M.

    2013-01-01

    Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…

  16. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  17. Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material.

    Science.gov (United States)

    Goel, Vinod; Lam, Elaine; Smith, Kathleen W; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2017-05-01

    While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    International Nuclear Information System (INIS)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K + , however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with [ 3 H]-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K + -evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis

  19. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    Science.gov (United States)

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated

  20. Differential contribution of left and right prefrontal cortex to associative cued-recall memory: a parametric PET study.

    Science.gov (United States)

    Lepage, Martin

    2004-03-01

    Several brain imaging studies have implicated prefrontal regions bilaterally during cued-recall memory tasks and yet the functional significance of these regions remains poorly understood. Using PET, we examined the neural activity in prefrontal regions of 15 subjects while they performed three cued-recall tasks differing in pre-experimental semantic associations between cues and targets. This manipulation produced varying levels of retrieval performance when one member (a semantic category name) of the triad was used as a cue for the retrieval of the other two members. The percentage of items correctly recalled was 10, 46, and 70 in the low, medium, and high cued-recall conditions, respectively. Linear contrast analyses of the PET data identified brain regions where neural activity varied with the number of items retrieved from memory. A left lateral prefrontal region showed maximal activity during the high cued-recall condition, which likely reflects processes involved in retrieval success and possibly in the generation of memory responses. Three right prefrontal regions (anterior and dorsolateral) showed maximal activity during the low cued-recall condition, which likely reflects processes involved in memory search/monitoring. These findings add further support for a bilateral prefrontal contribution to memory cued-recall tasks and point to differential roles of the two hemispheres.

  1. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Athilingam, Jegath; Robinson, Sarah E

    2016-01-01

    Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin...... acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist...... into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings...

  2. Prefrontal serotonin transporter availability is positively associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler

    2013-01-01

    higher cortisol responses when exposed to psychosocial stressors relative to high expressing 5-HTTLPR variants. However, it is not clear how the relation between SERT and cortisol output is reflected in the adult brain. We investigated the relation between cortisol response to awakening (CAR) and SERT...... binding in brain regions considered relevant to modify the cortisol awakening response. Methods: thirty-two healthy volunteers underwent in vivo SERT imaging with [11C]DASB-Positron Emission Tomography (PET), genotyping, and performed home-sampling of saliva to assess CAR. Results: CAR, defined...... between CAR and prefrontal SERT binding as tested by an interaction analysis (genotype×CAR). Conclusion: prefrontal SERT binding is positively associated with cortisol response to awakening. We speculate that in mentally healthy individuals prefrontal serotonergic neurotransmission may exert an inhibitory...

  3. Altered Communicative Decisions following Ventromedial Prefrontal Lesions

    NARCIS (Netherlands)

    Stolk, A.; D'Imperio, D.; Pellegrino, G. di; Toni, I.

    2015-01-01

    Damage to the human ventromedial prefrontal cortex (vmPFC) leads to profound changes in everyday social interactions [1, 2]. Yet, in the lab, vmPFC patients show surprising proficiency in reasoning about other agents [3-8]. These conflicting observations suggest that what vmPFC patients lack in

  4. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  5. Development of temperamental effortful control mediates the relationship between maturation of the prefrontal cortex and psychopathology during adolescence: A 4-year longitudinal study

    Directory of Open Access Journals (Sweden)

    Nandita Vijayakumar

    2014-07-01

    Full Text Available This study investigated the relationship between the development of effortful control (EC, a temperamental measure of self-regulation, and concurrent development of three regions of the prefrontal cortex (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC between early- and mid-adolescence. It also examined whether development of EC mediated the relationship between cortical maturation and emotional and behavioral symptoms. Ninety-two adolescents underwent baseline assessments when they were approximately 12 years old and follow-up assessments approximately 4 years later. At each assessment, participants had MRI scans and completed the Early Adolescent Temperament Questionnaire-Revised, as well as measures of depressive and anxious symptoms, and aggressive and risk taking behavior. Cortical thicknesses of the ACC, dlPFC and vlPFC, estimated using the FreeSurfer software, were found to decrease over time. EC also decreased over time in females. Greater thinning of the left ACC was associated with less reduction in EC. Furthermore, change in effortful control mediated the relationship between greater thinning of the left ACC and improvements in socioemotional functioning, including reductions in psychopathological symptoms. These findings highlight the dynamic association between EC and the maturation of the anterior cingulate cortex, and the importance of this relationship for socioemotional functioning during adolescence.

  6. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Science.gov (United States)

    Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe

    2016-01-01

    Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  7. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Fazio

    Full Text Available Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions.Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia.Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior.These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  8. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve

    2013-01-01

    U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.

  9. Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Folke, Jonas; Pakkenberg, Bente; Brudek, Tomasz

    2018-01-01

    Wnt pathway is involved in synaptic plasticity and neuronal survival, and alterations in Wnt signaling have previously been reported both in aging and neurodegenerative diseases, including Alzheimer's disease (AD). This study sought to evaluate Wnt signaling pathway interplay integrity across......, in addition to downstream effects associated with disease progression and cognitive decline. This study is the first that comprehensively evaluates Wnt signaling pathway in the prefrontal cortical lobe structures of AD brains, in relation to age-related coordinated Wnt signaling changes. Our findings further...

  10. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Carvajal, Miguel [Dpto. Física Aplicada, Unidad Asociada CSIC, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Field, David [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Jørgensen, Jes K.; Bisschop, Suzanne E. [Centre for Star and Planet Formation, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Brouillet, Nathalie; Despois, Didier; Baudry, Alain [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Kleiner, Isabelle [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS, UMR 7583, Université de Paris-Est et Paris Diderot, 61, Av. du Général de Gaulle, F-94010 Créteil Cedex (France); Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean, E-mail: cfavre@umich.edu, E-mail: miguel.carvajal@dfa.uhu.es [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille I, F-59655 Villeneuve d' Ascq Cedex (France)

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  11. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  12. Prefrontal cerebral blood volume patterns while playing video games--a near-infrared spectroscopy study.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro

    2006-06-01

    Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.

  13. [Effects of therapeutic complexes including balneoradonokinesitherapy, electromyostimulation and low-frequency magnetotherapy on regional blood flow in patients with postrraumatic gonarthritis].

    Science.gov (United States)

    Raspopova, E A; Udartsev, E Iu

    2006-01-01

    Balneoradonokinesitherapy alone and its combination with electrostimulation and low-frequency magnetotherapy were used for the treatment of regional blood flow disorders in 76 patients with posttraumatic gonarthritis. Balneoradonokinesitherapy in combination with electromyostimulation improved blood circulation. When low-frequency magnetotherapy was added to the latter complex, the regress of regional blood flow disorders of a damaged extremity was most significant.

  14. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Sonia Doallo

    Full Text Available Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory, processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9, less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03 and control subjects (n = 21; age 22.18 ± 1.08 to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9 in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory.

  15. Trapping of dilute ion components in wells and double wells in higher equatorial magnetic regions: A kinetic theory including collisions, varying background and additional fields

    Energy Technology Data Exchange (ETDEWEB)

    Oeien, Alf H.

    2001-08-01

    The component of the ambipolar field along the magnetic field B, though weak, may, acting together with the gravitational field, give rise to along-B ''ambipolar wells'' where light ions (test particles) in the ionosphere in equatorial regions are trapped. We also take into account magnetic field wells, especially in cases when the along-B velocity of test particles are much less than the transverse-B velocities. For heavy ions, or, for light ions high up, when the ambipolar trap ceases to function, the along-B ambipolar- and gravitational field effects may combine with the magnetic field trap to form a double well for the along-B movement of test particles. The magnetic field trap and its contribution to the double well may be nearly stationary for particles obeying the same velocity condition as above even when collisional effects between the test particles and the background plasma are incorporated. Ions trapped in wells like this, may ''feel'' a varying background, for instance because of Earth rotation, that may be incorporated as time-variation of parameters in the along-B motion. An along-B kinetic equation for groups of test particles is solved both for the case of simple wells and for double wells, including time-varying collisional coefficients and additional fields, and in some cases analytic solutions are obtained. Peculiar along-B distribution functions may arise due to the time-dependency of coefficients and to various combinations of collision- and field parameter values. In particular ''breathing'' distributions that alternate between wide and narrow forms in phase-space may arise, and also distributions where strange attractors may play some role.

  16. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly.

    Science.gov (United States)

    Knols, Ruud H; Swanenburg, Jaap; De Bon, Dino; Gennaro, Federico; Wolf, Martin; Krüger, Bernard; Bettex, Dominique; de Bruin, Eling D

    2017-01-01

    Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) ( n = 5) and EEG power ( n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1-7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8-10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly ( p games ( p games. EEG recordings of theta power significantly decreased in the averaged ~0.25-0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the

  17. Cognitive behavioral therapy changes functional connectivity between medial prefrontal and anterior cingulate cortices.

    Science.gov (United States)

    Yoshimura, Shinpei; Okamoto, Yasumasa; Matsunaga, Miki; Onoda, Keiichi; Okada, Go; Kunisato, Yoshihiko; Yoshino, Atsuo; Ueda, Kazutaka; Suzuki, Shin-Ichi; Yamawaki, Shigeto

    2017-01-15

    Depression is characterized by negative self-cognition. Our previous study (Yoshimura et al. 2014) revealed changes in brain activity after cognitive behavioral therapy (CBT) for depression, but changes in functional connectivity were not assessed. This study included 29 depressive patients and 15 healthy control participants. Functional Magnetic Resonance Imaging was used to investigate possible CBT-related functional connectivity changes associated with negative emotional self-referential processing. Depressed and healthy participants (overlapping with our previous study, Yoshimura et al. 2014) were included. We defined a seed region (medial prefrontal cortex) and coupled region (ACC) based on our previous study, and we examined changes in MPFC-ACC functional connectivity from pretreatment to posttreatment. CBT was associated with reduced functional connectivity between the MPFC and ACC. Symptom change with CBT was positively correlated with change in MPFC-ACC functional connectivity. Patients received pharmacotherapy including antidepressant. The present sample size was quite small and more study is needed. Statistical threshold in fMRI analysis was relatively liberal. CBT for depression may disrupt MPFC-ACC connectivity, with associated improvements in depressive symptoms and dysfunctional cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Directional hippocampal-prefrontal interactions during working memory.

    Science.gov (United States)

    Liu, Tiaotiao; Bai, Wenwen; Xia, Mi; Tian, Xin

    2018-02-15

    Working memory refers to a system that is essential for performing complex cognitive tasks such as reasoning, comprehension and learning. Evidence shows that hippocampus (HPC) and prefrontal cortex (PFC) play important roles in working memory. The HPC-PFC interaction via theta-band oscillatory synchronization is critical for successful execution of working memory. However, whether one brain region is leading or lagging relative to another is still unclear. Therefore, in the present study, we simultaneously recorded local field potentials (LFPs) from rat ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) and while the rats performed a Y-maze working memory task. We then applied instantaneous amplitudes cross-correlation method to calculate the time lag between PFC and vHPC to explore the functional dynamics of the HPC-PFC interaction. Our results showed a strong lead from vHPC to mPFC preceded an animal's correct choice during the working memory task. These findings suggest the vHPC-leading interaction contributes to the successful execution of working memory. Copyright © 2017. Published by Elsevier B.V.

  19. Ventromedial prefrontal cortex, adding value to autobiographical memories.

    Science.gov (United States)

    Lin, Wen-Jing; Horner, Aidan J; Burgess, Neil

    2016-06-24

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants' memories when they were recalling and evaluating these items. An unrelated modulation by the participant's familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories.

  20. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    Science.gov (United States)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (p<0.05) than normal-reading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  1. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    Science.gov (United States)

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Human Thalamic-Prefrontal Peduncle Connectivity Revealed by Diffusion Spectrum Imaging Fiber Tracking

    Directory of Open Access Journals (Sweden)

    Chuanqi Sun

    2018-04-01

    Full Text Available The thalamic-prefrontal peduncle (TPP is a large bundle connecting the thalamus and prefrontal cortex. The definitive structure and function of the TPP are still controversial. To investigate the connectivity and segmentation patterns of the TPP, we employed diffusion spectrum imaging with generalized q-sampling reconstruction to perform both subject-specific and template-based analyses. Our results confirmed the trajectory and spatial relationship of the TPP in the human brain and identified the connection areas in the prefrontal cortex. The TPP-connecting areas identified based on Brodmann areas (BAs were BAs 8–11 and 45–47. Based on the automated anatomical atlas, these areas were the medial superior frontal gyrus, superior frontal gyrus, middle frontal gyrus, pars triangularis, pars orbitalis, anterior orbital gyrus, and lateral orbital gyrus. In addition, we identified the TPP connection areas in the thalamus, including the anterior and medial nuclei, and the lateral dorsal/lateral posterior nuclei. TPP fibers connected the thalamus with the ipsilateral prefrontal BAs 11, 47, 10, 46, 45, 9, and 8 seriatim from medial to lateral, layer by layer. Our results provide further details of the thalamic-prefrontal peduncle structure, and may aid future studies and a better understanding of the functional roles of the TPP in the human brain.

  3. Cocaine mummies and the pre-frontal reality

    International Nuclear Information System (INIS)

    Lloyd, Mark Anthony

    2001-01-01

    Full text: The scientific community frames its world with facts - facts which have been subjected to tests and apparently proven themselves and are therefore proffered by scientists to mankind as things upon which it can rely to steer it safely through life. However, facts are a moveable feast. Time and fresh minds often prove scientific 'facts' wrong. The cocaine mummies seem to indicate that 2000 years ago the Ancient Egyptians had access to both tobacco and cocaine - something previously believed impossible. One part of the German and British scientific community has proven in laboratory tests that the mummies are telling the truth. The rest of the scientific community disputes that truth'. But if the laboratory tests are right, then humanity has to rewrite its entire history. Nuclear communicators have very little credibility with the general public because they represent scientists, who not only are often proven wrong by time but also cannot agree on the truth. At the same time, there are fundamental facts about the human condition that nuclear communicators ignore - to the detriment of their message. Fact: thinking is a learned skill, not an instinct. Fact: language is a learned skill, not an instinct. For humans to follow the positive nuclear argument they must both think and also understand language. But thinking is not the brain's first choice of operation. Fact: the pre-frontal lobe of the brain is the seat of mankind's primitive emotions, including the instinct of fear and the instinct for life. The pre-frontal lobe dominates the way man thinks and speaks. Therefore, nuclear communicators have to learn the skill of mapping their messages to the pre-frontal human reality. This presentation provides practical points for that learning and message mapping exercise. (author)

  4. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  5. Neuron density is decreased in the prefrontal cortex in Williams syndrome.

    Science.gov (United States)

    Lew, Caroline Horton; Brown, Chelsea; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  6. Co-activation-based parcellation of the lateral prefrontal cortex delineates the inferior frontal junction area

    OpenAIRE

    Muhle-Karbe, Paul Simon; Derrfuss, Jan; Lynn, Maggie; Neubert, Franz Xaver; Fox, Peter; Brass, Marcel; Eickhoff, Simon

    2016-01-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal ...

  7. Using imaging to target the prefrontal cortex for transcranial magnetic stimulation studies in treatment-resistant depression

    OpenAIRE

    Johnson, Kevin A.; Ramsey, Dave; Kozel, Frank A.; Bohning, Daryl E.; Anderson, Berry; Nahas, Ziad; Sacke?m, Harold A.; George, Mark S.

    2006-01-01

    Structural imaging studies of the brains of patients with treatment-resistant depression (TRD) have found several abnormalities, including smaller hippocampus, orbitofrontal cortex, or pre?frontal cortex. Transcranial magnetic stimulation (TMS) is a noninvasive means of modulating brain activity, and has shown antidepressant treatment efficacy. 1 The initial methods used for targeting the prefrontal cortex are most likely insufficient. Herwig et al found that a common rule-based approach (the...

  8. Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains

    OpenAIRE

    Rachael D. Rubin; Hillary Schwarb; Heather D. Lucas; Michael R. Dulas; Neal J. Cohen

    2017-01-01

    The hippocampus has long been known to be a critical component of the memory system involved in the formation and use of long-term declarative memory. However, recent findings have revealed that the reach of hippocampal contributions extends to a variety of domains and tasks that require the flexible use of cognitive and social behavior, including domains traditionally linked to prefrontal cortex (PFC), such as decision-making. In addition, the prefrontal cortex (PFC) has gained traction as a...

  9. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  10. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.

    Science.gov (United States)

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi

    2016-03-01

    Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.

  11. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.

    Directory of Open Access Journals (Sweden)

    Saskia Koehler

    Full Text Available Pathological gambling (PG shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum. PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.

  12. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    Directory of Open Access Journals (Sweden)

    Fumi eKatsuki

    2012-05-01

    Full Text Available The dorsolateral prefrontal and posterior parietal cortex are two parts of a broader brain network involved in the control of cognitive functions such as working memory, spatial attention, and decision making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the dorsolateral prefrontal cortex to influence memory performance, attention allocation and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the dorsolateral prefrontal and posterior parietal cortex, and their underlying mechanisms.

  13. Prefrontal contributions to visual selective attention.

    Science.gov (United States)

    Squire, Ryan F; Noudoost, Behrad; Schafer, Robert J; Moore, Tirin

    2013-07-08

    The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.

  14. Prefrontal system dysfunction and credit card debt.

    Science.gov (United States)

    Spinella, Marcello; Yang, Bijou; Lester, David

    2004-10-01

    Credit card use often involves a disadvantageous allocation of finances because they allow for spending beyond means and buying on impulse. Accordingly they are associated with increased bankruptcy, anxiety, stress, and health problems. Mounting evidence from functional neuroimaging and clinical studies implicates prefrontal-subcortical systems in processing financial information. This study examined the relationship of credit card debt and executive functions using the Frontal System Behavior Scale (FRSBE). After removing the influences of demographic variables (age, sex, education, and income), credit card debt was associated with the Executive Dysfunction scale, but not the Apathy or Disinhibition scales. This suggests that processes of conceptualizing and organizing finances are most relevant to credit card debt, and implicates dorsolateral prefrontal dysfunction.

  15. An integrative theory of prefrontal cortex function.

    Science.gov (United States)

    Miller, E K; Cohen, J D

    2001-01-01

    The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

  16. The role of prefrontal cortex in psychopathy

    Science.gov (United States)

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  17. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  18. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity

    Directory of Open Access Journals (Sweden)

    Yuki Motomura

    2017-06-01

    Full Text Available Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD. Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC, and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life.

  19. Reduced loss aversion in pathological gambling and alcohol dependence is associated with differential alterations in amygdala and prefrontal functioning.

    Science.gov (United States)

    Genauck, Alexander; Quester, Saskia; Wüstenberg, Torsten; Mörsen, Chantal; Heinz, Andreas; Romanczuk-Seiferth, Nina

    2017-11-24

    Diagnostic criteria for pathological gambling and alcohol dependence (AD) include repeated addictive behavior despite severe negative consequences. However, the concept of loss aversion (LA) as a facet of value-based decision making has not yet been used to directly compare these disorders. We hypothesized reduced LA in pathological gamblers (PG) and AD patients, correlation of LA with disorder severity, and reduced loss-related modulation of brain activity. 19 PG subjects, 15 AD patients and 17 healthy controls (HC) engaged in a LA task in a functional magnetic resonance imaging setting. Imaging analyses focused on neural gain and loss sensitivity in the meso-cortico-limbic network of the brain. Both PG and AD subjects showed reduced LA. AD subjects showed altered loss-related modulation of activity in lateral prefrontal regions. PG subjects showed indication of altered amygdala-prefrontal functional connectivity. Although we observed reduced LA in both a behavioral addiction and a substance-related disorder our neural findings might challenge the notion of complete neuro-behavioral congruence of substance-use disorders and behavioral addictions.

  20. Neuroanatomical Substrates of Executive Functions: Beyond Prefrontal Structures

    Science.gov (United States)

    Bettcher, Brianne M.; Mungas, Dan; Patel, Nihar; Elofson, Jonathan; Dutt, Shubir; Wynn, Matthew; Watson, Christa L.; Stephens, Melanie; Walsh, Christine M.; Kramer, Joel H.

    2016-01-01

    Executive functions are often considered lynchpin “frontal lobe tasks”, despite accumulating evidence that a broad network of anterior and posterior brain structures supports them. Using a latent variable modeling approach, we assessed whether prefrontal grey matter volumes independently predict executive function performance when statistically differentiated from global atrophy and individual non-frontal lobar volume contributions. We further examined whether fronto-parietal white matter microstructure underlies and independently contributes to executive functions. We developed a latent variable model to decompose lobar grey matter volumes into a global grey matter factor and specific lobar volumes (i.e. prefrontal, parietal, temporal, occipital) that were independent of global grey matter. We then added mean fractional anisotropy (FA) for the superior longitudinal fasciculus (dorsal portion), corpus callosum, and cingulum bundle (dorsal portion) to models that included grey matter volumes related to cognitive variables in previous analyses. Results suggested that the 2-factor model (shifting/inhibition, updating/working memory) plus an information processing speed factor best explained our executive function data in a sample of 202 community dwelling older adults, and was selected as the base measurement model for further analyses. Global grey matter was related to the executive function and speed variables in all four lobar models, but independent contributions of the frontal lobes were not significant. In contrast, when assessing the effect of white matter microstructure, cingulum FA made significant independent contributions to all three executive function and speed variables and corpus callosum FA was independently related to shifting/inhibition and speed. Findings from the current study indicate that while prefrontal grey matter volumes are significantly associated with cognitive neuroscience measures of shifting/inhibition and working memory in healthy

  1. Directory of Regional Centers and Educational Programs Providing Services to Deaf/Blind Children and Youth in the United States (Including Puerto Rico and the Virgin Islands).

    Science.gov (United States)

    Alonso, Lou, Comp.

    Listed in the directory are over 200 educational programs and services for deaf blind children in the United States and U. S. territories. It is noted that the 10 coordinators of regional centers for services to deaf blind children have aided in compilation of the directory. Listings are arranged by state within the New England, Mid-Atlantic…

  2. Andrographolide - A promising therapeutic agent, negatively regulates glial cell derived neurodegeneration of prefrontal cortex, hippocampus and working memory impairment.

    Science.gov (United States)

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2017-12-15

    Over activation of glial cell derived innate immune factors induces neuro-inflammation that results in neurodegenerative disease, like working memory impairment. In this study, we have investigated the role of andrographolide, a major constituent of Andrographis paniculata plant, in reduction of reactive glial cell derived working memory impairment. Real time PCR, Western bloting, flow cytometric and immunofluorescence studies demonstrated that andrographolide inhibited lipopolysaccharide (LPS)-induced overexpression of HMGB1, TLR4, NFκB, COX-2, iNOS, and release of inflammatory mediators in primary mix glial culture, adult mice prefrontal cortex and hippocampus region. Active microglial and reactive astrocytic makers were also downregulated after andrographolide treatment. Andrographolide suppressed overexpression of microglial MIP-1α, P2X7 receptor and its downstream signaling mediators including-inflammasome NLRP3, caspase1 and mature IL-1β. Furthermore, in vivo maze studies suggested that andrographolide treatment reversed LPS-induced behavioural and working memory disturbances including regulation of expression of protein markers like PKC, p-CREB, amyloid beta, APP, p-tau, synapsin and PSD-95. Andrographolide, by lowering expression of pro apoptotic genes and enhancing the expression of anti-apoptotic gene showed its anti-apoptotic nature that in turn reduces neurodegeneration. Morphology studies using Nissl and FJB staining also showed the neuroprotective effect of andrographolide in the prefrontal cortex region. The above studies indicated that andrographolide prevented neuroinflammation-associated neurodegeneration and improved synaptic plasticity markers in cortical as well as hippocampal region which suggests that andrographolide could be a novel pharmacological countermeasure for the treatment of neuroinflammation and neurological disorders related to memory impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aeromagnetic maps of the Colorado River region including the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degrees quadrangles, California, Arizona, and Nevada

    Science.gov (United States)

    Mariano, John; Grauch, V.J.

    1988-01-01

    Aeromagnetic data for the Colorado river region have been compiled as part of the Pacific to Arizona Crustal Experiment (PACE) Project. The data are presented here in a series of six compilations for the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degree quadrangles, California, Arizona, and Nevada, at scales of 1:250,000 and 1:750,000. The scales and map areas are identical to those used by Mariano and others (1986) to display the Bouguer and isotatic residual gravity for this region. Data were compiled separately for the Kingman quadrangle, the Needles quadrangle, and an area covering the Salton Sea quadrangle and part of the El Centro quadrangle.

  4. The role of prefrontal catecholamines in attention and working memory

    Directory of Open Access Journals (Sweden)

    Behrad eNoudoost

    2014-04-01

    Full Text Available While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, To date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.

  5. The role of prefrontal catecholamines in attention and working memory

    Science.gov (United States)

    Clark, Kelsey L.; Noudoost, Behrad

    2014-01-01

    While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory. PMID:24782714

  6. Prefrontal control of cerebellum-dependent associative motor learning.

    Science.gov (United States)

    Chen, Hao; Yang, Li; Xu, Yan; Wu, Guang-yan; Yao, Juan; Zhang, Jun; Zhu, Zhi-ru; Hu, Zhi-an; Sui, Jian-feng; Hu, Bo

    2014-02-01

    Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.

  7. Treatment of Thyroid Cancer: A Review of the Regional Experiences (including countries from Asia-Pacific, Europe, North America, Africa and Latin America)

    International Nuclear Information System (INIS)

    Howarth, D.; Nagataki, S.; Padhy, A.K.

    2006-01-01

    Radioiodine (I-131) therapy has been in use for the treatment of thyroid diseases for the past six decades. Although the use of radioiodine has been in vogue for a long time, its use in therapy for well-differentiated thyroid cancer is still controversial, varied and in many instances based on personal and institutional philosophy. The practice is also influenced by available infrastructure, national policy with regard to health, financial and human resources; as well as social, cultural and ethnic milieu of a particular region or country. The World Radiopharmaceutical Therapy Council had carried out a survey on the practice of radioiodine treatment of differentiated thyroid cancer around the world. This paper is a compilation of information from several countries/ regions around the world, which may offer insight into the practice of one of the most important and widely practiced radionuclide therapeutic procedures in clinical medicine. It is interesting to note that despite regional or national differences with regard to history, culture, finance, resources, beliefs, practices and attitude there has been more or less a universal unanimity on the 'basics' related to the practice of radioiodine therapy for differentiated thyroid cancer. (author)

  8. Medial prefrontal cortex role in recognition memory in rodents.

    Science.gov (United States)

    Morici, Juan Facundo; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-10-01

    The study of the neurobiology of recognition memory, defined by the integration of the different components of experiences that support recollection of past experiences have been a challenge for memory researches for many years. In the last twenty years, with the development of the spontaneous novel object recognition task and all its variants this has started to change. The features of recognition memory include a particular object or person ("what"), the context in which the experience took place, which can be the arena itself or the location within a particular arena ("where") and the particular time at which the event occurred ("when"). This definition instead of the historical anthropocentric one allows the study of this type of episodic memory in animal models. Some forms of recognition memory that require integration of different features recruit the medial prefrontal cortex. Focusing on findings from spontaneous recognition memory tasks performed by rodents, this review concentrates on the description of previous works that have examined the role that the medial prefrontal cortex has on the different steps of recognition memory. We conclude that this structure, independently of the task used, is required at different memory stages when the task cannot be solved by a single item strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making

    NARCIS (Netherlands)

    van't Wout, M; Kahn, RS; Sanfey, AG; Aleman, A

    2005-01-01

    Although decision-making is typically seen as a rational process, emotions play a role in tasks that include unfairness. Recently, activation in the right dorsolateral prefrontal cortex during offers experienced as unfair in the Ultimatum Game was suggested to subserve goal maintenance in this task.

  10. Resting state functional connectivity of the anterior striatum and prefrontal cortex predicts reading performance in school-age children.

    Science.gov (United States)

    Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A

    2017-11-01

    The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Andrea Forero

    2017-09-01

    Full Text Available Background: During early prenatal stages of brain development, serotonin (5-HT-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR, innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13 has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system.Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency.Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs, which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5.Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell

  12. Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition.

    Science.gov (United States)

    Schendan, Haline E; Stern, Chantal E

    2008-07-01

    Objects seen from unusual relative to more canonical views require more time to categorize and recognize, and, according to object model verification theories, additionally recruit prefrontal processes for cognitive control that interact with parietal processes for mental rotation. To test this using functional magnetic resonance imaging, people categorized and recognized known objects from unusual and canonical views. Canonical views activated some components of a default network more on categorization than recognition. Activation to unusual views showed that both ventral and dorsal visual pathways, and prefrontal cortex, have key roles in visual object constancy. Unusual views activated object-sensitive and mental rotation (and not saccade) regions in ventrocaudal intraparietal, transverse occipital, and inferotemporal sulci, and ventral premotor cortex for verification processes of model testing on any task. A collateral-lingual sulci "place" area activated for mental rotation, working memory, and unusual views on correct recognition and categorization trials to accomplish detailed spatial matching. Ventrolateral prefrontal cortex and object-sensitive lateral occipital sulcus activated for mental rotation and unusual views on categorization more than recognition, supporting verification processes of model prediction. This visual knowledge framework integrates vision and memory theories to explain how distinct prefrontal-posterior networks enable meaningful interactions with objects in diverse situations.

  13. Hemodynamic Responses on Prefrontal Cortex Related to Meditation and Attentional Task

    Directory of Open Access Journals (Sweden)

    Singh eDeepeshwar

    2015-02-01

    Full Text Available Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF in the prefrontal cortex (PFC. The present study employed functional near infrared spectroscopy (fNIRS to evaluate the relative hemodynamic changes in prefrontal cortex during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years performed a color-word stroop task before and after 20 minutes of meditation and random thinking. Repeated measures ANOVA was performed followed by a post-hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of ‘During’ and ‘Post’ with ‘Pre’ state. During meditation there was an increased in oxy-hemoglobin (∆HbO and total hemoglobin (∆THC concentration with reduced deoxy-hemoglobin (∆HbR concentration over the right prefrontal cortex (rPFC, whereas in random thinking there was increased ∆HbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time was shorter in stroop color word task with reduced ∆THC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with prefrontal cortex activation.

  14. Influence of restoration adjustments on prefrontal blood flow: A simplified NIRS preliminary study.

    Science.gov (United States)

    Sasaguri, Kenichi; Otsuka, Takero; Tsunashima, Hiroyuki; Shimazaki, Tateshi; Kubo, Kin-Ya; Onozuka, Minoru

    The aim of this study was to examine, after setting several restorations, the influence of adjusted occlusal interference during gum chewing on blood flow in the prefrontal area as determined using near-infrared spectroscopy. The physiological rate was assessed using a visual analog scale (VAS) questionnaire. We selected 16 patients who desired prosthetic restorative treatment on the lateral dentition, and eight healthy volunteers. Subjects were divided into three eight-person groups. One group received restorations on the premolar area (PA), another group received restorations on the molar area (MA), and the control group (CT) received no prosthetic restorations. The spectroscope was fastened to the frontal region of the head after placement of the final restoration, but before adjustment. Pre-adjustment (first gum chewing for CT) blood flow in the prefrontal cortex was measured during gum chewing. Blood flow was again measured during gum chewing after the restoration (second gum chewing for CT) had been adjusted in accordance with the subjective assessment of the patient while wearing the device. The VAS provided quantification of comfort during gum chewing before and after restoration adjustment. For the PA and MA groups, adjusting restorations decreased discomfort significantly during gum chewing. Moreover, in the MA group, prefrontal blood flow was significantly reduced, and blood flow correlated with discomfort. Activation of the prefrontal area may provide an objective criterion for judging the functionality of occlusion after prosthetic occlusal reconstruction and/or orthodontics.

  15. Back to front: cerebellar connections and interactions with the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2014-02-01

    Full Text Available Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN in awake, behaving rats evokes distinct local field potential (LFP responses (onset latency ~13 ms in the prelimbic (PrL subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anaesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5-10 Hz. Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors.

  16. Report of Increasing Overdose Deaths that include Acetyl Fentanyl in Multiple Counties of the Southwestern Region of the Commonwealth of Pennsylvania in 2015-2016.

    Science.gov (United States)

    Dwyer, Jessica B; Janssen, Jennifer; Luckasevic, Todd M; Williams, Karl E

    2018-01-01

    Acetyl fentanyl is a Schedule I controlled synthetic opioid that is becoming an increasingly detected "designer drug." Routine drug screening procedures in local forensic toxicology laboratories identified a total of 41 overdose deaths associated with acetyl fentanyl within multiple counties of the southwestern region of the state of Pennsylvania. The range, median, mean, and standard deviation of blood acetyl fentanyl concentrations for these 41 cases were 0.13-2100 ng/mL, 11 ng/mL, 169.3 ng/mL, and 405.3 ng/mL, respectively. Thirty-six individuals (88%) had a confirmed history of substance abuse, and all but one case (96%) were ruled multiple drug toxicities. This report characterizes this localized trend of overdose deaths associated with acetyl fentanyl and provides further evidence supporting an alarmingly concentrated opiate and opioid epidemic of both traditional and novel drugs within this region of the United States. © 2017 American Academy of Forensic Sciences.

  17. Levels of integration in cognitive control and sequence processing in the prefrontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.

  18. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region

    International Nuclear Information System (INIS)

    Kacha, K.; Djeffal, F.; Ferhati, H.; Arar, D.; Meguellati, M.

    2015-01-01

    We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells. (paper)

  20. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly

    Directory of Open Access Journals (Sweden)

    Ruud H. Knols

    2017-11-01

    Full Text Available Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON. Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model were assessed together with measures of the achieved game level, reaction times, (in- correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02% assessed with functional near infrared spectroscopy (fNIRS (n = 5 and EEG power (n = 10 was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7 of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10, for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1, where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001 lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000, but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively

  1. SMAP Multi-Temporal Soil Moisture and Vegetation Optical Depth Retrievals in Vegetated Regions Including Higher-Order Soil-Canopy Interactions

    Science.gov (United States)

    Feldman, A.; Akbar, R.; Konings, A. G.; Piles, M.; Entekhabi, D.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission utilizes a zeroth order radiative transfer model, known as the tau-omega model, to retrieve soil moisture from microwave brightness temperature observations. This model neglects first order scattering which is significant at L-Band in vegetated regions, or 30% of land cover. Previous higher order algorithms require extensive in-situ measurements and characterization of canopy layer physical properties. We propose a first order retrieval algorithm that approximately characterizes the eight first order emission pathways using rough surface reflectivity, vegetation optical depth (VOD), and scattering albedo terms. The recently developed Multi-Temporal Dual Channel Algorithm (MT-DCA) then retrieves these three parameters in a forward model without ancillary information under the assumption of temporally static albedo and constant vegetation water content between three day SMAP revisits. The approximated scattering terms are determined to be conservative estimates of analytically derived first order scattering terms. In addition, we find the first order algorithm to be more sensitive to surface emission than the tau-omega model. The simultaneously retrieved VOD, previously demonstrated to be proportional to vegetation water content, can provide insight into vegetation dynamics in regions with significant phenology. Specifically, dry tropical forests exhibit an increase in VOD during the dry season in alignment with prior studies that suggest that certain vegetative species green up during the dry season despite limited water availability. VOD retrieved using the first order algorithm and MT-DCA framework can therefore contribute to understanding of tropical forests' role in the carbon, energy, and water cycles, which has yet to be fully explained.

  2. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Tania Rinaldi

    2008-10-01

    Full Text Available The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions in the brain, and stands in contrast to the hypo-functionality that is normally proposed in this region to explain some of the autistic symptoms. We propose that a number of deficits in autism such as sociability, attention, multi-tasking and repetitive behaviours, should be re-interpreted in the light of a hyper-functional prefrontal cortex.

  3. Coding of vocalizations by single neurons in ventrolateral prefrontal cortex.

    Science.gov (United States)

    Plakke, Bethany; Diltz, Mark D; Romanski, Lizabeth M

    2013-11-01

    Neuronal activity in single prefrontal neurons has been correlated with behavioral responses, rules, task variables and stimulus features. In the non-human primate, neurons recorded in ventrolateral prefrontal cortex (VLPFC) have been found to respond to species-specific vocalizations. Previous studies have found multisensory neurons which respond to simultaneously presented faces and vocalizations in this region. Behavioral data suggests that face and vocal information are inextricably linked in animals and humans and therefore may also be tightly linked in the coding of communication calls in prefrontal neurons. In this study we therefore examined the role of VLPFC in encoding vocalization call type information. Specifically, we examined previously recorded single unit responses from the VLPFC in awake, behaving rhesus macaques in response to 3 types of species-specific vocalizations made by 3 individual callers. Analysis of responses by vocalization call type and caller identity showed that ∼19% of cells had a main effect of call type with fewer cells encoding caller. Classification performance of VLPFC neurons was ∼42% averaged across the population. When assessed at discrete time bins, classification performance reached 70 percent for coos in the first 300 ms and remained above chance for the duration of the response period, though performance was lower for other call types. In light of the sub-optimal classification performance of the majority of VLPFC neurons when only vocal information is present, and the recent evidence that most VLPFC neurons are multisensory, the potential enhancement of classification with the addition of accompanying face information is discussed and additional studies recommended. Behavioral and neuronal evidence has shown a considerable benefit in recognition and memory performance when faces and voices are presented simultaneously. In the natural environment both facial and vocalization information is present simultaneously and

  4. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    Science.gov (United States)

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  5. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    Science.gov (United States)

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  6. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of...... in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease.......Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  7. Late-glacial and Holocene Vegetation and Climate Variability, Including Major Droughts, in the Sky Lakes Region of Southeastern New York State

    Science.gov (United States)

    Menking, Kirsten M.; Peteet, Dorothy M.; Anderson, Roger Y.

    2012-01-01

    Sediment cores from Lakes Minnewaska and Mohonk in the Shawangunk Mountains of southeastern New York were analyzed for pollen, plantmacrofossils, macroscopic charcoal, organic carbon content, carbon isotopic composition, carbon/nitrogen ratio, and lithologic changes to determine the vegetation and landscape history of the greater Catskill Mountain region since deglaciation. Pollen stratigraphy generally matches the New England pollen zones identified by Deevey (1939) and Davis (1969), with boreal genera (Picea, Abies) present during the late Pleistocene yielding to a mixed Pinus, Quercus and Tsuga forest in the early Holocene. Lake Minnewaska sediments record the Younger Dryas and possibly the 8.2 cal kyr BP climatic events in pollen and sediment chemistry along with an 1400 cal yr interval of wet conditions (increasing Tsuga and declining Quercus) centered about 6400 cal yr BP. BothMinnewaska andMohonk reveal a protracted drought interval in themiddle Holocene, 5700-4100 cal yr BP, during which Pinus rigida colonized the watershed, lake levels fell, and frequent fires led to enhanced hillslope erosion. Together, the records show at least three wet-dry cycles throughout the Holocene and both similarities and differences to climate records in New England and central New York. Drought intervals raise concerns for water resources in the New York City metropolitan area and may reflect a combination of enhanced La Niña, negative phase NAO, and positive phase PNA climatic patterns and/or northward shifts of storm tracks.

  8. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with

  9. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    Science.gov (United States)

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. Copyright © 2011 Wiley-Liss, Inc.

  10. A study of 1H-MR spectroscopy in the prefrontal cortex and amygdala of heroine abusers

    International Nuclear Information System (INIS)

    Yang Lanying; Wang Yarong; Li Qiang; Xiong Xiaoshuang; Wang Wei; Zhao Wei; Bai Yunliang

    2009-01-01

    Objective: To explore the characteristic findings of 1 H-MR spectroscopy ( 1 H-MRS) in the prefrontal cortex and amygdala of patients with heroine dependence (HD), and the relationship to total cumulative dose of inhaled heroine. Methods: Fourteen male HD patients and 12 healthy controls (HC) underwent 1 H-MRS at the prefrontal cortex and amygdala regions. The total cumulative in haled heroin dose was (852±341) g in HD. Ratios of N-acetylaspartate/creatine(NAA/Cr) and choline/creatine (Cho/Cr) were respectively measured in the prefrontal cortex and bilateral amygdale regions. The student's t test and the linear correlation were employed for statistical analysis. Results: Compared to HC group, HD patients had a significant lower ratio of NAA/Cr in the prefrontal cortex (1.44±0.46 vs 1.50±0.75, t=1.77, P< 0.05), left amygdala region (1.32±0.08 vs 1.42±0.08, t=3.41, P<0.05), and right amygdala region (1.34±0.09 vs 1.44±0.10, t=2.63, P<0.05), the HD patients had a significant increased ratio of Cho/Cr in the prefrontal cortex (0.92±0.06 vs 0.86±0.08, t=2.31, P<0.05), left amygdala region (1.20±0.12 vs 1.07±0.04, t=3.60, P<0.05) and right amygdala region(1.26±0.15 vs 1.12±0.11, t=2.60, P<0.05). There was a negative linear correlation between the total cumulative inhaled heroine dose and the ratio of NAA/Cr in the prefrontal cortex (r=-0.9159, P<0.01), left amygdala region( r= -0.8756, P<0.01), and right amygdala region (r=-0.9399, P<0.01) respectively. Conclusions: The study indicates that neuronal damage and glial proliferation may occur in the prefrontal cortex and amygdala region, which suggests the abnormalities of executive function and emotion in patients with HD. A relationship exists between the heroin-induced metabolic abnormality and the total cumulative dose of inhaled heroine. (authors)

  11. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    Science.gov (United States)

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  12. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  13. High social desirability and prefrontal cortical activity in cancer patients: a preliminary study.

    Science.gov (United States)

    Tashiro, Manabu; Juengling, Freimut D; Moser, Ernst; Reinhardt, Michael J; Kubota, Kazuo; Yanai, Kazuhiko; Sasaki, Hidetada; Nitzsche, Egbert U; Kumano, Hiroaki; Itoh, Masatoshi

    2003-04-01

    Social desirability is sometimes associated with poor prognosis in cancer patients. Psycho-neuro-immune interaction has been hypothesized as an underlying mechanism of the negative clinical outcome. Purpose of this study was to examine possible effects of high social desirability on the regional brain activity in patients with malignant diseases. Brain metabolism of 16 patients with various malignant diseases was measured by PET with 18F-fluorodeoxyglucose (FDG). Patients were divided into 2 groups using median split on Marlowe & Crown's Social Desirability Scale (MC), controlling for age, gender, and for severity of depression and anxiety, the possible two major influential factors. A group comparison of the regional cerebral activity was calculated on a voxel-by-voxel basis using statistical parametric mapping (SPM). The subgroup comparison showed that the high social desirability was associated with relatively increased metabolism in the cortical regions in the prefrontal, temporal and occipital lobes as well as in the anterior cingulate gyrus. High social desirability seems to be associated with increased activity in the prefrontal and other cortical areas. The finding is in an accordance with previous studies that demonstrated an association between prefrontal damage and anti-social behavior. Functional neuroimaging seems to be useful not only for psychiatric evaluation of major factors such as depression and anxiety but also for further psychosocial factors in cancer patients.

  14. Electrophysiological evidence during episodic prospection implicates medial prefrontal and bilateral middle temporal gyrus.

    Science.gov (United States)

    Hsu, Chia-Fen; Sonuga-Barke, Edmund J S

    2016-08-01

    fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Lack of association of the serotonin transporter gene promoter region polymorphism, 5-HTTLPR, including rs25531 with cigarette smoking and alcohol consumption

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Bagger, Yu; Tanko, Laszlo B

    2009-01-01

    We addressed the question whether 5-HTTLPR, a variable number of tandem repeats located in the 5' end of the serotonin transporter gene, is associated with smoking or alcohol consumption. Samples of DNA from 1,365 elderly women with a mean age of 69.2 years were genotyped for this polymorphism...... using a procedure, which allowed the simultaneous determination of variation in the number of repeat units and single nucleotide changes, including the A > G variation at rs25531 for discrimination between the L(A) and L(G) alleles. Qualitative and quantitative information on the women's current...... and previous consumption of cigarettes and alcohol were obtained using a questionnaire. Genotypes were classified according to allele size, that is, S and L with 14 and 16 repeat units, respectively, and on a functional basis by amalgamation of the L(G) and S alleles. Data were subjected to regression analyses...

  16. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    Science.gov (United States)

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  18. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    Science.gov (United States)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  19. Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.

    Science.gov (United States)

    Chafee, Matthew V; Crowe, David A

    2017-10-11

    In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    Science.gov (United States)

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex.

    Science.gov (United States)

    Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela

    2008-07-16

    Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.

  2. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    Directory of Open Access Journals (Sweden)

    Fontanesi Luca

    2012-11-01

    Full Text Available Abstract Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07 Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the biology of fat metabolism and deposition that could also be relevant for other mammalian species including humans, confirming the role of neuronal genes on obesity.

  3. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Alexandra Dumitriu

    2012-06-01

    Full Text Available Parkinson disease (PD is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9 of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1 transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes, suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs selected from a recent meta-analysis of PD genome-wide association studies (GWAS were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK gene and a probe in the spermine oxidase (SMOX gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  4. Molecular and Parasitological Survey of Bovine Piroplasms in the Black Sea Region, Including the First Report of Babesiosis Associated with Babesia divergens in Turkey.

    Science.gov (United States)

    Aktas, M; Ozubek, S

    2015-11-01

    Clinical cases of babesiosis were evaluated, and the frequency of bovine Babesia and Theileria parasites was determined in cattle. Blood samples and thin blood smears were collected from 23 cattle exhibiting clinical signs of babesiosis. In addition, tick and blood samples were collected from 100 apparently healthy cattle cograzing from the same area. Egg masses obtained from fully engorged female ticks were included. DNA isolated from blood and tick samples was screened for Babesia and Theileria by reverse line blot assay. Piroplasms compatible with Babesia spp. were observed microscopically for symptomatic cattle as circular, oval, elongated, or pear-shaped bodies. Parasitemia ranged from 0.08 to 0.9% for Babesia bovis, 2.5 to 15.4% for Babesia bigemina, and 7.4% for Babesia divergens. Reverse line blot showed positivity in 13 (13%) of the sampled clinically normal cattle and revealed the presence of three Babesia species. Babesia bovis was the most prevalent (9/100, 9%), followed by Babesia occultans (3/100, 3%) and B. bigemina (1/100, 1%). One animal infected with B. bigemina was also infected with B. bovis. The single animal infected with B. divergens showed symptoms of babesiosis. Ticks were identified as Rhipicephalus annulatus, Rhipicephalus turanicus, and Ixodes ricinus. One female R. annulatus and its egg mass were infected with B. bigemina. Neither Theileria annulata nor Theileria buffeli/orientalis infections were observed in cattle or ticks. This is the first report of clinical babesiosis caused by B. divergens in cattle from Turkey. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  6. The role of rostral prefrontal cortex in prospective memory: a voxel-based lesion study.

    Science.gov (United States)

    Volle, Emmanuelle; Gonen-Yaacovi, Gil; Costello, Angela de Lacy; Gilbert, Sam J; Burgess, Paul W

    2011-07-01

    Patients with lesions in rostral prefrontal cortex (PFC) often experience problems in everyday-life situations requiring multitasking. A key cognitive component that is critical in multitasking situations is prospective memory, defined as the ability to carry out an intended action after a delay period filled with unrelated activity. The few functional imaging studies investigating prospective memory have shown consistent activation in both medial and lateral rostral PFC but also in more posterior prefrontal regions and non-frontal regions. The aim of this study was to determine regions that are necessary for prospective memory performance, using the human lesion approach. We designed an experimental paradigm allowing us to assess time-based (remembering to do something at a particular time) and event-based (remembering to do something in a particular situation) prospective memory, using two types of material, words and pictures. Time estimation tasks and tasks controlling for basic attention, inhibition and multiple instructions processing were also administered. We examined brain-behaviour relationships with a voxelwise lesion method in 45 patients with focal brain lesions and 107 control subjects using this paradigm. The results showed that lesions in the right polar prefrontal region (in Brodmann area 10) were specifically associated with a deficit in time-based prospective memory tasks for both words and pictures. This deficit could not be explained by impairments in basic attention, detection, inhibition or multiple instruction processing, and there was also no deficit in event-based prospective memory conditions. In addition to their prospective memory difficulties, these polar prefrontal patients were significantly impaired in time estimation ability compared to other patients. The same region was found to be involved using both words and pictures, suggesting that right rostral PFC plays a material nonspecific role in prospective memory. This is the first

  7. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.

    Science.gov (United States)

    Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro

    2010-04-01

    Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.

  8. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias

    NARCIS (Netherlands)

    Ott, D.V.M.; Ullsperger, M.; Jocham, G.; Neumann, J.; Klein, T.A.

    2011-01-01

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of

  9. Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood

    DEFF Research Database (Denmark)

    Bortz, D M; Jørgensen, Christinna Vangsgaard; Mikkelsen, J D

    2014-01-01

    Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious ...

  10. Real-time monitoring prefrontal activities during online video game playing by functional near-infrared spectroscopy.

    Science.gov (United States)

    Li, Yue; Zhang, Lei; Long, Kehong; Gong, Hui; Lei, Hao

    2018-02-16

    A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region-specific time-locked hemodynamic/oxygenation responses in the prefrontal cortex (PFC). It was proposed that the VLPFC activities during LOL playing are likely responses to visuo-motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real-time prefrontal activity during online video game playing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects.

    Science.gov (United States)

    Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-31

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.

  12. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anthony Charles Ruocco

    2016-05-01

    Full Text Available Self-harm is a potentially lethal symptom of borderline personality disorder (BPD that often improves with dialectical behavior therapy (DBT. While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, twenty-nine actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex during impulse control prior to beginning DBT and after seven months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex prior to beginning treatment, and they showed the greatest increases in activity within this region after seven months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial prefrontal cortex and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right dorsolateral prefrontal cortex even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the prefrontal cortex underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  13. Prefrontal cortex glutamate correlates with mental perspective-taking.

    Directory of Open Access Journals (Sweden)

    Christiane Montag

    Full Text Available BACKGROUND: Dysfunctions in theory of mind and empathic abilities have been suggested as core symptoms in major psychiatric disorders including schizophrenia and autism. Since self monitoring, perspective taking and empathy have been linked to prefrontal (PFC and anterior cingulate cortex (ACC function, neurotransmitter variations in these areas may account for normal and pathological variations of these functions. Converging evidence indicates an essential role of glutamatergic neurotransmission in psychiatric diseases with pronounced deficits in empathy. However, the role of the glutamate system for different dimensions of empathy has not been investigated so far. METHODOLOGY/PRINCIPAL FINDINGS: Absolute concentrations of cerebral glutamate in the ACC, left dorsolateral PFC and left hippocampus were determined by 3-tesla proton magnetic resonance spectroscopy (1H-MRS in 17 healthy individuals. Three dimensions of empathy were estimated by a self-rating questionnaire, the Interpersonal Reactivity Index (IRI. Linear regression analysis showed that dorsolateral PFC glutamate concentration was predicted by IRI factor "perspective taking" (T = -2.710, p = 0.018; adjusted alpha-level of 0.017, Bonferroni but not by "empathic concern" or "personal distress". No significant relationship between IRI subscores and the glutamate levels in the ACC or left hippocampus was detected. CONCLUSIONS/SIGNIFICANCE: This is the first study to investigate the role of the glutamate system for dimensions of theory of mind and empathy. Results are in line with recent concepts that executive top-down control of behavior is mediated by prefrontal glutamatergic projections. This is a preliminary finding that needs a replication in an independent sample.

  14. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation.

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B

    2012-01-18

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.

  15. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.

    2012-01-01

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879

  16. Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning.

    Science.gov (United States)

    Cho, Soohyun; Moody, Teena D; Fernandino, Leonardo; Mumford, Jeanette A; Poldrack, Russell A; Cannon, Tyrone D; Knowlton, Barbara J; Holyoak, Keith J

    2010-03-01

    The ability to draw analogies requires 2 key cognitive processes, relational integration and resolution of interference. The present study aimed to identify the neural correlates of both component processes of analogical reasoning within a single, nonverbal analogy task using event-related functional magnetic resonance imaging. Participants verified whether a visual analogy was true by considering either 1 or 3 relational dimensions. On half of the trials, there was an additional need to resolve interference in order to make a correct judgment. Increase in the number of dimensions to integrate was associated with increased activation in the lateral prefrontal cortex as well as lateral frontal pole in both hemispheres. When there was a need to resolve interference during reasoning, activation increased in the lateral prefrontal cortex but not in the frontal pole. We identified regions in the middle and inferior frontal gyri which were exclusively sensitive to demands on each component process, in addition to a partial overlap between these neural correlates of each component process. These results indicate that analogical reasoning is mediated by the coordination of multiple regions of the prefrontal cortex, of which some are sensitive to demands on only one of these 2 component processes, whereas others are sensitive to both.

  17. The topology of connections between rat prefrontal and temporal cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2015-05-01

    Full Text Available Understanding the structural organisation of the prefrontal cortex (PFC is an important step towards determining its functional organisation. Here we investigated the organisation of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100nl and anterograde (Biotinylated dextran amine (BDA or Fluoro-Ruby, 100nl tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labelled neurons and anterogradely labelled axon terminals were then analysed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 and retrograde (anterior-posterior, dorsal-ventral and medial-lateral axes: p<0.001 connections of PFC. We observed that anterograde and retrograde labelling in ipsilateral temporal cortex (i.e. PFC inputs and outputs often occurred reciprocally (i.e. the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labelling. However, often the same specific columnar temporal cortex regions contained only either labelling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched.

  18. The Limbic-Prefrontal Network Modulated by Electroacupuncture at CV4 and CV12

    Directory of Open Access Journals (Sweden)

    Jiliang Fang

    2012-01-01

    Full Text Available fMRI studies showed that acupuncture could induce hemodynamic changes in brain networks. Many of these studies focused on whether specific acupoints could activate specific brain regions and were often limited to manual acupuncture at acupoints on the limbs. In this fMRI study, we investigated acupuncture's modulation effects on brain functional networks by electroacupuncture (EA at acupoints on the midline of abdomen. Acupoints Guanyuan (CV4 and Zhongwan (CV12 were stimulated in 21 healthy volunteers. The needling sensations, brain activation, and functional connectivity were studied. We found that the limbic-prefrontal functional network was deactivated by EA at CV4 and CV12. More importantly, the local functional connectivity was significantly changed during EA stimulation, and the change persisted during the period after the stimulation. Although minor differences existed, both acupoints similarly modulated the limbic-prefrontal functional network, which is overlapped with the functional circuits associated with emotional and cognitive regulation.

  19. The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Regina A. Weilbächer

    2016-12-01

    Full Text Available Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and value-based decision making are the hippocampus and the ventromedial prefrontal cortex, respectively. In this review article, we first give an overview of these brain–behavior associations and then focus on the mechanisms of potential interactions between the hippocampus and ventromedial prefrontal cortex that have been proposed and tested in recent neuroimaging studies. Based on those possible interactions, we discuss several directions for future research on the neural and cognitive foundations of memory-based decision making.

  20. Activation of the Prefrontal Cortex While Performing a Task at Preferred Slow Pace and Metronome Slow Pace: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Kaori Shimoda

    2014-01-01

    Full Text Available Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10 was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions.

  1. Activation of the prefrontal cortex while performing a task at preferred slow pace and metronome slow pace: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Shimoda, Kaori; Moriguchi, Yoshiya; Tsuchiya, Kenji; Katsuyama, Shiori; Tozato, Fusae

    2014-01-01

    Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition) with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition) using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10) was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions.

  2. Short-Term Memory Impairment and Left Dorsolateral Prefrontal Cortex Dysfunction in the Orthostatic Position: A Single Case Study of Sinking Skin Flap Syndrome

    Directory of Open Access Journals (Sweden)

    Luca Sebastianelli

    2015-01-01

    Full Text Available We describe the case of a patient who underwent craniectomy for hemorrhage of the left parietal lobe. Three weeks later, orthostatic memory impairment was detected as initial symptom of sinking skin flap syndrome (SSFS. This deficit was examined by neuropsychological testing and associated with a posture-dependent increase in the delta/alpha ratio at the F3 electrode, an electroencephalographic (EEG index related to brain hypoperfusion. This EEG spectral alteration was detected in a brain region that includes the left dorsolateral prefrontal cortex, an area known to be involved in memory processing; therefore we hypothesize that SSFS induced reversible hypoperfusion of this otherwise undamaged cortical region. Neither of these findings was present after cranioplasty. This case suggests that SSFS may induce neuropsychological deficits potentially influencing outcome in the postacute phase and is further evidence supporting the clinical benefits of early cranioplasty.

  3. Development of a sophisticated information system including a metadatabase and regional radioecological cadastres for assessment of the radiation impact on the environment and population of the Northwest Russia and Krasnoyarsk Region

    Energy Technology Data Exchange (ETDEWEB)

    Iskra, A.A.; Burykin, A.A. [All-Russia Research Institute of Chemical Technology (Russian Federation); Lebedev, O.G.; Popov, V.K.; Churaev, R.S. [Russian Research Center Kurchatov Institute (Russian Federation)

    2004-07-01

    The goal of the 'Radinfo' project is creation of a meta-database (MDB) and radioecological cadastres, geo-referenced information systems being a basic component of those ones, and conducting (using those systems) evaluation study of possible pathways of radionuclides from the radiation-hazardous objects, radioactive waste, and contaminated areas, followed by the ranking of threats, for two priority regions of Russia selected on the basis of expert interrogation: the North-West of Russia and Krasnoyarsk region. In order to achieve the goal the following investigation tools are being created and/or applied for evaluation study on the two regions: - information data files (local databases, publications etc.) on radiation sources, radioactive waste, and contaminated areas, as well as on the environment characteristics in the studied regions; - radionuclide transfer pathways models; - sets of local geo-information systems (comprising a basic component of GIS cadastres), embracing (scanning) the areas of two regions of interest and allowing to assess the dynamics of real and probable migration of radionuclides. The RadInfo MDB development is based on use of multi-level architecture of the Web-technologies. The multi-level architecture, unlike that of conventional 'Client-Server' type, provides more versatility and scalability. In this particular case a three-level version is realized. A SQL-server (MySQL) is used as a database server. The well-known Apache Web-server is used as an application server. For its part it provides execution of scripts in the PHP language (the scripts are program extension of the server part)With such kind of configuration there is no need in using special software on the client side. Any browser (for instance, Microsoft Internet Explorer or Netscape Navigator) can be used as a workplace. The configuration is very simple as far as as its installation, adjustment and use are concerned. The meta-database and the models of

  4. Development of a sophisticated information system including a metadatabase and regional radioecological cadastres for assessment of the radiation impact on the environment and population of the Northwest Russia and Krasnoyarsk Region

    International Nuclear Information System (INIS)

    Iskra, A.A.; Burykin, A.A.; Lebedev, O.G.; Popov, V.K.; Churaev, R.S.

    2004-01-01

    The goal of the 'Radinfo' project is creation of a meta-database (MDB) and radioecological cadastres, geo-referenced information systems being a basic component of those ones, and conducting (using those systems) evaluation study of possible pathways of radionuclides from the radiation-hazardous objects, radioactive waste, and contaminated areas, followed by the ranking of threats, for two priority regions of Russia selected on the basis of expert interrogation: the North-West of Russia and Krasnoyarsk region. In order to achieve the goal the following investigation tools are being created and/or applied for evaluation study on the two regions: - information data files (local databases, publications etc.) on radiation sources, radioactive waste, and contaminated areas, as well as on the environment characteristics in the studied regions; - radionuclide transfer pathways models; - sets of local geo-information systems (comprising a basic component of GIS cadastres), embracing (scanning) the areas of two regions of interest and allowing to assess the dynamics of real and probable migration of radionuclides. The RadInfo MDB development is based on use of multi-level architecture of the Web-technologies. The multi-level architecture, unlike that of conventional 'Client-Server' type, provides more versatility and scalability. In this particular case a three-level version is realized. A SQL-server (MySQL) is used as a database server. The well-known Apache Web-server is used as an application server. For its part it provides execution of scripts in the PHP language (the scripts are program extension of the server part)With such kind of configuration there is no need in using special software on the client side. Any browser (for instance, Microsoft Internet Explorer or Netscape Navigator) can be used as a workplace. The configuration is very simple as far as as its installation, adjustment and use are concerned. The meta-database and the models of radionuclide transfer

  5. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  6. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  7. Transcranial Magnetic Stimulation of Medial Prefrontal and Cingulate Cortices Reduces Cocaine Self-Administration: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Diana Martinez

    2018-03-01

    Full Text Available BackgroundPrevious studies have shown that repetitive transcranial magnetic stimulation (rTMS to the dorsolateral prefrontal cortex may serve as a potential treatment for cocaine use disorder (CUD, which remains a public health problem that is refractory to treatment. The goal of this pilot study was to investigate the effect of rTMS on cocaine self-administration in the laboratory. In the self-administration sessions, CUD participants chose between cocaine and an alternative reinforcer (money in order to directly measure cocaine-seeking behavior. The rTMS was delivered with the H7 coil, which provides stimulation to the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC. These brain regions were targeted based on previous imaging studies demonstrating alterations in their activation and connectivity in CUD.MethodsVolunteers with CUD were admitted to an inpatient unit for the entire study and assigned to one of three rTMS groups: high frequency (10 Hz, low frequency (1 Hz, and sham. Six participants were included in each group and the rTMS was delivered on weekdays for 3 weeks. The cocaine self-administration sessions were performed at three time points: at baseline (pre-TMS, session 1, after 4 days of rTMS (session 2, and after 13 days of rTMS (session 3. During each self-administration session, the outcome measure was the number of choices for cocaine.ResultsThe results showed a significant group by time effect (p = 0.02, where the choices for cocaine decreased between sessions 2 and 3 in the high frequency group. There was no effect of rTMS on cocaine self-administration in the low frequency or sham groups.ConclusionTaken in the context of the existing literature, these results contribute to the data showing that high frequency rTMS to the prefrontal cortex may serve as a potential treatment for CUD.

  8. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Kegeles, Lawrence S; Mao, Xiangling; Stanford, Arielle D; Girgis, Ragy; Ojeil, Najate; Xu, Xiaoyan; Gil, Roberto; Slifstein, Mark; Abi-Dargham, Anissa; Lisanby, Sarah H; Shungu, Dikoma C

    2012-05-01

    Postmortem studies have found evidence of γ-aminobutyric acid (GABA) deficits in fast-spiking, parvalbumin-positive interneurons in the prefrontal cortex in schizophrenia. Magnetic resonance spectroscopy studies in unmedicated patients have reported glutamine or glutamate-glutamine (Glx) elevations in this region. Abnormalities in these transmitters are thought to play a role in cognitive impairments in the illness. To measure GABA and Glx levels in vivo in 2 prefrontal brain regions in unmedicated and medicated patients with schizophrenia and healthy controls. Case-control study. Inpatient psychiatric research unit and associated outpatient clinic. Sixteen unmedicated patients with schizophrenia, 16 medicated patients, and 22 healthy controls matched for age, sex, ethnicity, parental socioeconomic status, and cigarette smoking. Proton magnetic resonance spectroscopy with a 3-T system and the J-edited spin-echo difference method. The GABA and Glx levels were measured in the dorsolateral and medial prefrontal cortex and normalized to the simultaneously acquired water signal. Working memory performance was assessed in all subjects. The GABA and Glx concentrations determined by proton magnetic resonance spectroscopy. In the medial prefrontal cortex region, 30% elevations were found in GABA (P = .02) and Glx (P = .03) levels in unmedicated patients compared with controls. There were no alterations in the medicated patients or in either group in the dorsolateral prefrontal cortex. Both regions showed correlations between GABA and Glx levels in patients and controls. No correlations with working memory performance were found. To our knowledge, this study presents the first GABA concentration measurements in unmedicated patients with schizophrenia, who showed elevations in both GABA and Glx levels in the medial prefrontal cortex but not the dorsolateral prefrontal cortex. Medicated patients did not show these elevations, suggesting possible normalization of levels with

  9. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning

    Science.gov (United States)

    Brincat, Scott L.

    2016-01-01

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722

  10. Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment.

    Science.gov (United States)

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H

    2009-08-01

    Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). 1455 young adults (18-25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3 T trio scanner. GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P=0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA9) (P=0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA24) (P<0.001, uncorrected cluster level) of HCP subjects. There were significant correlations between GMV in these identified regions and performance IQ on the WAIS-III. Exposing children to harsh HCP may have detrimental effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP.

  11. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    Science.gov (United States)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  12. Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections.

    Science.gov (United States)

    Barker, Gareth R I; Banks, Paul J; Scott, Hannah; Ralph, G Scott; Mitrophanous, Kyriacos A; Wong, Liang-Fong; Bashir, Zafar I; Uney, James B; Warburton, E Clea

    2017-02-01

    Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.

  13. A hierarchy for relational reasoning in the prefrontal cortex.

    Science.gov (United States)

    Krawczyk, Daniel C; Michelle McClelland, M; Donovan, Colin M

    2011-05-01

    The human brain possesses a unique capacity to reason about abstract relationships among items in our environment. The neural organization of reasoning abilities has remained elusive. Two approaches toward investigating human reasoning have involved studying visuo-spatial reasoning abilities and studying analogical reasoning. These approaches have both revealed anterior prefrontal cortex (PFC) involvement, but no prior studies have jointly investigated these two forms of reasoning to understand any potential convergence of activation within the PFC. Using fMRI, we tested the extent to which these two forms of reasoning (visuo-spatial and analogical) overlap in PFC activation. We conducted a visuo-spatial reasoning task that required processing multiple changes across three abstract pictures. This task activated a progressively anterior series of PFC regions when multiple relations had to be integrated. We also conducted a four-term analogy task in a stage-wise manner and compared results from this task to semantic and perceptual control conditions that did not require integrating relations across the problems. We found greater activation for analogical reasoning in the series of PFC regions that were sequentially involved in the visuo-spatial reasoning task. These findings indicate that stages of neural processing overlap for different domains within human reasoning. The pattern of differences across the analogy task suggests a hierarchical organization for relational reasoning across domains in which posterior frontal cortex is active across concrete reasoning tasks, while progressively more anterior regions are recruited to process increasingly abstract representations in reasoning. Copyright © 2010 Elsevier Srl. All rights reserved.

  14. Prefrontal inhibition of threat processing protects working memory from interference.

    Directory of Open Access Journals (Sweden)

    Robert James Clarke

    2013-05-01

    Full Text Available Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modelling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesised that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat

  15. Anterior medial prefrontal cortex implements social priming of mimicry.

    Science.gov (United States)

    Wang, Yin; Hamilton, Antonia F de C

    2015-04-01

    The neural and cognitive mechanisms by which primed constructs can impact on social behavior are poorly understood. In the present study, we used functional magnetic resonance imaging (fMRI) to explore how scrambled sentence priming can impact on mimicry behavior. Sentences involving pro/antisocial events from a first/third-person point of view were presented in short blocks, followed by a reaction-time assessment of mimicry. Behavioral results showed that both prosociality and viewpoint impact on mimicry, and fMRI analysis showed this effect is implemented by anterior medial prefrontal cortex (amPFC). We suggest that social primes may subtly modulate processing in amPFC in a manner linked to the later behavior, and that this same region also implements the top-down control of mimicry responses. This priming may be linked to processing of self-schemas in amPFC. Our findings demonstrate how social priming can be studied with fMRI, and have important implications for our understanding of the underlying mechanisms of prime-to-behavior effects as well as for current theories in social psychology. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    Science.gov (United States)

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  17. Guanfacine modulates the emotional biasing of amygdala-prefrontal connectivity for cognitive control.

    Science.gov (United States)

    Schulz, Kurt P; Clerkin, Suzanne M; Newcorn, Jeffrey H; Halperin, Jeffrey M; Fan, Jin

    2014-09-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  18. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder.

    Science.gov (United States)

    Ajram, L A; Horder, J; Mendez, M A; Galanopoulos, A; Brennan, L P; Wichers, R H; Robertson, D M; Murphy, C M; Zinkstok, J; Ivin, G; Heasman, M; Meek, D; Tricklebank, M D; Barker, G J; Lythgoe, D J; Edden, R A E; Williams, S C; Murphy, D G M; McAlonan, G M

    2017-05-23

    Currently, there are no effective pharmacologic treatments for the core symptoms of autism spectrum disorder (ASD). There is, nevertheless, potential for progress. For example, recent evidence suggests that the excitatory (E) glutamate and inhibitory (I) GABA systems may be altered in ASD. However, no prior studies of ASD have examined the 'responsivity' of the E-I system to pharmacologic challenge; or whether E-I modulation alters abnormalities in functional connectivity of brain regions implicated in the disorder. Therefore, we used magnetic resonance spectroscopy ([1H]MRS) to measure prefrontal E-I flux in response to the glutamate and GABA acting drug riluzole in adult men with and without ASD. We compared the change in prefrontal 'Inhibitory Index'-the GABA fraction within the pool of glutamate plus GABA metabolites-post riluzole challenge; and the impact of riluzole on differences in resting-state functional connectivity. Despite no baseline differences in E-I balance, there was a significant group difference in response to pharmacologic challenge. Riluzole increased the prefrontal cortex inhibitory index in ASD but decreased it in controls. There was also a significant group difference in prefrontal functional connectivity at baseline, which was abolished by riluzole within the ASD group. Our results also show, for we believe the first time in ASD, that E-I flux can be 'shifted' with a pharmacologic challenge, but that responsivity is significantly different from controls. Further, our initial evidence suggests that abnormalities in functional connectivity can be 'normalised' by targeting E-I, even in adults.

  19. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders.

    Science.gov (United States)

    Shepard, Ryan; Page, Chloe E; Coutellier, Laurence

    2016-09-22

    Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  20. Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period

    Science.gov (United States)

    Sabihi, Sara; Dong, Shirley M.; Durosko, Nicole E.; Leuner, Benedetta

    2014-01-01

    The neuropeptide oxytocin (OT) acts on a widespread network of brain regions to regulate numerous behavioral adaptations during the postpartum period including maternal care, maternal aggression, and anxiety. In the present study, we examined whether this network also includes the medial prefrontal cortex (mPFC). We found that bilateral infusion of a highly specific oxytocin receptor antagonist (OTR-A) into the prelimbic (PL) region of the mPFC increased anxiety-like behavior in postpartum, but not virgin, females. In addition, OTR blockade in the postpartum mPFC impaired maternal care behaviors and enhanced maternal aggression. Overall, these results suggest that OT in the mPFC modulates maternal care and aggression, as well as anxiety-like behavior, during the postpartum period. Although the relationship among these behaviors is complicated and further investigation is required to refine our understanding of OT actions in the maternal mPFC, these data nonetheless provide new insights into neural circuitry of OT-mediated postpartum behaviors. PMID:25147513

  1. Prefrontal control of attention to threat

    Directory of Open Access Journals (Sweden)

    Polly V Peers

    2013-02-01

    Full Text Available Attentional control refers to the regulatory processes that ensure that our actions are in accordance with our goals. Dual-system accounts view temperament as consisting of both individual variation in emotionality (e.g. trait anxiety and variation in regulatory attentional mechanisms that act to modulate emotionality. Increasing evidence links trait variation in attentional control to clinical mood and anxiety disorder symptoms, independent of trait emotionality. Attentional biases to threat have been robustly linked to mood and anxiety disorders. However, the role of variation in attentional control in influencing such biases, and the neural underpinnings of trait variation in attentional control, are unknown. Here, we show, that individual differences in trait attentional control, even when accounting for trait and state anxiety, are related to the magnitude of an attentional blink following threat-related targets. Moreover, we demonstrate that activity in dorsolateral prefrontal cortex, is observed specifically in relation to control of attention over threatening stimuli, in line with neural theories of attentional control, such as guided activation theory. These results have key implications for neurocognitive theories of attentional bias and emotional resilience.

  2. Prefrontal Dopamine in Associative Learning and Memory

    Science.gov (United States)

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  3. Prefrontal dopamine in associative learning and memory.

    Science.gov (United States)

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Prefrontal cortex NG2 glia undergo a developmental switch in their responsiveness to exercise.

    Science.gov (United States)

    Tomlinson, Lyl; Huang, Po Hsuan; Colognato, Holly

    2018-03-22

    Aerobic exercise is known to influence brain function, e.g., enhancing executive function in both children and adults, with many of these influences being attributed to alterations in neurogenesis and neuronal function. Yet oligodendroglia in adult brains have also been reported to be highly responsive to exercise, including in the prefrontal cortex (PFC), a late myelinating region implicated in working memory. However, whether exercise affects oligodendroglia or myelination in juveniles, either in the PFC or in other brain regions, remains unknown. To address this, both juvenile and young adult mice were provided free access to running wheels for four weeks followed by an analysis of oligodendrocyte development and myelination in the PFC and the corpus callosum, a major white matter tract. Working memory and PFC NG2+ cell development were both affected by exercise in juvenile mice, yet surprisingly these exercise-mediated effects were distinct in juveniles and young adults. In the PFC, NG2+ cell proliferation was increased in exercising juveniles, but not young adults, whereas newly-born oligodendrocyte production was increased in exercising young adults, but not juveniles. Although no overall changes in myelin genes were found, elevated levels of Monocarboxylate Transporter 1, a glial lactate transporter important during active myelination, were found in the PFC of exercising young adults. Overall our findings reveal that long-term exercise modulates PFC glial development and does so differentially in juvenile and young adult mice, providing insight into the cellular responses that may underlie cognitive benefits to teenagers and young adults in response to exercise. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  5. Altered prefrontal correlates of monetary anticipation and outcome in chronic pain.

    Science.gov (United States)

    Martucci, Katherine T; Borg, Nicholas; MacNiven, Kelly H; Knutson, Brian; Mackey, Sean C

    2018-04-04

    Chronic pain may alter both affect- and value-related behaviors, which represents a potentially treatable aspect of chronic pain experience. Current understanding of how chronic pain influences the function of brain reward systems, however, is limited. Using a monetary incentive delay task and functional magnetic resonance imaging (fMRI), we measured neural correlates of reward anticipation and outcomes in female participants with the chronic pain condition of fibromyalgia (N = 17) and age-matched, pain-free, female controls (N = 15). We hypothesized that patients would demonstrate lower positive arousal, as well as altered reward anticipation and outcome activity within corticostriatal circuits implicated in reward processing. Patients demonstrated lower arousal ratings as compared with controls, but no group differences were observed for valence, positive arousal, or negative arousal ratings. Group fMRI analyses were conducted to determine predetermined region of interest, nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC), responses to potential gains, potential losses, reward outcomes, and punishment outcomes. Compared with controls, patients demonstrated similar, although slightly reduced, NAcc activity during gain anticipation. Conversely, patients demonstrated dramatically reduced mPFC activity during gain anticipation-possibly related to lower estimated reward probabilities. Further, patients demonstrated normal mPFC activity to reward outcomes, but dramatically heightened mPFC activity to no-loss (nonpunishment) outcomes. In parallel to NAcc and mPFC responses, patients demonstrated slightly reduced activity during reward anticipation in other brain regions, which included the ventral tegmental area, anterior cingulate cortex, and anterior insular cortex. Together, these results implicate altered corticostriatal processing of monetary rewards in chronic pain.

  6. Ventromedial prefrontal volume predicts understanding of others and social network size.

    Science.gov (United States)

    Lewis, Penelope A; Rezaie, Roozbeh; Brown, Rachel; Roberts, Neil; Dunbar, R I M

    2011-08-15

    Cognitive abilities such as Theory of Mind (ToM), and more generally mentalizing competences, are central to human sociality. Neuroimaging has associated these abilities with specific brain regions including temporo-parietal junction, superior temporal sulcus, frontal pole, and ventromedial prefrontal cortex. Previous studies have shown both that mentalizing competence, indexed as the ability to correctly understand others' belief states, is associated with social network size and that social group size is correlated with frontal lobe volume across primate species (the social brain hypothesis). Given this, we predicted that both mentalizing competences and the number of social relationships a person can maintain simultaneously will be a function of gray matter volume in these regions associated with conventional Theory of Mind. We used voxel-based morphometry of Magnetic Resonance Images (MRIs) to test this hypothesis in humans. Specifically, we regressed individuals' mentalizing competences and social network sizes against gray matter volume. This revealed that gray matter volume in bilateral posterior frontal pole and left temporoparietal junction and superior temporal sucus varies parametrically with mentalizing competence. Furthermore, gray matter volume in the medial orbitofrontal cortex and the ventral portion of medial frontal gyrus, varied parametrically with both mentalizing competence and social network size, demonstrating a shared neural basis for these very different facets of sociality. These findings provide the first fine-grained anatomical support for the social brain hypothesis. As such, they have important implications for our understanding of the constraints limiting social cognition and social network size in humans, as well as for our understanding of how such abilities evolved across primates. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Regionalism, Regionalization and Regional Development

    Directory of Open Access Journals (Sweden)

    Liviu C. Andrei

    2016-03-01

    Full Text Available Sustained development is a concept associating other concepts, in its turn, in the EU practice, e.g. regionalism, regionalizing and afferent policies, here including structural policies. This below text, dedicated to integration concepts, will limit on the other hand to regionalizing, otherwise an aspect typical to Europe and to the EU. On the other hand, two aspects come up to strengthen this field of ideas, i.e. the region (al-regionalism-(regional development triplet has either its own history or precise individual outline of terms.

  8. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  9. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder.

    Science.gov (United States)

    Dickler, Maya; Lenglos, Christophe; Renauld, Emmanuelle; Ferland, Francine; Edden, Richard A; Leblond, Jean; Fecteau, Shirley

    2018-03-15

    Gambling disorder is characterized by persistent maladaptive gambling behaviors and is now considered among substance-related and addictive disorders. There is still unmet therapeutic need for these clinical populations, however recent advances indicate that interventions targeting the Glutamatergic/GABAergic system hold promise in reducing symptoms in substance-related and addictive disorders, including gambling disorder. There is some data indicating that transcranial direct current stimulation may hold clinical benefits in substance use disorders and modulate levels of brain metabolites including glutamate and GABA. The goal of the present work was to test whether this non-invasive neurostimulation method modulates key metabolites in gambling disorder. We conducted a sham-controlled, crossover, randomized study, blinded at two levels in order to characterize the effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on neural metabolites levels in sixteen patients with gambling disorder. Metabolite levels were measured with magnetic resonance spectroscopy from the right dorsolateral prefrontal cortex and the right striatum during active and sham stimulation. Active as compared to sham stimulation elevated prefrontal GABA levels. There were no significant changes between stimulation conditions in prefrontal glutamate + glutamine and N-acetyl Aspartate, or in striatal metabolite levels. Results also indicated positive correlations between metabolite levels during active, but not sham, stimulation and levels of risk taking, impulsivity and craving. Our findings suggest that transcranial direct current stimulation can modulate GABA levels in patients with gambling disorder which may represent an interesting future therapeutic avenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Converging evidence for the association of functional genetic variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment.

    Science.gov (United States)

    Blasi, Giuseppe; De Virgilio, Caterina; Papazacharias, Apostolos; Taurisano, Paolo; Gelao, Barbara; Fazio, Leonardo; Ursini, Gianluca; Sinibaldi, Lorenzo; Andriola, Ileana; Masellis, Rita; Romano, Raffaella; Rampino, Antonio; Di Giorgio, Annabella; Lo Bianco, Luciana; Caforio, Grazia; Piva, Francesco; Popolizio, Teresa; Bellantuono, Cesario; Todarello, Orlando; Kleinman, Joel E; Gadaleta, Gemma; Weinberger, Daniel R; Bertolino, Alessandro

    2013-09-01

    Serotonin (5-hydroxytryptamine) receptor 2a (5-HT2AR) signaling is important for modulation of corticostriatal pathways and prefrontal activity during cognition. Furthermore, newer antipsychotic drugs target 5-HT2AR. A single-nucleotide polymorphism in the 5-HT2AR gene (HTR2A rs6314, C>T; OMIM 182135) has been weakly associated with differential 5-HT2AR signaling and with physiologic as well as behavioral effects. To use a hierarchical approach to determine the functional effects of this single-nucleotide polymorphism on 5-HT2AR messenger RNA and protein expression, on prefrontal phenotypes linked with genetic risk for schizophrenia, and on treatment with olanzapine. In silico predictions, in vitro, and case-control investigations. Academic and clinical facilities. The postmortem study included 112 brains from healthy individuals; the in vivo investigation included a total sample of 371 healthy individuals and patients with schizophrenia. EXPOSURES Patients received olanzapine monotherapy for 8 weeks. In silico predictions, messenger RNA, and protein expression in postmortem human prefrontal cortex and HeLa cells, functional magnetic resonance imaging prefrontal activity and behavior during working memory and attention in healthy individuals, and response to an 8-week trial of olanzapine treatment in patients with schizophrenia. Bioinformatic analysis predicted that rs6314 alters patterns of splicing, with possible effects on HTR2A expression. Moreover, the T allele was associated with reduced prefrontal messenger RNA expression in postmortem prefrontal cortex, with reduced protein expression in vitro, inefficient prefrontal blood oxygen level-dependent functional magnetic resonance imaging response during working memory and attentional control processing, and impaired working memory and attention behavior, as well as with attenuated improvement in negative symptoms after olanzapine treatment. Our results suggest that HTR2A rs6314 affects 5-HT2AR expression and

  12. Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: A pilot study

    Institute of Scientific and Technical Information of China (English)

    Feng-Mei Fan; Shu-Ping Tan; Fu-De Yang; Yun-Long Tan; Yan-Li Zhao; Nan Chen; Bin-Bin Li

    2013-01-01

    People with schizophrenia exhibit impaired social cognitive functions,particularly emotion regulation.Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia,suggesting its important role in emotion processing in patients.We used the resting-state functional connectivity approach,setting a functionally relevant region,the vMPFC,as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients.We found hypo-connectivity between the vMPFC and the medial frontal cortex,right middle temporal lobe (MTL),right hippocampus,parahippocampal cortex (PHC) and amygdala.Further,there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas.Among these connectivity alterations,reduced vMPFCDLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale,while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients.These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia.The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.

  13. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    Science.gov (United States)

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The Role of the Rat Medial Prefrontal Cortex in Adapting to Changes in Instrumental Contingency

    Science.gov (United States)

    Coutureau, Etienne; Esclassan, Frederic; Di Scala, Georges; Marchand, Alain R.

    2012-01-01

    In order to select actions appropriate to current needs, a subject must identify relationships between actions and events. Control over the environment is determined by the degree to which action consequences can be predicted, as described by action-outcome contingencies – i.e. performing an action should affect the probability of the outcome. We evaluated in a first experiment adaptation to contingency changes in rats with neurotoxic lesions of the medial prefrontal cortex. Results indicate that this brain region is not critical to adjust instrumental responding to a negative contingency where the rats must refrain from pressing a lever, as this action prevents reward delivery. By contrast, this brain region is required to reduce responding in a non-contingent situation where the same number of rewards is freely delivered and actions do not affect the outcome any more. In a second experiment, we determined that this effect does not result from a different perception of temporal relationships between actions and outcomes since lesioned rats adapted normally to gradually increasing delays in reward delivery. These data indicate that the medial prefrontal cortex is not directly involved in evaluating the correlation between action-and reward-rates or in the perception of reward delays. The deficit in lesioned rats appears to consist of an abnormal response to the balance between contingent and non-contingent rewards. By highlighting the role of prefrontal regions in adapting to the causal status of actions, these data contribute to our understanding of the neural basis of choice tasks. PMID:22496747

  15. Guanfacine modulates the influence of emotional cues on prefrontal cortex activation for cognitive control.

    Science.gov (United States)

    Schulz, Kurt P; Clerkin, Suzanne M; Fan, Jin; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2013-03-01

    Functional interactions between limbic regions that process emotions and frontal networks that guide response functions provide a substrate for emotional cues to influence behavior. Stimulation of postsynaptic α₂ adrenoceptors enhances the function of prefrontal regions in these networks. However, the impact of this stimulation on the emotional biasing of behavior has not been established. This study tested the effect of the postsynaptic α₂ adrenoceptor agonist guanfacine on the emotional biasing of response execution and inhibition in prefrontal cortex. Fifteen healthy young adults were scanned twice with functional magnetic resonance imaging while performing a face emotion go/no-go task following counterbalanced administration of single doses of oral guanfacine (1 mg) and placebo in a double-blind, cross-over design. Lower perceptual sensitivity and less response bias for sad faces resulted in fewer correct responses compared to happy and neutral faces but had no effect on correct inhibitions. Guanfacine increased the sensitivity and bias selectively for sad faces, resulting in response accuracy comparable to happy and neutral faces, and reversed the valence-dependent variation in response-related activation in left dorsolateral prefrontal cortex (DLPFC), resulting in enhanced activation for response execution cued by sad faces relative to happy and neutral faces, in line with other frontoparietal regions. These results provide evidence that guanfacine stimulation of postsynaptic α₂ adrenoceptors moderates DLPFC activation associated with the emotional biasing of response execution processes. The findings have implications for the α₂ adrenoceptor agonist treatment of attention-deficit hyperactivity disorder.

  16. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.

    Science.gov (United States)

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.

  17. Autobiographical memory loss following a right prefrontal lobe tumour resection: a case report and review of the literature.

    Science.gov (United States)

    Jamjoom, A A B; Gallo, P; Kandasamy, J; Phillips, J; Sokol, D

    2017-07-01

    The right prefrontal lobe has not traditionally been considered eloquent brain. Resection of tumours within this region does not typically lead to permanent functional impairment. In this report, we highlight the case of a patient who developed autobiographical memory loss following an uncomplicated resection of a right prefrontal tumour. A previously fit and well 15-year old presented with a persistent right-sided headache. An MRI demonstrated an expanded right mid-frontal gyrus with changes consistent with a low-grade tumour. The patient underwent a right-sided craniotomy and resection of the lesion which was confirmed as a WHO grade II diffuse astrocytoma. Postoperatively, the patient reported profound retrograde amnesia for a range of memory components, in particular autobiographical memory and semantic memory. Postoperative imaging showed a good resection margin with no evidence of underlying brain injury. Over an 18-month period, the patient showed no improvement in autobiographical memory; however, significant relearning of semantic knowledge took place and her academic performance was found to be in line with expectations for her age. In this report, we discuss a case and review the literature on the role of the right prefrontal cortex in memory and caution on the perception of right prefrontal non-eloquence.

  18. Impaired mixed emotion processing in the right ventrolateral prefrontal cortex in schizophrenia: an fMRI study.

    Science.gov (United States)

    Szabó, Ádám György; Farkas, Kinga; Marosi, Csilla; Kozák, Lajos R; Rudas, Gábor; Réthelyi, János; Csukly, Gábor

    2017-12-08

    Schizophrenia has a negative effect on the activity of the temporal and prefrontal cortices in the processing of emotional facial expressions. However no previous research focused on the evaluation of mixed emotions in schizophrenia, albeit they are frequently expressed in everyday situations and negative emotions are frequently expressed by mixed facial expressions. Altogether 37 subjects, 19 patients with schizophrenia and 18 healthy control subjects were enrolled in the study. The two study groups did not differ in age and education. The stimulus set consisted of 10 fearful (100%), 10 happy (100%), 10 mixed fear (70% fear and 30% happy) and 10 mixed happy facial expressions. During the fMRI acquisition pictures were presented in a randomized order and subjects had to categorize expressions by button press. A decreased activation was found in the patient group during fear, mixed fear and mixed happy processing in the right ventrolateral prefrontal cortex (VLPFC) and the right anterior insula (RAI) at voxel and cluster level after familywise error correction. No difference was found between study groups in activations to happy facial condition. Patients with schizophrenia did not show a differential activation between mixed happy and happy facial expression similar to controls in the right dorsolateral prefrontal cortex (DLPFC). Patients with schizophrenia showed decreased functioning in right prefrontal regions responsible for salience signaling and valence evaluation during emotion recognition. Our results indicate that fear and mixed happy/fear processing are impaired in schizophrenia, while happy facial expression processing is relatively intact.

  19. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  20. Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    2011-02-01

    Full Text Available In most cognitive neuroscience experiments there are many behavioral and experimental dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists or does not in any given trial, whereas some evidence and intuition suggests that conflict may vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of time-frequency electrophysiological activity reveals neural mechanisms of cognitive control that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation phase coherence and synchronization analyses, based on weighted phase modulation, that has advantages over standard coherence measures in terms of linking electrophysiological dynamics to trial-varying behavior and experimental variables. After replicating previous response conflict findings using trial-averaged data, we extend these findings using single trial analytic methods to provide novel evidence for the role of medial frontal-lateral prefrontal theta-band synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal theta-band activity in biasing response times according to perceptual conflict. Given that these methods shed new light on the prefrontal mechanisms of response conflict, they are also likely to be useful for investigating other neurocognitive processes.

  1. Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain

    Directory of Open Access Journals (Sweden)

    Cui Guang-bin

    2012-02-01

    Full Text Available Abstract Background Interleukin-8 (IL-8 is known for its roles in inflammation and plays critical roles in the development of pain. Its expression increases in the brain after peripheral inflammation. Prefrontal cortex, including the anterior cingulate cortex (ACC, is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission, however, little is known about the expression of IL-8 and its role in the enhanced ACC synaptic transmission in animals with persistent inflammatory pain. Findings In the present study, we examined IL-8 expression in the ACC, somatosensory cortex (SSC, and the dorsal horn of lumbar spinal cord following hind-paw administration of complete Freund's adjuvant (CFA in mice and its effects on the ACC synaptic transmission. Quantification of IL-8 at protein level (by ELISA revealed enhanced expression in the ACC and spinal cord during the chronic phases of CFA-induced peripheral inflammation. In vitro whole-cell patch-clamp recordings revealed that IL-8 significantly enhanced synaptic transmission through increased probability of neurotransmitter release in the ACC slice. ACC local infusion of repertaxin, a non-competitive allosteric blocker of IL-8 receptors, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in mice. Conclusions Our findings suggest that up-regulation of IL-8 in the ACC partly attributable to the enhanced prefrontal synaptic transmission in the mice with persistent inflammatory pain.

  2. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    Science.gov (United States)

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Susceptibility to social pressure following ventromedial prefrontal cortex damage.

    Science.gov (United States)

    Chen, Kuan-Hua; Rusch, Michelle L; Dawson, Jeffrey D; Rizzo, Matthew; Anderson, Steven W

    2015-11-01

    Social pressure influences human behavior including risk taking, but the psychological and neural underpinnings of this process are not well understood. We used the human lesion method to probe the role of ventromedial prefrontal cortex (vmPFC) in resisting adverse social pressure in the presence of risk. Thirty-seven participants (11 with vmPFC damage, 12 with brain damage outside the vmPFC and 14 without brain damage) were tested in driving simulator scenarios requiring left-turn decisions across oncoming traffic with varying time gaps between the oncoming vehicles. Social pressure was applied by a virtual driver who honked aggressively from behind. Participants with vmPFC damage were more likely to select smaller and potentially unsafe gaps under social pressure, while gap selection by the comparison groups did not change under social pressure. Participants with vmPFC damage also showed prolonged elevated skin conductance responses (SCR) under social pressure. Comparison groups showed similar initial elevated SCR, which then declined prior to making left-turn decisions. The findings suggest that the vmPFC plays an important role in resisting explicit and immediately present social pressure with potentially negative consequences. The vmPFC appears to contribute to the regulation of emotional responses and the modulation of decision making to optimize long-term outcomes. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Prefrontal-amygdala fear networks come into focus

    Directory of Open Access Journals (Sweden)

    Maithe eArruda-Carvalho

    2015-10-01

    Full Text Available The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD. PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic and infralimbic subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.

  5. Involvement of the Ventrolateral Prefrontal Cortex in Learning Others' Bad Reputations and Indelible Distrust.

    Science.gov (United States)

    Suzuki, Atsunobu; Ito, Yuichi; Kiyama, Sachiko; Kunimi, Mitsunobu; Ohira, Hideki; Kawaguchi, Jun; Tanabe, Hiroki C; Nakai, Toshiharu

    2016-01-01

    A bad reputation can persistently affect judgments of an individual even when it turns out to be invalid and ought to be disregarded. Such indelible distrust may reflect that the negative evaluation elicited by a bad reputation transfers to a person. Consequently, the person him/herself may come to activate this negative evaluation irrespective of the accuracy of the reputation. If this theoretical model is correct, an evaluation-related brain region will be activated when witnessing a person whose bad reputation one has learned about, regardless of whether the reputation is deemed valid or not. Here, we tested this neural hypothesis with functional magnetic resonance imaging (fMRI). Participants memorized faces paired with either a good or a bad reputation. Next, they viewed the faces alone and inferred whether each person was likely to cooperate, first while retrieving the reputations, and then while trying to disregard them as false. A region of the left ventrolateral prefrontal cortex (vlPFC), which may be involved in negative evaluation, was activated by faces previously paired with bad reputations, irrespective of whether participants attempted to retrieve or disregard these reputations. Furthermore, participants showing greater activity of the left ventrolateral prefrontal region in response to the faces with bad reputations were more likely to infer that these individuals would not cooperate. Thus, once associated with a bad reputation, a person may elicit evaluation-related brain responses on their own, thereby evoking distrust independently of their reputation.

  6. Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats

    Science.gov (United States)

    Achterberg, E.J. Marijke; van Kerkhof, Linda W.M.; Damsteegt, Ruth; Trezza, Viviana

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  7. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    Science.gov (United States)

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  8. Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex.

    Science.gov (United States)

    Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W

    2007-04-01

    Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of "strategy application" tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n = 8); (b) nonprefrontal brain damage (n = 17); and (c) no brain damage (n = 20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment.

  9. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    Science.gov (United States)

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  10. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

    Science.gov (United States)

    Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A

    2007-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.

  11. Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding.

    Science.gov (United States)

    Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi

    2017-02-01

    Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.

  12. Crack cocaine inhalation induces schizophrenia-like symptoms and molecular alterations in mice prefrontal cortex.

    Science.gov (United States)

    Areal, Lorena Bianchine; Herlinger, Alice Laschuk; Pelição, Fabrício Souza; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley

    2017-08-01

    Crack cocaine (crack) addiction represents a major social and health burden, especially seeing as users are more prone to engage in criminal and violent acts. Crack users show a higher prevalence of psychiatric comorbidities - particularly antisocial personality disorders - when compared to powder cocaine users. They also develop cognitive deficits related mainly to executive functions, including working memory. It is noteworthy that stimulant drugs can induce psychotic states, which appear to mimic some symptoms of schizophrenia among users. Social withdraw and executive function deficits are, respectively, negative and cognitive symptoms of schizophrenia mediated by reduced dopamine (DA) tone in the prefrontal cortex (PFC) of patients. That could be explained by an increased expression of D2R short isoform (D2S) in the PFC of such patients and/or by hypofunctioning NMDA receptors in this region. Reduced DA tone has already been described in the PFC of mice exposed to crack smoke. Therefore, it is possible that behavioral alterations presented by crack users result from molecular and biochemical neuronal alterations akin to schizophrenia. Accordingly, we found that upon crack inhalation mice have shown decreased social interaction and working memory deficits analogous to schizophrenia's symptoms, along with increased D2S/D2L expression ratio and decreased expression of NR1, NR2A and NR2B NMDA receptor subunits in the PFC. Herein we propose two possible mechanisms to explain the reduced DA tone in the PFC elicited by crack consumption in mice, bringing also the first direct evidence that crack use may result in schizophrenia-like neurochemical, molecular and behavioral alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Decreased medial prefrontal cortex activation during self-referential processing in bipolar mania.

    Science.gov (United States)

    Herold, Dorrit; Usnich, Tatiana; Spengler, Stephanie; Sajonz, Bastian; Bauer, Michael; Bermpohl, Felix

    2017-09-01

    Patients with bipolar disorder in mania exhibit symptoms pointing towards altered self-referential processing, such as decreased self-focus, flight of ideas and high distractibility. In depression, the opposite pattern of symptoms has been connected to increased activation of medial prefrontal cortex (mPFC) during self-referential processing. In this study, we hypothesized that (1) patients with mania will exhibit decreased activation in the mPFC during self-referential processing and (2) will be more alexithymic and that levels of alexithymia will correlate negatively with mPFC activation. The neural response to standardized pictures was compared in 14 patients with bipolar I disorder in mania to 14 healthy controls using blood oxygen level dependent contrast magnetic resonance imaging. Participants were asked to indicate with button press during the scanning session for each picture whether the pictures personally related to them or not. Toronto alexithymia scale (TAS) scores were recorded from all participants. In the group analysis, patients with mania exhibited decreased activation in a predefined region of interest in the mPFC during self-referential processing compared to healthy controls. Patients with mania showed significantly higher levels of alexithymia, attributable to difficulties in identifying and describing emotions. Activation in the mPFC correlated negatively with levels of alexithymia. Results presented here should be replicated in a larger group, potentially including unmedicated patients. The finding of decreased mPFC activation during self-referential processing in mania may reflect decreased self-focus and high distractibility. Support for this view comes from the negative correlation between higher alexithymia scores and decreased mPFC activation. These findings represent an opposite clinical and neuroimaging pattern to findings in depression. Copyright © 2017. Published by Elsevier B.V.

  14. Prefrontal activity during response inhibition decreases over time in the postpartum period.

    Science.gov (United States)

    Bannbers, Elin; Gingnell, Malin; Engman, Jonas; Morell, Arvid; Sylvén, Sara; Skalkidou, Alkistis; Kask, Kristiina; Bäckström, Torbjörn; Wikström, Johan; Poromaa, Inger Sundström

    2013-03-15

    The postpartum period is characterized by complex hormonal changes, but human imaging studies in the postpartum period have thus far predominantly focused on the neural correlates of maternal behavior or postpartum depression, whereas longitudinal studies on neural correlates of cognitive function across the postpartum period in healthy women are lacking. The aim of this study was to longitudinally examine response inhibition, as a measure of executive function, during the postpartum period and its neural correlates in healthy postpartum women and non-postpartum controls. Thirteen healthy postpartum women underwent event-related functional magnetic resonance imaging while performing a Go/NoGo task. The first assessment was made within 48 h of delivery, and the second at 4-7 weeks postpartum. In addition, 13 healthy women examined twice during the menstrual cycle were included as non-postpartum controls. In postpartum women region of interest analyses revealed task-related decreased activations in the right inferior frontal gyrus, right anterior cingulate, and bilateral precentral gyri at the late postpartum assessment. Generally, postpartum women displayed lower activity during response inhibition in the bilateral inferior frontal gyri and precentral gyri compared to non-postpartum controls. No differences in performance on the Go/NoGo task were found between time-points or between groups. In conclusion, this study has discovered that brain activity in prefrontal areas during a response inhibition task decreases throughout the course of the first postpartum weeks and is lower than in non-postpartum controls. Further studies on the normal adaptive brain activity changes that occur during the postpartum period are warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Hierarchical processing in the prefrontal cortex in a variety of cognitive domains

    Directory of Open Access Journals (Sweden)

    Hyeon-Ae eJeon

    2014-11-01

    Full Text Available This review scrutinizes several findings on human hierarchical processing within the prefrontal cortex (PFC in diverse cognitive domains. Converging evidence from previous studies has shown that the PFC, specifically Brodmann area (BA 44, may function as the essential region for hierarchical processing across the domains. In language fMRI studies, BA 44 was significantly activated for the hierarchical processing of center-embedded sentences and this pattern of activations was also observed in artificial grammar. The same pattern was observed in the visuo-spatial domain where BA44 was actively involved in the processing of hierarchy for the visual symbol. Musical syntax, which is the rule-based arrangement of musical sets, has also been construed as hierarchical processing as in the language domain such that the activation in BA44 was observed in a chord sequence paradigm. P600 ERP was also engendered during the processing of musical hierarchy. Along with a longstanding idea that a human’s number faculty is developed as a by-product of language faculty, BA44 was closely involved in hierarchical processing in mental arithmetic. This review extended its discussion of hierarchical processing to hierarchical behavior, that is, human action which has been referred to as being hierarchically composed. Several lesion and TMS studies supported the involvement of BA44 for hierarchical processing in the action domain. Lastly, the hierarchical organization of cognitive controls was discussed within the PFC, forming a cascade of top-down hierarchical processes operating along a posterior-to-anterior axis of the lateral PFC including BA44 within the network. It is proposed that PFC is actively involved in different forms of hierarchical processing and specifically BA44 may play an integral role in the process. Taking levels of proficiency and subcortical areas into consideration may provide further insight into the functional role of BA44 for hierarchical

  16. Investment and repayment in a trust game after ventromedial prefrontal damage

    Directory of Open Access Journals (Sweden)

    Giovanna eMoretto

    2013-09-01

    Full Text Available Although trust and reciprocity are ubiquitous in social exchange, their neurobiological substrate remains largely unknown. Here, we investigated the effect of damage to the ventromedial prefrontal cortex (vmPFC — a brain region critical for valuing social information — on individuals' decisions in a trust game and in a risk game. In the trust game, one player, the investor, is endowed with a sum of money, which she can keep or invest. The amount she decides to invest is tripled and sent to the other player, the trustee, who then decides what fraction to return to the investor. In separate runs, ten patients with focal bilateral damage to the vmPFC and control participants made decision while playing in the role of either investor or trustee with different anonymous counterparts in each run. A risk game was also included in which the investor faced exactly the same decisions as in the trust Game, but a random device (i.e., a computer, not another player, determined the final payoffs. Results showed that vmPFC patients’ investments were not modulated by the type of opponent player (e.g., human vs. computer present in the environment. Thus, vmPFC patients showed comparable risk-taking preferences both in social (trust game and nonsocial (risk game contexts. In stark contrast, control participants were less willing to take risk and invest when they believed that they were interacting with people than a computer. Furthermore, when acted as trustee, vmPFC patients made lower back transfers toward investors, thereby showing less reciprocity behavior. Taken together, these results indicate that social valuation and emotion subserved by vmPFC have a critical role in trusting and reciprocity decisions. The present findings support the hypothesis that vmPFC damage may impair affective systems specifically designed for mediating social transaction with other individuals.

  17. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  18. Verbal Memory Deficits Are Correlated with Prefrontal Hypometabolism in 18FDG PET of Recreational MDMA Users

    Science.gov (United States)

    Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.

    2013-01-01

    Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined

  19. Negative emotion modulates prefrontal cortex activity during a working memory task: A NIRS study

    Directory of Open Access Journals (Sweden)

    Sachiyo eOzawa

    2014-02-01

    Full Text Available This study investigated the neural processing underlying the cognitive control of emotions induced by the presentation of task-irrelevant emotional pictures before a working memory task. Previous studies have suggested that the cognitive control of emotion involves the prefrontal regions. Therefore, we measured the hemodynamic responses that occurred in the prefrontal region with a 16-channel near-infrared spectroscopy (NIRS system. In our experiment, participants observed two negative or two neutral pictures in succession immediately before a 1-back or 3-back task. Pictures were selected from the International Affective Picture System. We measured the changes in the concentration of oxygenated hemoglobin (oxyHb during picture presentation and during the n-back task. The emotional valence of the picture affected the oxyHb changes in anterior parts of the medial prefrontal cortex (located in the left and right superior frontal gyrus and left inferior frontal gyrus during the n-back task; the oxyHb changes during the task were significantly greater following negative rather than neutral stimulation. As indicated in a number of previous studies, and the time courses of the oxyHb changes in our study, activation in these locations is possibly led by cognitive control of emotion, though we cannot deny it may simply be emotional responses. There were no effects of emotion on oxyHb changes during picture presentation or on n-back task performance. Although further studies are necessary to confirm this interpretation, our findings suggest that NIRS can be used to investigate neural processing during emotional control.

  20. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Directory of Open Access Journals (Sweden)

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  1. Medial prefrontal cortex stimulation modulates the processing of conditioned fear

    Directory of Open Access Journals (Sweden)

    Anne eGuhn

    2014-02-01

    Full Text Available The extinction of conditioned fear is dependent on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC. In rats, high-frequency electrical mPFC stimulation was shown to improve extinction by a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects.Healthy volunteers received one-session of either active or sham repetitive transcranial magnetic stimulation (rTMS covering the mPFC while undergoing a two-day fear conditioning and extinction paradigm. rTMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS- was associated with an aversive scream (UCS. Immediate extinction learning (day 1 and extinction recall (day 2 were conducted without UCS delivery. Conditioned responses were assessed in a multimodal approach using fear-potentiated startle (FPS, skin conductance responses (SCR, functional near-infrared spectroscopy (fNIRS and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS- discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS which can be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy.

  2. Emotion and the prefrontal cortex: An integrative review.

    Science.gov (United States)

    Dixon, Matthew L; Thiruchselvam, Ravi; Todd, Rebecca; Christoff, Kalina

    2017-10-01

    The prefrontal cortex (PFC) plays a critical role in the generation and regulation of emotion. However, we lack an integrative framework for understanding how different emotion-related functions are organized across the entire expanse of the PFC, as prior reviews have generally focused on specific emotional processes (e.g., decision making) or specific anatomical regions (e.g., orbitofrontal cortex). Additionally, psychological theories and neuroscientific investigations have proceeded largely independently because of the lack of a common framework. Here, we provide a comprehensive review of functional neuroimaging, electrophysiological, lesion, and structural connectivity studies on the emotion-related functions of 8 subregions spanning the entire PFC. We introduce the appraisal-by-content model, which provides a new framework for integrating the diverse range of empirical findings. Within this framework, appraisal serves as a unifying principle for understanding the PFC's role in emotion, while relative content-specialization serves as a differentiating principle for understanding the role of each subregion. A synthesis of data from affective, social, and cognitive neuroscience studies suggests that different PFC subregions are preferentially involved in assigning value to specific types of inputs: exteroceptive sensations, episodic memories and imagined future events, viscero-sensory signals, viscero-motor signals, actions, others' mental states (e.g., intentions), self-related information, and ongoing emotions. We discuss the implications of this integrative framework for understanding emotion regulation, value-based decision making, emotional salience, and refining theoretical models of emotion. This framework provides a unified understanding of how emotional processes are organized across PFC subregions and generates new hypotheses about the mechanisms underlying adaptive and maladaptive emotional functioning. (PsycINFO Database Record (c) 2017 APA, all

  3. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  4. Interplay of hippocampus and prefrontal cortex in memory

    Science.gov (United States)

    Preston, Alison R.; Eichenbaum, Howard

    2013-01-01

    Recent studies on the hippocampus and the prefrontal cortex have considerably advanced our understanding of the distinct roles of these brain areas in the encoding and retrieval of memories, and of how they interact in the prolonged process by which new memories are consolidated into our permanent storehouse of knowledge. These studies have led to a new model of how the hippocampus forms and replays memories and how the prefrontal cortex engages representations of the meaningful contexts in which related memories occur, as well as how these areas interact during memory retrieval. Furthermore, they have provided new insights into how interactions between the hippocampus and prefrontal cortex support the assimilation of new memories into pre-existing networks of knowledge, called schemas, and how schemas are modified in this process as the foundation of memory consolidation. PMID:24028960

  5. Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Di Giorgio, Annabella; Caforio, Grazia; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Attrotto, Maria Teresa; Colagiorgio, Lucia; Todarello, Giovanna; Piva, Francesco; Papazacharias, Apostolos; Masellis, Rita; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Rampino, Antonio; Quarto, Tiziana; Giulietti, Matteo; Lipska, Barbara K; Kleinman, Joel E; Popolizio, Teresa; Weinberger, Daniel R; Usiello, Alessandro; Bertolino, Alessandro

    2013-08-01

    OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.

  6. Impaired Prefrontal-Amygdala Pathway, Self-Reported Emotion, and Erection in Psychogenic Erectile Dysfunction Patients With Normal Nocturnal Erection

    Directory of Open Access Journals (Sweden)

    Jianhuai Chen

    2018-04-01

    Full Text Available Background: Neuroimaging studies have demonstrated that the prefrontal cortex and amygdala play an important role in sexual arousal (SA. However, little is known about the interactions between the prefrontal and cortex amygdala, which mediate the cognitive regulation of emotion and SA.Objective: We seek to determine whether nocturnal erection of psychogenic erectile dysfunction (pED patients are normal and whether there are changes of topological organization in the prefrontal-amygdala pathway of brain network in pED. In addition, whether there are correlations between network property changes and self-reported emotion and erection.Design, setting, and participants: We used the RigiScan device to evaluate erectile function of patients and employed diffusion MRI and graph theory to construct brain networks of 21 pED patients and 24 healthy controls.Outcome measurements and statistical analysis: We considered four nodal metrics and their asymmetry scores, and nocturnal penile tumescence (NPT parameters, to evaluate the topological properties of brain networks of pED and their relationships with the impaired self-reported emotion and erection.Results and limitations: All the pED patients showed normal nocturnal penile erection, however impaired self-reported erection and negative emotion. In addition, patients showed lower connectivity degree and strength in the left prefrontal-amygdala pathway. We also found that pED exhibited lower leftward asymmetry in the inferior frontal gyrus. Furthermore, patients showed more hub regions and fewer pivotal connections. Moreover, the degree of the left amygdala of pED showed significantly negative correlation with the self-reported erection and positive correlation with the self-reported negative emotion.Conclusions: Together, these results suggest normal nocturnal erection in pED. However, abnormalities of brain network organization in pED, particularly in the left prefrontal-amygdala pathway, are associated

  7. Impaired Prefrontal-Amygdala Pathway, Self-Reported Emotion, and Erection in Psychogenic Erectile Dysfunction Patients With Normal Nocturnal Erection

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-01-01

    Background: Neuroimaging studies have demonstrated that the prefrontal cortex and amygdala play an important role in sexual arousal (SA). However, little is known about the interactions between the prefrontal and cortex amygdala, which mediate the cognitive regulation of emotion and SA. Objective: We seek to determine whether nocturnal erection of psychogenic erectile dysfunction (pED) patients are normal and whether there are changes of topological organization in the prefrontal-amygdala pathway of brain network in pED. In addition, whether there are correlations between network property changes and self-reported emotion and erection. Design, setting, and participants: We used the RigiScan device to evaluate erectile function of patients and employed diffusion MRI and graph theory to construct brain networks of 21 pED patients and 24 healthy controls. Outcome measurements and statistical analysis: We considered four nodal metrics and their asymmetry scores, and nocturnal penile tumescence (NPT) parameters, to evaluate the topological properties of brain networks of pED and their relationships with the impaired self-reported emotion and erection. Results and limitations: All the pED patients showed normal nocturnal penile erection, however impaired self-reported erection and negative emotion. In addition, patients showed lower connectivity degree and strength in the left prefrontal-amygdala pathway. We also found that pED exhibited lower leftward asymmetry in the inferior frontal gyrus. Furthermore, patients showed more hub regions and fewer pivotal connections. Moreover, the degree of the left amygdala of pED showed significantly negative correlation with the self-reported erection and positive correlation with the self-reported negative emotion. Conclusions: Together, these results suggest normal nocturnal erection in pED. However, abnormalities of brain network organization in pED, particularly in the left prefrontal-amygdala pathway, are associated with the

  8. Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics Drives Stress-Induced Emotional Pathology.

    Science.gov (United States)

    Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui

    2016-07-20

    Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Neurogenetic and epigenetic correlates of adolescent predisposition to and risk for addictive behaviors as a function of prefrontal cortex dysregulation.

    Science.gov (United States)

    Blum, Kenneth; Febo, Marcelo; Smith, David E; Roy, A Kenison; Demetrovics, Zsolt; Cronjé, Frans J; Femino, John; Agan, Gozde; Fratantonio, James L; Pandey, Subhash C; Badgaiyan, Rajendra D; Gold, Mark S

    2015-05-01

    As addiction professionals, we are becoming increasingly concerned about preteenagers and young adults' involvement with substance abuse as a way of relieving stress and anger. The turbulent underdeveloped central nervous system, especially in the prefrontal cortex (PFC), provides impetus to not only continue important neuroimaging studies in both human and animal models, but also to encourage preventive measures and cautions embraced by governmental and social media outlets. It is well known that before people reach their 20s, PFC development is undergoing significant changes and, as such, hijacks appropriate decision making in this population. We are further proposing that early genetic testing for addiction risk alleles will offer important information that could potentially be utilized by their parents and caregivers prior to use of psychoactive drugs by these youth. Understandably, family history, parenting styles, and attachment may be modified by various reward genes, including the known bonding substances oxytocin/vasopressin, which effect dopaminergic function. Well-characterized neuroimaging studies continue to reflect region-specific differential responses to drugs and food (including other non-substance-addictive behaviors) via either "surfeit" or "deficit." With this in mind, we hereby propose a "reward deficiency solution system" that combines early genetic risk diagnosis, medical monitoring, and nutrigenomic dopamine agonist modalities to combat this significant global dilemma that is preventing our youth from leading normal productive lives, which will in turn make them happier.

  10. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  11. The amygdala and ventromedial prefrontal cortex in morality and psychopathy.

    Science.gov (United States)

    Blair, R J R

    2007-09-01

    Recent work has implicated the amygdala and ventromedial prefrontal cortex in morality and, when dysfunctional, psychopathy. This model proposes that the amygdala, through stimulus-reinforcement learning, enables the association of actions that harm others with the aversive reinforcement of the victims' distress. Consequent information on reinforcement expectancy, fed forward to the ventromedial prefrontal cortex, can guide the healthy individual away from moral transgressions. In psychopathy, dysfunction in these structures means that care-based moral reasoning is compromised and the risk that antisocial behavior is used instrumentally to achieve goals is increased.

  12. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.

    Directory of Open Access Journals (Sweden)

    Yoichi Sawada

    Full Text Available The attentional set-shifting deficit that has been observed in Parkinson's disease (PD has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.

  13. Early Prefrontal Brain Responses to the Hedonic Quality of Emotional Words – A Simultaneous EEG and MEG Study

    Science.gov (United States)

    Keuper, Kati; Zwitserlood, Pienie; Rehbein, Maimu A.; Eden, Annuschka S.; Laeger, Inga; Junghöfer, Markus; Zwanzger, Peter; Dobel, Christian

    2013-01-01

    The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80–120 ms), P2 (150–190 ms) and EPN component (200–300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an “emotional tagging” of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological. PMID:23940642

  14. Early prefrontal brain responses to the Hedonic quality of emotional words--a simultaneous EEG and MEG study.

    Science.gov (United States)

    Keuper, Kati; Zwitserlood, Pienie; Rehbein, Maimu A; Eden, Annuschka S; Laeger, Inga; Junghöfer, Markus; Zwanzger, Peter; Dobel, Christian

    2013-01-01

    The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80-120 ms), P2 (150-190 ms) and EPN component (200-300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an "emotional tagging" of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological.

  15. Medial prefrontal brain activation to anticipated reward and loss in obsessive-compulsive disorder.

    Science.gov (United States)

    Kaufmann, C; Beucke, J C; Preuße, F; Endrass, T; Schlagenhauf, F; Heinz, A; Juckel, G; Kathmann, N

    2013-01-01

    Obsessive-compulsive disorder (OCD) is associated with dysfunctional brain activity in several regions which are also involved in the processing of motivational stimuli. Processing of reward and punishment appears to be of special importance to understand clinical symptoms. There is evidence for higher sensitivity to punishment in patients with OCD which raises the question how avoidance of punishment relates to activity within the brain's reward circuitry. We employed the monetary incentive delay task paradigm optimized for modeling the anticipation phase of immediate reward and punishment, in the context of a cross-sectional event-related FMRI study comparing OCD patients and healthy control participants (n = 19 in each group). While overall behavioral performance was similar in both groups, patients showed increased activation upon anticipated losses in a medial and superior frontal cortex region extending into the cingulate cortex, and decreased activation upon anticipated rewards. No evidence was found for altered activation of dorsal or ventral striatal regions. Patients also showed more delayed responses for anticipated rewards than for anticipated losses whereas the reverse was true in healthy participants. The medial prefrontal cortex has been shown to implement a domain-general process comprising negative affect, pain and cognitive control. This process uses information about punishment to control aversively motivated actions by integrating signals arriving from subcortical regions. Our results support the notion that OCD is associated with altered sensitivity to anticipated rewards and losses in a medial prefrontal region whereas there is no significant aberrant activation in ventral or dorsal striatal brain regions during processing of reinforcement anticipation.

  16. Age-Related Differences in Memory and Executive Functions in Healthy "APOE"[epsilon]4 Carriers: The Contribution of Individual Differences in Prefrontal Volumes and Systolic Blood Pressure

    Science.gov (United States)

    Bender, Andrew R.; Raz, Naftali

    2012-01-01

    Advanced age and vascular risk are associated with declines in the volumes of multiple brain regions, especially the prefrontal cortex, and the hippocampus. Older adults, even unencumbered by declining health, perform less well than their younger counterparts in multiple cognitive domains, such as episodic memory, executive functions, and speed of…

  17. Centrality of prefrontal and motor preparation cortices to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies

    Directory of Open Access Journals (Sweden)

    Liliana Polyanska

    2017-01-01

    The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.

  18. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  19. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  20. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  1. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  2. Medial Prefrontal Cortex Activation Is Commonly Invoked by Reputation of Self and Romantic Partners

    Science.gov (United States)

    Kawamichi, Hiroaki; Sasaki, Akihiro T.; Matsunaga, Masahiro; Yoshihara, Kazufumi; Takahashi, Haruka K.; Tanabe, Hiroki C.; Sadato, Norihiro

    2013-01-01

    The reputation of others influences partner selection in human cooperative behaviors through verbal reputation representation. Although the way in which humans represent the verbal reputations of others is a pivotal issue for social neuroscience, the neural correlates underlying the representation of verbal reputations of others are unclear. Humans primarily depend on self-evaluation when assessing reputation of self. Likewise, humans might primarily depend on self-evaluation of others when representing their reputation. As interaction promotes the formation of more nuanced, individualized impressions of an interaction partner, humans tend to form self-evaluations of persons with whom they are intimate in their daily life. Thus, we hypothesized that the representation of reputation of others is modulated by intimacy due to one’s own evaluation formation of that person. To test this hypothesis, we conducted a functional magnetic resonance imaging experiment with 11 pairs of romantic partners while they viewed an evaluation of a target person (self, partner [intimate other], or stranger [non-intimate other]), made by other evaluators. When compared with strangers, viewing evaluations of self and partner activated overlapping regions in the medial prefrontal cortex. Verbal reputation of self-specific activation was found in the precuneus, which represents self-related processing. The data suggest that midline structures represent reputation of self. In addition, intimacy-modulated activation in the medial prefrontal cortex suggests that the verbal reputation of intimate others is represented similarly to reputation of self. These results suggest that the reputation representation in the medial prefrontal cortex is engaged by verbal reputation of self and intimate others stemming from both own and other evaluators’ judgments. PMID:24086409

  3. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.

    Science.gov (United States)

    Richter, Anja; Petrovic, Aleksandra; Diekhof, Esther K; Trost, Sarah; Wolter, Sarah; Gruber, Oliver

    2015-12-01

    Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the 'desire-reason dilemma' (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom-up and top-down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top-down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top-down control of reward signals by prefrontal brain regions in schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The role of the ventromedial prefrontal cortex in memory consolidation

    NARCIS (Netherlands)

    Nieuwenhuis, I.L.C.; Takashima, A.

    2011-01-01

    System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has

  5. Prefrontal dysfunction in early and continuously treated phenylketonuria

    NARCIS (Netherlands)

    Stemerdink, NBA; Kalverboer, AF; van der Meere, JJ; de Jong, LW; Slijper, FME; Verkerk, PH; van Spronsen, FJ

    1999-01-01

    In this study, we tested the hypothesis that patients with early and continuously treated phenylketonuria (PKU) are selectively impaired in cognitive functions dependent on the prefrontal cortex (PFC) over a wide age range. Thirty-six patients with PKU between 8 and 20 years of age and 36 controls

  6. Comparison of (stereotactic) parcellations in mouse prefrontal cortex

    NARCIS (Netherlands)

    van de Werd, H.J.J.M.; Uylings, H.B.M.

    2014-01-01

    This study compares the cytoarchitectonic parcellation of the prefrontal cortex (PFC) in the mouse as presented in publications that are commonly used for identifying brain areas. Agreement was found to be greater for boundaries in the medial PFC than in the lateral PFC and lowest for those in the

  7. The impact of social disparity on prefrontal function in childhood.

    Directory of Open Access Journals (Sweden)

    Margaret A Sheridan

    Full Text Available The prefrontal cortex (PFC develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children.

  8. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    Science.gov (United States)

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  9. Anatomical segmentation of the human medial prefrontal cortex

    NARCIS (Netherlands)

    Corcoles-Parada, M.; Müller, N.C.J.; Ubero, M.; Serrano-Del-Pueblo, V.M.; Mansilla, F.; Marcos-Rabal, P.; Artacho-Perula, E.; Dresler, M.; Insausti, R.; Fernandez, G.; Munoz-Lopez, M.

    2017-01-01

    The medial prefrontal areas 32, 24, 14, and 25 (mPFC) form part of the limbic memory system, but little is known about their functional specialization in humans. To add anatomical precision to structural and functional magnetic resonance imaging (MRI) data, we aimed to identify these mPFC subareas

  10. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    Science.gov (United States)

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  11. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Hurd, Mark W.; Rorden, Chris; Morgan, Paul S.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we

  12. Exon microarray analysis of human dorsolateral prefrontal cortex in alcoholism.

    Science.gov (United States)

    Manzardo, Ann M; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G

    2014-06-01

    Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function, and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC; Brodmann area 9) of 7 adult alcoholic (6 males, 1 female, mean age 49 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using quantitative reverse transcription polymerase chain reaction, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN), and signaling (e.g., RASGRP3, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease and development including cellular assembly and organization impacting on psychological disorders. Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation, and signaling that targets white matter of the brain. Copyright © 2014 by the Research Society on Alcoholism.

  13. Using fMRI to investigate a component process of reflection: prefrontal correlates of refreshing a just-activated representation.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Greene, Erich J; Cunningham, William A; Sanislow, Charles A

    2005-09-01

    Using fMRI, we investigated the functional organization of prefrontal cortex (PFC) as participants briefly thought of a single just-experienced item (i.e., refreshed an active representation). The results of six studies, and a meta-analysis including previous studies, identified regions in left dorsolateral, anterior, and ventrolateral PFC associated in varying degrees with refreshing different types of information (visual and auditory words, drawings, patterns, people, places, or locations). In addition, activity increased in anterior cingulate with selection demands and in orbitofrontal cortex when a nonselected item was emotionally salient, consistent with a role for these areas in cognitive control (e.g., overcoming "mental rubbernecking"). We also found evidence that presenting emotional information disrupted an anterior component of the refresh circuit. We suggest that refreshing accounts for some neural activity observed in more complex tasks, such as working memory, long-term memory, and problem solving, and that its disruption (e.g., from aging or emotion) could have a broad impact.

  14. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding.

    Science.gov (United States)

    Tan, Huibing; Lauzon, Nicole M; Bishop, Stephanie F; Bechard, Melanie A; Laviolette, Steven R

    2010-06-01

    The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form of long-term potentiation (LTP) within the BLA > mPFC pathway is an established correlate of exposure to emotionally salient events. We performed a series of in vivo LTP studies by applying tetanic stimulation to the BLA combined with recordings of local field potentials within prelimbic cortical (PLC) region of the rat mPFC. Systemic pretreatment with AM-251 dose dependently blocked LTP along the BLA-PLC pathway and also the behavioral acquisition of conditioned fear memories. We next performed a series of microinfusion experiments wherein CB1 receptor transmission within the BLA > PLC circuit was pharmacologically blocked. Asymmetrical, interhemispheric blockade of CB1 receptor transmission along the BLA > PLC pathway prevented the acquisition of emotionally salient associative memory. Our results indicate that coordinated CB1 receptor transmission within the BLA > PLC pathway is critically involved in the encoding of emotional fear memories and modulates neural plasticity related to the encoding of emotionally salient associative learning.

  15. Right prefrontal rTMS treatment for refractory auditory command hallucinations - a neuroSPECT assisted case study.

    Science.gov (United States)

    Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon

    2002-11-30

    Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.

  16. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex

    Science.gov (United States)

    Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-01-01

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. SIGNIFICANCE STATEMENT Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  17. Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex.

    Science.gov (United States)

    Hutcherson, Cendri A; Montaser-Kouhsari, Leila; Woodward, James; Rangel, Antonio

    2015-09-09

    Moral judgment often requires making difficult tradeoffs (e.g., is it appropriate to torture to save the lives of innocents at risk?). Previous research suggests that both emotional appraisals and more deliberative utilitarian appraisals influence such judgments and that these appraisals often conflict. However, it is unclear how these different types of appraisals are represented in the brain, or how they are integrated into an overall moral judgment. We addressed these questions using an fMRI paradigm in which human subjects provide separate emotional and utilitarian appraisals for different potential actions, and then make difficult moral judgments constructed from combinations of these actions. We found that anterior cingulate, insula, and superior temporal gyrus correlated with emotional appraisals, whereas temporoparietal junction and dorsomedial prefrontal cortex correlated with utilitarian appraisals. Overall moral value judgments were represented in an anterior portion of the ventromedial prefrontal cortex. Critically, the pattern of responses and functional interactions between these three sets of regions are consistent with a model in which emotional and utilitarian appraisals are computed independently and in parallel, and passed to the ventromedial prefrontal cortex where they are integrated into an overall moral value judgment. Significance statement: Popular accounts of moral judgment often describe it as a battle for control between two systems, one intuitive and emotional, the other rational and utilitarian, engaged in winner-take-all inhibitory competition. Using a novel fMRI paradigm, we identified distinct neural signatures of emotional and utilitarian appraisals and used them to test different models of how they compete for the control of moral behavior. Importantly, we find little support for competitive inhibition accounts. Instead, moral judgments resembled the architecture of simple economic choices: distinct regions represented emotional

  18. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    Science.gov (United States)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  19. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond.

    Science.gov (United States)

    Hrvoj-Mihic, Branka; Hanson, Kari L; Lew, Caroline H; Stefanacci, Lisa; Jacobs, Bob; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18). The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10) and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other neurodevelopmental disorders

  20. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond

    Directory of Open Access Journals (Sweden)

    Branka Hrvoj-Mihic

    2017-08-01

    Full Text Available Williams syndrome (WS is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC—the frontal pole (Brodmann area 10 and the orbitofrontal cortex (Brodmann area 11—and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18. The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10 and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other

  1. Prefrontal-Amygdala Connectivity and State Anxiety during Fear Extinction Recall in Adolescents

    Directory of Open Access Journals (Sweden)

    Despina E. Ganella

    2017-12-01

    Full Text Available While deficits in fear extinction recall have been suggested to underlie vulnerability to anxiety disorders in adolescents, the neurobiology of these deficits remain underexplored. Here we investigate the functional connectivity (FC of the ventromedial prefrontal cortex (vmPFC and dorsolateral PFC (dlPFC underlying extinction recall in healthy adolescents, and assess associations between FC and state/trait anxiety. Adolescents (17 and adults (14, for comparison completed a fear-learning paradigm involving extinction and extinction recall during a functional magnetic resonance imaging session, in which skin conductance response (SCR was recorded. Psychophysiological interaction analyses revealed that during extinction recall there was significant negative connectivity between the vmPFC and amygdala in adults, but not adolescents. vmPFC-amygdala connectivity was positively correlated with SCR. Adolescents showed significant negative FC between the dlPFC and the left and right hippocampus, and the amygdala, which was positively correlated with state anxiety. Recall was also associated with negative connectivity between the dlPFC and thalamus, posterior cingulate cortex, fusiform gyrus, and pallidum in adolescents. These results demonstrate that fear extinction recall in healthy adolescents is associated with FC between prefrontal and limbic brain regions, and suggest that alterations in connectivity may be associated with vulnerability to anxiety in adolescence.

  2. Effects of prefrontal rTMS on autonomic reactions to affective pictures.

    Science.gov (United States)

    Berger, Christoph; Domes, Gregor; Balschat, Johannes; Thome, Johannes; Höppner, Jacqueline

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate the excitability of stimulated cortical areas, such as prefrontal areas involved in emotion regulation. Low frequency (LF) rTMS is expected to have inhibitory effects on prefrontal regions, and thereby should disinhibit limbic activity, resulting in enhanced emotional and autonomic reactions. For high frequency (HF) rTMS, the opposite pattern might be assumed. The objective of this study was to determine the effects of different rTMS frequencies applied to the right dlPFC on autonomic functions and on emotional perception. In a crossover design, two groups of 20 healthy young women were either stimulated with one session of LF rTMS (1 Hz) or one session of HF rTMS (10 Hz), compared to sham stimulation. We assessed phasic cardiac responses (PCR), skin conductance reactions (SCR), and emotional appraisal of emotional pictures as well as recognition memory after each rTMS application. After LF rTMS, PCR (heart rate deceleration) during presentation of pictures with negative and neutral valence was significantly increased compared to the presentation of positive pictures. In contrast, the modulatory effect of picture valence and arousal on the cardiac orienting response was absent after HF rTMS. Our results suggest that frontal LF rTMS indirectly activates the ANS via inhibition of the right dlPFC activity, likely by enhancing the sensory processing or attention to aversive and neutral stimuli.

  3. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources

    Science.gov (United States)

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-01-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts—for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts. PMID:23460073

  4. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources.

    Science.gov (United States)

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-05-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts--for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts.

  5. Prefrontal activity and diagnostic monitoring of memory retrieval: FMRI of the criterial recollection task.

    Science.gov (United States)

    Gallo, David A; Kensinger, Elizabeth A; Schacter, Daniel L

    2006-01-01

    According to the distinctiveness heuristic, subjects rely more on detailed recollections (and less on familiarity) when memory is tested for pictures relative to words, leading to reduced false recognition. If so, then neural regions that have been implicated in effortful postretrieval monitoring (e.g., dorsolateral prefrontal cortex) might be recruited less heavily when trying to remember pictures. We tested this prediction with the criterial recollection task. Subjects studied black words, paired with either the same word in red font or a corresponding colored picture. Red words were repeated at study to equate recognition hits for red words and pictures. During fMRI scanning, alternating red word memory tests and picture memory tests were given, using only white words as test stimuli (say "yes" only if you recollect a corresponding red word or picture, respectively). These tests were designed so that subjects had to rely on memory for the criterial information. Replicating prior behavioral work, we found enhanced rejection of lures on the picture test compared to the red word test, indicating that subjects had used a distinctiveness heuristic. Critically, dorsolateral prefrontal activity was reduced when rejecting familiar lures on the picture test, relative to the red word test. These findings indicate that reducing false recognition via the distinctiveness heuristic is not heavily dependent on frontally mediated postretrieval monitoring processes.

  6. Hope, coping skills, and the prefrontal cortex in alcohol use disorder recovery.

    Science.gov (United States)

    Bradshaw, Spencer D; Shumway, Sterling T; Dsauza, Cynthia M; Morris, Neli; Hayes, Nicholas D

    2017-09-01

    Alcohol use disorders adversely affect individual and societal health. These disorders are a chronic brain disease, and protective factors against relapse should be studied. Prefrontal cortex (PFC) dysfunction is evident in alcohol use disorders, and research that explores recovery of the PFC in alcohol use disorders is needed, specifically in regard to how psychological and behavioral factors can augment medicalized treatments and protect against relapse. For example, hope or a belief that recovery is possible is an important cognitive construct-thought to precede behavioral action-that has been associated with relapse. In this study, associations between healthy coping skills and hope (psychological/behavioral factors) and PFC regional activation in response to alcohol cue exposure were examined. It was also examined whether such associations were unique to alcohol cues. Forty-two participants, 32 males and nine females in recovery from an alcohol use disorder (AUD), were administered a subjective hope and coping in recovery measure. They also viewed alcohol, positive, negative, and neutral cues during functional near-infrared spectroscopy (fNIR) PFC assessment. Levels of healthy coping skills positively correlated with activation in the right dorsomedial prefrontal cortex (DMPFC) in response to alcohol cues. This finding was unique to alcohol cues. The association between coping skills and activation of the right DMPFC in response to alcohol cues may reflect greater action restraint and top-down PFC control processing that may protect against relapse.

  7. Abnormal Concentration of GABA and Glutamate in The Prefrontal Cortex in Schizophrenia.-An in Vivo 1H-MRS Study.

    Science.gov (United States)

    Chen, Tianyi; Wang, Yingchan; Zhang, Jianye; Wang, Zuowei; Xu, Jiale; Li, Yao; Yang, Zhilei; Liu, Dengtang

    2017-10-25

    The etiology and pathomechanism of schizophrenia are unknown. The traditional dopamine (DA) hypothesis is unable to fully explain its pathology and therapeutics. The glutamate (Glu) and γ-aminobutyric acid (GABA) hypotheses suggest Glu or GABA concentrations are abnormal in the brains of patients with schizophrenia. Magnetic resonance spectroscopy (MRS) show glutamate level increases in the ventromedial prefrontal cortex (vmPFC) including the anterior cingulated cortex (ACC) in those with schizophrenia. To investigate the function of the glutamate system (glutamate and γ-aminobutyric acid) in the etiology and pathomechanism of schizophrenia. 24 drug naïve patients with schizophrenia and 24 healthy volunteers were matched by gender, age, and educational level. The Siemens 3T MRI system was used to collect the magnetic resonance spectroscopy (MRS) data of the subjects. The regions of interest included the left dorsolateral prefrontal cortex (IDLPFC), ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex (ACC). LCModel software was used to analyze the concentrations of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and N-acetylaspartylglutamate (NAAG) in the region of interest. Meanwhile, the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression Scale (CGI) were used to assess the mental symptoms and severity of the disease. The median GABA concentrations in the anterior cingulate cortex of the schizophrenia group and the healthy control group were 1.90 (Q1=1.55, Q3=2.09) and 2.16 (Q1=1.87, Q3=2.59) respectively; the mean (sd) Glu concentrations were 6.07 (2.48) and 6.54 (1.99); the median Gln concentrations were 0.36 (Q1=0.00, Q3=0.74) and 0.29 (Q1=0.00, Q3=0.59); the between-group difference of the GABA concentrations was statistically significant ( Z =-2.95, p =0.003); the between-group difference of the GABA/(NAA+NAAG) was statistically significant ( Z =-2.72, p =0.012); the

  8. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    Science.gov (United States)

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  9. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  10. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function.

    Science.gov (United States)

    Maiti, Panchanan; Gregg, Laura C; McDonald, Michael P

    2016-02-01

    In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder

    OpenAIRE

    Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy

    2013-01-01

    Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections fro...

  12. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation

    OpenAIRE

    Hamidi, Massihullah; Tononi, Giulio; Postle, Bradley R.

    2008-01-01

    The dorsolateral prefrontal cortex (dlPFC) plays an important role in working memory, including the control of memory-guided response. In this study, with 24 subjects, we used high frequency repetitive transcranial magnetic stimulation (rTMS) to evaluate the role of the dlPFC in memory-guided response to two different types of spatial working memory tasks: one requiring a recognition decision about a probe stimulus (operationalized with a yes/no button press), another requiring direct recall ...

  13. Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.

    Science.gov (United States)

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi

    2014-09-05

    BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    Science.gov (United States)

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Changes in prefrontal-limbic function in major depression after 15 months of long-term psychotherapy.

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    Full Text Available Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV unmedicated outpatients (N = 16 and control participants matched for sex, age, and education (N = 17 before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy.

  17. Changes in Prefrontal-Limbic Function in Major Depression after 15 Months of Long-Term Psychotherapy

    Science.gov (United States)

    Buchheim, Anna; Viviani, Roberto; Kessler, Henrik; Kächele, Horst; Cierpka, Manfred; Roth, Gerhard; George, Carol; Kernberg, Otto F.; Bruns, Georg; Taubner, Svenja

    2012-01-01

    Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV) unmedicated outpatients (N = 16) and control participants matched for sex, age, and education (N = 17) before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy. PMID:22470470

  18. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    Science.gov (United States)

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Prefrontal Hemodynamics in Toddlers at Rest: A Pilot Study of Developmental Variability

    Directory of Open Access Journals (Sweden)

    Afrouz A. Anderson

    2017-05-01

    Full Text Available Functional near infrared spectroscopy (fNIRS is a non-invasive functional neuroimaging modality. Although, it is amenable to use in infants and young children, there is a lack of fNIRS research within the toddler age range. In this study, we used fNIRS to measure cerebral hemodynamics in the prefrontal cortex (PFC in 18–36 months old toddlers (n = 29 as part of a longitudinal study that enrolled typically-developing toddlers as well as those “at risk” for language and other delays based on presence of early language delays. In these toddlers, we explored two hemodynamic response indices during periods of rest during which time audiovisual children's programming was presented. First, we investigate Lateralization Index, based on differences in oxy-hemoglobin saturation from left and right prefrontal cortex. Then, we measure oxygenation variability (OV index, based on variability in oxygen saturation at frequencies attributed to cerebral autoregulation. Preliminary findings show that lower cognitive (including language abilities are associated with fNIRS measures of both lower OV index and more extreme Lateralization index values. These preliminary findings show the feasibility of using fNIRS in toddlers, including those at risk for developmental delay, and lay the groundwork for future studies.

  20. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Hsien-Sung Huang

    2007-08-01

    Full Text Available Dysfunction of prefrontal cortex in schizophrenia includes changes in GABAergic mRNAs, including decreased expression of GAD1, encoding the 67 kDa glutamate decarboxylase (GAD67 GABA synthesis enzyme. The underlying molecular mechanisms remain unclear. Alterations in DNA methylation as an epigenetic regulator of gene expression are thought to play a role but this hypothesis is difficult to test because no techniques are available to extract DNA from GAD1 expressing neurons efficiently from human postmortem brain. Here, we present an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of potential gene expression as opposed to repressive or silenced chromatin. Methylation patterns of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined for each of the two chromatin fractions separately, using a case-control design for 14 schizophrenia subjects affected by a decrease in prefrontal GAD1 mRNA levels. In controls, the methylation frequencies at CpG dinucleotides, while overall higher in repressive as compared to open chromatin, did not exceed 5% at the proximal GAD1 promoter and 30% within intron 2. Subjects with schizophrenia showed a significant, on average 8-fold deficit in repressive chromatin-associated DNA methylation at the promoter. These results suggest that chromatin remodeling mechanisms are involved in dysregulated GABAergic gene expression in schizophrenia.

  1. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  2. Prefrontal gray matter volume mediates genetic risks for obesity.

    Science.gov (United States)

    Opel, N; Redlich, R; Kaehler, C; Grotegerd, D; Dohm, K; Heindel, W; Kugel, H; Thalamuthu, A; Koutsouleris, N; Arolt, V; Teuber, A; Wersching, H; Baune, B T; Berger, K; Dannlowski, U

    2017-05-01

    Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.

  3. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    Science.gov (United States)

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia

  4. Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine.

    Science.gov (United States)

    Sullivan, R M

    2004-06-01

    The prefrontal cortex (PFC) is known to play an important role not only in the regulation of emotion, but in the integration of affective states with appropriate modulation of autonomic and neuroendocrine stress regulatory systems. The present review highlights findings in the rat which helps to elucidate the complex nature of prefrontal involvement in emotion and stress regulation. The medial PFC is particularly important in this regard and while dorsomedial regions appear to play a suppressive role in such regulation, the ventromedial (particularly infralimbic) region appears to activate behavioral, neuroendocrine and sympathetic autonomic systems in response to stressful situations. This may be especially true of spontaneous stress-related behavior or physiological responses to relatively acute stressors. The role of the medial PFC is somewhat more complex in conditions involving learned adjustments to stressful situations, such as the extinction of conditioned fear responses, but it is clear that the medial PFC is important in incorporating stressful experience for future adaptive behavior. It is also suggested that mesocortical dopamine plays an important adaptive role in this region by preventing excessive behavioral and physiological stress reactivity. The rat brain shows substantial hemispheric specialization in many respects, and while the right PFC is normally dominant in the activation of stress-related systems, the left may play a role in countering this activation through processes of interhemispheric inhibition. This proposed basic template for the lateralization of stress regulatory systems is suggested to be associated with efficient stress and emotional self-regulation, and also to be shaped by both early postnatal experience and gender differences.

  5. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    OpenAIRE

    Auger, Meagan L.; Floresco, Stan B.

    2014-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates ...

  6. Reward Inference by Primate Prefrontal and Striatal Neurons

    OpenAIRE

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi

    2014-01-01

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Im...

  7. Ventromedial prefrontal cortex, adding value to autobiographical memories

    OpenAIRE

    Lin, W. J.; Horner, A. J.; Burgess, N.

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found tha...

  8. Prefrontal cortex activity during swallowing in dysphagia patients.

    Science.gov (United States)

    Lee, Jun; Yamate, Chisato; Taira, Masato; Shinoda, Masamichi; Urata, Kentaro; Maruno, Mitsuru; Ito, Reio; Saito, Hiroto; Gionhaku, Nobuhito; Iinuma, Toshimitsu; Iwata, Koichi

    2018-05-24

    Prefrontal cortex activity is modulated by flavor and taste stimuli and changes during swallowing. We hypothesized that changes in the modulation of prefrontal cortex activity by flavor and taste were associated with swallowing movement and evaluated brain activity during swallowing in patients with dysphagia. To evaluate prefrontal cortex activity in dysphagia patients during swallowing, change in oxidized hemoglobin (z-score) was measured with near-infrared spectroscopy while dysphagia patients and healthy controls swallowed sweetened/unsweetened and flavored/unflavored jelly. Total z-scores were positive during swallowing of flavored/unsweetened jelly and negative during swallowing of unflavored/sweetened jelly in controls but negative during swallowing of sweetened/unsweetened and flavored/unflavored jelly in dysphagia patients. These findings suggest that taste and flavor during food swallowing are associated with positive and negative z-scores, respectively. Change in negative and positive z-scores may be useful in evaluating brain activity of dysphagia patients during swallowing of sweetened and unsweetened food.

  9. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  10. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.

    Science.gov (United States)

    Nagy, Bernadett; Szabó, István; Papp, Szilárd; Takács, Gábor; Szalay, Csaba; Karádi, Zoltán

    2012-03-20

    The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Increased transient Na+ conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1-/y mouse.

    Science.gov (United States)

    Routh, Brandy N; Rathour, Rahul K; Baumgardner, Michael E; Kalmbach, Brian E; Johnston, Daniel; Brager, Darrin H

    2017-07-01

    Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1 -/y mice. In fmr1 -/y L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na + conductance density is higher in fmr1 -/y L2/3 neurons. Measurements of three biophysically distinct K + currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K + conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype. Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1 -/y mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1 -/y mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1 -/y neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na + current was significantly larger in fmr1 -/y neurons. Furthermore, the activation curve of somatic A-type K + current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na

  12. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    Science.gov (United States)

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  13. Regional gray matter density associated with emotional conflict resolution: evidence from voxel-based morphometry.

    Science.gov (United States)

    Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J

    2014-09-05

    Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.

    Science.gov (United States)

    Zeithamova, Dagmar; Dominick, April L; Preston, Alison R

    2012-07-12

    Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective.

    Science.gov (United States)

    Macht, Victoria A; Reagan, Lawrence P

    2018-04-01

    The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques

    Institute of Scientific and Technical Information of China (English)

    Michela Balconi

    2013-01-01

    The ability to recall and recognize facts we experienced in the past is based on a complex mechanism in which several cerebral regions are implicated.Neuroimaging and lesion studies agree in identifying the frontal lobe as a crucial structure for memory processes,and in particular for working memory and episodic memory and their relationships.Furthermore,with the introduction of transcranial magnetic stimulation (TMS) a new way was proposed to investigate the relationships between brain correlates,memory functions and behavior.The aim of this review is to present the main findings that have emerged from experiments which used the TMS technique for memory analysis.They mainly focused on the role of the dorsolateral prefrontal cortex in memory process.Furthermore,we present state-of-the-art evidence supporting a possible use of TMS in the clinic.Specifically we focus on the treatment of memory deficits in depression and anxiety disorders.

  17. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.

    Science.gov (United States)

    Druzgal, T Jason; D'Esposito, Mark

    2003-08-15

    Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.

  18. Does rTMS Alter Neurocognitive Functioning in Patients with Panic Disorder/Agoraphobia? An fNIRS-Based Investigation of Prefrontal Activation during a Cognitive Task and Its Modulation via Sham-Controlled rTMS

    Directory of Open Access Journals (Sweden)

    Saskia Deppermann

    2014-01-01

    Full Text Available Objectives. Neurobiologically, panic disorder (PD is supposed to be characterised by cerebral hypofrontality. Via functional near-infrared spectroscopy (fNIRS, we investigated whether prefrontal hypoactivity during cognitive tasks in PD-patients compared to healthy controls (HC could be replicated. As intermittent theta burst stimulation (iTBS modulates cortical activity, we furthermore investigated its ability to normalise prefrontal activation. Methods. Forty-four PD-patients, randomised to sham or verum group, received 15 iTBS-sessions above the left dorsolateral prefrontal cortex (DLPFC in addition to psychoeducation. Before first and after last iTBS-treatment, cortical activity during a verbal fluency task was assessed via fNIRS and compared to the results of 23 HC. Results. At baseline, PD-patients showed hypofrontality including the DLPFC, which differed significantly from activation patterns of HC. However, verum iTBS did not augment prefrontal fNIRS activation. Solely after sham iTBS, a significant increase of measured fNIRS activation in the left inferior frontal gyrus (IFG during the phonological task was found. Conclusion. Our results support findings that PD is characterised by prefrontal hypoactivation during cognitive performance. However, verum iTBS as an “add-on” to psychoeducation did not augment prefrontal activity. Instead we only found increased fNIRS activation in the left IFG after sham iTBS application. Possible reasons including task-related psychophysiological arousal are discussed.

  19. Does rTMS alter neurocognitive functioning in patients with panic disorder/agoraphobia? An fNIRS-based investigation of prefrontal activation during a cognitive task and its modulation via sham-controlled rTMS.

    Science.gov (United States)

    Deppermann, Saskia; Vennewald, Nadja; Diemer, Julia; Sickinger, Stephanie; Haeussinger, Florian B; Notzon, Swantje; Laeger, Inga; Arolt, Volker; Ehlis, Ann-Christine; Zwanzger, Peter; Fallgatter, Andreas J

    2014-01-01

    Neurobiologically, panic disorder (PD) is supposed to be characterised by cerebral hypofrontality. Via functional near-infrared spectroscopy (fNIRS), we investigated whether prefrontal hypoactivity during cognitive tasks in PD-patients compared to healthy controls (HC) could be replicated. As intermittent theta burst stimulation (iTBS) modulates cortical activity, we furthermore investigated its ability to normalise prefrontal activation. Forty-four PD-patients, randomised to sham or verum group, received 15 iTBS-sessions above the left dorsolateral prefrontal cortex (DLPFC) in addition to psychoeducation. Before first and after last iTBS-treatment, cortical activity during a verbal fluency task was assessed via fNIRS and compared to the results of 23 HC. At baseline, PD-patients showed hypofrontality including the DLPFC, which differed significantly from activation patterns of HC. However, verum iTBS did not augment prefrontal fNIRS activation. Solely after sham iTBS, a significant increase of measured fNIRS activation in the left inferior frontal gyrus (IFG) during the phonological task was found. Our results support findings that PD is characterised by prefrontal hypoactivation during cognitive performance. However, verum iTBS as an "add-on" to psychoeducation did not augment prefrontal activity. Instead we only found increased fNIRS activation in the left IFG after sham iTBS application. Possible reasons including task-related psychophysiological arousal are discussed.

  20. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice.

    Science.gov (United States)

    Paul, Kush; Venkitaramani, Deepa V; Cox, Charles L

    2013-02-15

    Fragile X syndrome (FXS) is the most common form of inheritable mental retardation caused by transcriptional silencing of the Fmr1 gene resulting in the absence of fragile X mental retardation protein (FMRP). The role of this protein in neurons is complex and its absence gives rise to diverse alterations in neuronal function leading to neurological disorders including mental retardation, hyperactivity, cognitive impairment, obsessive-compulsive behaviour, seizure activity and autism. FMRP regulates mRNA translation at dendritic spines where synapses are formed, and thus the lack of FMRP can lead to disruptions in synaptic transmission and plasticity. Many of these neurological deficits in FXS probably involve the prefrontal cortex, and in this study, we have focused on modulatory actions of dopamine in the medial prefrontal cortex. Our data indicate that dopamine produces a long-lasting enhancement of evoked inhibitory postsynaptic currents (IPSCs) mediated by D1-type receptors seen in wild-type mice; however, such enhancement is absent in the Fmr1 knock-out (Fmr1 KO) mice. The facilitation of IPSCs produced by direct cAMP stimulation was unaffected in Fmr1 KO, but D1 receptor levels were reduced in these animals. Our results show significant disruption of dopaminergic modulation of synaptic transmission in the Fmr1 KO mice and this alteration in inhibitory activity may provide insight into potential targets for the rescue of deficits associated with FXS.

  1. Hippocampal-Prefrontal Circuit and Disrupted Functional Connectivity in Psychiatric and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Ming Li

    2015-01-01

    Full Text Available In rodents, the hippocampus has been studied extensively as part of a brain system responsible for learning and memory, and the prefrontal cortex (PFC participates in numerous cognitive functions including working memory, flexibility, decision making, and rewarding learning. The neuronal projections from the hippocampus, either directly or indirectly, to the PFC, referred to as the hippocampal-prefrontal cortex (Hip-PFC circuit, play a critical role in cognitive and emotional regulation and memory consolidation. Although in certain psychiatric and neurodegenerative diseases, structural connectivity viewed by imaging techniques has been consistently found to be associated with clinical phenotype and disease severity, the focus has moved towards the investigation of connectivity correlates of molecular pathology and coupling of oscillation. Moreover, functional and structural connectivity measures have been emerging as potential intermediate biomarkers for neuronal disorders. In this review, we summarize progress on the anatomic, molecular, and electrophysiological characters of the Hip-PFC circuit in cognition and emotion processes with an emphasis on oscillation and functional connectivity, revealing a disrupted Hip-PFC connectivity and electrical activity in psychiatric and neurodegenerative disorders as a promising candidate of neural marker for neuronal disorders.

  2. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex.

    Science.gov (United States)

    Cheng, Gordon L F; Lee, Tatia M C

    2016-01-01

    The prefrontal cortex (PFC) subserves complex cognitive abilities, including risky decision-making; the modulation of this brain area is shown to alter the way people take risks. Yet, neuromodulation of the PFC in relation to risk-taking behavior remains relatively less well-studied. Moreover, the psychological variables that influence such neuromodulation remain poorly understood. To address these issues, 16 participants took part in 3 experimental sessions on separate days. They received: (i) left anodal-right cathodal transcranial direct current stimulation (tDCS); (ii) left cathodal-right anodal stimulation; or (iii) sham stimulation while they completed two risk-taking tasks. They also measured on several cognitive-affective abilities and personality traits. It was revealed that left cathodal-right anodal stimulation led to significantly reduced risk-taking under a context of haste. The reduction of risk-taking (relative to sham) correlated with state and trait impulsivity, such that the effect was larger in more impulsive individuals. For these individuals, the tDCS effect size was considered to be large (generalized partial η(2) > .17). The effect of prefrontal-neuromodulation in reducing risk-taking was influenced by baseline impulsivity, reflecting a state-dependent effect of neuromodulation on the PFC. The results of this study carry important insights into the use of neuromodulation to alter higher cognition.

  3. Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex.

    Science.gov (United States)

    Nee, Derek Evan; Kastner, Sabine; Brown, Joshua W

    2011-01-01

    The last decade has seen considerable discussion regarding a theoretical account of medial prefrontal cortex (mPFC) function with particular focus on the anterior cingulate cortex. The proposed theories have included conflict detection, error likelihood prediction, volatility monitoring, and several distinct theories of error detection. Arguments for and against particular theories often treat mPFC as functionally homogeneous, or at least nearly so, despite some evidence for distinct functional subregions. Here we used functional magnetic resonance imaging (fMRI) to simultaneously contrast multiple effects of error, conflict, and task-switching that have been individually construed in support of various theories. We found overlapping yet functionally distinct subregions of mPFC, with activations related to dominant error, conflict, and task-switching effects successively found along a rostral-ventral to caudal-dorsal gradient within medial prefrontal cortex. Activations in the rostral cingulate zone (RCZ) were strongly correlated with the unexpectedness of outcomes suggesting a role in outcome prediction and preparing control systems to deal with anticipated outcomes. The results as a whole support a resolution of some ongoing debates in that distinct theories may each pertain to corresponding distinct yet overlapping subregions of mPFC. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Activation of beta2-Adrenoceptor Enhances Synaptic Potentiation and Behavioral Memory via cAMP-PKA Signaling in the Medial Prefrontal Cortex of Rats

    Science.gov (United States)

    Zhou, Hou-Cheng; Sun, Yan-Yan; Cai, Wei; He, Xiao-Ting; Yi, Feng; Li, Bao-Ming; Zhang, Xue-Han

    2013-01-01

    The prefrontal cortex (PFC) plays a critical role in cognitive functions, including working memory, attention regulation, behavioral inhibition, as well as memory storage. The functions of PFC are very sensitive to norepinephrine (NE), and even low levels of endogenously released NE exert a dramatic influence on the functioning of the PFC.…

  5. Prefrontal cortex, dopamine, and jealousy endophenotype.

    Science.gov (United States)

    Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo

    2013-02-01

    Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.

  6. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control

    Science.gov (United States)

    Egner, Tobias

    2013-01-01

    Conflict adaptation – a conflict-triggered improvement in the resolution of conflicting stimulus or response representations – has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous functional magnetic resonance imaging (fMRI) studies have localized activation foci associated with conflict resolution to dorsolateral prefrontal cortex (dlPFC). The traditional group-analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach in order to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed, while controlling for individual differences in mean reaction time and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral prefrontal cortex (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ~40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance. PMID:21568631

  7. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    Science.gov (United States)

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults

    Directory of Open Access Journals (Sweden)

    Ayaka Ishii-Takahashi

    2014-01-01

    Full Text Available The differential diagnosis of autism spectrum disorders (ASDs and attention deficit hyperactivity disorder (ADHD based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders.

  9. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  10. [Brodmann Areas 8 and 9 Including the Frontal Eye Field].

    Science.gov (United States)

    Watanabe, Masataka

    2017-04-01

    Based on cytoarchitectonic analyses, Brodmann assigned numbers 8 and 9 to certain areas of the dorsal and medial prefrontal cortex (PFC) in humans and monkeys. Petrides and Pandya re-analyzed the cytoarchitectures of the human and monkey PFCs, and proposed slightly different brain maps for both species. They assigned numbers 8, 9 and 9/46 to the areas that were originally named areas 8 and 9. Areas 8 and 9 have both lateral and medial regions respectively. The lateral area 8 is important for conditional discrimination learning. The frontal eye field which occupies the most caudal region of area 8, is responsible for visual attention and control of eye movements. The lateral area 9 and area 9/46 are functionally similar to area 46 and play important roles in executive control. The dorsomedial prefrontal cortex (DMPFC) comprises the medial regions of areas 8 and 9 and is related to "Theory of Mind" and social cognition. The DMPFC is also known to show "default mode of brain activity" (i.e., more activity during rest than during cognitive task).

  11. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal.

    Science.gov (United States)

    Huang, Hao; Ghosh, Prabhat; van den Pol, Anthony N

    2006-03-01

    The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.

  12. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Science.gov (United States)

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  13. Ritmos circadianos y neurotransmisores : estudios en la corteza prefrontal de la rata

    OpenAIRE

    Márquez de Prado García, Blanca

    2004-01-01

    El objetivo de esta tesis doctoral fue el estudio los posibles ritmos circadianos de los neurotransmisores glutamato, GABA, dopamina y acetilcolina en la corteza prefrontal. Una vez descritos los ritmos circadianos de estos neurotransmisores en corteza prefrontal se estudió su regulación por cambios en el fotoperíodo y la melatonina. Se estudiaron también los efectos del envejecimiento sobre los ritmos circadianos neurotransmisores en corteza prefrontal, estriado y núcleo accumbens. Se realiz...

  14. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex.

    Science.gov (United States)

    Ventura, R; Pascucci, T; Catania, M V; Musumeci, S A; Puglisi-Allegra, S

    2004-09-01

    Fragile X syndrome is an X-linked form of mental retardation including, among others, symptoms such as stereotypic behaviour, hyperactivity, hyperarousal, and cognitive deficits. We hypothesized that hyperactivity and/or compromised attentional, cognitive functions may lead to impaired performance in cognitive tasks in Fmr1 knockout mice, the most widely used animal model of fragile X syndrome, and suggested that psychostimulant treatment may improve performance by acting on one or both components. Since hyperactivity and cognitive functions have been suggested to depend on striatal and prefrontal cortex dopaminergic dysfunction, we assessed whether amphetamine produced beneficial, positive effects by acting on dopaminergic corticostriatal systems. Our results show that Fmr1 knockout mice are not able to discriminate between a familiar object and a novel one in the object recognition test, thus showing a clear-cut cognitive impairment that, to date, has been difficult to demonstrate in other cognitive tasks. Amphetamine improved performance of Fmr1 knockout mice, leading to enhanced ability to discriminate novel versus familiar objects, without significantly affecting locomotor activity. In agreement with behavioural data, amphetamine produced a greater increase in dopamine release in the prefrontal cortex of Fmr1 knockout compared with the wild-type mice, while a weak striatal dopaminergic response was observed in Fmr1 knockout mice. Our data support the view that the psychostimulant ameliorates performance in Fmr1 knockout mice by improving merely cognitive functions through its action on prefrontal cortical dopamine, irrespective of its action on motor hyperactivity. These results indicate that prefrontal cortical dopamine plays a major role in cognitive impairments characterizing Fmr1 knockout mice, thus pointing to an important aetiological factor in the fragile X syndrome.

  15. Is less really more: Does a prefrontal efficiency genotype actually confer better performance when working memory becomes difficult?

    Science.gov (United States)

    Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2016-01-01

    Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will

  16. A portrait of prefrontal lobotomy performed at the Royal Prince Alfred Hospital in Sydney by Dr Rex Money.

    Science.gov (United States)

    White, Richard T; McGee-Collett, Martin

    2016-10-01

    The objective of this article is to provide a portrait of prefrontal lobotomy performed at the Royal Prince Alfred Hospital, Sydney by the Head of Neurosurgery Dr Rex Money and to describe Dr Money's role in the promotion of psychosurgery in Sydney. We draw attention to an oral presentation by Dr Rex Money in 1951, a journal article written by Money, archival information held at the Royal Prince Alfred Hospital, including Dr Money's accounts of his travels and his reports regarding neurosurgery - both internationally and in Australia. Dr Rex Money performed a series of 13 prefrontal lobotomies between 1945 and 1951, and presented the theoretical basis for his series, his operative procedures and the outcomes at the annual meeting of its medical officers' association. Notwithstanding various deficiencies in his clinical research, Money's descriptions give a relatively comprehensive account of one of the first series of prefrontal lobotomies performed in Australia. The current article also describes Dr Money's contributions to the promotion of psychosurgery in Sydney, and illustrates the participation of a senior neurosurgeon and of a major Sydney teaching hospital during the psychosurgery saga. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  17. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex.

    Science.gov (United States)

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-07-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.

  19. Interplay of prefrontal cortex and amygdala during extinction of drug seeking.

    Science.gov (United States)

    Oliva, Valeria; Cartoni, Emilio; Latagliata, Emanuele Claudio; Puglisi-Allegra, Stefano; Baldassarre, Gianluca

    2018-04-01

    Extinction of Pavlovian conditioning is a complex process that involves brain regions such as the medial prefrontal cortex (mPFC), the amygdala and the locus coeruleus. In particular, noradrenaline (NA) coming from the locus coeruleus has been recently shown to play a different role in two subregions of the mPFC, the prelimbic (PL) and the infralimbic (IL) regions. How these regions interact in conditioning and subsequent extinction is an open issue. We studied these processes using two approaches: computational modelling and NA manipulation in a conditioned place preference paradigm (CPP) in mice. In the computational model, NA in PL and IL causes inputs arriving to these regions to be amplified, thus allowing them to modulate learning processes in amygdala. The model reproduces results from studies involving depletion of NA from PL, IL, or both in CPP. In addition, we simulated new experiments of NA manipulations in mPFC, making predictions on the possible results. We searched the parameters of the model and tested the robustness of the predictions by performing a sensitivity analysis. We also present an empirical experiment where, in accord with the model, a double depletion of NA from both PL and IL in CPP with amphetamine impairs extinction. Overall the proposed model, supported by anatomical, physiological, and behavioural data, explains the differential role of NA in PL and IL and opens up the possibility to understand extinction mechanisms more in depth and hence to aid the development of treatments for disorders such as addiction.

  20. The world according to me: Personal relevance and the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Anna eAbraham

    2013-07-01

    Full Text Available More than a decade of neuroimaging research has established that anterior and posterior cortical midline regions are consistently recruited during self-referential thinking. These regions are engaged under conditions of directed cognition, such as during explicit self-reference tasks, as well as during spontaneous cognition, such as under conditions of rest. One of the many issues that remain to be clarified regarding the relationship between self-referential thinking and cortical midline activity is the functional specificity of these regions with regard to the nature of self-representation and processing. The functional profile associated with the medial prefrontal cortex (mPFC is the focus of the current article. What is specifically explored is the idea that personal relevance or personal significance is a central factor that impacts how brain activity is modulated within this cortical midline region. The proactive, imaginative and predictive nature of function in the mPFC is examined by evaluating studies of spontaneously-directed cognition, which is triggered by stimulus associated personal relevance.

  1. Contributions of the Medial Prefrontal Cortex to Social Influence in Economic Decision-Making.

    Science.gov (United States)

    Apps, M A J; Ramnani, N

    2017-09-01

    Economic decisions are guided by highly subjective reward valuations (SVs). Often these SVs are over-ridden when individuals conform to social norms. Yet, the neural mechanisms that underpin the distinct processing of such normative reward valuations (NVs) are poorly understood. The dorsomedial and ventromedial portions of the prefrontal cortex (dmPFC/vmPFC) are putatively key regions for processing social and economic information respectively. However, the contribution of these regions to economic decisions guided by social norms is unclear. Using functional magnetic resonance imaging and computational modeling we examine the neural mechanisms underlying the processing of SVs and NVs. Subjects (n = 15) indicated either their own economic preferences or made similar choices based on a social norm-learnt during a training session. We found that that the vmPFC and dmPFC make dissociable contributions to the processing of SV and NV. Regions of the dmPFC processed "only" the value of rewards when making normative choices. In contrast, we identify a novel mechanism in the vmPFC for the coding of value. This region signaled both subjective and normative valuations, but activity was scaled positively for SV and negatively for NV. These results highlight some of the key mechanisms that underpin conformity and social influence in economic decision-making. © The Author 2017. Published by Oxford University Press.

  2. Structural Variation within the Amygdala and Ventromedial Prefrontal Cortex Predict Memory for Impressions in Older Adults

    Directory of Open Access Journals (Sweden)

    Brittany Shane Cassidy

    2012-08-01

    Full Text Available Research has shown that lesions to regions involved in social and emotional cognition disrupt socioemotional processing and memory. We investigated how structural variation of regions involved in socioemotional memory (ventromedial prefrontal cortex [vmPFC], amygdala, as opposed to a region implicated in explicit memory (hippocampus, affected memory for impressions in young and older adults. Anatomical MRI scans for fifteen young and fifteen older adults were obtained and reconstructed to gather information about cortical thickness and subcortical volume. Young adults had greater amygdala and hippocampus volumes than old, and thicker left vmPFC than old, although right vmPFC thickness did not differ across the age groups. Participants formed behavior-based impressions and responded to interpersonally meaningful, social but interpersonally irrelevant, or non-social prompts, and completed a memory test. Results showed that greater left amygdala volume predicted enhanced overall memory for impressions in older but not younger adults. Increased right vmPFC thickness in older, but not younger, adults correlated with enhanced memory for impressions formed in the interpersonally meaningful context. Hippocampal volume was not predictive of social memory in young or older adults. These findings demonstrate the importance of structural variation in regions linked to socioemotional processing in the retention of impressions with age, and suggest that the amygdala and vmPFC play an integral role when encoding and retrieving social information.

  3. Prefrontal activity and impaired memory encoding strategies in schizophrenia.

    Science.gov (United States)

    Guimond, Synthia; Hawco, Colin; Lepage, Martin

    2017-08-01

    Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.

  4. Cortical regions involved in the generation of musical structures during improvisation in pianists.

    Science.gov (United States)

    Bengtsson, Sara L; Csíkszentmihályi, Mihály; Ullén, Fredrik

    2007-05-01

    Studies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study. In one condition, Improvise, the pianist improvised on the basis of a visually displayed melody. In the control condition, Reproduce, the participant reproduced his previous improvisation from memory. Participants were able to reproduce their improvisations with a high level of accuracy, and the contrast Improvise versus Reproduce was thus essentially matched in terms of motor output and sensory feedback. However, the Improvise condition required storage in memory of the improvisation. We therefore also included a condition FreeImp, where the pianist improvised but was instructed not to memorize his performance. To locate brain regions involved in musical creation, we investigated the activations in the Improvise-Reproduce contrast that were also present in FreeImp contrasted with a baseline rest condition. Activated brain regions included the right dorsolateral prefrontal cortex, the presupplementary motor area, the rostral portion of the dorsal premotor cortex, and the left posterior part of the superior temporal gyrus. We suggest that these regions are part of a network involved in musical creation, and discuss their possible functional roles.

  5. Preserved speech abilities and compensation following prefrontal damage.

    Science.gov (United States)

    Buckner, R L; Corbetta, M; Schatz, J; Raichle, M E; Petersen, S E

    1996-02-06

    Lesions to left frontal cortex in humans produce speech production impairments (nonfluent aphasia). These impairments vary from subject to subject and performance on certain speech production tasks can be relatively preserved in some patients. A possible explanation for preservation of function under these circumstances is that areas outside left prefrontal cortex are used to compensate for the injured brain area. We report here a direct demonstration of preserved language function in a stroke patient (LF1) apparently due to the activation of a compensatory brain pathway. We used functional brain imaging with positron emission tomography (PET) as a basis for this study.

  6. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    Science.gov (United States)

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  7. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    Science.gov (United States)

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID

  8. False recall is reduced by damage to the ventromedial prefrontal cortex: implications for understanding the neural correlates of schematic memory.

    Science.gov (United States)

    Warren, David E; Jones, Samuel H; Duff, Melissa C; Tranel, Daniel

    2014-05-28

    Schematic memory, or contextual knowledge derived from experience (Bartlett, 1932), benefits memory function by enhancing retention and speeding learning of related information (Bransford and Johnson, 1972; Tse et al., 2007). However, schematic memory can also promote memory errors, producing false memories. One demonstration is the "false memory effect" of the Deese-Roediger-McDermott (DRM) paradigm (Roediger and McDermott, 1995): studying words that fit a common schema (e.g., cold, blizzard, winter) often produces memory for a nonstudied word (e.g., snow). We propose that frontal lobe regions that contribute to complex decision-making processes by weighting various alternatives, such as ventromedial prefrontal cortex (vmPFC), may also contribute to memory processes by weighting the influence of schematic knowledge. We investigated the role of human vmPFC in false memory by combining a neuropsychological approach with the DRM task. Patients with vmPFC lesions (n = 7) and healthy comparison participants (n = 14) studied word lists that excluded a common associate (the critical item). Recall and recognition tests revealed expected high levels of false recall and recognition of critical items by healthy participants. In contrast, vmPFC patients showed consistently reduced false recall, with significantly fewer intrusions of critical items. False recognition was also marginally reduced among vmPFC patients. Our findings suggest that vmPFC increases the influence of schematically congruent memories, a contribution that may be related to the role of the vmPFC in decision making. These novel neuropsychological results highlight a role for the vmPFC as part of a memory network including the medial temporal lobes and hippocampus (Andrews-Hanna et al., 2010). Copyright © 2014 the authors 0270-6474/14/347677-06$15.00/0.

  9. Integration of Teaching Processes and Learning Assessment in the Prefrontal Cortex during a Video Game Teaching-learning Task.

    Science.gov (United States)

    Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi

    2016-01-01

    Human teaching is a social interaction that supports reciprocal and dynamical feedback between the teacher and the student. The prefrontal cortex (PFC) is a region of particular interest due to its demonstrated role in social interaction. In the present study, we evaluated the PFC activity simultaneously in two individuals playing the role of a teacher and student in a video game teaching-learning task. For that, we used two wearable near-infrared spectroscopy (NIRS) devices in order to elucidate the neural mechanisms underlying cognitive interactions between teachers and students. Fifteen teacher-student pairs in total ( N = 30) participated in this study. Each teacher was instructed to teach the video game to their student partner, without speaking. The PFC activity was simultaneously evaluated in both participants using a wearable 16-channel NIRS system during the video game teaching-learning task. Two sessions, each including a triplet of a 30-s teaching-learning task, were performed in order to evaluate changes in PFC activity after advancement of teaching-learning state. Changes in the teachers' left PFC activity between the first and second session positively correlated with those observed in students ( r = 0.694, p = 0.004). Moreover, among teachers, multiple regression analysis revealed a correlation between the left PFC activity and the assessment gap between one's own teaching and the student's understanding ( β = 0.649, p = 0.009). Activity in the left PFC changed synchronously in both teachers and students after advancement of the teaching-learning state. The left PFC of teachers may be involved in integrating information regarding one's own teaching process and the student's learning state. The present observations indicate that simultaneous recording and analysis of brain activity data during teacher-student interactions may be useful in the field of educational neuroscience.

  10. PREFRONTAL CORTEX ACTIVATION DURING STORY ENCODING/RETRIEVAL: A MULTI-CHANNEL FUNCTIONAL NEAR-INFRARED SPECTROSCOPY STUDY

    Directory of Open Access Journals (Sweden)

    Sara eBasso Moro

    2013-12-01

    Full Text Available Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb and deoxygenated-hemoglobin (HHb in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a sixteen-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively over the prefrontal cortex (PFC of thirteen healthy subjects (27.2±2.6 y. while were performing the Logical Memory Test (LMT of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC since the beginning of the EP. During the RP a broader activation, including the ventrolateral PFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.

  11. Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder.

    Science.gov (United States)

    Altinay, Murat; Karne, Harish; Anand, Amit

    2018-01-01

    This study, for the first time, investigated lithium monotherapy associated effects on amygdala- ventromedial prefrontal cortex (vMPFC) resting-state functional connectivity and correlation with clinical improvement in bipolar disorder (BP) METHODS: Thirty-six medication-free subjects - 24 BP (12 hypomanic BPM) and 12 depressed (BPD)) and 12 closely matched healthy controls (HC), were included. BP subjects were treated with lithium and scanned at baseline, after 2 weeks and 8 weeks. HC were scanned at same time points but were not treated. The effect of lithium was studied for the BP group as a whole using two way (group, time) ANOVA while regressing out effects of state. Next, correlation between changes in amygdala-vMPFC resting-state connectivity and clinical global impression (CGI) of severity and improvement scale scores for overall BP illness was calculated. An exploratory analysis was also conducted for the BPD and BPM subgroups separately. Group by time interaction revealed that lithium monotherapy in patients was associated with increase in amygdala-medial OFC connectivity after 8 weeks of treatment (p = 0.05 (cluster-wise corrected)) compared to repeat testing in healthy controls. Increased amygdala-vMPFC connectivity correlated with clinical improvement at week 2 and week 8 as measured with the CGI-I scale. The results pertain to open-label treatment and do not account for non-treatment related improvement effects. Only functional connectivity was measured which does not give information regarding one regions effect on the other. Lithium monotherapy in BP is associated with modulation of amygdala-vMPFC connectivity which correlates with state-independent global clinical improvement. Copyright © 2017. Published by Elsevier B.V.

  12. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Requiring collaboration: Hippocampal-prefrontal networks needed in spatial working memory and ageing. A multivariate analysis approach.

    Science.gov (United States)

    Zancada-Menendez, C; Alvarez-Suarez, P; Sampedro-Piquero, P; Cuesta, M; Begega, A

    2017-04-01

    Ageing is characterized by a decline in the processes of retention and storage of spatial information. We have examined the behavioural performance of adult rats (3months old) and aged rats (18months old) in a spatial complex task (delayed match to sample). The spatial task was performed in the Morris water maze and consisted of three sessions per day over a period of three consecutive days. Each session consisted of two trials (one sample and retention) and inter-session intervals of 5min. Behavioural results showed that the spatial task was difficult for middle aged group. This worse execution could be associated with impairments of processing speed and spatial information retention. We examined the changes in the neuronal metabolic activity of different brain regions through cytochrome C oxidase histochemistry. Then, we performed MANOVA and Discriminant Function Analyses to determine the functional profile of the brain networks that are involved in the spatial learning of the adult and middle-aged groups. This multivariate analysis showed two principal functional networks that necessarily participate in this spatial learning. The first network was composed of the supramammillary nucleus, medial mammillary nucleus, CA3, and CA1. The second one included the anterior cingulate, prelimbic, and infralimbic areas of the prefrontal cortex, dentate gyrus, and amygdala complex (basolateral l and central subregions). There was a reduction in the hippocampal-supramammilar network in both learning groups, whilst there was an overactivation in the executive network, especially in the aged group. This response could be due to a higher requirement of the executive control in a complex spatial memory task in older animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Samantha J Fung

    Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in

  15. Glutamate in dorsolateral prefrontal cortex and auditory verbal hallucinations in patients with schizophrenia: A 1H MRS study.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; Bais, Leonie; Sibeijn-Kuiper, Anita; Pijnenborg, Hendrika Maria; Knegtering, Henderikus; Liemburg, Edith; Aleman, André

    2017-08-01

    Glutamatergic models of psychosis propose that dysfunction of N-methyl-d-aspartate (NMDA) receptors, and associated excess of glutamate, may underlie psychotic experiences in people with schizophrenia. However, little is known about the specific relation between glutamate and auditory verbal hallucinations (AVH) in patients with psychosis. In this study, levels of glutamate+glutamine (Glx) in the left lateral prefrontal lobe were determined using proton magnetic resonance spectroscopy ( 1 H MRS) to calculate their association with AVH. Sixty-seven patients with schizophrenia and thirty healthy control participants (HC) underwent magnetic resonance spectroscopy (MRS) to estimate levels of Glx in the white matter of the left prefrontal lobe. The spectrum was estimated from an 8mm 3 voxel placed in the left lateral prefrontal region, belonging to both the cingulum and forceps minor. Patients with lifetime AVH (AVH group; n=45) and patients without lifetime AVH were compared (NoAVH group; n=22) to control participants. Levels of Glx were significantly different between the groups (F(2,94)=5.27, p=0.007). Planned comparisons showed that higher Glx levels were found in control participants than in the total patient group (p=0.010). However, patients with lifetime AVH had higher levels of Glx compared to patients without lifetime AVH (p=0.019). Creatin levels were similar in all three groups. We found no association between Glx and the severity of symptoms (item P3 of the PANSS or PANSS positive subscale). The higher Glx levels in patients with lifetime AVH as compared to patients without lifetime AVH suggest a mediating role for Glx in AVH. Our results are consistent with a previous study that found similar decreased levels of Glx in patients with schizophrenia, and increased levels in an AVH group as compared to a NoAVH group. The role of the glutamatergic system deserves further investigation, for example in different brain regions and in relation to clinical variables

  16. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    Science.gov (United States)

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-12-01

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Omar

    2012-02-01

    Full Text Available Abstract Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1, CD47 (Cluster of Differentiation 47 and the RET (Rearranged During Transfection protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.

  18. Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems.

    Science.gov (United States)

    Hutcherson, Cendri A; Plassmann, Hilke; Gross, James J; Rangel, Antonio

    2012-09-26

    Cognitive regulation is often used to influence behavioral outcomes. However, the computational and neurobiological mechanisms by which it affects behavior remain unknown. We studied this issue using an fMRI task in which human participants used cognitive regulation to upregulate and downregulate their cravings for foods at the time of choice. We found that activity in both ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) correlated with value. We also found evidence that two distinct regulatory mechanisms were at work: value modulation, which operates by changing the values assigned to foods in vmPFC and dlPFC at the time of choice, and behavioral control modulation, which operates by changing the relative influence of the vmPFC and dlPFC value signals on the action selection process used to make choices. In particular, during downregulation, activation decreased in the value-sensitive region of dlPFC (indicating value modulation) but not in vmPFC, and the relative contribution of the two value signals to behavior shifted toward the dlPFC (indicating behavioral control modulation). The opposite pattern was observed during upregulation: activation increased in vmPFC but not dlPFC, and the relative contribution to behavior shifted toward the vmPFC. Finally, ventrolateral PFC and posterior parietal cortex were more active during both upregulation and downregulation, and were functionally connected with vmPFC and dlPFC during cognitive regulation, which suggests that they help to implement the changes to the decision-making circuitry generated by cognitive regulation.

  19. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices.

    Science.gov (United States)

    Barbas, H

    2000-07-15

    Distinct domains of the prefrontal cortex in primates have a set of connections suggesting that they have different roles in cognition, memory, and emotion. Caudal lateral prefrontal areas (areas 8 and 46) receive projections from cortices representing early stages in visual or auditory processing, and from intraparietal and posterior cingulate areas associated with oculomotor guidance and attentional processes. Cortical input to areas 46 and 8 is complemented by projections from the thalamic multiform and parvicellular sectors of the mediodorsal nucleus associated with oculomotor functions and working memory. In contrast, caudal orbitofrontal areas receive diverse input from cortices representing late stages of processing within every unimodal sensory cortical system. In addition, orbitofrontal and caudal medial (limbic) prefrontal cortices receive robust projections from the amygdala, associated with emotional memory, and from medial temporal and thalamic structures associated with long-term memory. Prefrontal cortices are linked with motor control structures related to their specific roles in central executive functions. Caudal lateral prefrontal areas project to brainstem oculomotor structures, and are connected with premotor cortices effecting head, limb and body movements. In contrast, medial prefrontal and orbitofrontal limbic cortices project to hypothalamic visceromotor centers for the expression of emotions. Lateral, orbitofrontal, and medial prefrontal cortices are robustly interconnected, suggesting that they participate in concert in central executive functions. Prefrontal limbic cortices issue widespread projections through their deep layers and terminate in the upper layers of lateral (eulaminate) cortices, suggesting a predominant role in feedback communication. In contrast, when lateral prefrontal cortices communicate with limbic areas they issue projections from their upper layers and their axons terminate in the deep layers, suggesting a role in

  20. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  1. Prefrontal-limbic Functional Connectivity during Acquisition and Extinction of Conditioned Fear.

    Science.gov (United States)

    Barrett, Douglas W; Gonzalez-Lima, F

    2018-04-15

    This study is a new analysis to obtain novel metabolic data on the functional connectivity of prefrontal-limbic regions in Pavlovian fear acquisition and extinction of tone-footshock conditioning. Mice were analyzed with the fluorodeoxyglucose (FDG) autoradiographic method to metabolically map regional brain activity. New FDG data were sampled from the nuclei of the habenula and other regions implicated in aversive conditioning, such as infralimbic cortex, amygdala and periaqueductal gray regions. The activity patterns among these regions were inter-correlated during acquisition, extinction or pseudorandom training to develop a functional connectivity model. Two subdivisions of the habenular complex showed increased activity after acquisition relative to extinction, with the pseudorandom group intermediate between the other two groups. Significant acquisition activation effects were also found in centromedial amygdala, dorsomedial and ventrolateral periaqueductal gray. FDG uptake increases during extinction were found only in dorsal and ventral infralimbic cortex. The overall pattern of activity correlations between these regions revealed extensive but differential functional connectivity during acquisition and extinction training, with less functional connectivity found after pseudorandom training. Interestingly, habenula nuclei showed a distinct pattern of inter-correlations with amygdala nuclei during extinction. The functional connectivity model revealed changing interactions among infralimbic cortex, amygdala, habenula and periaqueductal gray regions through the stages of Pavlovian fear acquisition and extinction. This study provided new data on the contributions of the habenula to fear conditioning, and revealed previously unreported infralimbic-amygdala-habenula-periaqueductal gray interactions implicated in acquisition and extinction of conditioned fear. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

    DEFF Research Database (Denmark)

    Jørgensen, A.; Magnusson, P.; Hanson, Lars G.

    2016-01-01

    , and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results......: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations...

  3. Responses of prefrontal multisensory neurons to mismatching faces and vocalizations.

    Science.gov (United States)

    Diehl, Maria M; Romanski, Lizabeth M

    2014-08-20

    Social communication relies on the integration of auditory and visual information, which are present in faces and vocalizations. Evidence suggests that the integration of information from multiple sources enhances perception compared with the processing of a unimodal stimulus. Our previous studies demonstrated that single neurons in the ventrolateral prefrontal cortex (VLPFC) of the rhesus monkey (Macaca mulatta) respond to and integrate conspecific vocalizations and their accompanying facial gestures. We were therefore interested in how VLPFC neurons respond differentially to matching (congruent) and mismatching (incongruent) faces and vocalizations. We recorded VLPFC neurons during the presentation of movies with congruent or incongruent species-specific facial gestures and vocalizations as well as their unimodal components. Recordings showed that while many VLPFC units are multisensory and respond to faces, vocalizations, or their combination, a subset of neurons showed a significant change in neuronal activity in response to incongruent versus congruent vocalization movies. Among these neurons, we typically observed incongruent suppression during the early stimulus period and incongruent enhancement during the late stimulus period. Incongruent-responsive VLPFC neurons were both bimodal and nonlinear multisensory, fostering their ability to respond to changes in either modality of a face-vocalization stimulus. These results demonstrate that ventral prefrontal neurons respond to changes in either modality of an audiovisual stimulus, which is important in identity processing and for the integration of multisensory communication information. Copyright © 2014 the authors 0270-6474/14/3411233-11$15.00/0.

  4. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  5. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Holi, Matti M; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu

    2004-01-01

    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.

  6. Inequality signals in dorsolateral prefrontal cortex inform social preference models.

    Science.gov (United States)

    Holper, Lisa; Burke, Christopher J; Fausch, Christoph; Seifritz, Erich; Tobler, Philippe N

    2018-05-01

    Humans typically display inequality aversion in social situations, which manifests itself as a preference for fairer distributions of resources. However, people differ in the degree to which they dislike being worse off [disadvantageous inequality (DI) aversion] or better off [advantageous inequality (AI) aversion] than others. Competing models explain such behavior by focusing on aversion to payoff differences, maximization of total payoff or reciprocity. Using functional near-infrared spectroscopy, we asked which of these theories could better explain dorsolateral prefrontal cortex (dlPFC) activity while participants accepted or punished fair vs unfair monetary transfers in an anonymous norm compliance task. We found that while all participants exhibited DI aversion, there were substantial differences in preferences for AI, which were strongly predicted by dlPFC activation. Model comparisons revealed that both punishment behavior and prefrontal activity were best explained by a model that allowed for AI seeking rather than imposing aversion. Moreover, enhancing this model by taking into account behavioral response times, as a proxy for choice difficulty, further improved model fits. Our data provide evidence that the dlPFC encodes subjective values of payoff inequality and that this representation is richer than envisaged by standard models of social preferences.

  7. Differences in prefrontal, limbic, and white matter lesion volumes according to cognitive status in elderly patients with first-onset subsyndromal depression.

    Directory of Open Access Journals (Sweden)

    Jun-Young Lee

    Full Text Available The purpose of this preliminary study was to test the hypothesis that subsyndromal depression is associated with the volume of medial prefrontal regional gray matter and that of white matter lesions (WMLs in the brains of cognitively normal older people. We also explored the relationships between subsyndromal depression and medial prefrontal regional gray matter volume, limbic regional gray matter volume, and lobar WMLs in the brains of patients w