WorldWideScience

Sample records for regional hydrogeological simulations

  1. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  2. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-04-15

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes.

  3. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel; Gylling, Bjoern; Marsic, Niko

    2006-04-01

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes

  4. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    objective of this study is to support the development of a preliminary Site Description of the Simpevarp area on a regional-scale based on the available data of August 2004 (Data Freeze S1.2) and the previous Site Description. A more specific objective of this study is to assess the role of known and unknown hydrogeological conditions for the present-day distribution of saline groundwater in the Simpevarp area on a regional-scale. An improved understanding of the paleo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale as well as predictions of future hydrogeological conditions. Other key objectives were to identify the model domain required to simulate regional flow and solute transport at the Simpevarp area and to incorporate a new geological model of the deformation zones produced for Version S1.2.Another difference with Version S1.1 is the increased effort invested in conditioning the hydrogeological property models to the fracture boremap and hydraulic data. A new methodology was developed for interpreting the discrete fracture network (DFN) by integrating the geological description of the DFN (GeoDFN) with the hydraulic test data from Posiva Flow-Log and Pipe-String System double-packer techniques to produce a conditioned Hydro-DFN model. This was done in a systematic way that addressed uncertainties associated with the assumptions made in interpreting the data, such as the relationship between fracture transmissivity and length. Consistent hydraulic data was only available for three boreholes, and therefore only relatively simplistic models were proposed as there isn't sufficient data to justify extrapolating the DFN away from the boreholes based on rock domain, for example. Significantly, a far greater quantity of hydro-geochemical data was available for calibration in the

  5. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  6. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  7. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-01-01

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  8. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  9. Tono regional hydrogeological study project. Annual report 2004

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Ota, Kunio; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Osawa, Hideaki

    2005-09-01

    Tono Geoscience Center, Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build firm scientific and technological basis for the research and development of geological disposal. One of the geoscientific research programme is a Regional Hydrogeological Study (RHS) project in the Tono region, central Japan. This report mainly summarizes the results of research in DH-14 and DH-15 boreholes at Toki city and Mizunami city in fiscal year 2004 which were carried out to support and improve the results in fiscal year 2003. The research in the regional scale area shows the reliability of conceptual hydrogeological model and numerical simulation for the evaluation of regional hydrogeology. On the other hand, the geological and geophysical investigation, and borehole investigation during the surface-based investigations in the local scale area provide the pragmatic distribution of hydrogeological structure that may control regional groundwater hydrology. Hydrogeological simulations regarding the geological structure such as fault and hydrogeological property demonstrate the priority of investigation of geological structure for the evaluation of hydrogeology. The fault perpendicular to groundwater flow direction crucially affects on regional hydrology. Such fault is necessary to be investigated by priority. Hydrochemical investigation shows that chemical evolution process in this groundwater illustrated is mixing between groundwaters with different salinities. Principal component analysis and mass balance calculation reveal reliable chemistry of end-member waters for mixing. Regarding methodology development, the strategy and procedure of investigations are summarized based on the results of surface-based investigation. Moreover the multi interval monitoring system for water pressure and temperature has developed and started to monitor the in-situ condition of groundwater. The geology, geological structure, hydraulic

  10. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  11. Regional hydrogeological study in the Tono area

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Ota, Kunio; Hama, Katsuhiro; Tsubota, Kouji

    1998-01-01

    Regional hydrogeological studies have been carried out since fiscal 1992 to determine the regional groundwater flow in the Tono area of Japan. The following items have been investigated: 1) Understanding the geological structure, groundwater flow and groundwater chemistry of the deep geological environment in the Tono area. 2) Constructing conceptual models of the geological structure, groundwater flow and groundwater chemistry. 3) Developing appropriate techniques to investigate the geological structure, groundwater flow and groundwater chemistry of the deep geological environment. This report presents the results of the last six years of the study in the Tono area. (author)

  12. Use of stratigraphic, petrographic, hydrogeologic and geochemical information for hydrogeologic modelling based on geostatistical simulation

    International Nuclear Information System (INIS)

    Rohlig, K.J.; Fischer, H.; Poltl, B.

    2004-01-01

    This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)

  13. Simulation of hydrodynamic effects of salt rejection due to permafrost. Hydrogeological numerical model of density-driven mixing, at a regional scale, due to a high salinity pulse

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Svensson, Urban; Follin, Sven

    2006-10-01

    The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process

  14. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers approximately 44,000 square miles of northeastern Oregon, southeastern Washington, and western Idaho. The area supports a $6 billion per year agricultural industry, leading the Nation in production of apples and nine other commodities (State of Washington Office of Financial Management, 2007; U.S. Department of Agriculture, 2007). Groundwater availability in the aquifers of the area is a critical water-resource management issue because the water demand for agriculture, economic development, and ecological needs is high. The primary aquifers of the CPRAS are basalts of the Columbia River Basalt Group (CRBG) and overlying basin-fill sediments. Water-resources issues that have implications for future groundwater availability in the region include (1) widespread water-level declines associated with development of groundwater resources for irrigation and other uses, (2) reduction in base flow to rivers and associated effects on temperature and water quality, and (3) current and anticipated effects of global climate change on recharge, base flow, and ultimately, groundwater availability. As part of a National Groundwater Resources Program, the U.S. Geological Survey began a study of the CPRAS in 2007 with the broad goals of (1) characterizing the hydrologic status of the system, (2) identifying trends in groundwater storage and use, and (3) quantifying groundwater availability. The study approach includes documenting changes in the status of the system, quantifying the hydrologic budget for the system, updating the regional hydrogeologic framework, and developing a groundwater-flow simulation model for the system. The simulation model will be used to evaluate and test the conceptual model of the system and later to evaluate groundwater availability under alternative development and climate scenarios. The objectives of this study were to update the hydrogeologic framework for the CPRAS using the available

  15. On the combination of isotope hydrogeology with regional flow and transport modelling

    International Nuclear Information System (INIS)

    Barmen, G.A.

    1992-01-01

    Many different methods and tools can be used when trying to improve the information basis on which decisions are made for maintaining a quantitatively and qualitatively safe, long-term use of groundwater resources. In this thesis, classical hydrogeological examinations, hydrochemical investigations, environmental isotope studies, computerized groundwater flow modelling and radioisotope transport modelling have been applied to the large system of reservoirs in the sedimentary deposits of southwestern Scania, Sweden. The stable isotopes 2 H, 18 O and 13 C and the radioactive 3 H and 14 C have been measured and the results obtained can improve the estimations of the periods of recharge and the average circulation times of the groundwater reservoirs studied. A groundwater flow model based on finite difference techniques and a continuum approach has been modified by data from traditional hydrogeological studies. The computer code, NEWSAM, has been used to simulate steady-state and transient isotope transport in the area studied, taking into account advective transport with radioactive decay. The interacting groundwater resevoirs studied have been represented by a three-dimensional system of grids in the numerical model. A major merit of this combination of isotope hydrogeology and regional flow and transport modelling is that the isotope transport simulations help to demonstrate where zones particularly vulnerable to pollution are situated. These locations are chiefly the results of the hydrogeological characteristics traditionally examined, but they are revealed by means of the transport model. Subsequent, more detailed investigations can then be focussed primarily on these vulnerable zones. High contents of radioisotopes in the main aquifer of southwestern Scania may indicate that groundwater withdrawals have stimulated recharge from shallow aquifers and surface waters and that the risk of pollution has increased. (196 refs.) (au)

  16. Hydrogeology of rocks of low permeability: region studies

    International Nuclear Information System (INIS)

    Llamas, M.R.

    1985-01-01

    Hydrogeological regional studies on low permeability rocks are rather scarce in comparison to similar studies on normal permeability rocks. Economic and technological difficulties to develop ground water from these terrains may be the main cause of this scarcity. Several facts may indicate that these studies will increase in the near future. First, the need to supply water to the people living in underdeveloped arid zones over extensive areas of low permeability rocks. Second, the relevant role that some low permeability large groundwater basins may play in conjunctive ground and surface-water use. And last but not least the feasibility of some low permeability rock areas as sites for nuclear waste repositories. Some specific difficulties in these regional studies may be: a) intrinsic difficulties in obtaining representative water samples and measuring hydraulic heads; b) scarcity of observation and/or pumping wells; c) important hydraulic head and chemical properties variations in a vertical direction; d) old groundwater ages; this may require paleohydrological considerations to understand certain apparent anomalies. In most of these regional studies hydrogeochemical methods and modelling (flow and mass transport) may be very valuable tools. 77 references, 7 figures

  17. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  18. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    International Nuclear Information System (INIS)

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters

  19. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  20. Hydrogeological investigations at the surface of the Wellenberg region

    International Nuclear Information System (INIS)

    Baumann, A.; Frieg, B.

    1991-01-01

    The aim of the surface investigations carried out at Wellenberg is twofold, namely to provide a record of the actual hydrogeological situation before commencing operations at a site and to suppplement data obtained using other methods. The initial phase involved drawing up an inventory of all springs, streams and groundwater observation points and determining various physical parameters. The observation points are now checked periodically. In order to supplement the network for monitoring groundwater in the valley of the Engelberger Aa, new shallow boreholes have been drilled and equipped as piezometers. Isotopic investigations are carried out on samples of precipitation and spring-water. This allows infiltration conditions, and seasonal variations therein, to be determined. Finally, hydrochemical and bacteriological investigations were carried out for selected springs. (author) 2 figs

  1. Analysis on regional hydrogeological condition of Beishan preselected area for high level radioactive waste disposal repository in Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Liu Shufen; Lu Chuanhe

    2004-01-01

    Based on the field investigation which has been carried out in the Beishan preselected area for high level radioactive waste repository in Gansu province during the last few years and the previous hydrogeological investigation results, the different groundwater types are divided initially and the hydrogeological features of different water-bearing media are described in this paper. Meanwhile, the preliminary evaluation of the regional hydrogeological condition of the study area is carried out. (author)

  2. A computer hydrogeologic model of the Nevada Test Site and surrounding region

    International Nuclear Information System (INIS)

    Gillson, R.; Hand, J.; Adams, P.; Lawrence, S.

    1996-01-01

    A three-dimensional, hydrogeologic model of the Nevada Test Site and surrounding region was developed as an element for regional groundwater flow and radionuclide transport models. The hydrogeologic model shows the distribution, thickness, and structural relationships of major aquifers and confining units, as conceived by a team of experts organized by the U.S. Department of Energy Nevada Operations Office. The model was created using Intergraph Corporation's Geographical Information System based Environmental Resource Management Application software. The study area encompasses more than 28,000 square kilometers in southern Nevada and Inyo County, California. Fifty-three geologic cross sections were constructed throughout the study area to provide a framework for the model. The lithology was simplified to 16 hydrostratigraphic units, and the geologic structures with minimal effect on groundwater flow were removed. Digitized cross sections, surface geology, and surface elevation data were the primary sources for the hydrogeologic model and database. Elevation data for the hydrostratigraphic units were posted, contoured, and gridded. Intergraph Corporation's three-dimensional visualization software, VOXEL trademark, was used to view the results interactively. The hydrogeologic database will be used in future flow modeling activities

  3. Investigation of the large scale regional hydrogeological situation at Ceberg

    International Nuclear Information System (INIS)

    Boghammar, A.; Grundfelt, B.; Hartley, L.

    1997-11-01

    The present study forms part of the large-scale groundwater flow studies within the SR 97 project. The site of interest is Ceberg. Within the present study two different regional scale groundwater models have been constructed, one large regional model with an areal extent of about 300 km 2 and one semi-regional model with an areal extent of about 50 km 2 . Different types of boundary conditions have been applied to the models. Topography driven pressures, constant infiltration rates, non-linear infiltration combined specified pressure boundary conditions, and transfer of groundwater pressures from the larger model to the semi-regional model. The present model has shown that: -Groundwater flow paths are mainly local. Large-scale groundwater flow paths are only seen below the depth of the hypothetical repository (below 500 meters) and are very slow. -Locations of recharge and discharge, to and from the site area are in the close vicinity of the site. -The low contrast between major structures and the rock mass means that the factor having the major effect on the flowpaths is the topography. -A sufficiently large model, to incorporate the recharge and discharge areas to the local site is in the order of kilometres. -A uniform infiltration rate boundary condition does not give a good representation of the groundwater movements in the model. -A local site model may be located to cover the site area and a few kilometers of the surrounding region. In order to incorporate all recharge and discharge areas within the site model, the model will be somewhat larger than site scale models at other sites. This is caused by the fact that the discharge areas are divided into three distinct areas to the east, south and west of the site. -Boundary conditions may be supplied to the site model by means of transferring groundwater pressures obtained with the semi-regional model

  4. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    Science.gov (United States)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  5. Hydrogeological analysis applied to regional evaluation of sandstone-type uranium ore-formation in sedimentary basins

    International Nuclear Information System (INIS)

    Xu Laisheng

    2005-01-01

    The main purpose of regional evaluation of uranium ore-formation is to preliminarily divide environmental zones and to delineate favourable areas for uranium ore-formation in order to provide basis for further detailed prospecting work. Of the various kinds of prospecting work, the hydrogeologic work should be mainly carried out in following aspects: division of hydrogeological units, the determination of artesian water-bearing system and the identification of prospecting target horizon; the analysis on hydrodynamic regime, the analysis on hydrogeochemical environments, the paleo-hydrogeologic analysis and the delineation of redox front and favourable area for uranium ore-formation. (author)

  6. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  7. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  8. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  9. Hydrogeological modelling of the eastern region of Areco river locally detailed on Atucha I and II nuclear power plants area

    International Nuclear Information System (INIS)

    Grattone, Natalia I.; Fuentes, Nestor O.

    2009-01-01

    Water flow behaviour of Pampeano aquifer was modeled using Visual Mod-flow software Package 2.8.1 with the assumption of a free aquifer, within the region of the Areco river and extending to the rivers of 'Canada Honda' and 'de la Cruz'. Steady state regime was simulated and grid refinement allows obtaining locally detailed calculation in the area of Atucha I and II Nuclear power plants, in order to compute unsteady situations as the consequence of water flow variations from and to the aquifer, enabling the model to study the movement of possible contaminant particles in the hydrogeologic system. In this work the effects of rivers action, the recharge conditions and the flow lines are analyzed, taking always into account the range of reliability of obtained results, considering the incidence of uncertainties introduced by data input system, the estimates and interpolation of parameters used. (author)

  10. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    Science.gov (United States)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  11. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    Science.gov (United States)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes

  12. Hydrogeological Conditions of a Crystalline Aquifer: Simulation of Optimal Abstraction Rates under Scenarios of Reduced Recharge

    Science.gov (United States)

    Fynn, Obed Fiifi; Chegbeleh, Larry Pax; Nude, Prosper M.; Asiedu, Daniel K.

    2013-01-01

    A steady state numerical groundwater flow model has been calibrated to characterize the spatial distribution of a key hydraulic parameter in a crystalline aquifer in southwestern Ghana. This was to provide an initial basis for characterizing the hydrogeology of the terrain with a view to assisting in the large scale development of groundwater resources for various uses. The results suggest that the structural entities that control groundwater occurrence in the area are quite heterogeneous in their nature and orientation, ascribing hydraulic conductivity values in the range of 4.5 m/d to over 70 m/d to the simulated aquifer. Aquifer heterogeneities, coupled possibly with topographical trends, have led to the development of five prominent groundwater flowpaths in the area. Estimated groundwater recharge at calibration ranges between 0.25% and 9.13% of the total annual rainfall and appears to hold significant promise for large-scale groundwater development to support irrigation schemes. However, the model suggests that with reduced recharge by up to 30% of the current rates, the system can only sustain increased groundwater abstraction by up to 150% of the current abstraction rates. Prudent management of the resource will require a much more detailed hydrogeological study that identifies all the aquifers in the basin for the assessment of sustainable basin yield. PMID:24453882

  13. Hydrogeology and simulation of groundwater flow in the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Christenson, Scott; Osborn, Noel I.; Neel, Christopher R.; Faith, Jason R.; Blome, Charles D.; Puckette, James; Pantea, Michael P.

    2011-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. Proposed development of water supplies from the aquifer led to concerns that large-scale withdrawals of water would cause decreased flow in rivers and springs, which in turn could result in the loss of water supplies, recreational opportunities, and aquatic habitat. The Oklahoma Water Resources Board, in collaboration with the Bureau of Reclamation, the U.S. Geological Survey, Oklahoma State University, and the University of Oklahoma, studied the aquifer to provide the Oklahoma Water Resources Board the scientific information needed to determine the volume of water that could be withdrawn while protecting springs and streams. The U.S. Geological Survey, in coopertion with the Oklahoma Water Resources Board, did a study to describe the hydrogeology and simulation of groundwater flow of the aquifer.

  14. Using a Three-Dimensional Hydrogeologic Framework to Investigate Potential Sources of Water Springs in the Death Valley Regional Groundwater Flow System

    Science.gov (United States)

    Hill, M. C.; Belcher, W. R.; Sweetkind, D. S.; Faunt, C.

    2014-12-01

    The Death Valley regional groundwater flow system encompasses a proposed site for a high-level nuclear waste repository of the United States of America, the Nevada National Security Site (NNSS), where nuclear weapons were tested, and National Park and BLM properties, and provides water for local communities. The model was constructed using a three-dimensional hydrogeologic framework and has been used as a resource planning mechanism by the many stakeholders involved, including four United States (U.S) federal agencies (U.S. Department of Energy, National Park Service, Bureau of Land Management, and U.S. Fish and Wildlife Service) and local counties, towns, and residents. One of the issues in recent model development is simulation of insufficient water to regional discharge areas which form springs in valleys near the center of the system. Given what seems to be likely rock characteristics and geometries at depth, insufficient water is simulated to reach the discharge areas. This "surprise" thus challenges preconceived notions about the system. Here we use the hydrogeologic model to hypothesize alternatives able to produce the observed flow and use the groundwater simulation to test the hypotheses with other available data. Results suggest that the transmissivity measurements need to be used carefully because wells in this system are never fully penetrating, that multiple alternatives are able to produce the springflow, and that one most likely alternative cannot be identified given available data. Consequences of the alternatives are discussed.

  15. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  16. Regional assessment of groundwater resources (hydrogeological map of Younggwang area, Korea vol.8)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S H; Kim, Y K; Hong, Y K; Cho, M J; Lee, D W; Bae, D J; Lee, C W; Kim, H C; Kim, S J; Park, S W; Lee, P K; Yum, B W; Moon, S H; Lee, S K; Lee, S R; Park, Y S; Lim, M T; Sung, K S; Park, I H; Ham, S Y; Kim, Y J; Woo, N C [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This study is objected to characterize groundwater resources, to assess groundwater contamination, and to produce hydrogeological and related thematic maps of the study area. The study area, Younggwang County, Chonnam Province, covers the area of 460 km{sup 2}. To accomplish the objectives various studies have been carried out including general and structural geology, GIS, hydrogeology, geophysics and hydrogeochemical analysis. Geophysical explorations, dipole-dipole resistivity, Schulumberger sounding and magnetic method, were executed for investigating geologic structure and determining test borehole sites. Some test boreholes such as, Honggok, Donggan, Weolsan and Seolmae hit aquifer structures. Geophysical logging, such as gamma ray, temperature, water conductivity, electrical resistivity, self-potential were also executed for petrological differentiation and in out flow of groundwater. The recharge rate of granitic region is more than the others, which derived by the analysis of 7 low-flow measurements in 10 small watersheds in the area. The recharge rate has been estimated at 7.2%(99.3 mm/year) in the vicinity. Well inventory of the area included 197 deep wells and 43 shallow wells. In addition, 10 stream samples and one spring were surveyed for water level, water temperature, pH, EC, TDS and the concentration of dissolved oxygen(DO). Regional groundwater pollution susceptibility was analyzed using GIS technique. A standard method, `DRASTIC` developed by US EPA, was applied to evaluate groundwater pollution potential and aquifer susceptibility. Resulting DRASTIC indices ranged from 52 to 141, and the Pesticide indices from 61 to 187. Seawater intrusion phenomena in Sangsari-Hasari are considered and evaluated by well inventory and the selected borehole`s electric conductivity(EC) logging. Seawater intrusion to the vulnerable coastal alluvium aquifers is generally depleted with time. The amount of potential groundwater resources in the study area is estimated

  17. The role of regional groundwater flow in the hydrogeology of the Culebra member of the Rustler formation at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Corbet, T.F. [Sandia National Lab., Albuquerque, NM (United States); Knupp, P.M. [Ecodynamics Research Associates, Albuquerque, NM (United States)

    1996-12-01

    Numerical simulation has been used to enhance conceptual understanding, of the hydrogeology of the Culebra Dolomite in the context of regional groundwater flow. The hydrogeology is of interest because this unit is a possible pathway for offsite migration of radionuclides from a proposed repository for defense-generated transuranic wastes (the Waste Isolation Pilot Plant). The numerical model used is three-dimensional, extends laterally to topographic features that form the actual boundaries of a regional groundwater system, and uses a free-surface upper boundary condition to simulate the effect of change in the rate of recharge on groundwater flow. Steady-state simulations were performed to examine the sensitivity of simulation results to assumed values for hydraulic conductivity and recharge rate. Transient simulations, covering the time period from 14,000 years in the past to 10,000 years in the future, provided insight into how patterns of groundwater flow respond to changes in climate. Simulation results suggest that rates and directions of Groundwater flow in the Culebra change with time due to interaction between recharge, movement of the water table, and the topography of the land surface. The gentle east-to-west slope of the land surface in the vicinity of the WIPP caused groundwater in the Culebra to flow toward and discharge into Nash Draw, a topographic depression. Modern-day flow directions in the Culebra reflect regional rather than local features of the topography. Changes in Groundwater flow, however, lagged behind changes in the rate of recharge. The present-day position of the water table is still adjusting to the decrease in recharge that ended 8,000 years ago. Contaminants introduced into the Culebra will travel toward the accessible environment along the Culebra rather than by leaking upward or downward into other units. Natural changes in flow over the next 10,000 years will be small and will mainly reflect future short-term wet periods.

  18. The role of regional groundwater flow in the hydrogeology of the Culebra member of the Rustler formation at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Corbet, T.F.; Knupp, P.M.

    1996-12-01

    Numerical simulation has been used to enhance conceptual understanding, of the hydrogeology of the Culebra Dolomite in the context of regional groundwater flow. The hydrogeology is of interest because this unit is a possible pathway for offsite migration of radionuclides from a proposed repository for defense-generated transuranic wastes (the Waste Isolation Pilot Plant). The numerical model used is three-dimensional, extends laterally to topographic features that form the actual boundaries of a regional groundwater system, and uses a free-surface upper boundary condition to simulate the effect of change in the rate of recharge on groundwater flow. Steady-state simulations were performed to examine the sensitivity of simulation results to assumed values for hydraulic conductivity and recharge rate. Transient simulations, covering the time period from 14,000 years in the past to 10,000 years in the future, provided insight into how patterns of groundwater flow respond to changes in climate. Simulation results suggest that rates and directions of Groundwater flow in the Culebra change with time due to interaction between recharge, movement of the water table, and the topography of the land surface. The gentle east-to-west slope of the land surface in the vicinity of the WIPP caused groundwater in the Culebra to flow toward and discharge into Nash Draw, a topographic depression. Modern-day flow directions in the Culebra reflect regional rather than local features of the topography. Changes in Groundwater flow, however, lagged behind changes in the rate of recharge. The present-day position of the water table is still adjusting to the decrease in recharge that ended 8,000 years ago. Contaminants introduced into the Culebra will travel toward the accessible environment along the Culebra rather than by leaking upward or downward into other units. Natural changes in flow over the next 10,000 years will be small and will mainly reflect future short-term wet periods

  19. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Science.gov (United States)

    Michele, Mangiameli; Giuseppe, Mussumeci

    2015-12-01

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks..

  20. An integrated model for simulating nitrogen trading in an agricultural catchment with complex hydrogeology.

    Science.gov (United States)

    Cox, T J; Rutherford, J C; Kerr, S C; Smeaton, D C; Palliser, C C

    2013-09-30

    Nitrogen loads to several New Zealand lakes are dominated by nonpoint runoff from pastoral farmland which adversely affects lake water quality. A 'cap and trade' scheme is being considered to help meet targets set for nitrogen loads to Lake Rotorua, and a numerical model, NTRADER, has been developed to simulate and compare alternative schemes. NTRADER models both the geophysics of nitrogen generation and transport, including groundwater lag times, and the economics of 'cap and trade' schemes. It integrates the output from several existing models, including a farm-scale nitrogen leaching and abatement model, a farm-scale management economic model, and a catchment-scale nitrogen transport model. This paper details modeling methods and compares possible trading program design features for the Lake Rotorua catchment. Model simulations demonstrate how a cap and trade program could be used to effectively achieve challenging environmental goals in the targeted catchment. However, results also show that, due to complex hydrogeology, satisfactory environmental outcomes may be not achieved unless groundwater lag times are incorporated into the regulatory scheme. One way to do this, as demonstrated here, would be to explicitly include lag times in the cap and trade program. The utility of the model is further demonstrated by quantifying relative differences in abatement costs across potential regulatory schemes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci [Dept. of Civil Engineering and Architecture, University of Catania, Catania (Italy)

    2015-12-31

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  2. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    International Nuclear Information System (INIS)

    Michele, Mangiameli; Giuseppe, Mussumeci

    2015-01-01

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  3. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  4. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Directory of Open Access Journals (Sweden)

    L. Aceto

    2017-07-01

    Full Text Available Damaging Hydrogeological Events (DHE are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy in the period 2000–2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt were stored in the database named PEOPLE, made of three sections: (1 event identification, (2 victim-event interaction, (3 effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 % than females (25 %, and fatalities were older (average age 49 years than injured (40.1 years and involved people (40.5 years. The average ages of females killed (67.5 years, injured (43.4 years and involved (44.6 years were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %, injured (55 % and involved people (55.3 % than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %. These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  5. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Science.gov (United States)

    Aceto, Luigi; Aurora Pasqua, A.; Petrucci, Olga

    2017-07-01

    Damaging Hydrogeological Events (DHE) are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy) in the period 2000-2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt) were stored in the database named PEOPLE, made of three sections: (1) event identification, (2) victim-event interaction, (3) effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 %) than females (25 %), and fatalities were older (average age 49 years) than injured (40.1 years) and involved people (40.5 years). The average ages of females killed (67.5 years), injured (43.4 years) and involved (44.6 years) were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %), injured (55 %) and involved people (55.3 %) than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %). These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  6. A near real time scenario at regional scale for the hydrogeological risk

    Science.gov (United States)

    Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

    2012-04-01

    The early warning systems dedicated to landslides and floods represent the Umbria Region Civil Protection Service new generation tools for hydraulic and hydrogeological risk reduction. Following past analyses performed by the Functional Centre (part of the civil protection service dedicated to the monitoring and the evaluation of natural hazards) on the relationship between saturated soil conditions and rainfall thresholds, we have developed an automated early warning system for the landslide risk, called LANDWARN, which generates daily and 72h forecast risk matrix with a dense mesh of 100 x 100m, throughout the region. The system is based on: (a) the 20 days -observed and 72h -predicted rainfall, provided by the local meteorological network and the Local scale Meteorological Model COSMO ME, (b) the assessment of the saturation of soils by: daily extraction of ASCAT satellite data, data from a network of 16 TDR sensors, and a water balance model (developed by the Research Institute for Geo-Hydrological Protection, CNR, Perugia, Italy) that allows for the prediction of a saturation index for each point of the analysis grid up to a window of 72 h, (c) a Web-GIS platform that combines the data grids of calculated hazard indicators with layers of landslide susceptibility and vulnerability of the territory, in order to produce dynamic risk scenarios. The system is still under development and it's implemented at different scales: the entire region, and a set of known high-risk landslides in Umbria. The system is monitored and regularly reviewed through the back analysis of landslide reports for which the activation date is available. Up to now, the development of the system involves: a) the improvement of the reliability assessment of the condition of soil saturation, a key parameter which is used to dynamically adjust the values of rainfall thresholds used for the declaration of levels of landslide hazard. For this purpose, a procedure was created for the ASCAT

  7. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Science.gov (United States)

    Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming

    2017-12-01

    Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and

  8. Hydrogeochemical and hydrogeological studies of Ellebelle and Jumoro Districts of the Western Region of Ghana

    International Nuclear Information System (INIS)

    Adwoba-Kua, E.

    2012-07-01

    Groundwater is an important resource for domestic, agriculture and industrial purposes throughout the Ellembelle and Jomoro districts of the Western region of Ghana. However, the hydrogeology and hydrogeochemistry of groundwater systems in the districts are not well known, even though some data on the geology, borehole yield, static water levels and water quality analysis are available. Moreover, surface and groundwater systems in the districts are threatened by anthropogenic activities, including mining, poor waste management and oil spillage. An integrated approach based on hydrogeology, hydrogeochemistry and isotopic composition was, therefore, adopted in order to establish the availability, quality and sustainable utilization of surface and groundwater in the two districts. The research involved measurement of physical parameters (pH, temperature, Eh, salinity, TDS, total hardness, turbidity, colour, and conductivity), major ions (Ca 2+, Mg 2+, Na +, K +, HCO 3 -, Cl -, PO 4 3-, SO 4 2- and NO 3 -) trace elememts (Al, As, Hg, Fe, Mn, Cu, Co, Zn, Pb, Ni, Cd and Cr) and stable isotopes (δ 2 H and (δ 18 O) in nine (9) rivers, one (1) lagoon, twenty (20) hand dug wells and twenty-five (25) boreholes. Arsenic (As) and Hg were determined by hydride generation atomic absorption spectrometry (HG-AAS). Levels of Fe, Mn, Cu, Zn, Pb, Ni, Co, Cd and Cr were measured by flame atomic absorption spectrometry (FAAS). Instrumental Neutron Activation Analysis (INAA) was used for the determination of Ca 2+ , Mg 2+ and AI whereas the contents of Na + and K + were measured by flame photometry. Measurement of the levels of PO 4 3- , SO 4 2- and NO 3 - was performed by UV -visible spectrophotometry. Titrimetry was used for the determination of total hardness, alkalinity, HCO 3 - and CI - . The stable isotopes (δ 2 H and δ 18 O) compositions of the waters were measured using the liquid- water stable isotope analyzer [based on off-axis integrated cavity output spectroscopy (OA

  9. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  10. The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy

    Directory of Open Access Journals (Sweden)

    Olga Petrucci

    2017-12-01

    Full Text Available Background: Damaging Hydrogeological Events (DHEs are severe weather periods during which floods, landslides, lightning, windstorms, hail or storm surges can harm people. Climate change is expected to increase the frequency/intensity of DHEs and, consequently, the potential harm to people. Method: We investigated the impacts of DHEs on people in Calabria (Italy over 37 years (1980–2016. Data on 7288 people physically affected by DHEs were gathered from the systematic analysis of regional newspapers and collected in the database named PEOPLE. The damage was codified in three severity levels as follows: fatalities (people who were killed, injured (people who suffered physical harm and involved (people who were present at the place where an accident occurred but survived and were not harmed. During the study period, we recorded 68 fatalities, 566 injured and 6654 people involved in the events. Results: Males were more frequently killed, injured and involved than females, and females who suffered fatalities were older than males who suffered fatalities, perhaps indicating that younger females tended to be more cautious than same-aged males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, suggesting that younger people show greater promptness in reacting to dangerous situations. Floods caused the majority of the fatalities, injured and involved people, followed by landslides. Lightning was the most dangerous phenomenon, and it affected a relatively low number of people, killing 11.63% of them and causing injuries to 37.2%. Fatalities and injuries mainly occurred outdoors, largely along roads. In contrast, people indoors, essentially in public or private buildings, were more frequently involved without suffering harm. Being “dragged by water/mud” and “surrounded by water/mud”, respectively, represented the two extremes of dynamic dangerousness. The dragging

  11. Hydrogeology of Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George; Bruce, T. Scott; Bailey, Christopher M.; Sherwood, W. Cullen; Eaton, L. Scott; Powars, David S.

    2016-01-01

    The hydrogeology of Virginia documented herein is in two parts. Part 1 consists of an overview and description of the hydrogeology within each regional aquifer system in the Commonwealth. Part 2 includes discussions of hydrogeologic research topics of current relevance including: 1. the Chesapeake Bay impact structure, 2. subsidence/compaction in the Coastal Plain, 3. groundwater age and aquifer susceptibility, 4. the occurrence of groundwater at depth in fractured-rock and karst terrains, and 5. hydrologic response of wells to earthquakes around the world.

  12. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  13. Hydrogeological boundary settings in SR 97. Uncertainties in regional boundary settings and transfer of boundary conditions to site-scale models

    International Nuclear Information System (INIS)

    Follin, S.

    1999-06-01

    The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project

  14. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Heinzen, W.; Santana, J.

    1987-01-01

    This work shows the hydrogeological study and well drilling carried out in the Teaching Formation Institute San Jose de Mayo Province Uruguay. It was developed a geological review in the National Directorate of Geology and Mining data base as well as field working, geology and hydrogeology recognition and area well drilling inventory.

  15. Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010–2059

    Science.gov (United States)

    Mashburn, Shana L.; Ryter, Derek W.; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

    2014-02-10

    The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

  16. Hydrogeological study simulation associated to the deposition of low and medium radioactive wastes

    International Nuclear Information System (INIS)

    Ferreira, Vinicius Verna Magalhaes; Soares, Wellington Antonio; Alves, James Vieira

    2011-01-01

    In 2006, the Brazilian Nuclear Program foresaw the construction of at least five nuclear power plants until 2030. Like other human activities, the use of nuclear energy generates waste, which can have negative potential impact on the human health and on the environment. This waste must be safely managed, and cannot be released without a previous treatment. This paper presents a study in order to evaluate the implantation of a nuclear waste repository of low and medium level of activity in the Bahia state, Brazil, with the help of the FRACTRAN software. The results showed that the hydrogeological vulnerability is small, what encourages the development of additional studies. (author)

  17. Investigating correlations of local seismicty with anomalous geoelectrical, hydrogeological and geochemical signals jointly recorded in Basilicata Region (Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Mucciarelli

    2007-06-01

    Full Text Available This paper presents the preliminary results analysing the correlation between local seismicity and geoelectrical, hydrogeological and geochemical signals concomitantly recorded in Basilicata Region, one of the most seismically active areas in Southern Italy. The signals were recorded by two stations: Tito and Tramutola. Tito station measures vertically the Self-Potential field (SP by an array of five no-polarizable electrodes equally spaced with the common electrode at 20 m depth as well as water-level, water-temperature and electrical-conductivity. Tramutola station measures self-potential signals in soil surface, gas flow and water temperature in a thermal-water well, as well as atmospheric barometric pressure and ambient temperature. Correlations were found between the sharp variability of the signals recorded by both stations and the seismic sequence that occurred on September 3 to 4, 2004, allowing us to link these anomalies with the tectonic evolution of the investigated area.

  18. Hydrogeology and simulation of the effects of reclaimed-water application in west Orange and southeast Lake counties, Florida

    Science.gov (United States)

    O'Reilly, Andrew M.

    1998-01-01

    Wastewater reclamation and reuse has become increasingly popular as water agencies search for alternative water-supply and wastewater-disposal options. Several governmental agencies in central Florida currently use the land-based application of reclaimed water (wastewater that has been treated beyond secondary treatment) as a management alternative to surface-water disposal of wastewater. Water Conserv II, a water reuse project developed jointly by Orange County and the City of Orlando, began operation in December 1986. In 1995, the Water Conserv II facility distributed approximately 28 Mgal/d of reclaimed water for discharge to rapid-infiltration basins (RIBs) and for use as agricultural irrigation. The Reedy Creek Improvement District (RCID) began operation of RIBs in September 1990, and in 1995 these RIBs received approximately 6.7 Mgal/d of reclaimed water. Analyses of existing data and data collected during the course of this study were combined with ground-water flow modeling and particle-tracking analyses to develop a process-oriented evaluation of the regional effects of reclaimed water applied by Water Conserv II and the RCID RIBs on the hydrology of west Orange and southeast Lake Counties. The ground-water flow system beneath the study area is a multi-aquifer system that consists of a thick sequence of highly permeable carbonate rocks overlain by unconsolidated sediments. The hydrogeologic units are the unconfined surficial aquifer system, the intermediate confining unit, and the confined Floridan aquifer system, which consists of two major permeable zones, the Upper and Lower Floridan aquifers, separated by the less permeable middle semiconfining unit. Flow in the surficial aquifer system is dominated regionally by diffuse downward leakage to the Floridan aquifer system and is affected locally by lateral flow systems produced by streams, lakes, and spatial variations in recharge. Ground water generally flows laterally through the Upper Floridan aquifer

  19. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Carrion, R.

    1987-01-01

    This work refers to the hydrogeological study about underground water to domestic uses. It was required by Artigas intendence of Uruguay, in the rural school 10, located belongs to the Chiflero zone around the capital of the Artigas Province.

  20. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  1. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  2. Discussion on hydrogeological conditions of metallogenesis of the sandstone type uranium deposit in Burqin basin, Xinjiang autonomous region

    International Nuclear Information System (INIS)

    Li Qirong

    2000-01-01

    Based on a brief introduction to the occurrence and distribution of groundwater, the characteristics of the tectonic-hydrogeological layers of the basin are discussed. Then, the author expounds the groundwater hydrodynamic conditions including recharge, runoff and drainage, and hydrogeochemical characteristics. In the end, the hydrogeological conditions favorable for uranium metallogenesis are summarized

  3. Evaluation of the hydrogeological interconnection between the Salar de Maricunga and the Piedra Pomez basins, Atacama Region, Chile; An isotope and geochemical approach

    International Nuclear Information System (INIS)

    Iriarte, S.; Santibanez, I; Aravena, R

    2001-01-01

    Groundwater is the main water source for the mining industry in the Altiplano of northern Chile. Groundwater also plays a significant role as a water source for lagoons, wetlands and salares, which are important ecosystems for animal life and vegetation communities that exist in this arid region. The rational use and protection of the groundwater resource requires a good understanding of the aquifer systems. One of the key components in the assessment of water resources in Northern Chile, is the hydrogeological interconnection between basins. During the last three years, as part of a major hydrogeological project, Sernageomin has been working in the Altiplano of the Atacama region (Iriarte et al., 1998; Iriarte, 1999; Venegas et al., 2000; Santibanez, in prep.). This study included the evaluation of the geometry and groundwater potential of the aquifers and the chemical characterization of the surface and groundwater. Part of this study has focused on the Salar de Maricunga and the Campo de Piedra Pomez basins, due to an increasing demand for groundwater resources in this area by the mining industry. This paper discusses the use of isotope and geochemical tools that were used to evaluate the hydrogeological interconnection between the Salar de Maricunga and the Piedra Pomez basins. The geological and hydrogeological framework of this work is discussed in detail by Iriarte (1999) (au)

  4. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    Science.gov (United States)

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  5. HYDROGEOLOGICAL AND HYDROGEOCHEMICAL CHARACTERISTICS OF A WIDER AREA OF THE REGIONAL WELL FIELD EASTERN SLAVONIA – SIKIREVCI

    Directory of Open Access Journals (Sweden)

    Jasna Kopić

    2016-10-01

    Full Text Available This paper establishes hydrogeological and hydrogeochemical characteristics of a wider area of the regional well field Eastern Slavonia - Sikirevci. The research was conducted based on data gathered from the area of the Federation of Bosnia and Herzegovina and the Republic of Croatia. The aquifer Velika Kopanica is situated at the territory of the Republic of Croatia in the triangular region formed between Kopanica, Gundinci and Kruševica. The River Sava partially flows through it and the aquifer extends beneath the river to the territory of the Federation of Bosnia and Herzegovina from Donji Svilaj in the West to Domaljevac in the East where its yield is the highest. The thickness of the aquifer decreases towards the water body Odžak. It was determined that the groundwater which is extracted from wells of the wider area of the regional well field contains iron, manganese, natural ammonia and arsenic in values exceeding the maximum allowable concentration for drinking water. The increased values of these parameters are a result of mineral composition and reductive conditions in the aquifer environment. By means of a multivariate statistic cluster analysis, an overview of groups of elements is provided based on geochemical affinity and/or origin.

  6. Hydrogeology of the cave Vetrovna jama in karst aquifer north from Planinsko polje (Notranjska region, central Slovenia

    Directory of Open Access Journals (Sweden)

    Franci Gabrovšek

    2009-06-01

    Full Text Available For one year we have been measuring level and temperature of underground water in Vetrovna jama, to find outthe origin of underground water and hydraulic characteristics of the cave and karst aquifer north east of Planinsko polje (karst of Notranjska region, central Slovenia. Similar parameters as in Vetrovna jama were measured also at the Unica River and at the Cerknica Lake. Cave is located only 2.7 km north from the polje and is fed by the Unica River, according to measurements. But in contrast with our expectations, we did not directly detect undergroundwater flow, which drains from the Cerknica Lake. Hydrographs measured in Vetrovna jama were compared with those measured in some other caves within the aquifer. Hydrographs from Vetrovna jama are only partly comparablewith hydrographs obtained in other monitored caves, as comparison shows no statistical significant correlation.Final conclusion would be that drainage of water between “eastern” and “western” part of karst aquifer islimited. More over, out flow from Vetrovna jama strongly depends on local hydrogeological restriction, such as supposedrockfall under Laška kukava collapse doline.

  7. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  8. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  9. Hydrogeological approach to the regional analysis of low flow in medium and small streams of the hilly and mountainous areas of Serbia

    Directory of Open Access Journals (Sweden)

    Nikić Zoran

    2006-01-01

    Full Text Available During the long rainless spells of the dry season, flows in medium and small streams get reduced to what is generally known as "low flow". For ungauged streams, the controlling "low flows" are determined using the regional analysis method. In the presently described exploration, the method applied was based on the assumption that dry weather discharges in medium and small rivers depended on the hydrogeological conditions. The controlling effect of hydrogeology on the natural low flow in medium and small streams of the hilly and mountainous part of Serbia was analyzed applying the theory of multiple linear regression. The thirty-day minimum mean 80 and 95 per cent exceedance flows were taken for dependent variables, and quantified hydrogeological elements as independent variables. The analysis covered streams that had small or medium size catchment areas. The treated example encompassed sixty-one gauged catchments. The resulting regional relations for the thirty day minimum mean 80 and 95 per cent exceedance flows are presented in this paper. The quality of the established relation was controlled by relevant statistic tests.

  10. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Directory of Open Access Journals (Sweden)

    A.-S. Høyer

    2017-12-01

    Full Text Available Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i realistic 3-D training images and (ii an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m  ×  100 m  ×  5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical

  11. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  12. Simulations of the muon flux sensitivity to rock perturbation associated to hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Hivert Fanny

    2014-01-01

    Full Text Available Muon tomography is a method to investigate the in-situ rock density. It is based on the absorption of cosmic-ray muons according to the quantity of matter (thickness and density. Numerical simulations are performed in order to estimate the expected muon flux in LSBB Underground Research Laboratory (URL (Rustrel, France. The aim of the muon measurements in the underground galleries of this laboratory is to characterize the spatial and temporal density variations caused by water transfer in the unsaturated zone of the Fontaine-de-Vaucluse karstic aquifer.

  13. Hydrogeology and simulation of groundwater flow at the Green Valley reclaimed coal refuse site near Terre Haute, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.

    2011-01-01

    The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.

  14. Hydrogeological study of the aquifer system of the northern Sahara in the Algero-Tunisian border: A case study of Oued Souf region

    Science.gov (United States)

    Halassa, Younes; Zeddouri, Aziez; Mouhamadou, Ould Babasy; Kechiched, Rabah; Benhamida, Abdeldjebbar Slimane

    2018-05-01

    The aquifer system in The Algero-Tunisian border and Chotts region is mainly composed of two aquifers: The first is the Complex Terminal (CT) and the second is the Intercalary aquifer (CI). This study aims the identification and spatial evolution of factors that controlling the water quality in the Complex Terminal aquifer (CT) in the Chotts region (Oued Souf region - Southeastern of Algeria). The concentration of major elements, temperature, pH and salinity were monitored during 2015 in 34 wells from the CT aquifer. The geological, geophysical, hydrogeological and hydrochemical methods were applied in order to carried out a model for the investigated aquifer system and to characterize the hydrogeological and the geochemical behavior, as well as the geometrical and the lithological configuration. Multivariate statistical analyses such as Principal Component Analysis (PCA) were also used for the treatment of several data. Results show that the salinity follows the same regional distribution of Chloride, Sodium, Magnesium, Sulfate and Calcium. Note that the salinity shows low contents in the upstream part of investigated region suggesting restricted dissolution of salts. Hydro-chemical study and saturation indexes highlight the dominance of the dissolution and the precipitation of calcite, dolomite, anhydrite, gypsum and halite. The PCA analysis indicates that Na+, Cl-, Ca2+, Mg2+, SO42- and K+ variables that influence the water mineralization.

  15. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-14

    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  16. Hydrogeology and simulated groundwater flow and availability in the North Fork Red River aquifer, southwest Oklahoma, 1980–2013

    Science.gov (United States)

    Smith, S. Jerrod; Ellis, John H.; Wagner, Derrick L.; Peterson, Steven M.

    2017-09-28

    On September 8, 1981, the Oklahoma Water Resources Board established regulatory limits on the maximum annual yield of groundwater (343,042 acre-feet per year) and equal-proportionate-share (EPS) pumping rate (1.0 acre-foot per acre per year) for the North Fork Red River aquifer. The maximum annual yield and EPS were based on a hydrologic investigation that used a numerical groundwater-flow model to evaluate the effects of potential groundwater withdrawals on groundwater availability in the North Fork Red River aquifer. The Oklahoma Water Resources Board is statutorily required (every 20 years) to update the hydrologic investigation on which the maximum annual yield and EPS were based. Because 20 years have elapsed since the final order was issued, the U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an updated hydrologic investigation and evaluated the effects of potential groundwater withdrawals on groundwater flow and availability in the North Fork Red River aquifer in Oklahoma. This report describes a hydrologic investigation of the North Fork Red River aquifer that includes an updated summary of the aquifer hydrogeology. As part of this investigation, groundwater flow and availability were simulated by using a numerical groundwater-flow model.The North Fork Red River aquifer in Beckham, Greer, Jackson, Kiowa, and Roger Mills Counties in Oklahoma is composed of about 777 square miles (497,582 acres) of alluvium and terrace deposits along the North Fork Red River and tributaries, including Sweetwater Creek, Elk Creek, Otter Creek, and Elm Fork Red River. The North Fork Red River is the primary source of surface-water inflow to Lake Altus, which overlies the North Fork Red River aquifer. Lake Altus is a U.S. Bureau of Reclamation reservoir with the primary purpose of supplying irrigation water to the Lugert-Altus Irrigation District.A hydrogeologic framework was developed for the North Fork Red River aquifer and included a

  17. Occurrence of methane in groundwater of south-central New York State, 2012-systematic evaluation of a glaciated region by hydrogeologic setting

    Science.gov (United States)

    Heisig, Paul M.; Scott, Tia-Marie

    2013-01-01

    A survey of methane in groundwater was undertaken to document methane occurrence on the basis hydrogeologic setting within a glaciated 1,810-square-mile area of south-central New York along the Pennsylvania border. Sixty-six wells were sampled during the summer of 2012. All wells were at least 1 mile from any known gas well (active, exploratory, or abandoned). Results indicate strong positive and negative associations between hydrogeologic settings and methane occurrence. The hydrogeologic setting classes are based on topographic position (valley and upland), confinement or non-confinement of groundwater by glacial deposits, well completion in fractured bedrock or sand and gravel, and hydrogeologic subcategories. Only domestic wells and similar purposed supply wells with well-construction and log information were selected for classification. Field water-quality characteristics (pH, specific conductance, dissolved oxygen, and temperature) were measured at each well, and samples were collected and analyzed for dissolved gases, including methane and short-chain hydrocarbons. Carbon and hydrogen isotopic ratios of methane were measured in 21 samples that had at least 0.3 milligram per liter (mg/L) of methane. Results of sampling indicate that occurrence of methane in groundwater of the region is common—greater than or equal to 0.001 mg/L in 78 percent of the groundwater samples. Concentrations of methane ranged over five orders of magnitude. Methane concentrations at which monitoring or mitigation are indicated (greater than or equal to 10 mg/L) were measured in 15 percent of the samples. Methane concentrations greater than 0.1 mg/L were associated with specific hydrogeologic settings. Wells completed in bedrock within valleys and under confined groundwater conditions were most closely associated with the highest methane concentrations. Fifty-seven percent of valley wells had greater than or equal to 0.1 mg/L of methane, whereas only 10 percent of upland wells

  18. Preliminary hydrogeologic evaluation of the Cincinnati Arch region for underground high-level radioactive waste disposal, Indiana, Kentucky , and Ohio

    Science.gov (United States)

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)

  19. Preliminary hydrogeologic evaluation of the Cincinnati arch region for underground high-level radioactive waste disposal, Indiana, Kentucky, and Ohio

    International Nuclear Information System (INIS)

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. 39 refs., 9 figs., 3 tabs

  20. Undergraduate Education in Hydrogeology.

    Science.gov (United States)

    Tinker, John Richard, Jr.

    1989-01-01

    Discusses a course at the University of Wisconsin-Eau Claire which improved instruction in physical hydrogeology, chemical hydrogeology, and water resources. Describes 14 laboratory activities including objectives, methods, and a list of equipment needed. (Author/MVL)

  1. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    Science.gov (United States)

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    Bedrock of Silurian and Devonian age (termed the “Silurian-Devonian aquifer system”) is the primary source of ground water for Johnson County in east-central Iowa. Population growth within municipal and suburban areas of the county has resulted in increased amounts of water withdrawn from this aquifer and water-level declines in some areas. A 3-year study of the hydrogeology of the Silurian-Devonian aquifer system in Johnson County was undertaken to provide a quantitative assessment of ground water resources and to construct a ground-water flow model that can be used by local governmental agencies as a management tool.

  2. HydroCube: an entity-relationship hydrogeological data model

    Science.gov (United States)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  3. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  4. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    areas" to similar regional hydrogeologic areas.For the purpose of this study, the term "type area" applies to a 10- to 100-square mile area within a hydrogeologic terrane where information is sufficient to develop and test a concept of ground-water flow by using analytical or numerical methods that can be validated by field measurements. Ideally, these type areas are selected to be representative of the flow system that is present wherever a particular hydrogeologic terrane is present.This report consists of two basic parts. The first part describes the results of a comprehensive review and synthesis of information and literature that provides the basic background for the study. This includes current (2002) knowledge regarding general geology and the hydrogeologic framework of the fractured-rock aquifer system that underlies the Blue Ridge and Piedmont Provinces. In spite of the quantity of information identified during the literature review and the amount of past work that has been documented, there are still research needs to be met.The second part of the report describes State ground-water issues and problems, available data, and data deficiencies. It also describes the design and implementation of efforts to characterize ground-water quality and to quantify factors that influence the movement and availability of ground water in the hydrogeologic terranes characterized by (1) massive or foliated crystalline rocks overlain by thick regolith and (2) massive or foliated crystalline rocks overlain by thin regolith.As of September 2001, seven sites had been identified as potential study sites to be used to characterize the hydrogeology and water quality of ype areas considered representative of the larger terranes. Detailed geologic mapping, core drilling, well installation, and surface and borehole geophysical surveys are in progress at four of the sites.

  5. Simulation in teaching regional anesthesia: current perspectives.

    Science.gov (United States)

    Udani, Ankeet D; Kim, T Edward; Howard, Steven K; Mariano, Edward R

    2015-01-01

    The emerging subspecialty of regional anesthesiology and acute pain medicine represents an opportunity to evaluate critically the current methods of teaching regional anesthesia techniques and the practice of acute pain medicine. To date, there have been a wide variety of simulation applications in this field, and efficacy has largely been assumed. However, a thorough review of the literature reveals that effective teaching strategies, including simulation, in regional anesthesiology and acute pain medicine are not established completely yet. Future research should be directed toward comparative-effectiveness of simulation versus other accepted teaching methods, exploring the combination of procedural training with realistic clinical scenarios, and the application of simulation-based teaching curricula to a wider range of learner, from the student to the practicing physician.

  6. Impacts of heavy groundwater pumping on hydrogeological conditions in Libya: Past and present development and future prognosis on a regional scale

    Science.gov (United States)

    Elgzeli, Yousef M.; Ondovčin, Tomáš; Hrkal, Zbyněk; Krásný, Jiří; Mls, Jiří

    2013-06-01

    Elgzeli, Y.M., Ondovčin, T., Hrkal, Z., Krasny, J. and Mls, J. 2011. Impacts of heavy groundwater pumping on hydrogeological conditions in Libya: Past and present development and future prognosis on a regional scale. Acta Geologica Polonica, 63 (2), 283-296. Warszawa. Libya, like many other regions with arid climates, suffers from inadequate water resources to cover all the needs of this rapidly developing country. Increasing amounts of water are needed to supply the population, as well as for agricultural irrigation and industrial use. As groundwater is the main water source in the country, it represents a natural resource of the highest economic and social importance. Conceptual and numerical models were implemented on a regional scale to show how the natural situation has changed following heavy groundwater abstraction during the last decades in the northwestern part of the country. The results of the numerical model indicated that the current zones of depression of the piezometric surface could have been caused by smaller withdrawn amounts than previously estimated. The differences in the assessed withdrawn groundwater volumes seem to be quite high and might have a considerable influence on the future possibilities of groundwater use in the study region.

  7. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  8. Stochastic simulation of regional groundwater flow in Beishan area

    International Nuclear Information System (INIS)

    Dong Yanhui; Li Guomin

    2010-01-01

    Because of the hydrogeological complexity, traditional thinking of aquifer characteristics is not appropriate for groundwater system in Beishan area. Uncertainty analysis of groundwater models is needed to examine the hydrologic effects of spatial heterogeneity. In this study, fast Fourier transform spectral method (FFTS) was used to generate the random horizontal permeability parameters. Depth decay and vertical anisotropy of hydraulic conductivity were included to build random permeability models. Based on high-performance computers, hundreds of groundwater flow models were simulated. Through stochastic simulations, the effect of heterogeneity to groundwater flow pattern was analyzed. (authors)

  9. Simulation in teaching regional anesthesia: current perspectives

    Directory of Open Access Journals (Sweden)

    Udani AD

    2015-08-01

    Full Text Available Ankeet D Udani,1 T Edward Kim,2,3 Steven K Howard,2,3 Edward R Mariano2,3On behalf of the ADAPT (Anesthesiology-Directed Advanced Procedural Training Research Group1Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; 2Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA; 3Anesthesiology and Perioperative Care Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USAAbstract: The emerging subspecialty of regional anesthesiology and acute pain medicine represents an opportunity to evaluate critically the current methods of teaching regional anesthesia techniques and the practice of acute pain medicine. To date, there have been a wide variety of simulation applications in this field, and efficacy has largely been assumed. However, a thorough review of the literature reveals that effective teaching strategies, including simulation, in regional anesthesiology and acute pain medicine are not established completely yet. Future research should be directed toward comparative-effectiveness of simulation versus other accepted teaching methods, exploring the combination of procedural training with realistic clinical scenarios, and the application of simulation-based teaching curricula to a wider range of learner, from the student to the practicing physician.Keywords: regional anesthesia, simulation, medical education, ultrasound, nerve block, simulator

  10. Software verification, model validation, and hydrogeologic modelling aspects in nuclear waste disposal system simulations. A paradigm shift

    International Nuclear Information System (INIS)

    Sheng, G.M.

    1994-01-01

    This work reviewed the current concept of nuclear waste disposal in stable, terrestrial geologic media with a system of natural and man-made multi-barriers. Various aspects of this concept and supporting research were examined with the emphasis on the Canadian Nuclear Fuel Waste Management Program. Several of the crucial issues and challenges facing the current concept were discussed. These include: The difficulties inherent in a concept that centres around lithologic studies; the unsatisfactory state of software quality assurance in the present computer simulation programs; and the lack of a standardized, comprehensive, and systematic procedure to carry out a rigorous process of model validation and assessment of simulation studies. An outline of such an approach was presented and some of the principles, tools and techniques for software verification were introduced and described. A case study involving an evaluation of the Canadian performance assessment computer program is presented. A new paradigm to nuclear waste disposal was advocated to address the challenges facing the existing concept. The RRC (Regional Recharge Concept) was introduced and its many advantages were described and shown through a modelling exercise. (orig./HP)

  11. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  12. Hydrogeological study of the Triassic series in the JeffaraDahar region (Southern part of Tunisia): Contribution of well logs data and seismic reflection

    Energy Technology Data Exchange (ETDEWEB)

    Ben Lasmar, R.; Guellala, R.; Zouhri, L.; Sarsar Naouali, B.; Garrach, M.; Inoubli, M.H.

    2016-07-01

    The present study concentrates on the interpretation of well logs and seismic reflection data in the JeffaraDahar region (Southeast part of Tunisia) for a better characterization of the Triassic aquifer, a potential target of water supply. Lithological columns and their corresponding well logs reveal that Sidi Stout, Kirchaou and Touareg. sandstones as well as Mekraneb and Rehach dolomites are the main reservoirs of the Triassic aquifer. Well log analysis highlights many permeable and fractured layers that could play an important role in the groundwater circulation. The interpreted seismic sections and the resulting isochrone maps show a tectonic influence on the Triassic aquifer geometry in the Jeffara-Dahar region. The normal faulting of E-W and NW-SE accidents created an aquifer compartmentalized by raised and tilted blocks. Seismic cross-sections reveal that this structure controls the depth of permeable formations and the circulation of groundwater. These results will be useful for rationalising the future hydrogeological research that will be undertaken in the Jeffara-Dahar area. (Author)

  13. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  14. Hydrogeologic setting and simulation of groundwater flow near the Canterbury and Leadville Mine Drainage Tunnels, Leadville, Colorado

    Science.gov (United States)

    Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.

    2011-01-01

    -current resistivity field survey was performed to evaluate the geologic structure of the study area. The results show that the Canterbury Tunnel is located in a downthrown structural block that is not in direct physical connection with the Leadville Mine Drainage Tunnel. The presence of this structural discontinuity implies there is no direct groundwater pathway between the tunnels along a laterally continuous bedrock unit. Water-quality results for pH and major-ion concentrations near the Canterbury Tunnel showed that acid mine drainage has not affected groundwater quality. Stable-isotope ratios of hydrogen and oxygen in water indicate that snowmelt is the primary source of groundwater recharge. On the basis of chlorofluorocarbon and tritium concentrations and mixing ratios for groundwater samples, young groundwater (groundwater recharged after 1953) was indicated at well locations upgradient from and in a fault block separate from the Canterbury Tunnel. Samples from sites downgradient from the Canterbury Tunnel were mixtures of young and old (pre-1953) groundwater and likely represent snowmelt recharge mixed with older regional groundwater that discharges from the bedrock units to the Arkansas River valley. Discharge from the Canterbury Tunnel contained the greatest percentage of old (pre-1953) groundwater with a mixture of about 25 percent young water and about 75 percent old water. A calibrated three-dimensional groundwater model representing high-flow conditions was used to evaluate large-scale flow characteristics of the groundwater and to assess whether a substantial hydraulic connection was present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel. As simulated, the faults restrict local flow in many areas, but the fracture-damage zones adjacent to the faults allow groundwater to move along faults. Water-budget results indicate that groundwater flow across the lateral edges of the model controlled the majority of flow in and out of the aquifer (79 percent and

  15. Regional groundwater flow in the Atikokan Research Area : simulation of 18O and 3H distributions

    International Nuclear Information System (INIS)

    Ophori, D.U.; Chan, Tin.

    1994-09-01

    AECL is investigating a concept for disposing of nuclear fuel waste deep in plutonic rock of the Canadian Shield. As part of this investigation, we have performed a model simulation of regional groundwater flow in the Atikokan Research Area, a fractured plutonic rock environment of the Canadian Shield, and used the distribution of oxygen-18 ( 18 O) and tritium ( 3 H) in groundwater to test the model. At the first stage of model calibration, groundwater flow was simulated using a three-dimensional finite-element code, MOTIF, in conjunction with a conceptual framework model derived from field geological, geophysical and hydrogeological data. Hydraulic parameters (permeability and porosity) were systematically varied until simulated recharge rates to the water table compared favourably with estimated recharge rates based on stream flow analysis. At the second stage, vertical average linear groundwater velocities from the first stage of the calibration process were combined with conceptualized one-dimensional models of the system to generate depth concentration profiles of 18 O and 3 H. Recharge-, midline-and discharge area models of both the fracture zones and the rock mass were employed. The simulated profiles formed 'envelopes' around all field 18 O and 3 H data, indicating that the calibrated velocities used in the model are reasonable. The models demonstrate that the scatter of δ 18 O and 3 H field data from the Atikokan Research Area is consistent with the groundwater flow model predictions and can be explained by the complexity arising from different hydraulic regimes (recharge, midline, discharge) and hydrogeologic environments (fracture zones, rock mass) of the regional flow system. 50 refs., 14 figs., 3 tabs

  16. On regional flow in Baltic shield rock. An application of an analytical solution using hydrogeologic conditions at Aberg, Beberg, and Ceberg of SR97

    International Nuclear Information System (INIS)

    Rehbinder, G.; Isaksson, Alf

    1997-11-01

    This report is one of many in support of SR 97, and is an analysis of the residence and transport times of a fluid particle at the three hypothetical domains of SR 97. The three domains are arbitrary named Aberg, Beberg and Ceberg. The report is intended to provide a quantitative assessment of the lateral length scales governing groundwater flow. The largest of these scales is believed to govern regional flow, i.e., flow at great depth. The calculated reference times presented in this report are fairly constant with the shortest reference time for Ceberg and the longest for Beberg. The difference in the calculated reference times are mainly due to the obtained differences in the lateral length scales at the three domains. However, the calculated residence times are extremely long. The corresponding transport times are very different from those obtained by means of numerical modeling of regional flow at Aberg, Beberg and Ceberg. The value is also contradicted by recent hydrochemical composition analyses of deep groundwater at Laxemar and Aespoe. A speculative interpretation of this result is that large scale regional flow, in the sense of meaning flow paths with long lateral extent, should be questioned for the kind of depth (500 m) and hydrogeologic system (hard rock) dealt with in this report. In other words, large scale regional flow may play a role for a repository at great depth (>>500 m), whereas non-periodic local variations in the topography may govern the flow pattern at moderate depths, e.g., depths less than 1000 m. There are several observations which support this interpretation

  17. Regional model simulations of New Zealand climate

    Science.gov (United States)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  18. Hydrogeology of Gypsum formations

    Directory of Open Access Journals (Sweden)

    Klimchouk A.

    1996-01-01

    Full Text Available Detailed explanation of hydrogeological characteristics of gypsum aquifers is given in various situations: deep-seated karst-confined conditions, subjacent, entrenched and denuded karst types-semi-confined, phreatic and vadose conditions. The hydrogeological evolution of barren exposed gypsum karst and flow velocities in gypsum karst aquifers is also discussed.

  19. Extraterrestrial hydrogeology

    Science.gov (United States)

    Baker, Victor R.; Dohm, James M.; Fairén, Alberto G.; Ferré, Ty P. A.; Ferris, Justin C.; Miyamoto, Hideaki; Schulze-Makuch, Dirk

    2005-03-01

    Subsurface water processes are common for planetary bodies in the solar system and are highly probable for exoplanets (planets outside the solar system). For many solar system objects, the subsurface water exists as ice. For Earth and Mars, subsurface saturated zones have occurred throughout their planetary histories. Earth is mostly clement with the recharge of most groundwater reservoirs from ample precipitation during transient ice- and hot-house conditions, as recorded through the geologic and fossilized records. On the other hand, Mars is mostly in an ice-house stage, which is interrupted by endogenic-driven activity. This activity catastrophically drives short-lived hydrological cycling and associated climatic perturbations. Regional aquifers in the Martian highlands that developed during past, more Earth-like conditions delivered water to the northern plains. Water was also cycled to the South Polar Region during changes in climate induced by endogenic activity and/or by changes in Mars' orbital parameters. Venus very likely had a warm hydrosphere for hundreds of millions of years, before the development of its current extremely hot atmosphere and surface. Subsequently, Venus lost its hydrosphere as solar luminosity increased and a run-away moist greenhouse took effect. Subsurface oceans of water or ammonia-water composition, induced by tidal forces and radiogenic heating, probably occur on the larger satellites Europa, Ganymede, Callisto, Titan, and Triton. Tidal forces operating between some of the small bodies of the outer solar system could also promote the fusion of ice and the stability of inner liquid-water oceans. Les processus de subsurface impliquant l'eau sont communs pour les corps planétaires du système solaire et sont très probables sur les exoplanètes (planètes en dehors du système solaire). Pour plusieurs objets du systèmes solaire, l'eau de subsurface est présente sous forme de glace. Pour la Terre et Mars, les zones saturées de

  20. Materials of conference: Hydrogeological Problems of South-West Poland

    International Nuclear Information System (INIS)

    1996-01-01

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features

  1. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  2. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  3. Editors' message--Hydrogeology Journal in 2003

    Science.gov (United States)

    Voss, Clifford; Olcott, Perry; Schneider, Robert

    2004-01-01

    Hydrogeology Journal appeared in six issues containing a total of 710 pages and 48 major articles, including 31 Papers and 14 Reports, as well as some Technical Notes and Book Reviews. The number of submitted manuscripts continues to increase. The final issue of 2003 also contained the annual volume index. Hydrogeology Journal (HJ) is an international forum for hydrogeology and related disciplines and authors in 2003 were from about 28 countries. Articles advanced hydrogeologic science and described hydrogeologic systems in many regions worldwide. These articles focused on a variety of general topics and on studies of hydrogeology in 24 countries: Afghanistan, Algeria, Argentina, Australia, Bangladesh, Belgium, Canada, Chile, China, Denmark, France, India, Italy, Mexico, Netherlands, New Zealand, Nigeria, Norway, Portugal, Russia, South Africa, Switzerland, Turkey, and U.S.A. The Guest Editor of the 2003 HJ theme issue on “Hydromechanics in Geology and Geotechnics”, Ove Stephansson, assembled a valuable collection of technical reviews and research papers from eminent authors on important aspects of the subject area.

  4. Hydrogeological investigations in the Harwell region: the use of environmental isotopes, inert gas contents, and the uranium decay series

    International Nuclear Information System (INIS)

    Alexander, J.; Andrews, J.N.

    1984-12-01

    A comprehensive range of environmental isotopes, radioelement and dissolved gas contents have been measured in groundwaters from the high permeability formations of the Harwell area. These analyses were undertaken as part of a hydrochemical validation of groundwater circulation patterns derived from potentiometric data. These investigations have focused upon the Corallian and Great Oolite formations since these sandwich the Oxford Clay. Geochemical, isotopic, radioelement and inert gas studies have demonstrated consistent trends which substantiate fluid migration patterns derived from hydraulic considerations. Groundwaters at downdip localities in both the Corallian and Great Oolite formations are the oldest waters sampled from the region. Variations in trends in parameters can be attributed to cross-formational flow and subsequent mixing of groundwaters. Individually these techniques can only provide limited information, but the combination of methods used have provided corroborative evidence concerning the direction of fluid circulation in the Harwell region. (author)

  5. Regional groundwater chemical characteristics of Aqishan pre-selected site for high level radioactive waste repository and its hydrogeological significance

    International Nuclear Information System (INIS)

    Guo Yonghai; Dong Jiannan; Liu Shufen; Zhou Zhichao

    2014-01-01

    Aqishan area located in Xinjiang Uygur Automonous Region is one of the main preselected site of disposal repository for high-level radioactive waste (HLW) in our country. Groundwater chemical feature is one of the most important consideration factors in the siting and site evaluation for high-level radioactive waste repository, From 2012 to 2013, the regional field hydrogeochemical investigation was carried out in study area and more than 30 groundwater samples were collected. According to the measurement data, the groundwater chemical features for different subareas are discussed in the paper. Furthermore, the location of discharge area of groundwater in Aqishan area was estimated according to the chemical features of different subareas. (authors)

  6. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    Science.gov (United States)

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The Cambrian-Ordovician aquifer system contains the most extensive and continuous aquifers in the northern Midwest of the United States. It is the source of water for many municipalities, industries, and rural water users. Since the beginning of ground-water development from the aquifer system in the late 1800's, hydraulic heads have declined hundreds of feet in the heavily pumped Chicago-Milwaukee area and somewhat less in other metropolitan areas. The U.S. Geological Survey has completed a regional assessment of this aquifer system within a 161,000-square-mile area encompassing northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin.

  7. HYDROGEOLOGIC CASE STUDIES

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  8. Geoelectrical characterization with 1D VES/TDEM joint inversion in Urupês-SP region, Paraná Basin: Applications to hydrogeology

    Science.gov (United States)

    Leite, David Nakamura; Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Couto, Marco Antonio; Campaña, Julian David Realpe; dos Santos, Fernando Acácio Monteiro; Rangel, Rodrigo Corrêa; Hamada, Luiz Rodrigo; Sifontes, Rimary Valera; Serejo de Oliveira, Gabriela; Stangari, Marcelo César

    2018-04-01

    Although Brazil is well known by the large rivers and the Amazon Rain Forest most cities do not have access to sufficient quantities of surface water to supply the population. Because of this 61% of Brazilian population (IBGE, 2003) depends on groundwater resources. In order to help the conscious exploration of this resource in Urupês city (São Paulo State) which is characterized by problems of lack of water, this research applied the transient electromagnetic method (TDEM) and Vertical Electrical Sounding (VES) for the geoelectrical characterization of the interest region. So, the objective of this work was increase the hydrogeological basis for groundwater exploitation of Bauru sedimentary aquifer and Serra Geral fractured aquifer (Paraná Basin). A total of 23 TDEM and 15 VES soundings were conducted during the years of 2009, 2011 and 2012. In addition, 10 pairs of VES/TDEM soundings were acquired with coincident centers to be able to perform the joint inversion. The joint inversion technique is a promising tool, which enables to get the best of both methods, where the VES add the shallow information and TDEM the deeper one. In this work, the individual and joint inversions were performed using the "Curupira" software. After data process and inversion, the results were interpreted based on geological well information provided by the Department of Water and Electrical Power (DAEE) and the Brazilian Geological Survey (CPRM) which enabled to estimate favorable places to exploitation of water in Bauru and Serra Geral aquifers. For the Bauru aquifer, the results suggest areas where thickness exceeds 100 m. In these areas, the resistivity calculated was about 20 Ω·m. Therefore, the sediments have been interpreted as saturated sandy clay. In the basalt layer of Serra Geral Formation, the suggested locations present resistivity values sources for groundwater exploitation and water supply for Urupês city.

  9. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  10. Groundwater flow simulations in support of the Local Scale Hydrogeological Description developed within the Laxemar Methodology Test Project

    International Nuclear Information System (INIS)

    Follin, Sven; Svensson, Urban

    2002-05-01

    The deduced Site Descriptive Model of the Laxemar area has been parameterised from a hydraulic point of view and subsequently put into practice in terms of a numerical flow model. The intention of the subproject has been to explore the adaptation of a numerical flow model to site-specific surface and borehole data, and to identify potential needs for development and improvement in the planned modelling methodology and tools. The experiences made during this process and the outcome of the simulations have been presented to the methodology test project group in course of the project. The discussion and conclusions made in this particular report concern two issues mainly, (i) the use of numerical simulations as a means of gaining creditability, e.g. discrimination between alternative geological models, and (ii) calibration and conditioning of probabilistic (Monte Carlo) realisations

  11. Simulate speleogenesis processes with an approach based on fracturing and hydrogeological processes: effect of various hydraulic boundary conditions

    Science.gov (United States)

    Lafare, A.; Jourde, H.; Leonardi, V.; Pistre, S.; Dörfliger, N.

    2012-04-01

    Several numerical modeling approaches attempted to simulate the processes of karst conduit genesis. These existing methods are mainly based on the physical and chemical laws driving the carbonate dissolution processes (taking account of calcite saturation of the water and the partial pressure of carbon dioxide). As a consequence, these works bring a well-documented knowledge on the kinetics of the carbonate dissolution processes in karst systems. Nevertheless, these models are mainly applied on simplified initial void networks, which do not match the fracturing and geological reality. Considering that the initial geometry of the void network (fractures, bedding planes) would have an influence on the final pattern of the speleological network, taking account of it could improve the understanding of speleogenesis. In the aim to take into account the geometry of the initial void network (fracture networks of several orders), a numerical model is developed, which involves a pseudo-statistic fracturing generator (REZO3D, Jourde 1999, Josnin et al. 2002, Jourde et al. 2002) coupled to a finite element groundwater simulator (GROUNDWATER, F. Cornaton, CHYN, University of Neuchâtel). The principle of the modeling of the genesis of the karst drainage system is based on an analogical empirical polynomial equation considering the pore velocity and the mean age of the water as main parameters. The computation is carried out on the basis of a time step, whose duration depends on the simulated scenario (from 100 to 5000 years). The mean age of the water is used in order to simulate the decrease of the chemical dissolving potential of the water within the aquifer, in contact with the carbonate rock. The first simulator -REZO3D- allows producing three-dimensional discrete fracture networks constituted by plane fractures, whose spatial distribution respects mechanical and statistical laws. These networks are then processed in order to write finite element meshes which constitute

  12. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  13. Aquifers in the Sokoto basin, northwestern Nigeria, with a description of the general hydrogeology of the region

    Science.gov (United States)

    Anderson, H.R.; Ogilbee, William

    1973-01-01

    The Sokoto Basin of northwestern Nigeria lies in the sub-Saharan Sudan belt of west Africa in a zone of savannah-type vegetation. Rainfall, averaging about 30 inches annually in much of the basin, occurs chiefly in a wet season which lasts from May to October. A prolonged dry season extending from October to April is dominated by dusty harmattan winds from the northeast. April and May are the hottest months, when temperatures occasionally reach 105?F. Flow in streams of the Sokoto Basin is mostly overland runoff. Only in a few reaches, fed by ground-water discharge from the sedimentary rocks, are streams perennial. In the River Zamfara basin, ground-water discharge contributes almost 1 inch of the average 3.33 inches of total annual runoff. In the vicinity of Sokoto, the River Rima flows throughout the year sustained by spring discharge from perched ground water in limestone of the Kalambaina Formation. On the crystalline terrane where most of the streams rise, total annual runoff may exceed 5 inches, very little of which is ground-water discharge. The sedimentary rocks of the basin range in age from Cretaceous to Tertiary and are composed mostly of interbedded sand, clay, and some limestone; the beds dip gently toward the northwest. Alluvium of Quaternary age underlies the lowlands of the River Sokoto (now Sokoto) and its principal tributaries. These rocks contain three important artesian aquifers, in addition to regional unconfined ground-water bodies in all the principal outcron areas, and a perched water body in the outcrop of the Kalambaina Formation. Artesian aquifers occur at depth in the Gundumi Formation, the Rima Group, and the Gwandu Formation and are separated from one another by clay beds in the lower part of the Rima Group and the Dange Formation. In outcrop, clay in the Dange Formation also supports the perched water of the Kalambaina Formation. The Gundumi Formation, resting on the basement complex, is composed of varicolored clay, sand, and gravel

  14. Crosshole investigations: Hydrogeological results and interpretations

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Brightman, M.A.

    1987-12-01

    The Crosshole Programme was an integrated geophysical and hydrogeological study of a limited volume of rock (known as the Crosshole Site) within the Stripa mine. Borehole radar, borehole seismic and hydraulic methods were developed for specific application to fractured crystalline rock. The hydrogeological investigations contained both single borehole and crosshole test techniques. A novel technique, using a sinusoidal variation of pressure, formed the main method of crosshole testing and was assessed during the programme. The strategy of crosshole testing was strongly influenced by the results from the geophysical measurements. The longer term, larger scale hydrogeological response of the region was asessed by examining the variation of heads over the region. These were responding to the presence of an old drift. A method of overall assessment involving minimising the divergence from a homogeneous response yielded credible values of hydraulic conductivity for the rock as a whole. (orig./DG)

  15. Hydrogeology of Mors

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The covering layers protect the salt in the dome. Ground water velocities are small and the chalk exhibits good retention properties for the radionuclides. As ground water velocities below 500 m are small, knowledge of hydrogeology over only a small area over the dome is necessary (1 km horizontal transport takes about 15 mill. years). Additionally if the retention properties of the chalk together with radioactive decay are taken into account, it becomes obvious that the nuclides can travel only a few metres into the chalk, before they have decayed to safe radioactive levels. Therefore it does not appear to be necessary to investigate the hydrogeology beyond a few metres from the disposal area. The hydrogeological investigations that have been carried out, although they cover only a limited area, thus give an excellent and sufficient basis for a safety evaluation for determining the suitability of the Mors salt dome for waste disposal. (EG)

  16. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Science.gov (United States)

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  17. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma

    Science.gov (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.

    2017-02-13

    This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2) summarizes the general water quality of the Canadian River alluvial aquifer groundwater by using data collected during August and September 2013, (3) evaluates the effects of estimated equal proportionate share (EPS) on aquifer storage and streamflow for time periods of 20, 40, and 50 years into the future by using numerical groundwater-flow models, and (4) evaluates the effects of present-day groundwater pumping over a 50-year period and sustained hypothetical drought conditions over a 10-year period on stream base flow and groundwater in storage by using numerical flow models. The Canadian River alluvial aquifer is a Quaternary-age alluvial and terrace unit consisting of beds of clay, silt, sand, and fine gravel sediments unconformably overlying Tertiary-, Permian-, and Pennsylvanian-age sedimentary rocks. For groundwater-flow modeling purposes, the Canadian River was divided into Reach I, extending from the Texas border to the Canadian River at the Bridgeport, Okla., streamgage (07228500), and Reach II, extending downstream from the Canadian River at the Bridgeport, Okla., streamgage (07228500), to the confluence of the river with Eufaula Lake. The Canadian River alluvial aquifer spans multiple climate divisions, ranging from semiarid in the west to humid subtropical in the east. The average annual precipitation in the study area from 1896 to 2014 was 34.4 inches per year (in/yr).A hydrogeologic framework of the Canadian River alluvial aquifer was developed that includes the areal and vertical extent of the aquifer and the distribution, texture variability, and hydraulic properties of

  18. Hydrogeologic factors to be addressed in disposal guidelines

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report identifies the physical hydrogeologic factors that should be addressed for performance assessment of a radioactive waste disposal facility in plutonic rock. The hydrogeologic factors include theoretical methods, groundwater flow factors and solute transport parameters. Theoretical methods, including different deterministic and stochastic approaches for evaluating physical hydrogeolgic conditions, are evaluated with respect to data requirements, applications and limitations. Preferred methods for measurement and determination of the identified groundwater flow factors and solute transport parameters are discussed. A recommended set of procedures for reliable hydrogeologic characterization of a plutonic rock mass at both regional and site scales is also presented

  19. Hydrogeology of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Mazza

    2015-12-01

    Full Text Available In this paper the hydrogeological setting of Rome is figured out. This setting has been strongly influenced by different factors as tectonic activity, volcanism and seal level variations. The conceptual model of the groundwater flow in the roman area is represented by four aquifers, three of which being overlappingones. These aquifers flow from peripheral sectors of the study area toward Tiber and Aniene Rivers and the Sea.

  20. Hydrogeologic study of Cafam area. Melgar (Tolima)

    International Nuclear Information System (INIS)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km 2 with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3

  1. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  2. Vulsino volcanic aquifer in Umbria Region : Hydrogeological survey for the characterization of the presence of arsenic and aluminium and the correct use of groundwater

    Directory of Open Access Journals (Sweden)

    Stefano Fratini

    2013-12-01

    Full Text Available In December 2009 and the first months of 2010, a large water crisis took place in the Orvieto area, because of sudden high concentration of aluminum (Al in the groundwater of the vulsino aquifer. This represents a supply for Orvieto’s population and other near municipalities (about 20,000 people. The contamination had reached values of about 3000 μg/l. Water crisis was made worse because of the expiring, in the same period, as expected, of the derogation of European Commission that allowed Arsenic concentrations above 10 μg/l (up to 50 μg/l. The contamination by Al occurred after intense and persistent rains, that mobilized a large amount of aluminum hydroxides in perched water table, in the form of colloidal particles. The field analysis showed that the potable water catchments are not interested in the same way by the contamination, i.e. the vulsino aquifer was not wholly conditioned by the presence of Al; in addition, in the same period in which the Al contamination occurred, there were no changes in the levels of As in groundwater. This paper shows the study of the complex hydrogeological Vulsino system; the aim is to identify technical solutions for realizing new catchments in order to manage the resource, in qualitative and quantitative terms, replacing/integrating the current equipments, which represent a risk because of the presence of Al and, secondly, As. A numerical flow and transport model was implemented to support the hydrogeological study, that has allowed us to formulate reliable predictions regarding the risk of Al contamination of future new wells.

  3. Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1990-01-01

    Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat

  4. Education and Employment in Hydrogeology.

    Science.gov (United States)

    Pederson, Darryll T.

    1987-01-01

    Reports on a study of position descriptions in the field of hydrogeology appearing in want ads, published studies describing the working professional, and published descriptions of hydrogeology programs. Results indicate an increase in positions of ten times that of five years ago. Suggests basic training requirements for beginning…

  5. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  6. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  7. Chemical and physical hydrogeology of coal, mixed coal-sandstone and sandstone aquifers from coal-bearing formations in the Alberta Plains region, Alberta

    International Nuclear Information System (INIS)

    Lemay, T.G.

    2003-09-01

    With the decline of conventional oil and gas reserves, natural gas from coal (NGC) is an unconventional gas resource that is receiving much attention from petroleum exploration and development companies in Alberta. Although the volume of the NGC resource is large, there are many challenges facing NGC development in Alberta, including technical and economic issues, land access, water disposal, water diversion and access to information. Exploration and development of NGC in Alberta is relatively new, therefore there is little baseline data on which to base regulatory strategies. Some important information gaps have been filled through water well sampling in coal, mixed coal-sandstone and sandstone aquifers throughout Alberta. Analyses focused on the chemical and physical characteristics aquifers in use for domestic or agricultural purposes. Aquifer depths were generally less than 100 metres. Samples collected from Paskapoo-Scollard Formation, Horseshoe Canyon Formation and Belly River Group aquifers exceed Canadian water quality guideline values with respect to pH, sodium, manganese, chloride, chromium, sulphate, phenols and total dissolved solids. Pump tests conducted within the aquifers indicate that the groundwater flow is complicated. Water quality will have to be carefully managed to ensure responsible disposal practices are followed. Future studies will focus on understanding the chemical and biological process that occur within the aquifers and the possible link between these processes and gas generation. Mitigation and disposal strategies for produced water will also be developed along with exploration strategies using information obtained from hydrogeologic studies. 254 refs., 182 tabs., 100 figs., 3 appendices

  8. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  9. Tidal simulation using regional ocean modeling systems (ROMS)

    Science.gov (United States)

    Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.; hide

    2006-01-01

    The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.

  10. On uncertainty quantification in hydrogeology and hydrogeophysics

    Science.gov (United States)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  11. THM large spatial-temporal model to simulate the past 2 Ma hydrogeological evolution of Paris Basin including natural tracer transport as part of site characterization for radwaste repository project Cigéo - France

    Science.gov (United States)

    Benabderrahmane, A., Sr.

    2017-12-01

    Hydrogeological site characterization for deep geological high level and intermediate level long lived radioactive waste repository cover a large time scale needed for safety analysis and calculation. Hydrogeological performance of a site relies also on the effects of geodynamic evolution as tectonic uplift, erosion/sedimentation and climate including glaciation on the groundwater flow and solute and heat transfer. Thermo-Hydro-Mechanical model of multilayered aquifer system of Paris Basin is developed to reproduce the present time flow and the natural tracer (Helium) concentration profiles based on the last 2 Ma of geodynamic evolution. Present time geological conceptual model consist of 27 layers at Paris Basin (Triassic-Tertiary) with refinement at project site scale (29 layers from Triassic to Portlandian). Target layers are the clay host formation of Callovo-Oxfrodian age (160 Ma) and the surrounding aquifer layers of Oxfordian and Dogger. Modelled processes are: groundwater flow, heat and solutes (natural tracers) transport, freezing and thawing of groundwater (expansion and retreat of permafrost), deformation of the multilayered aquifer system induced by differential tectonic uplift and the hydro-mechanical stress effect as caused by erosion of the outcropping layers. Numerical simulation considers a period from 2 Ma BP and up to the present. Transient boundary conditions are governed by geodynamic processes: (i) modification of the geometry of the basin and (ii) temperatures along the topography will change according to a series of 15 identical climate cycles with multiple permafrost (glaciation) periods. Numerical model contains 71 layers and 18 million cells. The solution procedure solves three coupled systems of equations, head, temperature and concentrations, by the use of a finite difference method, and by applying extensive parallel processing. The major modelling results related to the processes of importance for site characterization as hydraulic

  12. HYDROGEOLOGICAL AND HYDROCHEMICAL FEATURES OF KALNIK MASSIF

    Directory of Open Access Journals (Sweden)

    Vinko Mraz

    2008-12-01

    Full Text Available Kalničko gorje consists of Cretaceous – Holocene sediments, which can be in hydrogeological sense classified in three hydrogeological units: (1 northern area from central massive of Kalnik, consists of Cretaceous and low Miocene impermeable and low permeable sediments which are hydrogeological barrier and low permeable Cretaceous eruptive sediments ; (2 Kalnik massive consists of Paleogen and Baden permeable carbonate – clastic sediments, which are aquifer; (3 southern Kalnik area consists of Neogene low permeable sediments and Quaternary medium permeable unconsolidated deposits. In the hydrogelogical units are several aquifers types: (i Paleogen carbonate aquifer consists of limestone – dolomite breccia and this is the most important aquifer in the Kalnik area; (ii Baden carbonate aquifer consists of lithothamnium, lithothamnium limestone, sandstone and breccia-conglomerate and it has high permeability, especially through the karst morphological features; (iii Quaternary alluvial aquifers – the most important is in the valley of the Kamešnica river and it’s permeability varies from poor to good depending on granulometric properties; (iv Cretaceous eruptive aquifer from which in the Apatovac area is abstraction of mineral water. The aquifers of the Kalnik area are very vulnerable considering the hydrogeological properties of the area. Nevertheless, physical, physicalchemical, and chemical properties of groundwater in the Kalnik area are showing that waters are of very good quality. The reasons of good quality of waters are that the area is poorly populated and there is no potential pollutant. The area is very valuable and important natural resource for water supply of whole region. In the future it is necessary to provide good protection and sustainable water management to obtain today’s good quality and quantity of groundwater (the paper is published in Croatian.

  13. Regional climate simulations with COSMO-CLM over MENA-CORDEX domain

    Science.gov (United States)

    Galluccio, Salvatore; Bucchignani, Edoardo; Mercogliano, Paola; Montesarchio, Myriam

    2014-05-01

    In the frame of WCRP Coordinated Regional Downscaling Experiment (CORDEX), a set of common Regional Climate Downscaling (RCD) domains has been defined, as a prerequisite for the development of model evaluation and climate projection frameworks. CORDEX domains encompass the majority of land areas of the world. In this work, climate simulations have been performed over MENA-CORDEX domain, which includes North-Africa, southern Europe and the whole Arabian peninsula. The non-hydrostatic regional climate model COSMO-CLM has been used. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A series of simulations has been conducted over the MENA-CORDEX area at spatial resolution of 0.44°. A sensitivity analysis was conducted to adjust the model configuration to better reproduce the observed climate data. The numerical simulations were driven by ERA-Interim reanalysis (horizontal resolution of 0.703°) for the period 1979-1984; the first year, was considered as a spin up period. The validation was performed by using several data sets: CRU data set was used to validate temperature, precipitation and cloud cover; MERRA data set was used to validate temperature and precipitation and GPCP for precipitation. The model sensitivity to the external parameters was tested considering two different configurations for the surface albedo. In the first one, albedo is only function of soil-type whereas in the second configuration it is prescribed by two external fields for dry and saturated soil based on MODIS data. Moreover, we tested two aerosol distributions as well, namely the default Tanre aerosol distribution and aerosol maps according to Tegen (NASA/GISS). We found, as expected, a significant sensitivity, in particular on the African region. We also varied tuning and physical parameters, such

  14. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  15. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  16. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  17. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  18. Ultrasound-Guided Regional Anesthesia Simulation Training: A Systematic Review.

    Science.gov (United States)

    Chen, Xiao Xu; Trivedi, Vatsal; AlSaflan, AbdulHadi A; Todd, Suzanne Clare; Tricco, Andrea C; McCartney, Colin J L; Boet, Sylvain

    Ultrasound-guided regional anesthesia (UGRA) has become the criterion standard of regional anesthesia practice. Ultrasound-guided regional anesthesia teaching programs often use simulation, and guidelines have been published to help guide URGA education. This systematic review aimed to examine the effectiveness of simulation-based education for the acquisition and maintenance of competence in UGRA. Studies identified in MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were included if they assessed simulation-based UGRA teaching with outcomes measured at Kirkpatrick level 2 (knowledge and skills), 3 (transfer of learning to the workplace), or 4 (patient outcomes). Two authors independently reviewed all identified references for eligibility, abstracted data, and appraised quality. After screening 176 citations and 45 full-text articles, 12 studies were included. Simulation-enhanced training improved knowledge acquisition (Kirkpatrick level 2) when compared with nonsimulation training. Seven studies measuring skill acquisition (Kirkpatrick level 2) found that simulation-enhanced UGRA training was significantly more effective than alternative teaching methods or no intervention. One study measuring transfer of learning into the clinical setting (Kirkpatrick level 3) found no difference between simulation-enhanced UGRA training and non-simulation-based training. However, this study was discontinued early because of technical challenges. Two studies examined patient outcomes (Kirkpatrick level 4), and one of these found that simulation-based UGRA training improved patient outcomes compared with didactic teaching. Ultrasound-guided regional anesthesia knowledge and skills significantly improved with simulation training. The acquired UGRA skills may be transferred to the clinical setting; however, further studies are required to confirm these changes translate to improved patient outcomes.

  19. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    Science.gov (United States)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management

  20. The Contribution of the Future SWOT Mission to Improve Simulations of River Stages and Stream-Aquifer Interactions at Regional Scale

    Science.gov (United States)

    Saleh, Firas; Filipo, Nicolas; Biancamaria, Sylvain; Habets, Florence; Rodriguez, Enersto; Mognard, Nelly

    2013-09-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. This study extends the earlier work to improve the modeling of the Seine basin with a focus on simulating the hydrodynamics behavior of the Bassée alluvial wetland, a 120 km reach of the Seine River valley located south- east of Paris. The Bassée is of major importance for the drinking-water supply of Paris and surroundings, in addition to its particular hydrodynamic behavior due to the presence of a number of gravels. In this context, the understanding of stream-aquifer interactions is required for water quantity and quality preservation. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used. It aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using a conductance model. In this context, the future SWOT mission and its high-spatial resolution imagery can provide surface water level measurements at the regional scale that will permit to better characterize the Bassée complex hydro(geo)logical system and better assess soil water content. Moreover, the Bassée is considered as a potential target for the framework of the AirSWOT airborne campaign in France, 2013.

  1. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  2. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  3. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  4. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  5. Thermal unit availability modeling in a regional simulation model

    International Nuclear Information System (INIS)

    Yamayee, Z.A.; Port, J.; Robinett, W.

    1983-01-01

    The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented

  6. Hydrogeology and simulation of groundwater flow in fractured-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, Bedford County, Virginia

    Science.gov (United States)

    McCoy, Kurt J.; White, Bradley A.; Yager, Richard M.; Harlow, George E.

    2015-09-11

    An annual groundwater budget was computed as part of a hydrogeologic characterization and monitoring effort of fractured-rock aquifers in Bedford County, Virginia, a growing 764-square-mile (mi2) rural area between the cities of Roanoke and Lynchburg, Virginia. Data collection in Bedford County began in the 1930s when continuous stream gages were installed on Goose Creek and Big Otter River, the two major tributaries of the Roanoke River within the county. Between 2006 and 2014, an additional 2 stream gages, 3 groundwater monitoring wells, and 12 partial-record stream gages were operated. Hydrograph separation methods were used to compute base-flow recharge rates from the continuous data collected from the continuous stream gages. Mean annual base-flow recharge ranged from 8.3 inches per year (in/yr) for the period 1931–2012 at Goose Creek near Huddleston (drainage area 188 mi2) to 9.3 in/yr for the period 1938–2012 at Big Otter River near Evington (drainage area 315 mi2). Mean annual base-flow recharge was estimated to be 6.5 in/yr for the period 2007–2012 at Goose Creek at Route 747 near Bunker Hill (drainage area 125 mi2) and 8.9 in/yr for the period 2007–2012 at Big Otter River at Route 221 near Bedford (drainage area 114 mi2). Base-flow recharge computed from the partial-record data ranged from 5.0 in/yr in the headwaters of Goose Creek to 10.5 in/yr in the headwaters of Big Otter River.

  7. Numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area, South Dakota

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2009-01-01

    -flow model, was used to simulate flow in the Minnelusa and Madison hydrogeologic units with five layers. Layer 1 represented the fractured sandstone layers in the upper 250 ft of the Minnelusa hydrogeologic unit, and layer 2 represented the lower part of the Minnelusa hydrogeologic unit. Layer 3 represented the upper 150 ft of the Madison hydrogeologic unit, and layer 4 represented the less permeable lower part. Layer 5 represented an approximation of the underlying Deadwood aquifer to simulate upward flow to the Madison hydrogeologic unit. The finite-difference grid, oriented 23 degrees counterclockwise, included 221 rows and 169 columns with a square cell size of 492.1 ft in the detailed study area that surrounded Rapid City. The northern and southern boundaries for layers 1-4 were represented as no-flow boundaries, and the boundary on the east was represented with head-dependent flow cells. Streamflow recharge was represented with specified-flow cells, and areal recharge to layers 1-4 was represented with a specified-flux boundary. Calibration of the model was accomplished by two simulations: (1) steady-state simulation of average conditions for water years 1988-97 and (2) transient simulations of water years 1988-97 divided into twenty 6-month stress periods. Flow-system components represented in the model include recharge, discharge, and hydraulic properties. The steady-state streamflow recharge rate was 42.2 cubic feet per second (ft3/s), and transient streamflow recharge rates ranged from 14.1 to 102.2 ft3/s. The steady-state areal recharge rate was 20.9 ft3/s, and transient areal recharge rates ranged from 1.1 to 98.4 ft3/s. The upward flow rate from the Deadwood aquifer to the Madison hydrogeologic unit was 6.3 ft3/s. Discharge included springflow, water use, flow to overlying units, and regional outflow. The estimated steady-state springflow of 32.8 ft3/s from seven springs was similar to the simulated springflow of 31.6 ft3/s, which included 20.5 ft3

  8. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.

    2014-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. The model is a five-layer representation of the Pecos Valley, Edwards-Trinity, Dockum, and Rustler aquifers. The Pecos Valley aquifer is referred to as the alluvial layer, and the Edwards-Trinity aquifer is divided into layers representing the Edwards part of the Edwards-Trinity aquifer and the Trinity part of the Edwards-Trinity aquifer, respectively. The calibration period of the simulation extends from 1940 to 2010. Simulated hydraulic heads generally were in good agreement with observed values; 1,684 out of 2,860 (59 percent) of the simulated values were within 25 feet of the observed value. The average root mean square error value of hydraulic head for the Edwards-Trinity aquifer was 34.2 feet, which was approximately 4 percent of the average total observed change in groundwater-level altitude (groundwater level). Simulated spring flow representing Comanche Springs exhibits a pattern similar to observed spring flow. Independent geochemical modeling corroborates results of simulated groundwater flow that indicates groundwater in the Edwards-Trinity aquifer in the Leon-Belding and Fort Stockton areas is a mixture of recharge from the Barilla and Davis Mountains and groundwater that has upwelled from the Rustler aquifer.

  9. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  10. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  11. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  12. Role of Hydrogeology in Professional Environmental Projects

    Science.gov (United States)

    The purpose of this presentation is to acquaint hydrogeology students how hydrogeological principles are applied in environmental engineering projects. This presentation outlines EPA's Superfund processes of site characterization, feasibility studies, and remediation processes.

  13. Hydrogeological structure model of the Olkiluoto Site. Update in 2010

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Nummela, J.; Paulamaeki, S.

    2011-09-01

    flow, and transmissivity depth ranges, describing hydrogeological influence zones, are provided. To characterise the hydrogeological properties of the bedrock, hydraulic connections interpreted as local-scale features are reported, as well. The hydrogeological properties of the zones and the bedrock were parameterised for numerical flow simulation purposes. The drillhole-specific and the geometric means of the measured transmissivities were both proposed for use for the zones and the hydraulic conductivity for the bedrock as a function of depth was assessed. The new approach to apply transmissivity depth ranges caused minor changes in the zone transmissivities. (orig.)

  14. Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Ji Ruili; Wang Hailong; Liu Shufen; Zong Zihua; Dong Jiannan; Zhang Ming

    2014-01-01

    On the basis of large scale field hydrogeological investigation, synthetic hydrogeological studies related to groundwater system characteristics, permeability of rock bodies, groundwater dynamic, hydrogeochemistry, isotopic hydrology, CFC's of groundwater and groundwater flow field simulation were carried out for Beishan area, Gansu province. According to analysis on a large amount of hydrogeological data, the characteristics of groundwater circulation, groundwater hydrodynamics and hydrgeochemistry were described and the suitability of Beishan area as the potential area of high-level radioactive waste disposal was evaluated in the paper. Through this study, the hydrogeological study and evaluation methods in the siting of China's high level radioactive waste repository were set up. Furthermore, the important hydrogeological scientific evidence was provided for optimal site filtration of China's high-level radioactive waste repository in Beishan area. (authors)

  15. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  16. Regional simulation of interannual variability over South America

    Science.gov (United States)

    Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.

    2002-08-01

    Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.

  17. Materials of conference: Hydrogeological Problems of South-West Poland; Materialy konferencji: Problemy Hydrogeologiczne Poludniowo-Zachodniej Polski

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features.

  18. Evaluation of uncertainties in regional climate change simulations

    DEFF Research Database (Denmark)

    Pan, Z.; Christensen, J. H.; Arritt, R. W.

    2001-01-01

    , an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over...... to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all...... regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2x3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial...

  19. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  20. Groundwater availability as constrained by hydrogeology and environmental flows.

    Science.gov (United States)

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.

  1. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  2. Heat waves over Central Europe in regional climate model simulations

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  3. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina

    Science.gov (United States)

    Varni, Marcelo R.; Usunoff, Eduardo J.

    A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface

  4. Systematic Quantum Mechanical Region Determination in QM/MM Simulation.

    Science.gov (United States)

    Karelina, Maria; Kulik, Heather J

    2017-02-14

    Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in enzyme simulation. Over ten convergence studies of QM/MM methods have revealed over the past several years that key energetic and structural properties approach asymptotic limits with only very large (ca. 500-1000 atom) QM regions. This slow convergence has been observed to be due in part to significant charge transfer between the core active site and the surrounding protein environment, which cannot be addressed by improvement of MM force fields or the embedding method employed within QM/MM. Given this slow convergence, it becomes essential to identify strategies for the most atom-economical determination of optimal QM regions and to gain insight into the crucial interactions captured only in large QM regions. Here, we extend and develop two methods for quantitative determination of QM regions. First, in the charge shift analysis (CSA) method, we probe the reorganization of electron density when core active site residues are removed completely, as determined by large-QM region QM/MM calculations. Second, we introduce the highly parallelizable Fukui shift analysis (FSA), which identifies how core/substrate frontier states are altered by the presence of an additional QM residue in smaller initial QM regions. We demonstrate that the FSA and CSA approaches are complementary and consistent on three test case enzymes: catechol O-methyltransferase, cytochrome P450cam, and hen eggwhite lysozyme. We also introduce validation strategies and test the sensitivities of the two methods to geometric structure, basis set size, and electronic structure methodology. Both methods represent promising approaches for the systematic, unbiased determination of quantum mechanical effects in enzymes and large systems that necessitate multiscale modeling.

  5. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    International Nuclear Information System (INIS)

    Townley, L.R.; Trefry, M.G.; Barr, A.D.; Braumiller, S.

    1992-01-01

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  6. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L R; Trefry, M G; Barr, A D [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan); and others

    1993-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  7. HF-START: A Regional Radio Propagation Simulator

    Science.gov (United States)

    Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.

    2017-12-01

    HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.

  8. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    Science.gov (United States)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  9. Smoothed particle hydrodynamic simulations of expanding HII regions

    Science.gov (United States)

    Bisbas, Thomas G.

    2009-09-01

    This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we

  10. Influence of regional hydrogeological systems at a local scale: Analyzing the coupled effects of hydrochemistry and biological activity in a Fe and CO{sub 2} rich spring

    Energy Technology Data Exchange (ETDEWEB)

    Menció, A., E-mail: anna.mencio@udg.edu [Grup de Geologia Aplicada i Ambiental (GAiA), Department of Environmental Sciences, University of Girona, Faculty of Sciences, Campus de Montilivi, 17071 Girona (Spain); Guasch, H., E-mail: helena.guasch@udg.edu [Grup de Recerca en Ecosistemes Continentals (GRECO), Institute of Aquatic Ecology, University of Girona, Faculty of Sciences, Campus de Montilivi, 17071 Girona (Spain); Soler, D.; Canelles, A.; Zamorano, M.; Brusi, D. [Grup de Geologia Aplicada i Ambiental (GAiA), Department of Environmental Sciences, University of Girona, Faculty of Sciences, Campus de Montilivi, 17071 Girona (Spain)

    2016-11-01

    } precipitation. • Tufa precipitation doesn't coincide with the highest growth of algae. • Physicochemical and biological processes may improve groundwater quality from regional systems.

  11. Influence of regional hydrogeological systems at a local scale: Analyzing the coupled effects of hydrochemistry and biological activity in a Fe and CO_2 rich spring

    International Nuclear Information System (INIS)

    Menció, A.; Guasch, H.; Soler, D.; Canelles, A.; Zamorano, M.; Brusi, D.

    2016-01-01

    highest growth of algae. • Physicochemical and biological processes may improve groundwater quality from regional systems.

  12. Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419

    Energy Technology Data Exchange (ETDEWEB)

    Ewy, Ann [U.S. Army Corps of Engineers, Kansas City District (United States); Heim, Kenneth J. [U.S. Army Corps of Engineers, New England District (United States); McGonigal, Sean T.; Talimcioglu, Nazmi M. [The Louis Berger Group, Inc. (United States)

    2013-07-01

    A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional

  13. Simulation and Prediction of Groundwater Pollution from Planned Feed Additive Project in Nanning City Based on GMS Model

    Science.gov (United States)

    Liang, Yimin; Lan, Junkang; Wen, Zhixiong

    2018-01-01

    In order to predict the pollution of underground aquifers and rivers by the proposed project, Specialized hydrogeological investigation was carried out. After hydrogeological surveying and mapping, drilling, and groundwater level monitoring, the scope of the hydrogeological unit and the regional hydrogeological condition were found out. The permeability coefficients of the aquifers were also obtained by borehole water injection tests. In order to predict the impact on groundwater environment by the project, a GMS software was used in numerical simulation. The simulation results show that when unexpected sewage leakage accident happened, the pollutants will be gradually diluted by groundwater, and the diluted contaminants will slowly spread to southeast with groundwater flow, eventually they are discharged into Gantang River. However, the process of the pollutants discharging into the river is very long, the long-term dilution of the river water will keep Gantang River from being polluted.

  14. Modelling of the site scale hydrogeological situation at Beberg using NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Gylling, B.; Grundfelt, B.; Hartley, L.

    2000-02-01

    The purpose of the present study is to perform modelling of the site scale hydrogeological situation at Beberg using the finite element code NAMMU and compare the results with those from HYDRASTAR reported in SR 97. NAMMU was used in the large scale regional hydrogeological modelling at Beberg. The hypothetical repository layout at Beberg is based on geological data from the Finnsjoen site. Four model variants were created in this study. Two variants were compared with the deterministic freshwater case in the HYDRASTAR modelling. The other two variants were created to study the effect of a regionally distributed permeability anisotropy and variable density groundwater on the groundwater flow pattern. These processes are not considered in HYDRASTAR. The NAMMU results, including the pathline patterns, agree with those from the HYDRASTAR modelling. The effect of anisotropy and saline groundwater is found significant for the pathlines. The difference in canister flux between the NAMMU and the HYDRASTAR models is small, while the difference in travel time is more significant. The discrepancies between the results from the NAMMU and the HYDRASTAR simulations can be ascribed to the different numerical discretisation, i.e. different representation of the permeability, and the different pathline algorithms used in the two models

  15. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  16. Using the GeoFEST Faulted Region Simulation System

    Science.gov (United States)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy

    2004-01-01

    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  17. Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2007-11-01

    Full Text Available Future climate projections show higher/lower winter (Dec-Jan-Feb precipitation in the northern/southern Mediterranean region than in present climate conditions. This paper analyzes the results of regional model simulations of the A2 and B2 scenarios, which confirm this opposite precipitation change and link it to the change of cyclone activity. The increase of the winter cyclone activity in future climate scenarios over western Europe is responsible for the larger precipitation at the northern coast of the basin, though the bulk of the change is located outside the Mediterranean region. The reduction of cyclone activity inside the Mediterranean region in future scenarios is responsible for the lower precipitation at the southern and eastern Mediterranean coast.

  18. A synthesis of regional climate change simulations - A Scandinavian perspective

    DEFF Research Database (Denmark)

    Christensen, J. H.; Räinsänen, J.; Iversen, T.

    2001-01-01

    Four downscaling experiments of regional climate change for the Nordic countries have been conducted with three different regional climate models (RCMs). A short synthesis of the outcome of the suite of experiments is presented as an ensemble, reflecting the different driving atmosphere-ocean...... general circulation model (AOGCM) conditions, RCM model resolution and domain size, and choice of emission scenarios. This allows the sources of uncertainties in the projections to be assessed. At the same time analysis of the climate change signal for temperature and precipitation over the period 1990......-2050 reveals strong similarities. In particular, all experiments in the suite simulate changes in the precipitation distribution towards a higher frequency of heavy precipitation....

  19. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-10-19

    The extent, hydrogeologic framework, and potential well yields of valley-fill aquifers within a 151-square-mile area of eastern Chemung County, New York, were investigated, and the upland distribution of till thickness over bedrock was characterized. The hydrogeologic framework of these valleyfill aquifers was interpreted from multiple sources of surficial and subsurface data and an interpretation of the origin of the glacial deposits, particularly during retreat of glacial ice from the region. Potential yields of screened wells are based on the hydrogeologic framework interpretation and existing well-yield data, most of which are from wells finished with open-ended well casing.

  20. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    International Nuclear Information System (INIS)

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  1. Contaminant Hydrogeology, 2nd Edition

    Science.gov (United States)

    Smith, James E.

    Groundwater is a valuable resource that has received much attention over the last couple of decades. Extremely large sums of money have been and will be spent on groundwater contamination problems and the public has become increasingly sensitive to groundwater issues. Groundwater contamination has even become the subject of a major Hollywood movie with the recent release of A Civil Action starring John Travolta. The high profile of groundwater contaminant problems, the associated relatively strong job market over the last 20 years, and the general shift toward an environmental emphasis in science and engineering have resulted in a sustained high demand for senior undergraduate courses and graduate programs in hydrogeology Many voice the opinion that we have seen the peak demand for hydrogeologists pass, but the placement of graduates from hydrogeology programs into career-oriented positions has remained very high.

  2. Proglacial Hydrogeology of the Cordillera Blanca (Peru): Integrating Field Observations with Hydrogeophysical Inversions to Inform Groundwater Flow Simulations and Conceptual Models

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Moucha, R.; Mark, B. G.

    2017-12-01

    Geological and depositional conditions of the glaciated Cordillera Blanca in Peru have given way to proglacial aquifer systems that contribute substantially to regional streams and rivers, particularly during the dry season. As glacial retreat accelerates, the dry season water budget will be increasingly dominated by groundwater inputs, although predictions of future groundwater quantities require estimations of groundwater storage capacity, aquifer extents, and groundwater residence time. We present a characterization of the sediment structure in a prototypical proglacial valley in the central portion of the range, the Quilcayhuanca Valley. Northern and Central valleys of the Cordillera Blanca feature ubiquitous talus deposits that line the steep granite walls, and have become partially buried beneath lacustrine sediments deposited in proglacial lake beds. The portion of the talus still exposed near the valley walls provides recharge to deeper portions of the valley aquifers that underlie lacustrine clay, resulting in a confined aquifer system that is connected to the surface via perennial springs. Seismic refraction surveys reveal an interface separating relatively slow ( 400-800 m/s) and fast ( 2500 m/s) p-wave velocities. The depth of this refractor coincides with the depth to buried talus observed in drilling records. Electrical resistivity tomography profiles of the same transect show depths near the buried talus to be relatively conductive (10-100 Ωm). At these depths, we hypothesize that electrical conductance is elevated by saturated clay particles in the sediment matrix of the talus deposit. The resistivity models all show a more resistive ( 700 Ω m) region at depth, likely corresponding to a more hydraulically conductive material. The resistive zone is interpreted to be a deeper portion of a buried talus deposit that did not accumulate clay in the matrix. Other possibilities include a thick deposit of gravelly glacial outwash, or a relatively clay

  3. Large scale hydrogeological modelling of a low-lying complex coastal aquifer system

    DEFF Research Database (Denmark)

    Meyer, Rena

    2018-01-01

    intrusion. In this thesis a new methodological approach was developed to combine 3D numerical groundwater modelling with a detailed geological description and hydrological, geochemical and geophysical data. It was applied to a regional scale saltwater intrusion in order to analyse and quantify...... the groundwater flow dynamics, identify the driving mechanisms that formed the saltwater intrusion to its present extent and to predict its progression in the future. The study area is located in the transboundary region between Southern Denmark and Northern Germany, adjacent to the Wadden Sea. Here, a large-scale...... parametrization schemes that accommodate hydrogeological heterogeneities. Subsequently, density-dependent flow and transport modelling of multiple salt sources was successfully applied to simulate the formation of the saltwater intrusion during the last 4200 years, accounting for historic changes in the hydraulic...

  4. Use of Multi-class Empirical Orthogonal Function for Identification of Hydrogeological Parameters and Spatiotemporal Pattern of Multiple Recharges in Groundwater Modeling

    Science.gov (United States)

    Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; Hsieh, I. H.

    2017-12-01

    This study develops an innovative calibration method for regional groundwater modeling by using multi-class empirical orthogonal functions (EOFs). The developed method is an iterative approach. Prior to carrying out the iterative procedures, the groundwater storage hydrographs associated with the observation wells are calculated. The combined multi-class EOF amplitudes and EOF expansion coefficients of the storage hydrographs are then used to compute the initial gauss of the temporal and spatial pattern of multiple recharges. The initial guess of the hydrogeological parameters are also assigned according to in-situ pumping experiment. The recharges include net rainfall recharge and boundary recharge, and the hydrogeological parameters are riverbed leakage conductivity, horizontal hydraulic conductivity, vertical hydraulic conductivity, storage coefficient, and specific yield. The first step of the iterative algorithm is to conduct the numerical model (i.e. MODFLOW) by the initial guess / adjusted values of the recharges and parameters. Second, in order to determine the best EOF combination of the error storage hydrographs for determining the correction vectors, the objective function is devised as minimizing the root mean square error (RMSE) of the simulated storage hydrographs. The error storage hydrograph are the differences between the storage hydrographs computed from observed and simulated groundwater level fluctuations. Third, adjust the values of recharges and parameters and repeat the iterative procedures until the stopping criterion is reached. The established methodology was applied to the groundwater system of Ming-Chu Basin, Taiwan. The study period is from January 1st to December 2ed in 2012. Results showed that the optimal EOF combination for the multiple recharges and hydrogeological parameters can decrease the RMSE of the simulated storage hydrographs dramatically within three calibration iterations. It represents that the iterative approach that

  5. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  6. Use of GIS techniques for hydro-geological water balance assessment at regional scale; Impiego di tecniche GIS per la valutazione e rappresentazione del bilancio idrogeologico a scala regionale

    Energy Technology Data Exchange (ETDEWEB)

    De Girolamo, A. M.; Limoni, P. P.; Portoghese, I.; Vurro, M. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Reparto Sperimentale di Bari, Bari (Italy)

    2001-04-01

    The aim of the present work is to assess the hydro-geological water balance of the soil and subsoil system. At the beginning, the natural groundwater recharge evaluated as the subtraction between the soil inflows (rainfall) and outflows (evapotranspiration, surface runoff) enable to determine the soil water balance. Then, in order to calculate the subsoil water balance, the withdrawals for different purposes have been estimated together with the inflows coming from other water bodies and the coastal outflows. This method has been applied through a GIS technique; in particular, after the data layers acquisition (climatic, topographic, geologic, land use, satellite images, etc.), the numerical calculation has been done and several thematic output maps have been obtained. The method has been applied to the whole Apulian region; in this work, only the results about Salento Peninsula have been reported. The results highlight a significant water resources deficit; this deficit is also confirmed by the deepening of groundwater piezometric heads and the increase of chlorine ions, measured, for more than 10 years, in some characteristic points located in the study area. [Italian] Scopo del presente lavoro e' valutare il bilancio idrogeologico mediante il bilancio di massa per il sistema rappresentato dal complesso suolo e sottosuolo. Inizialmente e' stato valutato il bilancio idrico del suolo che ha consentito di determinare la ricarica naturale della falda per differenza tra gli ingressi al sistema suolo (apporti meteorici) e le uscite dal suolo agrario e dalle colture (evapotraspirazione), ed il deflusso superficiale. Successivamente, per calcolare il bilancio di massa del sistema sottosuolo sono stati stimati gli emungimenti per i diversi usi, gli afflussi provenienti da altri corpi idrici sotterranei e gli efflussi a mare. La metodologia e' stata implementata utilizzando una tecnologia GIS; in particolare, dopo l'acquisizione dei diversi strati

  7. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  8. Applied isotope hydrogeology

    International Nuclear Information System (INIS)

    Pearson, F.J. jr; Balderer, W.; Gautschi, A.

    1991-01-01

    This volume is a report on the isotopic investigations of ground-water in northern Switzerland and adjacent regions carried out since 1981 by Nagra, the Swiss National Cooperation for the Storage of Radio-active Waste. This study was undertaken to support a programme assessing potential sites for nuclear waste repositories. It includes measurements on a large number of stable- and radioisotopes and noble gases, supported by complete water chemical analyses and many rock and mineral analyses. A synthesis and interpretation of the data, along with the data themselves, are given here. (author). refs.; figs.; tabs

  9. Analysis on paleo-hydrogeological conditions of uranium formation in Sawafuqi uranium deposit

    International Nuclear Information System (INIS)

    Lin Xiaobin; Hao Weilin; Wang Zhiming

    2013-01-01

    Sawafuqi uranium deposit is located in Kuergan intermontane basin of the South Tianshan (STS) fold belt. On the basis of regional tectonics, paleogeography, paleoclimate and related data, the evolution of intermontane basin could be divided into three hydrogeological cycles. The relationship of uranium mineralization to each cycle was analyzed from the perspective of the evolution of palaeo-hydrogeological conditions, and the uranium metallogenic model in palaeohydrogeology under strongly constructive background was established. (authors)

  10. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    Full Text Available Study region: The tropical, active volcanic arc island of Montserrat, Lesser Antilles, Caribbean. Study focus: New insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat are combined with a review of the current understanding of volcanic island hydrology. The aim is to begin to develop a conceptual model for the hydrology of Montserrat, and to inform and stimulate further investigation into the hydrology of volcanic arc islands, by combining a review of the current understanding of essential components of the hydrological system with fresh analysis of existing data, and new observations, data collection and analysis. This study provides new insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat. New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites. Keywords: Volcanic island

  11. National Geo-Database for Biofuel Simulations and Regional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the

  12. Hydrogeological map of Italy: the preliminary Sheet N. 348 Antrodoco (Central Italy

    Directory of Open Access Journals (Sweden)

    Marco Amanti

    2016-07-01

    Full Text Available The Geological Survey of Italy, Italian National Institute for Environmental Protection and Research is realizing the Sheet N.348 Antrodoco (Central Italy of the Hydrogeological map of Italy as a cartographical test of the Italian hydrogeological survey and mapping guidelines, in the frame of the Italian Geological Cartography Project. The study area is characterized by structural units deeply involved in the Apennine Orogeny (Latium and Abruzzi region territory, Rieti and L’Aquila provinces and including deposits of marine carbonate shelf, slope, basin and foredeep environments hosting relatively large amounts of groundwater resources. The map was realized to obtain the best possible representation of all hydrogeological elements deriving from field surveys, in order to characterize the hydrogeological asset. A control network for monthly measurement of surface and groundwater flow rates and hydrogeochemical parameters was performed. Data were uploaded in a geographic information system to perform the present preliminary hydrogeological cartography consisting in a main map showing the following hydrogeological complexes based on relative permeability degree (from bottom to top: i calcareous (Jurassic-Cretaceous; high permeability; ii calcareous-marly (Upper Cretaceous-Middle Eocene; intermediate permeability; iii marly-calcareous and marly (Upper Eocene- Upper Miocene; low permeability; iv flysch (Upper Miocene; low permeability; v conglomeratic-sandy and detritic (Upper Pliocene- Pleistocene; intermediate permeability; vi alluvial (Quaternary; low permeability. Among other elements shown in the main map there are hydrographical basin and sub-basin boundaries, stream gauging stations, meteo-climatic stations, streamwater-groundwater exchange processes, hydrostructure boundaries, point and linear spring flow rates, groundwater flow directions. Furthermore, complementary smaller-scale sketches at the margin of the main map were realized (e

  13. Stepwise hydrogeological characterisation utilising a geo-synthesis methodology - A case study from the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Saegusa, H.; Osawa, H.; Onoe, H.; Ohyama, T.; Takeuchi, R.; Takeuchi, S.

    2009-01-01

    The Mizunami Underground Research Laboratory (MIU) is now under construction by Japan Atomic Energy Agency (JAEA) in the Cretaceous Toki granite in the Tono area of central Japan. One of the main goals of the MIU project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. For this purpose, a geo-synthesis methodology has been developed and will be tested in a dry run to determine if it produces the data required for repository design and associated integrated safety assessment modelling. Surface-based hydrogeological characterisation, intended to develop conceptual models of the deep geological environment based on an understanding of the undisturbed conditions before excavation of this URL, was carried out in a stepwise manner. This allows field investigations, construction of geological and hydrogeological models and interpretation of resultant groundwater flow simulations to develop in an iterative manner. Investigations have the goal of obtaining information on factors relevant to repository design, associated construction, operational and postclosure safety assessment, evaluation of the practicality of implementation and environmental impact assessment. Such factors include bulk hydraulic conductivity, the locations and properties of water conducting features, direct and indirect indicators of regional and local flow (e.g. based on chemistry or isotopes), etc. Following evaluation of pre-existing site information, field investigations began with fault mapping. This was followed by reflection seismic and vertical seismic profile surveys. In addition, a large programme of investigations was carried out in boreholes, including cross-hole tomography and hydraulic tests. Such input is utilised for the construction

  14. Arctic climate change in an ensemble of regional CORDEX simulations

    Directory of Open Access Journals (Sweden)

    Torben Koenigk

    2015-03-01

    Full Text Available Fifth phase Climate Model Intercomparison Project historical and scenario simulations from four global climate models (GCMs using the Representative Concentration Pathways greenhouse gas concentration trajectories RCP4.5 and RCP8.5 are downscaled over the Arctic with the regional Rossby Centre Atmosphere model (RCA. The regional model simulations largely reflect the circulation bias patterns of the driving global models in the historical period, indicating the importance of lateral and lower boundary conditions. However, local differences occur as a reduced winter 2-m air temperature bias over the Arctic Ocean and increased cold biases over land areas in RCA. The projected changes are dominated by a strong warming in the Arctic, exceeding 15°K in autumn and winter over the Arctic Ocean in RCP8.5, strongly increased precipitation and reduced sea-level pressure. Near-surface temperature and precipitation are linearly related in the Arctic. The wintertime inversion strength is reduced, leading to a less stable stratification of the Arctic atmosphere. The diurnal temperature range is reduced in all seasons. The large-scale change patterns are dominated by the surface and lateral boundary conditions so future response is similar in RCA and the driving global models. However, the warming over the Arctic Ocean is smaller in RCA; the warming over land is larger in winter and spring but smaller in summer. The future response of winter cloud cover is opposite in RCA and the GCMs. Precipitation changes in RCA are much larger during summer than in the global models and more small-scale change patterns occur.

  15. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  16. Improvement of snowpack simulations in a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the

  17. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  18. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  19. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  20. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  1. Development of hydrogeological modelling tools based on NAMMU

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, N. [Kemakta Konsult AB, Stockholm (Sweden); Hartley, L.; Jackson, P.; Poole, M. [AEA Technology, Harwell (United Kingdom); Morvik, A. [Bergen Software Services International AS, Bergen (Norway)

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  2. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  3. RTSTEP regional transportation simulation tool for emergency planning - final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X. (Energy Systems)

    2012-01-20

    such materials over a large area, with responders trying to mitigate the immediate danger to the population in a variety of ways that may change over time (e.g., in-place evacuation, staged evacuations, and declarations of growing evacuation zones over time). In addition, available resources will be marshaled in unusual ways, such as the repurposing of transit vehicles to support mass evacuations. Thus, any simulation strategy will need to be able to address highly dynamic effects and will need to be able to handle any mode of ground transportation. Depending on the urgency and timeline of the event, emergency responders may also direct evacuees to leave largely on foot, keeping roadways as clear as possible for emergency responders, logistics, mass transport, and law enforcement. This RTSTEP project developed a regional emergency evacuation modeling tool for the Chicago Metropolitan Area that emergency responders can use to pre-plan evacuation strategies and compare different response strategies on the basis of a rather realistic model of the underlying complex transportation system. This approach is a significant improvement over existing response strategies that are largely based on experience gained from small-scale events, anecdotal evidence, and extrapolation to the scale of the assumed emergency. The new tool will thus add to the toolbox available to emergency response planners to help them design appropriate generalized procedures and strategies that lead to an improved outcome when used during an actual event.

  4. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  5. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  6. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    of water resources,unbalanee disrriburion ofwater resourees,serious waste of water re-souree3,badly environmental eondition of wa-ter.At last gives out the eour一termeasures ofrational utilization of water resourees:En-haneing management,strerlgthening seieneeand teehnology in utilization of water re

  7. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  8. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    Science.gov (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  9. Hydrogeological testing in the Sellafield area

    International Nuclear Information System (INIS)

    Sutton, J.S.

    1996-01-01

    A summary of the hydrogeological test methodologies employed in the Sellafield geological investigations is provided in order that an objective appraisal of the quality of the data can be formed. A brief presentation of some of these data illustrates the corroborative nature of different test and measurement methodologies and provides a preliminary view of the results obtained. The programme of hydrogeological testing is an evolving one and methodologies are developing as work proceeds and targets become more clearly defined. As the testing is focused on relatively low permeability rocks at depth, the approach to testing differs slightly from conventional hydrogeological well testing and makes extensive use of oilfield technology. (author)

  10. Hydrogeological Characteristics of Groundwater Yield in Shallow ...

    African Journals Online (AJOL)

    Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the ... of Water Resources and Lower Niger River Basin Development Authority in Ilorin. ... moment correlation, multiple and stepwise multiple regression analysis.

  11. Hydrogeological and geophysical study for deeper groundwater ...

    Indian Academy of Sciences (India)

    lected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological ... a rainwater harvesting structure to recharge the subsurface in ... southwest trend. The drainage pattern is dendritic.

  12. Modern and Unconventional Approaches to Karst Hydrogeology

    Science.gov (United States)

    Sukop, M. C.

    2017-12-01

    Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave

  13. Interdisciplinary investigation on the recent deformation in the high fertile lowland of the Segura river (Murcia): Hydrogeologic criteria applicable to the study of the neotectonic in the spanish south eastern region

    International Nuclear Information System (INIS)

    Rodriguez Estrella, T.; Lopez Bermudes, F.

    1984-01-01

    This neotectonic investigation concentrates on the southern area in the high fertile lowland of the Segura river (23 Km 2 ). Our methodology is various, pointing towards a better understanding of the recent tectonic activity which have taken place in this area. Our methods and techniques have been indirect and direct. Indirect techniques: aerial photography (at different scales and different periods of time), hydrochemistry (over 70 analyses) seismicity (from the end of last century) and vertical electric fathoming probings (64 S.E.V. of AB=1000). Direct techniques: geomorphology (alluvial terraces and loose meanders), mechanic fathoming probings (over 50) and structural cuttings in the ground. Archaeology has contributed to a great extent to clarify the existence of neotectonics in this alluvial terraces and its dating. Lastly, certain hydrogeologic criteria have been analysed concerning the recent deformations of the Spanish Southeast, as well as, some general considerations on the neotectonic of this area on the Iberian Peninsula. (author)

  14. Hydrogeological modelling for migration of radioactivity

    International Nuclear Information System (INIS)

    Sunny, Faby; Chopra, Manish; Oza, R.B.

    2016-01-01

    The hydrogeological modelling for migration of radionuclides basically involves modelling of groundwater flow and contaminant transport through the groundwater. The water that occurs below the land surface or within the lithosphere is called groundwater. The groundwater constitutes about 4 % of the total water on the earth and about 30 % of freshwater on the earth. Groundwater models describe groundwater flow and contaminant transport processes using mathematical equations that are based on certain simplifying assumptions. These assumptions typically involve the direction of flow, geometry of the aquifer, the heterogeneity or anisotropy of sediments or bedrock within the aquifer, the contaminant transport mechanisms and chemical reactions. Because of the simplifying assumptions and the many uncertainties in the values of data, a model must be viewed as an approximation and not an exact duplication of field conditions. However, these models are useful investigation tool for a number of applications such as prediction of the possible fate and migration of contaminants for risk evaluation; tracking the possible pathway of groundwater contamination; evaluation of design of hydraulic containment and pump-and-treat systems; design of groundwater monitoring networks; evaluation of regional groundwater resources and prediction of the effect of future groundwater withdrawals on groundwater levels

  15. Modal functions. Properties and application for simulation of subject regions

    International Nuclear Information System (INIS)

    Rudkevich, A.V.

    1988-01-01

    New type of information structures for simulation of undefined information in information retrieval systems is suggested. Main properties of modal functions have been proved. Algorithm of their applications for data retrieval is presented. 9 refs

  16. Numerical simulation of a meteorological regime of Pontic region

    Science.gov (United States)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the

  17. Hydrogeology, Pesticide DRASTIC for the Intermediate Aquifer. Pesticide DRASTIC coverage for the Intermediate Aquifer System. Drastic maps are most useful as a generalized tool to assess regional potential aquifer vulnerability., Published in 1998, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection (FDEP).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Hydrogeology dataset current as of 1998. Pesticide DRASTIC for the Intermediate Aquifer. Pesticide DRASTIC coverage for the Intermediate Aquifer System. Drastic maps...

  18. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    International Nuclear Information System (INIS)

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  19. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  20. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques

    International Nuclear Information System (INIS)

    Provost, A.M.; Voss, C.I.

    2001-11-01

    Nuclear waste repositories located in regional ground-water recharge ('upstream') areas may provide the safety advantage that potentially released radionuclides would have long travel time and path length, and large path volume, within the bedrock before reaching the biosphere. Nuclear waste repositories located in ground-water discharge ('downstream') areas likely have much shorter travel time and path length and smaller path volume. Because most coastal areas are near the primary discharge areas for regional ground-water flow, coastal repositories may have a lower hydrogeologic safety margin than 'upstream' repositories located inland. Advantageous recharge-area sites may be located through careful use of regional three-dimensional, variable-density, ground-water modeling. Because of normal limitations of site-characterization programs in heterogeneous bedrock environments, the hydrogeologic structure and properties of the bedrock will generally remain unknown at the spatial scales required for the model analysis, and a number of alternative bedrock descriptions are equally likely. Model simulations need to be carried out for the full range of possible descriptions. The favorable sites are those that perform well for all of the modeled bedrock descriptions. Structural heterogeneities in the bedrock and local undulations in water-table topography, at a scale finer than considered by a given model, also may cause some locations in favored inland areas to have very short flow paths (of only hundreds of meters) and short travel times, compromising the long times and paths (of many kilometers) predicted by the analysis for these sites. However, in the absence of more detailed modeling, the favored upstream sites offer a greater chance of achieving long times and paths than do downstream discharge areas, where times and paths are expected to be short regardless of the level of detail included in the model. As an example of this siting approach, potential repository

  1. Teaching hydrogeology: a review of current practice

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-07-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  2. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  3. Hydrogeological challenges through gender approaches

    Science.gov (United States)

    Di Lorenzo, Maria Rosaria; Saltari, Davide; Di Giacomo, Tullia Valeria

    2017-04-01

    Women and Men play a different role in the society, tied from the differences (physical, biological, somatic, etc…) typical of each one. In the last decades, more gender approach has been introduced in a number of fields including the hydrogeological risk. Experiences, needs and potential of each one, women and men, covers both the risk reduction before the occurrence of extreme events (vulnerability assessment and prediction of the expected risk), then in the next emergency and intervention in follow-up actions to the overcoming of the event for the return to everyday life. The response of the extreme hydrological events are also subordinated from gender participation and it is closely related from other aspects, as natural disasters (flood events), gender inequalities and urban floodings. These aspects are also scheduled by the different approaches: a woman focuses different primary and social aspects than a man. How women can help organizations offering new 'policies' and government is the main aspect to be considered and how a gender approach can mitigate disasters to hydrological risk. It depends on some factors: gender inequalities (gender perception and sensibility), importance of natural disasters and urban floodings. Gender inequalities can match both in the natural disasters and urban floodings in a relevant way. ICT solutions can also give a helpful framework to accelerate and focus the quicker condition to get the better approach and solution. Gender has a particular significant, explanatory variable in disaster research. Many studies, show how women have higher mortality and morbidity rates than men during natural disasters, especially in lower income countries. In the aftermath disasters, at the same time, specific responsibilities on women are imposed from the gendered division of labour. Furthermore gender differences are sometimes attributed to traditional women's roles, discrimination, lower physical strength, nutritional deficiencies, etc. as

  4. simulation du climat futur et des rendements agricoles en region

    African Journals Online (AJOL)

    ACSS

    2017, African Crop Science Society. African Crop Science Journal by African Crop Science Society is licensed under a Creative Commons Attribution 3.0 Uganda License. Based on a work at www.ajol.info/ and www.bioline.org.br/cs. DOI: http://dx.doi.org/10.4314/acsj.v25i4.2. SIMULATION DU CLIMAT FUTUR ET DES ...

  5. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Science.gov (United States)

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  6. simulation du climat futur et des rendements agricoles en region

    African Journals Online (AJOL)

    ACSS

    REGION SOUDANO-SAHELIENNE EN REPUBLIQUE DU BENIN. S. KATE, O. TEKA1, ... La présente étude a été initiée pour déterminer les caractéristiques des rendements des principales ..... Climate change in cities due to global warming ...

  7. Simulation of water use and herbage growth in arid regions

    NARCIS (Netherlands)

    Keulen, van H.

    1975-01-01

    The and and semi-arid regions of the world, totalling about 30% of the land surface of the earth, are predominantly used for extensive grazing, as low and erratic rainfall presents too high a risk for arable farming. The population that can be sustained by the animal products -meat, milk or

  8. Hydrogeologic studies for CRNL's proposed shallow land burial site

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Devgun, J.S.

    1986-09-01

    The first phase of conversion from storage to disposal of low- and intermediate-level radioactive wastes at CRNL is focussed on solids with hazardous lifetimes less than 500 years. In order to use a facility buried above the water table and to achieve maximum use of radionuclide migration information from studies of existing facilities, the proposed site is located in sands above an active groundwater flow system. The selection of a permeable and geologically-simple slow system has allowed application of a wide variety of techniques for hydrogeologic evaluation of the site. Ground-probing radar in conjunction with continuously cored boreholes have provided stratigraphic data and sediments for testing. Field hydrogeologic testing has included a detailed network of piezometers for hydraulic head mapping and a series of borehole dilution tests. Measurements of contaminant sorption behaviour are also being made in the field to reduce variations in uncontrolled parameters. Mathematical models successfully simulate the real system in terms of groundwater flow. Simulations of reactive contaminant transport are more difficult, but the application of data from field tests of radionuclide migration behaviour and from existing contaminant plumes will, we believe, provide acceptably reliable predictions of the impact of failures in the engineered disposal structure

  9. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  10. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  11. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  12. An intercomparison of regional climate simulations for Europe

    DEFF Research Database (Denmark)

    Déqué, M.; Rowell, D. P.; Lüthi, D.

    2007-01-01

    Ten regional climate models (RCM) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre boundary conditions. The response over Europe, calculated as the difference between the 2071-2100 and the 1961-1990 means can be viewed...... as an average over a finite number of years (30). Model uncertainty is due to the fact that the models use different techniques to discretize the equations and to represent sub-grid effects. Radiative uncertainty is due to the fact that IPCC-SRES A2 is merely one hypothesis. Some RCMs have been run with another...... scenario of greenhouse gas concentration (IPCC-SRES B2). Boundary uncertainty is due to the fact that the regional models have been run under the constraint of the same global model. Some RCMs have been run with other boundary forcings. The contribution of the different sources varies according...

  13. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  14. Effectiveness evaluation of remote data application in hydrogeologic explorations

    Energy Technology Data Exchange (ETDEWEB)

    Burleshin, M I; Koloskova, V N

    1981-01-01

    Use of the information approach to evaluate the effectiveness of remote data in hydrogeologic cartography of Ustyurt is discussed. Space image, interval and final diagrams of hydrogeologic interpretation are represented like a communication channel. Using the information approach, quantitative evaluation is carried out, and hydrogeologic maps are compared (that, have been compiled by earth surface methods and via interpretation of remote data.

  15. SRP Baseline Hydrogeologic Investigation, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  16. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  17. Simulation of regional day-ahead PV power forecast scenarios

    DEFF Research Database (Denmark)

    Nuno, Edgar; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio

    2017-01-01

    Uncertainty associated with Photovoltaic (PV) generation can have a significant impact on real-time planning and operation of power systems. This obstacle is commonly handled using multiple forecast realizations, obtained using for example forecast ensembles and/or probabilistic forecasts, often...... at the expense of a high computational burden. Alternatively, some power system applications may require realistic forecasts rather than actual estimates; able to capture the uncertainty of weatherdriven generation. To this end, we propose a novel methodology to generate day-ahead forecast scenarios of regional...... PV production matching the spatio-temporal characteristics while preserving the statistical properties of actual records....

  18. Power systems simulations of the western United States region

    International Nuclear Information System (INIS)

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.

    2010-01-01

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  19. Study on the methodology of hydrogeological character in preselected site for high-level waste repository in Beishan area, Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Su Rui; Yang Tianxiao

    2003-01-01

    The results of regional hydrogeological investigations conducted during 1996-2000 were summarized. The study was started with the surface hydrogeological, hydrogeochemical, and groundwater isotopic and humic acid investigations. The key-points are focused on the characteristics of water-bearing formation, hydrogeochemistry, groundwater isotopes as well as humic acid. On the bases of a large quantity of hydrogeological data, the hydrogeological conditions of each groundwater unit, groundwater circulation characteristics, groundwater hydrodynamics and hydrgeochemistry are described. In addition, the modeling about groundwater flow state, groundwater chemical balance, interaction among water-rock-nuclear waste is carried out, then the suitability of the Beishan site for the high-level radioactive waste disposal is evaluated. The report comprehensively and deeply shows the hydrogeological characteristics of weak water bearing, low permeability and slow moving as well as the hydrogeochemical features of mild alkalinity and high mineralization in Beishan area. The results will provide an important basis for the evaluation of the site. (authors)

  20. Observed and simulated precipitation responses in wet and dry regions 1850–2100

    International Nuclear Information System (INIS)

    Liu Chunlei; Allan, Richard P

    2013-01-01

    Global warming is expected to enhance fluxes of fresh water between the surface and atmosphere, causing wet regions to become wetter and dry regions drier, with serious implications for water resource management. Defining the wet and dry regions as the upper 30% and lower 70% of the precipitation totals across the tropics (30° S–30° N) each month we combine observations and climate model simulations to understand changes in the wet and dry regions over the period 1850–2100. Observed decreases in precipitation over dry tropical land (1950–2010) are also simulated by coupled atmosphere–ocean climate models (−0.3%/decade) with trends projected to continue into the 21st century. Discrepancies between observations and simulations over wet land regions since 1950 exist, relating to decadal fluctuations in El Niño southern oscillation, the timing of which is not represented by the coupled simulations. When atmosphere-only simulations are instead driven by observed sea surface temperature they are able to adequately represent this variability over land. Global distributions of precipitation trends are dominated by spatial changes in atmospheric circulation. However, the tendency for already wet regions to become wetter (precipitation increases with warming by 3% K −1 over wet tropical oceans) and the driest regions drier (precipitation decreases of −2% K −1 over dry tropical land regions) emerges over the 21st century in response to the substantial surface warming. (letter)

  1. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.

    2018-01-01

    the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea

  2. An approach to hydrogeological modeling of a large system of groundwater-fed lakes and wetlands in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.; Rowe, Clinton M.

    2018-05-01

    The feasibility of a hydrogeological modeling approach to simulate several thousand shallow groundwater-fed lakes and wetlands without explicitly considering their connection with groundwater is investigated at the regional scale ( 40,000 km2) through an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are compared to local land-surface elevations from a digital elevation model (DEM) within a geographic information system to assess locations of lakes and wetlands. The water bodies are inferred where hydraulic heads exceed, or are above a certain depth below, the land surface. Numbers of lakes and/or wetlands are determined via image cluster analysis applied to the same 30-m grid as the DEM after interpolating both simulated and estimated heads. The regional water-table map was used for groundwater model calibration, considering MODIS-based net groundwater recharge data. Resulting values of simulated total baseflow to interior streams are within 1% of observed values. Locations, areas, and numbers of simulated lakes and wetlands are compared with Landsat 2005 survey data and with areas of lakes from a 1979-1980 Landsat survey and the National Hydrography Dataset. This simplified process-based modeling approach avoids the need for field-based morphology or water-budget data from individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it reproduces observed lake-wetland characteristics at regional groundwater management scales. A better understanding of the NSH hydrogeology is attained, and the approach shows promise for use in simulations of groundwater-fed lake and wetland characteristics in other large groundwater systems.

  3. Very high resolution regional climate model simulations over Greenland: Identifying added value

    DEFF Research Database (Denmark)

    Lucas-Picher, P.; Wulff-Nielsen, M.; Christensen, J.H.

    2012-01-01

    models. However, the bias between the simulations and the few available observations does not reduce with higher resolution. This is partly explained by the lack of observations in regions where the higher resolution is expected to improve the simulated climate. The RCM simulations show......This study presents two simulations of the climate over Greenland with the regional climate model (RCM) HIRHAM5 at 0.05° and 0.25° resolution driven at the lateral boundaries by the ERA-Interim reanalysis for the period 1989–2009. These simulations are validated against observations from...... that the temperature has increased the most in the northern part of Greenland and at lower elevations over the period 1989–2009. Higher resolution increases the relief variability in the model topography and causes the simulated precipitation to be larger on the coast and smaller over the main ice sheet compared...

  4. Simulation of the Investment Attractiveness of Science in a Region

    Directory of Open Access Journals (Sweden)

    Aleksandr Aleksandrovich Tarasyev

    2016-03-01

    Full Text Available The article is devoted to the variable and disproportionate funding of science in the Russian economy. The paper is focused on the analysis of the Russian financial flows into scientific research and development. The paper explains the dynamics of the main investment flows trends into research and development, highlights the causes of financial flows variable dynamics directed to the high-tech industry. In the work, the investment situation in the Russian market was compared with the foreign experience. The genesis of the optimal financial distribution problems showed the need to develop a dynamic model with the built-in differential equations to forecast the behavioral dynamics of investment flows. We selected the statistical indicators, which have a significant impact on the dynamics of investment flows directed into science. To assess the dynamics of investment flows, we have developed a methodology, which provides a cumulative assessment of the territory investment attractiveness. The multifactor integral estimation allows to describe a data array, reflecting the accumulation of investment attractiveness over time depending on the dynamics of the resultant socio-economic proportional indexes. Due to the accumulation of a data array over time using a differential equation, it is possible to obtain a forecast of the volume of the territory investment attractiveness. The amount of the projected investment flows depends directly on the amount of the investment attractiveness accumulated for the previous step of model’s time. The integrated assessment of the investment attractiveness of the scientific sector in the region allows to reveal the investors preference of the regions with a high concentration of research institutions and higher education institutes.

  5. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations

  6. Small Scale Multisource Site – Hydrogeology Investigation

    Science.gov (United States)

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  7. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the genesis and continual expansion of gullies in the area. The results indicate that gullies are located in the upper aquifer of the Benin Formation (Coastal Plain Sands). The estimated hydraulic ...

  8. Runoff simulation using the North American regional reanalysis data set

    International Nuclear Information System (INIS)

    Rasmussen, P.; Kim, S.J.; Moore, A.; Choi, W.

    2008-01-01

    In part due to concerns about the impact of climate change, there has been an increased interest in hydrological modelling of watersheds in Canada. Most of Canada is sparsely populated and a recurrent problem is the lack of quality weather data that are often not available at the sites of interest. Continuous hydrologic models require input of temperature and precipitation as a minimum, and often additional information such as solar radiation and humidity. It is not uncommon that such information must be obtained by interpolating information from weather stations located far outside the watershed. The difficulty in obtaining good calibration results is obvious in such cases. The recently released North American Regional Reanalysis (NARR) data set has been found to be in reasonable agreement with surface observations. NARR surface data, including those commonly required in hydrologic models, are available on a 32 km by 32 km grid which is appropriate for hydrologic modelling. The objective of this paper is to investigate whether hydrologic models for selected watersheds in Central Canada can be adequately calibrated using NARR data rather than conventional station information. For the specific case studies considered here, it is found that calibration with NARR weather information is quite acceptable and similar to what can be obtained using interpolated weather station data. (author)

  9. Hydrogeological investigation of Melendiz basin (Aksaray)

    International Nuclear Information System (INIS)

    Dogdu, M.S.

    1995-01-01

    Within the scope of this M.Sc, study entitled Hydrogeologic Investigation of Melendiz basin, the geological, hydrological, hydrogeological and hydrochemical features of a 600 km2 area have been studied and, 1/100.000 scale geological and hydrogeological maps have been prepared. Tetriary-Guaternary aged young volkanic rocks occupy nearly 80% (480 km2 ) of the area. The major aquifers are alluvium and andesite and basalt which are extensively fractured and jointed. Aquitard units comprise of ignimbirite, some of the andesites-basalts and formations that composes of limestone-sandstone-marl intercalations. The youngest geologic unit of the area, Hasandag volcanic ash formation, and also the tuffs have been indentified as aquiclude units. Mean areal precipitation, potential and real evapotranspiration rates and mean annual streamflow have been calculated on the basis of available data and, a hydrologic budget of the basin has been established. Hydrogeologic units have been classified as aquifer, aquitard and aquiclude with respect to their geohydrologic properties, field observations and the results of the pumping tests. On the other hand, hydrodynamic mechanism of the groundwater flow reaching major cold and thermal water discharges have also been explained. A hydrogeologic budget for the area covering Ciftlik township and its vicinity where extensively joint and fractured andesite-basalt and alluvial aquifers outcrop has been established. Major water points as thermal and cold springs, wells and streams have been sampled for major ion analysis. Beyond this, some water points have also been sampled for organic, trace,metal ald environmental isotropic analyses. Environmental isotope data of thermal springs point out a long-deep groundwater flow path

  10. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    Science.gov (United States)

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  11. Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2014-09-01

    Full Text Available This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °. The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially.

  12. A Divide and Conquer Strategy for Scaling Weather Simulations with Multiple Regions of Interest

    Directory of Open Access Journals (Sweden)

    Preeti Malakar

    2013-01-01

    Full Text Available Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity compute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of performance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.

  13. Evaluation of Uncertainties in hydrogeological modeling and groundwater flow analyses. Model calibration

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Ono, Makoto; Sugihara, Yutaka; Shimo, Michito; Yamamoto, Hajime; Fumimura, Kenichi

    2003-03-01

    This study involves evaluation of uncertainty in hydrogeological modeling and groundwater flow analysis. Three-dimensional groundwater flow in Shobasama site in Tono was analyzed using two continuum models and one discontinuous model. The domain of this study covered area of four kilometers in east-west direction and six kilometers in north-south direction. Moreover, for the purpose of evaluating how uncertainties included in modeling of hydrogeological structure and results of groundwater simulation decreased with progress of investigation research, updating and calibration of the models about several modeling techniques of hydrogeological structure and groundwater flow analysis techniques were carried out, based on the information and knowledge which were newly acquired. The acquired knowledge is as follows. As a result of setting parameters and structures in renewal of the models following to the circumstances by last year, there is no big difference to handling between modeling methods. The model calibration is performed by the method of matching numerical simulation with observation, about the pressure response caused by opening and closing of a packer in MIU-2 borehole. Each analysis technique attains reducing of residual sum of squares of observations and results of numerical simulation by adjusting hydrogeological parameters. However, each model adjusts different parameters as water conductivity, effective porosity, specific storage, and anisotropy. When calibrating models, sometimes it is impossible to explain the phenomena only by adjusting parameters. In such case, another investigation may be required to clarify details of hydrogeological structure more. As a result of comparing research from beginning to this year, the following conclusions are obtained about investigation. (1) The transient hydraulic data are effective means in reducing the uncertainty of hydrogeological structure. (2) Effective porosity for calculating pore water velocity of

  14. Hydrogeology of the Mogollon Highlands, central Arizona

    Science.gov (United States)

    Parker, John T.C.; Steinkampf, William C.; Flynn, Marilyn E.

    2005-01-01

    The Mogollon Highlands, 4,855 square miles of rugged, mountainous terrain at the southern edge of the Colorado Plateau in central Arizona, is characterized by a bedrock-dominated hydrologic system that results in an incompletely integrated regional ground-water system, flashy streamflow, and various local water-bearing zones that are sensitive to drought. Increased demand on the water resources of the area as a result of recreational activities and population growth have made necessary an increased understanding of the hydrogeology of the region. The U.S. Geological Survey conducted a study of the geology and hydrology of the region in cooperation with the Arizona Department of Water Resources under the auspices of the Arizona Rural Watershed Initiative, a program launched in 1998 to assist rural areas in dealing with water-resources issues. The study involved the analysis of geologic maps, surface-water and ground-water flow, and water and rock chemical data and spatial relationships to characterize the hydrogeologic framework. The study area includes the southwestern corner of the Colorado Plateau and the Mogollon Rim, which is the eroded edge of the plateau. A 3,000- to 4,000-foot sequence of early to late Paleozoic sedimentary rocks forms the generally south-facing scarp of the Mogollon Rim. The area adjacent to the edge of the Mogollon Rim is an erosional landscape of rolling, step-like terrain exposing Proterozoic metamorphic and granitic rocks. Farther south, the Sierra Ancha and Mazatzal Mountain ranges, which are composed of various Proterozoic rocks, flank an alluvial basin filled with late Cenozoic sediments and volcanic flows. Eight streams with perennial to intermittent to ephemeral flow drain upland regions of the Mogollon Rim and flow into the Salt River on the southern boundary or the Verde River on the western boundary. Ground-water flow paths generally are controlled by large-scale fracture systems or by karst features in carbonate rocks. Stream

  15. Hydrogeology of the Judith River Formation in southwestern Saskatchewan, Canada

    Science.gov (United States)

    Ferris, David; Lypka, Morgan; Ferguson, Grant

    2017-11-01

    The Judith River Formation forms an important regional aquifer in southwestern Saskatchewan, Canada. This aquifer is used for domestic and agricultural purposes in some areas and supports oil and gas production in other areas. As a result, the available data come from a range of sources and integration is required to provide an overview of aquifer characteristics. Here, data from oil and gas databases are combined with data from groundwater resource assessments. Analysis of cores, drill-stem tests and pumping tests provide a good overview of the physical hydrogeology of the Judith River Aquifer. Water chemistry data from oil and gas databases were less helpful in understanding the chemical hydrogeology due contamination of samples and unreliable laboratory analyses. Analytical modeling of past pumping in the aquifer indicates that decreases in hydraulic head exceeding 2 m are possible over distances of 10s of kilometers. Similar decreases in head should be expected for additional large withdrawals of groundwater from the Judith River Aquifer. Long-term groundwater abstraction should be limited by low pumping rates. Higher pumping rates appear to be possible for short-term uses, such as those required by the oil and gas industry.

  16. Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, southeastern Bangladesh

    Science.gov (United States)

    von Brömssen, Mattias; Markussen, Lars; Bhattacharya, Prosun; Ahmed, Kazi Matin; Hossain, Mohammed; Jacks, Gunnar; Sracek, Ondra; Thunvik, Roger; Hasan, M. Aziz; Islam, M. Mainul; Rahman, M. Mokhlesur

    2014-10-01

    Exploitation of groundwater from shallow, high prolific Holocene sedimentary aquifers has been a main element for achieving safe drinking water and food security in Bangladesh. However, the presence of elevated levels of geogenic arsenic (As) in these aquifers has undermined this success. Except for targeting safe aquifers through installations of tubewells to greater depth, no mitigation option has been successfully implemented on a larger scale. The objective of this study has been to characterise the hydrostratigraphy, groundwater flow patterns, the hydraulic properties to assess the vulnerability of low-arsenic aquifers at Matlab, in south-eastern Bangladesh, one of the worst arsenic-affected areas of the country. Groundwater modelling, conventional pumping test using multilevel piezometers, hydraulic head monitoring in piezometer nests, 14C dating of groundwater and assessment of groundwater abstraction were used. A model comprising of three aquifers covering the top 250 m of the model domain showed the best fit for the calibration evaluation criteria. Irrigation wells in the Matlab area are mostly installed in clusters and account for most of the groundwater abstraction. Even though the hydraulic heads are affected locally by seasonal pumping, the aquifer system is fully recharged from the monsoonal replenishment. Groundwater simulations demonstrated the presence of deep regional flow systems with recharge areas in the eastern, hilly part of Bangladesh and shallow small local flow systems driven by local topography. Based on modelling results and 14C groundwater data, it can be concluded that the natural local flow systems reach a depth of 30 m b.g.l. in the study area. A downward vertical gradient of roughly 0.01 down to 200 m b.g.l. was observed and reproduced by calibrated models. The vertical gradient is mainly the result of the aquifer system and properties rather than abstraction rate, which is too limited at depth to make an imprint. Although

  17. A regional climate simulation over the Iberian Peninsula for the last millennium

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2011-04-01

    Full Text Available A high-resolution (30 km regional paleoclimate simulation of the last millennium over the Iberian Peninsula (IP is presented. The simulation was performed with a climate version of the mesoscale model MM5 driven by the global model ECHO-G. Both models were driven by the same reconstructions of several external forcing factors. The high spatial resolution of the regional model allows climatologists to realistically simulate many aspects of the climate in the IP, as compared to an observational data set in the reference period 1961–1990. Although the spatial-averaged values developed by the regional model are tightly driven by the boundary conditions, it is capable to develop a different realisation of the past climate at regional scales, especially in the high-frequency domain and for precipitation. This has to be considered when comparing the results of climate simulations versus proxy reconstructions. A preliminary comparison of the simulation results with reconstructions of temperature and precipitation over the IP shows good agreement in the warming trends in the last century of the simulation, although there are large disagreements in key periods such as the precipitation anomalies in the Maunder Minimum.

  18. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  19. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  20. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  1. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    International Nuclear Information System (INIS)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius

    2010-09-01

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  2. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius (Bergab Consulting Geologists, Goeteborg (Sweden))

    2010-09-15

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  3. Hydrogeology, waste disposal, science and politics: Proceedings

    International Nuclear Information System (INIS)

    Link, P.K.

    1994-01-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  4. Recent hydrogeologic study of the Vis island

    Directory of Open Access Journals (Sweden)

    Janislav Kapelj

    2002-12-01

    Full Text Available The Vis Island belongs to the group of the Middle Dalmatian islands. It comprises an area of about 90.2 km2. Morphologically, three belts of highlands and two depressions with karst poljes are significant. The highest point on the island is Hum with 587 m a.s.l. theisland’s water supply is organized from the water-supply station “Korita”, situated in the central part of island, in tectonically formed depression. There are two additional capturedobjects: the well K-1 above the Komiža town and the spring “Pizdica”. The most important hydrogeological role on the island have two hydrogeological barriers, one in the KomižaBay, completely made of impermeable igneous and clastic rocks, and another one, the recently recognized relative barrier in the area of Dra~evo, Plisko and Velo polje. Since the island karst aquifer is in permanent dynamic relation with seawater, classical geologic,structural and hydrogeologic investigations have been performed with application of hydrogeochemical methods taking into account the natural chemical tracer content of groundwater and its variations in different hydrologic and vegetation conditions. Precipitationregime is very unfavorable with regard to the recharging of island’s aquifer, because dry periods are usually very long. During the summer tourist season, when the number of inhabitants and fresh water consumption considerably increase, amounts of island’sgroundwater suitable for water supply and irrigation rapidly decrease. Sometimes, insufficient quantity of fresh water on the Vis Island causes restrictions. Concerning the development of tourist potential and the present agricultural activities, summer lack ofwater is a serious restrictive factor. Some results of the performed hydrogeological study, important as a basis for island’s fresh water potential assessment, will be presented.

  5. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This report presents a compilation of both fracture properties and hydrogeological parameters relevant to the flow of groundwater in fractured rock systems. Methods of data acquisition as well as the scale of and conditions during the measurement are recorded. Measurements and analytical techniques for each of the parameters under consideration have been reviewed with respect to their methodology, assumptions and accuracy. Both the rock type and geologic setting associated with these measurements have also been recorded. 373 refs

  6. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  7. Hydrogeology, waste disposal, science and politics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Link, P.K. [ed.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Stochastic hydrogeology: what professionals really need?

    Science.gov (United States)

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  9. Hydrogeologic study of Cafam area. Melgar (Tolima); Estudio hidrogeologico del area Cafam - Melgar (Tolima)

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km{sup 2} with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3.

  10. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  11. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    Science.gov (United States)

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of

  12. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg

    2003-01-01

    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...... for the absence of observed data from mountainous areas where precipitation is orographically enhanced. In both cases, the runoff simulated by USAFLOW was superior to the runoff simulated within the HIRHAM4 model itself. This was attributed to the rather simplistic description of the water balance in the HIRHAM4...

  13. Research on numerical simulation technology about regional important pollutant diffusion of haze

    Science.gov (United States)

    Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.

  14. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Science.gov (United States)

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  15. Evaluation of the optimum region for mammographic system using computer simulation to study modulation transfer functions

    International Nuclear Information System (INIS)

    Oliveira, Isaura N. Sombra; Schiable, Homero; Porcel, Naider T.; Frere, Annie F.; Marques, Paulo M.A.

    1996-01-01

    An investigation of the 'optimum region' of the radiation field considering mammographic systems is studied. Such a region was defined in previous works as the field range where the system has its best performance and sharpest images. This study is based on a correlation of two methods for evaluating radiologic imaging systems, both using computer simulation in order to determine modulation transfer functions (MTFs) due to the X-ray tube focal spot in several field orientation and locations

  16. Railway optimal network simulation for the development of regional transport-logistics system

    Directory of Open Access Journals (Sweden)

    Mikhail Borisovich Petrov

    2013-12-01

    Full Text Available The dependence of logistics on mineral fuel is a stable tendency of regions development, though when making strategic plans of logistics in the regions, it is necessary to provide the alternative possibilities of power-supply sources change together with population density, transport infrastructure peculiarities, and demographic changes forecast. On the example of timber processing complex of the Sverdlovsk region, the authors suggest the algorithm of decision of the optimal logistics infrastructure allocation. The problem of regional railway network organization at the stage of slow transition from the prolonged stagnation to the new development is carried out. The transport networks’ configurations of countries on the Pacific Rim, which successfully developed nowadays, are analyzed. The authors offer some results of regional transport network simulation on the basis of artificial intelligence method. These methods let to solve the task with incomplete data. The ways of the transport network improvement in the Sverdlovsk region are offered.

  17. Contribution to hydrogeological investigations related to the disposal of radioactive wastes in a deep argillaceous formation

    International Nuclear Information System (INIS)

    Patijn, J.

    1987-01-01

    The study deals with the development of a methodology in order to evaluate the capability of an aquifer system to be used for the disposal of radioactive wastes in deep argillaceous formations. The first part is concerned with hydrogeological investigations of a sedimentary basin. The second part is concerned with flow simulation using NEWMAN model. The limited influence of some possible geological events on radionuclide transfer is emphasized [fr

  18. Tracer techniques in karst hydrogeology. Application to the location of karst aquifers

    International Nuclear Information System (INIS)

    Mangin, A.; Molinari, J.

    1976-01-01

    From the recent progress in karst aquifer simulation techniques and the improved knowledge of tracers, the old-established tracer technique has become an invaluable instrument for hydrogeological survey work. Typical information obtainable includes karst system boundaries features and location of hydrodynamic discontinuities, flow variation in both space and time. Tracer methods are a basic requirement for investigation of karst groundwater supplies and determining protection zones for water supply points [fr

  19. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    Science.gov (United States)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  20. Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Hyung-Il; Laprise, Rene [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Gachon, Philippe [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Environment Canada, Adaptation and Impacts Research Section, Climate Research Division, Montreal, QC (Canada); Ouarda, Taha [University of Quebec, INRS-ETE (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement), Quebec, QC (Canada)

    2012-04-15

    This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23 years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates

  1. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.; Gurban, I. [INTERA KB, Sollentuna (Sweden); Rhen, I. [VBB Viak AB (Sweden)

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers` sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports. 148 refs, 25 tabs, 60 figs.

  2. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    International Nuclear Information System (INIS)

    Walker, D.; Gurban, I.; Rhen, I.

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers' sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports

  3. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  4. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    Science.gov (United States)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  5. Hydrogeology of Basins on Mars

    Science.gov (United States)

    Arvidson, Raymond E.

    2001-01-01

    This document summarizes the work accomplished under NASA Grant NAG5-3870. Emphasis was put on the development of the FIDO rover, a prototype for the twin-Mers which will be operating on the surface of Mars in 2004, specifically the primary work was the analysis of FIDO field trials. The grantees also analyzed VIKING Lander 1 XRFS and Pathfinder APXS data. Results show that the Viking site chemistry is consistent with an andesite, and the Pathfinder site is consistent with a basaltic andesite. The grantees also worked to demonstrate the capability to simulate annealing methods to apply to the inversion of remote sensing data. They performed an initial analyses of Sojourner engineering telemetry and imaging data. They performed initial analyses of Viking Lander Stereo Images, and of Hematite deposits in Terra Meridiani. They also acquired and analyzed the New Goldstone radar data.

  6. Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2012-01-01

    Full Text Available In this study we analyse the role of internal variability in regional climate simulations through a comparison of two regional paleoclimate simulations for the last millennium. They share the same external forcings and model configuration, differing only in the initial condition used to run the driving global model simulation. A comparison of these simulations allows us to study the role of internal variability in climate models at regional scales, and how it affects the long-term evolution of climate variables such as temperature and precipitation. The results indicate that, although temperature is homogeneously sensitive to the effect of external forcings, the evolution of precipitation is more strongly governed by random unpredictable internal dynamics. There are, however, some areas where the role of internal variability is lower than expected, allowing precipitation to respond to the external forcings. In this respect, we explore the underlying physical mechanisms responsible for it. This study identifies areas, depending on the season, in which a direct comparison between model simulations of precipitation and climate reconstructions would be meaningful, but also other areas where good agreement between them should not be expected even if both are perfect.

  7. Numerical modeling of the hydrogeological effects of ONKALO in 2009

    International Nuclear Information System (INIS)

    Raemae, T.

    2011-10-01

    The underground rock characterization facility ONKALO is currently being excavated in the bedrock of the Olkiluoto Island. The construction work of the ONKALO begun in 2004 and the tunnel will remain open for the whole period of the operation of the planned repository for spent nuclear fuel. The open tunnels cause a disturbance on the local groundwater system. The leakage water flowing into the open tunnels withdraw water from the bedrock and locally alter the natural flow routes. One of the possible consequences of the convergent flow towards the ONKALO is that the highly saline deeper groundwater might be drawn towards the ONKALO, this process is called upconing. The purpose of this work is to estimate the possible upconing of the deep saline waters up to the repository level. A numerical flow and transport simulation is conducted with conservative approach to ensure overestimation of the effects of the ONKALO. In this study a 3D model of the hydrogeological system of the Olkiluoto is used as the basis for numerical flow and transport modeling of the saline groundwater movement in the bedrock of Olkiluoto. The numerical modelling is conducted using the commercial Comsol 3.5a code. The modelled geometry of the ONKALO includes the already excavated ONKALO and the extension according to the layout plan used in this work. The ONKALO and the hydrogeological zones are simplified for this study. In addition the used hydrogeological zones are modelled as 3D blocks with constant thickness of 50 meters. With the used boundary conditions upconing occurs even with the lowest leakage values. The influence of the leakage water is small on the maximum TDS-value at the depth near ONKALO. In this work this phenomenon is explained by the increase in the fresh water infiltration rate as the leakage water is increased, since the low density fresh water is transported more easily downwards than the high density saline water transported upwards towards the ONKALO. Further away from

  8. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings

    DEFF Research Database (Denmark)

    Giorgi, Filippo; Whetton, Peter H.; Jones, Richard G.

    2001-01-01

    We analyse temperature and precipitation changes for the late decades of the 21st century (with respect to present day conditions) over 23 land regions of the world from 18 recent transient, climate change experiments with coupled atmosphere-ocean General Circulation Models (AOGCMs). The analysis...... involves two different forcing scenarios and nine models, and it focuses on model agreement in the simulated regional changes for the summer and winter seasons. While to date very few conclusions have been presented on regional climatic changes, mostly limited to some broad latitudinal bands, our analysis...

  9. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    Science.gov (United States)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J

  10. Analysis and Comparison on the Flood Simulation in Typical Hilly & Semi-mountainous Region

    Science.gov (United States)

    Luan, Qinghua; Wang, Dong; Zhang, Xiang; Liu, Jiahong; Fu, Xiaoran; Zhang, Kun; Ma, Jun

    2017-12-01

    Water-logging and flood are both serious in hilly and semi-mountainous cities of China, but the related research is rare. Lincheng Economic Development Zone (EDZ) in Hebei Province as the typical city was selected and storm water management model (SWMM) was applied for flood simulation in this study. The regional model was constructed through calibrating and verifying the runoff coefficient of different flood processes. Different designed runoff processes in five-year, ten-year and twenty-year return periods in basic scenario and in the low impact development (LID) scenario, respectively, were simulated and compared. The result shows that: LID measures have effect on peak reduction in the study area, but the effectiveness is not significant; the effectiveness of lagging peak time is poor. These simulation results provide decision support for the rational construction of LID in the study area, and provide the references for regional rain flood management.

  11. Regional demand forecasting and simulation model: user's manual. Task 4, final report

    Energy Technology Data Exchange (ETDEWEB)

    Parhizgari, A M

    1978-09-25

    The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR, respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.

  12. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    Science.gov (United States)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  13. The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment

    Directory of Open Access Journals (Sweden)

    Tullia Bonomi

    2014-06-01

    Full Text Available At the Department of Earth and Environmental Sciences of the University of Milano-Bicocca (DISAT-UNIMIB, a hydrogeological well database, called TANGRAM©, has been developed and published on line at www.TANGRAM.samit.unimib.it, developing an earlier 1989 DOS version. This package can be used to store, display, and process all data related to water wells, including administrative information, well characteristics, stratigraphic logs, water levels, pumping rates, and other hydrogeological information. Currently, the database contains more than 39.200 wells located in the Italian region of Lombardy (90%, Piedmont (9% and Valle d’Aosta (1%. TANGRAM© has been created both as a tool for researches and for public administration’s administrators who have projects in common with DISAT-UNIMIB. Indeed, transferring wells data from paper into TANGRAM© offers both an easier and more robust way to correlate hydrogeological data and a more organized management of the administrative information. Some Administrations use TANGRAM© regularly as a tool for wells data management (Brescia Province, ARPA Valle Aosta. An innovative aspect of the database is the quantitative extraction of stratigraphic data. In the part of the software intended for research purposes, all well logs are translated into 8-digit alphanumeric codes and the user composes the code interpreting the description at each stratigraphic level. So the stratigraphic well data can be coded, then quantified and processed. This is made possible by attributing a weight to the digits of the code for textures. The program calculates the weighted percentage of the chosen lithology, as related to each individual layer. These extractions are the starting point for subsequent hydrogeological studies: well head protection area, reconstruction of the dynamics of flow, realization of the quarry plans and flux and transport hydrogeological models. The results of a two-dimensional distribution of coarse

  14. Hydrogeology of, simulation of groundwater flow in, and potential effects of sea-level rise on the Kirkwood-Cohansey aquifer system in the vicinity of Edwin B. Forsythe National Wildlife Refuge, New Jersey

    Science.gov (United States)

    Fiore, Alex R.; Voronin, Lois M.; Wieben, Christine M.

    2018-03-19

    The Edwin B. Forsythe National Wildlife Refuge encompasses more than 47,000 acres of New Jersey coastal habitats, including salt marshes, freshwater wetlands, tidal wetlands, barrier beaches, woodlands, and swamps. The refuge is along the Atlantic Flyway and provides breeding habitat for fish, migratory birds, and other wildlife species. The refuge area may be threatened by global climate change, including sea-level rise (SLR).The Kirkwood-Cohansey aquifer system underlies the Edwin B. Forsythe National Wildlife Refuge. Groundwater is an important source of freshwater flow into the refuge, but information about the interaction of surface water and groundwater in the refuge area and the potential effects of SLR on the underlying aquifer system is limited. The U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service (USFWS), conducted a hydrologic assessment of the refuge in New Jersey and developed a groundwater flow model to improve understanding of the geohydrology of the refuge area and to serve as a tool to evaluate changes in groundwater-level altitudes that may result from a rise in sea level.Groundwater flow simulations completed for this study include a calibrated baseline simulation that represents 2005–15 hydraulic conditions and three SLR scenarios―20, 40, and 60 centimeters (cm) (0.656, 1.312, and 1.968 feet, respectively). Results of the three SLR simulations indicate that the water table in the unconfined Kirkwood-Cohansey aquifer system in the refuge area will rise, resulting in increased discharge of fresh groundwater to freshwater wetlands and streams. As sea level rises, simulated groundwater discharge to the salt marsh, bay, and ocean is projected to decrease. Flow from the salt marsh, bay, and ocean to the overlying surface water is projected to increase as sea level rises.The simulated movement of the freshwater-seawater interface as sea level rises depends on the hydraulic-head gradient. In the center of the

  15. Developments in regional scale simulation: modelling ecologically sustainable development in the Northern Territory

    International Nuclear Information System (INIS)

    Moffatt, I.

    1992-01-01

    This paper outlines one way in which researchers can make a positive methodological contribution to the debate on ecologically sustainable development (ESD) by integrating dynamic modelling and geographical information systems to form the basis for regional scale simulations. Some of the orthodox uses of Geographic Information System (GIS) are described and it is argued that most applications do not incorporate process based causal models. A description of a pilot study into developing a processed base model of ESD in the Northern Territory is given. This dynamic process based simulation model consists of two regions namely the 'Top End' and the 'Central' district. Each region consists of ten sub-sectors and the pattern of land use represents a common sector to both regions. The role of environmental defence expenditure, including environmental rehabilitation of uranium mines, in the model is noted. Similarly, it is hypothesized that the impact of exogenous changes such as the greenhouse effect and global economic fluctuations can have a differential impact on the behaviour of several sectors of the model. Some of the problems associated with calibrating and testing the model are reviewed. Finally, it is suggested that further refinement of this model can be achieved with the pooling of data sets and the development of PC based transputers for more detailed and accurate regional scale simulations. When fully developed it is anticipated that this pilot model can be of service to environmental managers and other groups involved in promoting ESD in the Northern Territory. 54 refs., 6 figs

  16. Regional air-sea coupled model simulation for two types of extreme heat in North China

    Science.gov (United States)

    Li, Donghuan; Zou, Liwei; Zhou, Tianjun

    2018-03-01

    Extreme heat (EH) over North China (NC) is affected by both large scale circulations and local topography, and could be categorized into foehn favorable and no-foehn types. In this study, the performance of a regional coupled model in simulating EH over NC was examined. The effects of regional air-sea coupling were also investigated by comparing the results with the corresponding atmosphere-alone regional model. On foehn favorable (no-foehn) EH days, a barotropic cyclonic (anticyclonic) anomaly is located to the northeast (northwest) of NC, while anomalous northwesterlies (southeasterlies) prevail over NC in the lower troposphere. In the uncoupled simulation, barotropic anticyclonic bias occurs over China on both foehn favorable and no-foehn EH days, and the northwesterlies in the lower troposphere on foehn favorable EH days are not obvious. These biases are significantly reduced in the regional coupled simulation, especially on foehn favorable EH days with wind anomalies skill scores improving from 0.38 to 0.47, 0.47 to 0.61 and 0.38 to 0.56 for horizontal winds at 250, 500 and 850 hPa, respectively. Compared with the uncoupled simulation, the reproduction of the longitudinal position of Northwest Pacific subtropical high (NPSH) and the spatial pattern of the low-level monsoon flow over East Asia are improved in the coupled simulation. Therefore, the anticyclonic bias over China is obviously reduced, and the proportion of EH days characterized by anticyclonic anomaly is more appropriate. The improvements in the regional coupled model indicate that it is a promising choice for the future projection of EH over NC.

  17. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: A simulated case study in the North German Basin

    Science.gov (United States)

    Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target

  18. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  19. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  20. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  1. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    Science.gov (United States)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales

  2. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  3. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  4. Hydrogeological characteristics and hydraulic discharge forecast of Uranium Deposit No.320

    International Nuclear Information System (INIS)

    Hao Fulin.

    1987-01-01

    The water and heat sources of Uranium Deposit No.320 have been discussed according to the water-controlling specific features of the regional strata and geological structures(including water transmitting and bearing structures), which provide evidence for the forecasting of hydraulic discharge. On the basis of the hydrogeological study of the deposit, the author draws up a plan for combining the mine drainage with the urban water supply and making comprehensively use of the thermal water resource

  5. Modernization of hydrogeological and mine dewatering researches in the Transdanubian Mid-Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, G.; Vizy, B.

    1990-01-01

    The present state of the karst water system of the Transdanubian Mid-Mountains is outlined and the measures to be done in order to protect the main karst system of the region are listed. The items of modernization are presented including the closing of mines (both the coal and the bauxite mines) and the modernization of hydrogeological exploration methods (to develop a uniform information system on the karst system of the Transdanubian Mid-Mountains).

  6. The hydrogeologic environment for a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 59285

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Jensen, Mark R.

    2012-01-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation for the Bruce nuclear site in Ontario, Canada. As proposed the DGR would be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes the hydrogeology of the DGR site developed through both site characterization studies and regional-scale numerical modelling analysis. The analysis provides a framework for the assembly and integration of the site-specific geo-scientific data and examines the factors that influence the predicted long-term performance of the geosphere barrier. Flow system evolution was accomplished using both the density-dependent FRAC3DVS-OPG flow and transport model and the two-phase gas and water flow computational model TOUGH2-MP. In the geologic framework of the Province of Ontario, the DGR is located on the eastern flank of the Michigan Basin. Borehole logs covering Southern Ontario combined with site-specific data from 6 deep boreholes have been used to define the structural contours and hydrogeologic properties at the regional-scale of the modelled 31 sedimentary strata that may be partially present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an approximately 18500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian includes units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/L. The Ordovician sediments are significantly under-pressured. The horizontal hydraulic conductivity for the Cobourg limestone is estimated to be 2x10 -14 m/s based on straddle-packer hydraulic tests. The low advective velocities in the Cobourg and other Ordovician units result in solute transport that is diffusion dominant with Peclet numbers less than 0:003 for a characteristic length of unity. Long

  7. A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG.

    Science.gov (United States)

    Cona, F; Zavaglia, M; Massimini, M; Rosanova, M; Ursino, M

    2011-08-01

    Knowledge of cortical rhythms represents an important aspect of modern neuroscience, to understand how the brain realizes its functions. Recent data suggest that different regions in the brain may exhibit distinct electroencephalogram (EEG) rhythms when perturbed by Transcranial Magnetic Stimulation (TMS) and that these rhythms can change due to the connectivity among regions. In this context, in silico simulations may help the validation of these hypotheses that would be difficult to be verified in vivo. Neural mass models can be very useful to simulate specific aspects of electrical brain activity and, above all, to analyze and identify the overall frequency content of EEG in a cortical region of interest (ROI). In this work we implemented a model of connectivity among cortical regions to fit the impulse responses in three ROIs recorded during a series of TMS/EEG experiments performed in five subjects and using three different impulse intensities. In particular we investigated Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe). Results show that the model can reproduce the natural rhythms of the three regions quite well, acting on a few internal parameters. Moreover, the model can explain most rhythm changes induced by stimulation of another region, and inter-subject variability, by estimating just a few long-range connectivity parameters among ROIs. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the permeability data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  9. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains a continuation of the fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. The sites discussed in this volume are the following: Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  10. Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions

    Science.gov (United States)

    Saber, Mohamed; Kamil Yilmaz, Koray

    2016-04-01

    Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.

  11. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  12. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    Science.gov (United States)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  13. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  14. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    The hydrogeological properties of an aquifer coupled with climatic conditions and geomorphology determines how much groundwater exists in that location. A hydrogeological study of the rocks in the Adansi area was carried out to obtain the aquifer hydraulic properties. Drilling and pumping test analysis information were ...

  15. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  16. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  17. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  18. A systematic intercomparison of regional flood frequency analysis models in a simulation framework

    Science.gov (United States)

    Ganora, Daniele; Laio, Francesco; Claps, Pierluigi

    2015-04-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve (or other discharge-related variables), based on the fundamental concept of substituting temporal information at a site (no data or short time series) by exploiting observations at other sites (spatial information). Different RFA paradigms exist, depending on the way the information is transferred to the site of interest. Despite the wide use of such methodology, a systematic comparison between these paradigms has not been performed. The aim of this study is to provide a framework wherein carrying out the intercomparison: we thus synthetically generate data through Monte Carlo simulations for a number of (virtual) stations, following a GEV parent distribution; different scenarios can be created to represent different spatial heterogeneity patterns by manipulating the parameters of the parent distribution at each station (e.g. with a linear variation in space of the shape parameter of the GEV). A special case is the homogeneous scenario where each station record is sampled from the same parent distribution. For each scenario and each simulation, different regional models are applied to evaluate the 200-year growth factor at each station. Results are than compared to the exact growth factor of each station, which is known in our virtual world. Considered regional approaches include: (i) a single growth curve for the whole region; (ii) a multiple-region model based on cluster analysis which search for an adequate number of homogeneous subregions; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially-smooth estimation procedure based on linear regressions.. A further benchmark model is the at-site estimate based on the analysis of the local record. A comprehensive analysis of the results of the simulations shows that, if the scenario is homogeneous (no spatial variability), all the regional approaches

  19. Continuously on-­going regional climate hindcast simulations for impact applications

    Science.gov (United States)

    Anders, Ivonne; Piringer, Martin; Kaufmann, Hildegard; Knauder, Werner; Resch, Gernot; Andre, Konrad

    2017-04-01

    Observational data for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation performed with the regional climate model COSMO-CLM is forced by ERAinterim and optimized for the Alpine Region. The simulation available for the period of 1979-2015 in a spatial resolution of about 10km is prolonged ongoing and fullfils the customer's needs with respect of output variables, levels, intervals and statistical measures. One of the main tasks is to capture strong precipitation events which often occur during summer when low pressure systems develop over the Golf of Genoa, moving to the Northeast. This leads to floods and landslide events in Austria, Czech Republic and Germany. Such events are not sufficiently represented in the CORDEX-evaluation runs. ZAMG use high quality gridded precipitation and temperature data for the Alpine Region (1-6km) to evaluate the model performance. Data is provided e.g. to hydrological modellers (high water, low water), but also to assess icing capability of infrastructure or the calculation the separation distances between livestock

  20. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    Science.gov (United States)

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  1. Study on simulation methods of atrium building cooling load in hot and humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Li, Yuming; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Wu, Gang [Weldtech Technology (Shanghai) Co. Ltd. (China)

    2010-10-15

    In recent years, highly glazed atria are popular because of their architectural aesthetics and advantage of introducing daylight into inside. However, cooling load estimation of such atrium buildings is difficult due to complex thermal phenomena that occur in the atrium space. The study aims to find out a simplified method of estimating cooling loads through simulations for various types of atria in hot and humid regions. Atrium buildings are divided into different types. For every type of atrium buildings, both CFD and energy models are developed. A standard method versus the simplified one is proposed to simulate cooling load of atria in EnergyPlus based on different room air temperature patterns as a result from CFD simulation. It incorporates CFD results as input into non-dimensional height room air models in EnergyPlus, and the simulation results are defined as a baseline model in order to compare with the results from the simplified method for every category of atrium buildings. In order to further validate the simplified method an actual atrium office building is tested on site in a typical summer day and measured results are compared with simulation results using the simplified methods. Finally, appropriate methods of simulating different types of atrium buildings are proposed. (author)

  2. Simplified human model and pedestrian simulation in the millimeter-wave region

    Science.gov (United States)

    Han, Junghwan; Kim, Seok; Lee, Tae-Yun; Ka, Min-Ho

    2016-02-01

    The 24 GHz and 77 GHz radar sensors have been studied as a strong candidate for advanced driver assistance systems(ADAS) because of their all-weather capability and accurate range and radial velocity measuring scheme. However, developing a reliable pedestrian recognition system hasmany obstacles due to the inaccurate and non-trivial radar responses at these high frequencies and the many combinations of clothes and accessories. To overcome these obstacles, many researchers used electromagnetic (EM) simulation to characterize the radar scattering response of a human. However, human simulation takes so long time because of the electrically huge size of a human in the millimeter-wave region. To reduce simulation time, some researchers assumed the skin of a human is the perfect electric conductor (PEC) and have simulated the PEC human model using physical optics (PO) algorithm without a specific explanation about how the human body could be modeled with PEC. In this study, the validity of the assumption that the surface of the human body is considered PEC in the EM simulation is verified, and the simulation result of the dry skin human model is compared with that of the PEC human model.

  3. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    Science.gov (United States)

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  4. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    Directory of Open Access Journals (Sweden)

    Holger Hoffmann

    Full Text Available We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  5. [Micro-simulation of firms' heterogeneity on pollution intensity and regional characteristics].

    Science.gov (United States)

    Zhao, Nan; Liu, Yi; Chen, Ji-Ning

    2009-11-01

    In the same industrial sector, heterogeneity of pollution intensity exists among firms. There are some errors if using sector's average pollution intensity, which are calculated by limited number of firms in environmental statistic database to represent the sector's regional economic-environmental status. Based on the production function which includes environmental depletion as input, a micro-simulation model on firms' operational decision making is proposed. Then the heterogeneity of firms' pollution intensity can be mechanically described. Taking the mechanical manufacturing sector in Deyang city, 2005 as the case, the model's parameters were estimated. And the actual COD emission intensities of environmental statistic firms can be properly matched by the simulation. The model's results also show that the regional average COD emission intensity calculated by the environmental statistic firms (0.002 6 t per 10 000 yuan fixed asset, 0.001 5 t per 10 000 yuan production value) is lower than the regional average intensity calculated by all the firms in the region (0.003 0 t per 10 000 yuan fixed asset, 0.002 3 t per 10 000 yuan production value). The difference among average intensities in the six counties is significant as well. These regional characteristics of pollution intensity attribute to the sector's inner-structure (firms' scale distribution, technology distribution) and its spatial deviation.

  6. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  7. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    Science.gov (United States)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  8. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Science.gov (United States)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  9. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    Science.gov (United States)

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  10. Bedrock Hydrogeology-Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Bockgaard, Niclas; Follin, Sven

    2012-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  11. Reducing Ambulance Diversion at Hospital and Regional Levels: Systemic Review of Insights from Simulation Models

    OpenAIRE

    Delgado, M. Kit; Meng, Lesley J.; Mercer, Mary P.; Pines, Jesse M.; Owens, Douglas K.; Zaric, Gregory S.

    2013-01-01

    Introduction: Optimal solutions for reducing diversion without worsening emergency department (ED) crowding are unclear. We performed a systematic review of published simulation studies to identify: 1) the tradeoff between ambulance diversion and ED wait times; 2) the predicted impact of patient flow interventions on reducing diversion; and 3) the optimal regional strategy for reducing diversion. Methods: Data Sources: Systematic review of articles using MEDLINE, Inspec, Scopus. Additional st...

  12. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    Science.gov (United States)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  13. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    Science.gov (United States)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.

  14. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    Science.gov (United States)

    Chapman, Jeffryes Walter; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  15. Impacts of land use/cover classification accuracy on regional climate simulations

    Science.gov (United States)

    Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.

    2007-03-01

    Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.

  16. Multi-ensemble regional simulation of Indian monsoon during contrasting rainfall years: role of convective schemes and nested domain

    Science.gov (United States)

    Devanand, Anjana; Ghosh, Subimal; Paul, Supantha; Karmakar, Subhankar; Niyogi, Dev

    2018-06-01

    Regional simulations of the seasonal Indian summer monsoon rainfall (ISMR) require an understanding of the model sensitivities to physics and resolution, and its effect on the model uncertainties. It is also important to quantify the added value in the simulated sub-regional precipitation characteristics by a regional climate model (RCM), when compared to coarse resolution rainfall products. This study presents regional model simulations of ISMR at seasonal scale using the Weather Research and Forecasting (WRF) model with the synoptic scale forcing from ERA-interim reanalysis, for three contrasting monsoon seasons, 1994 (excess), 2002 (deficit) and 2010 (normal). Impact of four cumulus schemes, viz., Kain-Fritsch (KF), Betts-Janjić-Miller, Grell 3D and modified Kain-Fritsch (KFm), and two micro physical parameterization schemes, viz., WRF Single Moment Class 5 scheme and Lin et al. scheme (LIN), with eight different possible combinations are analyzed. The impact of spectral nudging on model sensitivity is also studied. In WRF simulations using spectral nudging, improvement in model rainfall appears to be consistent in regions with topographic variability such as Central Northeast and Konkan Western Ghat sub-regions. However the results are also dependent on choice of cumulus scheme used, with KF and KFm providing relatively good performance and the eight member ensemble mean showing better results for these sub-regions. There is no consistent improvement noted in Northeast and Peninsular Indian monsoon regions. Results indicate that the regional simulations using nested domains can provide some improvements on ISMR simulations. Spectral nudging is found to improve upon the model simulations in terms of reducing the intra ensemble spread and hence the uncertainty in the model simulated precipitation. The results provide important insights regarding the need for further improvements in the regional climate simulations of ISMR for various sub-regions and contribute

  17. Multi-ensemble regional simulation of Indian monsoon during contrasting rainfall years: role of convective schemes and nested domain

    Science.gov (United States)

    Devanand, Anjana; Ghosh, Subimal; Paul, Supantha; Karmakar, Subhankar; Niyogi, Dev

    2017-08-01

    Regional simulations of the seasonal Indian summer monsoon rainfall (ISMR) require an understanding of the model sensitivities to physics and resolution, and its effect on the model uncertainties. It is also important to quantify the added value in the simulated sub-regional precipitation characteristics by a regional climate model (RCM), when compared to coarse resolution rainfall products. This study presents regional model simulations of ISMR at seasonal scale using the Weather Research and Forecasting (WRF) model with the synoptic scale forcing from ERA-interim reanalysis, for three contrasting monsoon seasons, 1994 (excess), 2002 (deficit) and 2010 (normal). Impact of four cumulus schemes, viz., Kain-Fritsch (KF), Betts-Janjić-Miller, Grell 3D and modified Kain-Fritsch (KFm), and two micro physical parameterization schemes, viz., WRF Single Moment Class 5 scheme and Lin et al. scheme (LIN), with eight different possible combinations are analyzed. The impact of spectral nudging on model sensitivity is also studied. In WRF simulations using spectral nudging, improvement in model rainfall appears to be consistent in regions with topographic variability such as Central Northeast and Konkan Western Ghat sub-regions. However the results are also dependent on choice of cumulus scheme used, with KF and KFm providing relatively good performance and the eight member ensemble mean showing better results for these sub-regions. There is no consistent improvement noted in Northeast and Peninsular Indian monsoon regions. Results indicate that the regional simulations using nested domains can provide some improvements on ISMR simulations. Spectral nudging is found to improve upon the model simulations in terms of reducing the intra ensemble spread and hence the uncertainty in the model simulated precipitation. The results provide important insights regarding the need for further improvements in the regional climate simulations of ISMR for various sub-regions and contribute

  18. Spatio-Temporal Simulation and Analysis of Regional Ecological Security Based on Lstm

    Science.gov (United States)

    Gong, C.; Qi, L.; Heming, L.; Karimian, H.; Yuqin, M.

    2017-10-01

    Region is a complicated system, where human, nature and society interact and influence. Quantitative modeling and simulation of ecology in the region are the key to realize the strategy of regional sustainable development. Traditional machine learning methods have made some achievements in the modeling of regional ecosystems, but it is difficult to determine the learning characteristics and to realize spatio-temporal simulation. Deep learning does not need prior identification of training characteristics, have excellent feature learning ability, can improve the accuracy of model prediction, so the use of deep learning model has a significant advantage. Therefore, we use net primary productivity (NPP), atmospheric optical depth (AOD), moderate-resolution imaging spectrometer (MODIS), Normalized Difference Vegetation Index (NDVI), landcover and population data, and use LSTM to do spatio-temporal simulation. We conduct spatial analysis and driving force analysis. The conclusions are as follows: the ecological deficit of northwestern Henan and urban communities such as Zhengzhou is higher. The reason of former lies in the weak land productivity of the Loess Plateau, the irrational crop cultivation mode. The latter lies in the high consumption of resources in the large urban agglomeration; The positive trend of Henan ecological development from 2013 is mainly due to the effective environmental protection policy in the 12th five-year plan; The main driver of the sustained ecological deficit growth of Henan in 2004-2013 is high-speed urbanization, increasing population and goods consumption. This article provides relevant basic scientific support and reference for the regional ecological scientific management and construction.

  19. SPATIO-TEMPORAL SIMULATION AND ANALYSIS OF REGIONAL ECOLOGICAL SECURITY BASED ON LSTM

    Directory of Open Access Journals (Sweden)

    C. Gong

    2017-10-01

    Full Text Available Region is a complicated system, where human, nature and society interact and influence. Quantitative modeling and simulation of ecology in the region are the key to realize the strategy of regional sustainable development. Traditional machine learning methods have made some achievements in the modeling of regional ecosystems, but it is difficult to determine the learning characteristics and to realize spatio-temporal simulation. Deep learning does not need prior identification of training characteristics, have excellent feature learning ability, can improve the accuracy of model prediction, so the use of deep learning model has a significant advantage. Therefore, we use net primary productivity (NPP, atmospheric optical depth (AOD, moderate-resolution imaging spectrometer (MODIS, Normalized Difference Vegetation Index (NDVI, landcover and population data, and use LSTM to do spatio-temporal simulation. We conduct spatial analysis and driving force analysis. The conclusions are as follows: the ecological deficit of northwestern Henan and urban communities such as Zhengzhou is higher. The reason of former lies in the weak land productivity of the Loess Plateau, the irrational crop cultivation mode. The latter lies in the high consumption of resources in the large urban agglomeration; The positive trend of Henan ecological development from 2013 is mainly due to the effective environmental protection policy in the 12th five-year plan; The main driver of the sustained ecological deficit growth of Henan in 2004-2013 is high-speed urbanization, increasing population and goods consumption. This article provides relevant basic scientific support and reference for the regional ecological scientific management and construction.

  20. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  1. Evaluation of a high-resolution regional climate simulation over Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Lefebre, Filip [Universite catholique de Louvain, Institut d' Astronomie et de Geophysique G. Lemaitre, Louvain-la-Neuve (Belgium); Vito - Flemish Institute for Technological Research, Integral Environmental Studies, Mol (Belgium); Fettweis, Xavier; Ypersele, Jean-Pascal van; Marbaix, Philippe [Universite catholique de Louvain, Institut d' Astronomie et de Geophysique G. Lemaitre, Louvain-la-Neuve (Belgium); Gallee, Hubert [Laboratoire de Glaciologie et de Geophysique de l' Environnement, Grenoble (France); Greuell, Wouter [Utrecht University, Institute for Marine and Atmospheric Research, Utrecht (Netherlands); Calanca, Pierluigi [Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland)

    2005-07-01

    A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere-snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model's performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere-snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations. (orig.)

  2. Monte-Carlo simulations of neutron shielding for the ATLAS forward region

    CERN Document Server

    Stekl, I; Kovalenko, V E; Vorobel, V; Leroy, C; Piquemal, F; Eschbach, R; Marquet, C

    2000-01-01

    The effectiveness of different types of neutron shielding for the ATLAS forward region has been studied by means of Monte-Carlo simulations and compared with the results of an experiment performed at the CERN PS. The simulation code is based on GEANT, FLUKA, MICAP and GAMLIB. GAMLIB is a new library including processes with gamma-rays produced in (n, gamma), (n, n'gamma) neutron reactions and is interfaced to the MICAP code. The effectiveness of different types of shielding against neutrons and gamma-rays, composed from different types of material, such as pure polyethylene, borated polyethylene, lithium-filled polyethylene, lead and iron, were compared. The results from Monte-Carlo simulations were compared to the results obtained from the experiment. The simulation results reproduce the experimental data well. This agreement supports the correctness of the simulation code used to describe the generation, spreading and absorption of neutrons (up to thermal energies) and gamma-rays in the shielding materials....

  3. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  4. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  5. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  6. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Science.gov (United States)

    Beranová, Romana; Kyselý, Jan; Hanel, Martin

    2018-04-01

    The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

  7. Environmental assessment of a uranium experimental rock blasting in Portugal, using geophysical and hydrogeological methods

    International Nuclear Information System (INIS)

    Ramalho, E C; Midões, C; Costa, A; Lourenço, M C; Monteiro Santos, F A

    2012-01-01

    The Nisa uranium deposit, located in Central Portugal, has been known since the late 1960s. Some areas were explored at that time. Today, a few open pits and dumps remain in place and are a concern to local authorities. To assess the geoenvironmental problems caused by the main mining exploration composed of an experimental rock blasting, 3D electrical conductivity and resistivity models were made to develop a hydrogeological model to understand the possibility of contaminants transportation, such as uranium, from the dumps towards a dam located nearby. These 3D models were the support to show alteration layer thickness variations and fault zones at depths controlling groundwater circulation. Spectrometric surveys were also carried out and correlated with geology and geoelectrical structure. All this information was used in the construction of the 3D steady state hydrogeological model of the experimental rock blasting of Nisa. In this model, groundwater flow and the contaminant pathways were simulated. Some areas have very high radioactive values resulting from the geological formation characteristics and old dumps. However, results of the environmental assessment using geophysical and hydrogeological methods point to a critical situation restricted only to the area of the experimental rock blasting of the Nisa uranium deposit and its dumps. (paper)

  8. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  9. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  10. The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment

    Science.gov (United States)

    Heinzeller, Dominikus; Dieng, Diarra; Smiatek, Gerhard; Olusegun, Christiana; Klein, Cornelia; Hamann, Ilse; Salack, Seyni; Bliefernicht, Jan; Kunstmann, Harald

    2018-04-01

    Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.880512). A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model (WRF). The simulations cover the validation period 1980-2010 and the two future periods 2020-2050 and 2070-2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX) initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the results suggest an increase in temperature by 1.5 °C at the coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and

  11. Simulation by a mathematical model of the groundwater flow between the Alps and the Black Forest; Part A: regional model; Part B: local model (Northern Switzerland)

    International Nuclear Information System (INIS)

    Kimmeier, F.; Perrochet, P.; Kiraly, L.

    1985-01-01

    The purpose of this report is to present the development of two hydrogeologic models of the groundwater flow regime in the crystalline of northern Switzerland. These models are constructed at two scales. The regional model (23000 km 2 ) accounts for all recharge to and discharge from the crystalline within the model boundaries. The local model (900 km 2 ) allows for greater structural, stratigraphic and topographic complexity in a more restricted area including some of the areas of interest to CEDRA. The regional model provides the hydrologic boundary conditions for the local model. All steps followed in constructing and testing the models are presented. This includes defining the areal and vertical geometry of the principal aquifers and aquitards. In addition, the hydrogeologic properties of these layers are defined; including their permeability, homogeneity, anisotropy and continuity. Discontinuities (e.g. faults) are modeled as discrete features. Hydrologic boundary conditions are specified based on observed or inferred potentiometric or flow (infiltration/exfiltration) data. The developed conceptual models are tested with program FEM 301. The results of this application consist of heads at every noidal point and recharge/discharge rates at every constant head node. These results are utilized to define the general groundwater flow regimes in the crystalline. In addition, the results are compared to observed heads and discharges in an attempt to validate the conceptual models. Representative hydraulic gradients at potential areas of interest to CEDRA are presented. Sensitivity analyses have been conducted to define the groundwater flow systems response to uncertain parameters and boundary conditions

  12. Simulation of the Indian summer monsoon onset-phase rainfall using a regional model

    KAUST Repository

    Srinivas, C. V.

    2015-09-11

    This study examines the ability of the Advanced Research WRF (ARW) regional model to simulate Indian summer monsoon (ISM) rainfall climatology in different climate zones during the monsoon onset phase in the decade 2000–2009. The initial and boundary conditions for ARW are provided from the NCEP/NCAR Reanalysis Project (NNRP) global reanalysis. Seasonal onset-phase rainfall is compared with corresponding values from 0.25° IMD (India Meteorological Department) rainfall and NNRP precipitation data over seven climate zones (perhumid, humid, dry/moist, subhumid, dry/moist, semiarid and arid) of India to see whether dynamical downscaling using a regional model yields advantages over just using large-scale model predictions. Results show that the model could simulate the onset phase in terms of progression and distribution of rainfall in most zones (except over the northeast) with good correlations and low error metrics. The observed mean onset dates and their variability over different zones are well reproduced by the regional model over most climate zones. It has been found that the ARW performed similarly to the reanalysis in most zones and improves the onset time by 1 to 3 days in zones 4 and 7, in which the NNRP shows a delayed onset compared to the actual IMD onset times. The variations in the onset-phase rainfall during the below-normal onset (June negative) and above-normal onset (June positive) phases are well simulated. The slight underestimation of onset-phase rainfall in the northeast zone could be due to failure in resolving the wide extent of topographic variations and the associated multiscale interactions in that zone. Spatial comparisons showed improvement of pentad rainfall in both space and quantity in ARW simulations over NNRP data, as evident from a wider eastward distribution of pentad rainfall over the Western Ghats, central and eastern India, as in IMD observations. While NNRP under-represented the high pentad rainfall over northeast, east and

  13. Simulation of the Indian summer monsoon onset-phase rainfall using a regional model

    Directory of Open Access Journals (Sweden)

    C. V. Srinivas

    2015-09-01

    Full Text Available This study examines the ability of the Advanced Research WRF (ARW regional model to simulate Indian summer monsoon (ISM rainfall climatology in different climate zones during the monsoon onset phase in the decade 2000–2009. The initial and boundary conditions for ARW are provided from the NCEP/NCAR Reanalysis Project (NNRP global reanalysis. Seasonal onset-phase rainfall is compared with corresponding values from 0.25° IMD (India Meteorological Department rainfall and NNRP precipitation data over seven climate zones (perhumid, humid, dry/moist, subhumid, dry/moist, semiarid and arid of India to see whether dynamical downscaling using a regional model yields advantages over just using large-scale model predictions. Results show that the model could simulate the onset phase in terms of progression and distribution of rainfall in most zones (except over the northeast with good correlations and low error metrics. The observed mean onset dates and their variability over different zones are well reproduced by the regional model over most climate zones. It has been found that the ARW performed similarly to the reanalysis in most zones and improves the onset time by 1 to 3 days in zones 4 and 7, in which the NNRP shows a delayed onset compared to the actual IMD onset times. The variations in the onset-phase rainfall during the below-normal onset (June negative and above-normal onset (June positive phases are well simulated. The slight underestimation of onset-phase rainfall in the northeast zone could be due to failure in resolving the wide extent of topographic variations and the associated multiscale interactions in that zone. Spatial comparisons showed improvement of pentad rainfall in both space and quantity in ARW simulations over NNRP data, as evident from a wider eastward distribution of pentad rainfall over the Western Ghats, central and eastern India, as in IMD observations. While NNRP under-represented the high pentad rainfall over

  14. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  15. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data.

    The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.

    Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  16. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    2003-03-01

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data. The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  17. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  18. Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions

    Directory of Open Access Journals (Sweden)

    Yunsong Han

    2017-12-01

    Full Text Available In the current context of increasing energy demand, timber-glass buildings will become a necessary trend in sustainable architecture in the future. Especially in severe cold zones of China, energy consumption and the visual comfort of residential buildings have attracted wide attention, and there are always trade-offs between multiple objectives. This paper aims to propose a simulation-based multiobjective optimization method to improve the daylighting, energy efficiency, and economic performance of timber-glass buildings in severe cold regions. Timber-glass building form variables have been selected as the decision variables, including building width, roof height, south and north window-to-wall ratio (WWR, window height, and orientation. A simulation-based multiobjective optimization model has been developed to optimize these performance objectives simultaneously. The results show that Daylighting Autonomy (DA presents negative correlations with Energy Use Intensity (EUI and total cost. Additionally, with an increase in DA, Useful Daylighting Illuminance (UDI demonstrates a tendency of primary increase and then decrease. Using this optimization model, four building performances have been improved from the initial generation to the final generation, which proves that simulation-based multiobjective optimization is a promising approach to improve the daylighting, energy efficiency, and economic performances of timber-glass buildings in severe cold regions.

  19. Hydrogeological characterization of the Stripa site

    International Nuclear Information System (INIS)

    Gale, J.; Macleod, R.; Welhan, J.; Cole, C.; Vail, L.

    1987-06-01

    This study was initiated in January, 1986, to determine a) if the permeability of the rock mass in the immediate mine area was anisotropic, b) the effective and total fracture porosity distributions based on field and laboratory data and c) the three-dimensional configuration of the groundwater flow system at Stripa in order to properly interpret the hydrogeological, geochemical and isotopic data. The total and flow porosities of single fractures from Stripa were determined in the laboratory using a resin impregnation technique. The three-dimensional numerical model gave mine inflows that were consistent with the measured mine inflows with perturbations extending to at least 3,000 m of depth. (orig./DG)

  20. Hydrogeological reconnaissance study: Dyfi Valley, Wales

    International Nuclear Information System (INIS)

    Glendining, S.J.

    1981-10-01

    This report describes work carried out for the Department of the Environment as part of its research programme into radioactive waste management. It presents an account of a hydrogeological reconnaissance study in the Dyfi Valley area of Central Wales. Initially the purposes of such a study are given and the assumptions used in deriving parameters such as flow volume, path length and transit time in areas of massive fractured rocks are described. Using these assumptions with geological, topographic and hydrometeorological data the potential ranges in properties such as bulk hydraulic conductivity, path lengths, hydraulic gradients and volumes of groundwater flow have been determined. These ranges have been used to estimate solute transport model parameters. The limitations and usefulness of the reconnaissance study in planning research and siting exploratory boreholes in the Dyfi area are discussed. (author)

  1. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the storage coefficient, porosity, compressibility and fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided. The fracture data for the first three of the sites listed above are contained in this volume. The fracture data for the remaining research research sites are discussed in Volume 4

  2. Allocating risk capital for a brownfields redevelopment project under hydrogeological and financial uncertainty.

    Science.gov (United States)

    Yu, Soonyoung; Unger, Andre J A; Parker, Beth; Kim, Taehee

    2012-06-15

    In this study, we defined risk capital as the contingency fee or insurance premium that a brownfields redeveloper needs to set aside from the sale of each house in case they need to repurchase it at a later date because the indoor air has been detrimentally affected by subsurface contamination. The likelihood that indoor air concentrations will exceed a regulatory level subject to subsurface heterogeneity and source zone location uncertainty is simulated by a physics-based hydrogeological model using Monte Carlo realizations, yielding the probability of failure. The cost of failure is the future value of the house indexed to the stochastic US National Housing index. The risk capital is essentially the probability of failure times the cost of failure with a surcharge to compensate the developer against hydrogeological and financial uncertainty, with the surcharge acting as safety loading reflecting the developers' level of risk aversion. We review five methodologies taken from the actuarial and financial literature to price the risk capital for a highly stylized brownfield redevelopment project, with each method specifically adapted to accommodate our notion of the probability of failure. The objective of this paper is to develop an actuarially consistent approach for combining the hydrogeological and financial uncertainty into a contingency fee that the brownfields developer should reserve (i.e. the risk capital) in order to hedge their risk exposure during the project. Results indicate that the price of the risk capital is much more sensitive to hydrogeological rather than financial uncertainty. We use the Capital Asset Pricing Model to estimate the risk-adjusted discount rate to depreciate all costs to present value for the brownfield redevelopment project. A key outcome of this work is that the presentation of our risk capital valuation methodology is sufficiently generalized for application to a wide variety of engineering projects. Copyright © 2012 Elsevier

  3. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs

  4. Hydrogeological characterization of peculiar Apenninic springs

    Science.gov (United States)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  5. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  6. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  7. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  8. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  9. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  10. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  11. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    KAUST Repository

    Osipov, Sergey

    2018-01-19

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  12. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    Science.gov (United States)

    Osipov, Sergey; Stenchikov, Georgiy

    2018-02-01

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  13. Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.

    Science.gov (United States)

    Yu, Qingbao; Du, Yuhui; Chen, Jiayu; He, Hao; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2017-11-01

    A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data. Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios. Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios. Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth. Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    International Nuclear Information System (INIS)

    Yamazawa, H.; Ohkura, T.; Iida, T.; Chino, M.; Nagai, H.

    2003-01-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  15. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  16. Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

    International Nuclear Information System (INIS)

    Wiacek, U.; Krynicka, E.

    2005-02-01

    Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H 3 BO 3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems. (author)

  17. A review on vegetation models and applicability to climate simulations at regional scale

    Science.gov (United States)

    Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki

    2011-11-01

    The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.

  18. Climate change due to greenhouse effects in China as simulated by a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.J.; Zhao, Z.C.; Ding, Y.H.; Huang, R.H.; Giorgi, F. [National Climate Centre, Beijing (China)

    2001-07-01

    Impacts of greenhouse effects (2 x CO{sub 2}) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 x CO{sub 2}) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 x CO{sub 2} showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO{sub 2} doubling.

  19. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  20. Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington

    International Nuclear Information System (INIS)

    Liikala, T.L.

    1994-09-01

    US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management

  1. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-01-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado’s Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%–450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  2. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions

    Science.gov (United States)

    Shultz, Christopher D.; Bailey, Ryan T.; Gates, Timothy K.; Heesemann, Brent E.; Morway, Eric D.

    2018-05-01

    Elevated levels of selenium (Se) in aqueous environments can harm aquatic life and endanger livestock and human health. Although Se occurs naturally in the rocks and soils of many alluvial aquifers, mining and agricultural activities can increase its rate of mobilization and transport to surface waters. Attention is given here to regions where nonpoint source return flows from irrigated lands carry pollutant loads to aquifers and streams, contributing to concentrations that violate regulatory and performance standards. Of particular concern is the heightened level and mobilization of Se influenced by nitrate (NO3), a harmful pollutant in its own right. We present a numerical model that simulates the reactive transport of Se and nitrogen (N) species in a coupled groundwater-surface water system. Building upon a conceptual model that incorporates the major processes affecting Se and NO3 transport in an irrigated watershed, the model links the finite-difference models MODFLOW, UZF-RT3D, and OTIS, to simulate flow and reactive transport of multiple chemical species in both the aquifer and a stream network, with mass exchange between the two. The capability of the new model is showcased by calibration, testing, and application to a 500 km2 region in Colorado's Lower Arkansas River Valley using a rich data set gathered over a 10-yr period. Simulation of spatial and temporal distributions of Se concentration reveals conditions that exceed standards in groundwater for approximately 20% of the area. For the Arkansas River, standards are exceeded by 290%-450%. Simulation indicates that river concentrations of NO3 alone are near the current interim standard for the total of all dissolved N species. These results indicate the need for future use of the developed model to investigate the prospects for land and water best management practices to decrease pollutant levels.

  3. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan

    2004-07-01

    It is well known that regional climate simulations are sensitive to the size and position of the domain chosen for calculations. Here we study the physical mechanisms of this sensitivity. We conducted simulations with the Regional Atmospheric Modeling System (RAMS) for June 2000 over North America at 50 km horizontal resolution using a 7500 km × 5400 km grid and NCEP/NCAR reanalysis as boundary conditions. The position of the domain was displaced in several directions, always maintaining the U.S. in the interior, out of the buffer zone along the lateral boundaries. Circulation biases developed a large scale structure, organized by the Rocky Mountains, resulting from a systematic shifting of the synoptic wave trains that crossed the domain. The distortion of the large-scale circulation was produced by interaction of the modeled flow with the lateral boundaries of the nested domain and varied when the position of the grid was altered. This changed the large-scale environment among the different simulations and translated into diverse conditions for the development of the mesoscale processes that produce most of precipitation for the Great Plains in the summer season. As a consequence, precipitation results varied, sometimes greatly, among the experiments with the different grid positions. To eliminate the dependence of results on the position of the domain, we used spectral nudging of waves longer than 2500 km above the boundary layer. Moisture was not nudged at any level. This constrained the synoptic scales to follow reanalysis while allowing the model to develop the small-scale dynamics responsible for the rainfall. Nudging of the large scales successfully eliminated the variation of precipitation results when the grid was moved. We suggest that this technique is necessary for all downscaling studies with regional models with domain sizes of a few thousand kilometers and larger embedded in global models.

  4. Antarctic 20th Century Accumulation Changes Based on Regional Climate Model Simulations

    Directory of Open Access Journals (Sweden)

    Klaus Dethloff

    2010-01-01

    investigated on the basis of ERA-40 data and HIRHAM simulations. It is shown that the regional accumulation changes are largely driven by changes in the transient activity around the Antarctic coasts due to the varying AAO phases. During positive AAO, more transient pressure systems travelling towards the continent, and Western Antarctica and parts of South-Eastern Antarctica gain more precipitation and mass. Over central Antarctica the prevailing anticyclone causes a strengthening of polar desertification connected with a reduced surface mass balance in the northern part of East Antarctica.

  5. Simulations of the broad line region of NGC 5548 with CLOUDY code: Temperature determination

    Directory of Open Access Journals (Sweden)

    Ilić D.

    2007-01-01

    Full Text Available In this paper an analysis of the physical properties of the Broad Line Region (BLR of the active galaxy NGC 5548 is presented. Using the photoionization code CLOUDY and the measurements of Peterson et al. (2002, the physical conditions of the BLR are simulated and the BLR temperature is obtained. This temperature was compared to the temperature estimated with the Boltzmann-Plot (BP method (Popović et al. 2007. It was shown that the measured variability in the BLR temperature could be due to the change in the hydrogen density.

  6. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  7. Urban hydrogeology in Indonesia: A highlight from Jakarta

    Science.gov (United States)

    Lubis, R. F.

    2018-02-01

    In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

  8. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2015-10-30

    ://www.ajol.info/index.php/jasem http://www.bioline.org.br/ja. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater System in Parts of. Benin Metropolis, Benin City Nigeria: The Key to Groundwater Sustainability.

  9. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  10. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  11. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  12. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  13. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    International Nuclear Information System (INIS)

    Ter Maat, H.W.; Hutjes, R.W.A.; Miglietta, F.; Gioli, B.; Bosveld, F.C.; Vermeulen, A.T.; Fritsch, H.

    2010-08-01

    This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

  14. Prospective developments, production and revenues from the UKCS 1995-2000: a financial and regional simulation

    International Nuclear Information System (INIS)

    Kemp, A.G.; Stephen, L.

    1996-01-01

    This paper examines the development and production prospects for oil and gas from the UKCS in the period 1995-2000 using a financial simulation model applied to a large database. Emphasis is given to the prospects in the different regions of the UKCs. Oil production is likely to peak in the period and decline slowly thereafter. Gas production will increase substantially throughout the period to 2000. The relative importance of the central North Sea as a producing region will increase substantially in the period, while the northern North Sea will show a decrease. Investment patterns will reflect these trends. Revenues from the UKCS will continue to make a substantial contribution to the economy. The UK should be more than self sufficient in oil and to beyond 2000. Potential gas production should also exceed UK gas demand well beyond 2000. (author)

  15. Reducing Ambulance Diversion at Hospital and Regional Levels: Systemic Review of Insights from Simulation Models

    Directory of Open Access Journals (Sweden)

    M Kit Delgado

    2013-09-01

    Full Text Available Introduction: Optimal solutions for reducing diversion without worsening emergency department (ED crowding are unclear. We performed a systematic review of published simulation studies to identify: 1 the tradeoff between ambulance diversion and ED wait times; 2 the predicted impact of patient flow interventions on reducing diversion; and 3 the optimal regional strategy for reducing diversion.Methods: Data Sources: Systematic review of articles using MEDLINE, Inspec, Scopus. Additional studies identified through bibliography review, Google Scholar, and scientific conference proceedings. Study Selection: Only simulations modeling ambulance diversion as a result of ED crowding or inpatient capacity problems were included. Data extraction: Independent extraction by two authors using predefined data fields.Results: We identified 5,116 potentially relevant records; 10 studies met inclusion criteria. In models that quantified the relationship between ED throughput times and diversion, diversion was found to only minimally improve ED waiting room times. Adding holding units for inpatient boarders and ED-based fast tracks, improving lab turnaround times, and smoothing elective surgery caseloads were found to reduce diversion considerably. While two models found a cooperative agreement between hospitals is necessary to prevent defensive diversion behavior by a hospital when a nearby hospital goes on diversion, one model found there may be more optimal solutions for reducing region wide wait times than a regional ban on diversion.Conclusion: Smoothing elective surgery caseloads, adding ED fast tracks as well as holding units for inpatient boarders, improving ED lab turnaround times, and implementing regional cooperative agreements among hospitals. [West J Emerg Med. 2013;14(5:489-498.

  16. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  17. Signal displacement in spiral-in acquisitions: simulations and implications for imaging in SFG regions.

    Science.gov (United States)

    Brewer, Kimberly D; Rioux, James A; Klassen, Martyn; Bowen, Chris V; Beyea, Steven D

    2012-07-01

    Susceptibility field gradients (SFGs) cause problems for functional magnetic resonance imaging (fMRI) in regions like the orbital frontal lobes, leading to signal loss and image artifacts (signal displacement and "pile-up"). Pulse sequences with spiral-in k-space trajectories are often used when acquiring fMRI in SFG regions such as inferior/medial temporal cortex because it is believed that they have improved signal recovery and decreased signal displacement properties. Previously postulated theories explain differing reasons why spiral-in appears to perform better than spiral-out; however it is clear that multiple mechanisms are occurring in parallel. This study explores differences in spiral-in and spiral-out images using human and phantom empirical data, as well as simulations consistent with the phantom model. Using image simulations, the displacement of signal was characterized using point spread functions (PSFs) and target maps, the latter of which are conceptually inverse PSFs describing which spatial locations contribute signal to a particular voxel. The magnitude of both PSFs and target maps was found to be identical for spiral-out and spiral-in acquisitions, with signal in target maps being displaced from distant regions in both cases. However, differences in the phase of the signal displacement patterns that consequently lead to changes in the intervoxel phase coherence were found to be a significant mechanism explaining differences between the spiral sequences. The results demonstrate that spiral-in trajectories do preserve more total signal in SFG regions than spiral-out; however, spiral-in does not in fact exhibit decreased signal displacement. Given that this signal can be displaced by significant distances, its recovery may not be preferable for all fMRI applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  19. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  20. Performance of Regional Climate Model in Simulating Monsoon Onset Over Indian Subcontinent

    Science.gov (United States)

    Bhatla, R.; Mandal, B.; Verma, Shruti; Ghosh, Soumik; Mall, R. K.

    2018-06-01

    The performance of various Convective Parameterization Schemes (CPSs) of Regional Climate Model version 4.3 (RegCM-4.3) for simulation of onset phase of Indian summer monsoon (ISM) over Kerala was studied for the period of 2001-2010. The onset date and its associated spatial variation were simulated using RegCM-4.3 four core CPS, namely Kuo, Tiedtke, Emanuel and Grell; and with two mixed convection schemes Mix98 (Emanuel over land and Grell over ocean) and Mix99 (Grell over land and Emanuel over ocean) on the basis of criteria given by the India Meteorological Department (IMD) (Pai and Rajeevan in Indian summer monsoon onset: variability and prediction. National Climate Centre, India Meteorological Department, 2007). It has been found that out of six CPS, two schemes, namely Tiedtke and Mix99 simulated the onset date properly. The onset phase is characterized with several transition phases of atmosphere. Therefore, to study the thermal response or the effect of different sea surface temperature (SST), namely ERA interim (ERSST) and weekly optimal interpolation (OI_WK SST) on Indian summer monsoon, the role of two different types of SST has been used to investigate the simulated onset date. In addition, spatial atmospheric circulation pattern during onset phase were analyzed using reanalyze dataset of ERA Interim (EIN15) and National Oceanic and Atmospheric Administration (NOAA), respectively, for wind and outgoing long-wave radiation (OLR) pattern. Among the six convective schemes of RegCM-4.3 model, Tiedtke is in good agreement with actual onset dates and OI_WK SST forcing is better for simulating onset of ISM over Kerala.

  1. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  2. Drilling methods to keep the hydrogeological parameters of natural aquifer

    International Nuclear Information System (INIS)

    Chen Xiaoqin

    2004-01-01

    In hydrogeological drilling, how to keep the hydrogeological parameters of natural aquifer unchanged is a deeply concerned problem for the technicians, this paper introduces the methods taken by the state-owned 'Red Hill' geological company of Uzbekistan. By the research and contrast of different kinds of flush liquid, the company has found the methods to reduce the negative effects of drilling on the permeability of the vicinal aquifer. (author)

  3. An evaluation of hydrogeologic data of crystalline rock systems

    International Nuclear Information System (INIS)

    Raven, K.G.; Lafleur, D.W.

    1986-12-01

    This report presents a detailed review of hydrogeologic data collected as part of various research programs investigating fractured crystalline rock around the world. Based on the available information describing the test equipment, test methods and analytical techniques, the data have been assessed in terms of their reliability and representativeness, and likely error ranges have been assigned. The data reviewed include both hydrogeologic parameters, such as permeability, storage coefficient components (principally porosity), and fracture characteristic data

  4. Temperature Changes In Poland In 21st Century – Results Of Global Simulation And Regional Downscaling

    Directory of Open Access Journals (Sweden)

    Pilarski Michał

    2015-09-01

    Full Text Available The main source of information about future climate changes are the results of numerical simulations performed in scientific institutions around the world. Present projections from global circulation models (GCMs are too coarse and are only usefulness for the world, hemisphere or continent spatial analysis. The low horizontal resolution of global models (100–200 km, does not allow to assess climate changes at regional or local scales. Therefore it is necessary to lead studies concerning how to detail the GCMs information. The problem of information transfer from the GCMs to higher spatial scale solve: dynamical and statistical downscaling. The dynamical downscaling method based on “nesting” global information in a regional models (RCMs, which solve the equations of motion and the thermodynamic laws in a small spatial scale (10–50 km. However, the statistical downscaling models (SDMs identify the relationship between large-scale variable (predictor and small-scale variable (predictand implementing linear regression. The main goal of the study was to compare the global model scenarios of thermal condition in Poland in XXI century with the more accurate statistical and dynamical regional models outcomes. Generally studies confirmed usefulness of statistical downscaling to detail information from GCMs. Basic results present that regional models captured local aspects of thermal conditions variability especially in coastal zone.

  5. Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations.

    Science.gov (United States)

    Gerlach, Kathy D; Spreng, R Nathan; Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    We spend much of our daily lives imagining how we can reach future goals and what will happen when we attain them. Despite the prevalence of such goal-directed simulations, neuroimaging studies on planning have mainly focused on executive processes in the frontal lobe. This experiment examined the neural basis of process simulations, during which participants imagined themselves going through steps toward attaining a goal, and outcome simulations, during which participants imagined events they associated with achieving a goal. In the scanner, participants engaged in these simulation tasks and an odd/even control task. We hypothesized that process simulations would recruit default and frontoparietal control network regions, and that outcome simulations, which allow us to anticipate the affective consequences of achieving goals, would recruit default and reward-processing regions. Our analysis of brain activity that covaried with process and outcome simulations confirmed these hypotheses. A functional connectivity analysis with posterior cingulate, dorsolateral prefrontal cortex and anterior inferior parietal lobule seeds showed that their activity was correlated during process simulations and associated with a distributed network of default and frontoparietal control network regions. During outcome simulations, medial prefrontal cortex and amygdala seeds covaried together and formed a functional network with default and reward-processing regions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Hydrogeology in North America: past and future

    Science.gov (United States)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  7. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    Science.gov (United States)

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  8. Performance of the CORDEX regional climate models in simulating offshore wind and wind potential

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-03-01

    This study is oriented towards quantification of the skill addition by regional climate models (RCMs) in the parent general circulation models (GCMs) while simulating wind speed and wind potential with particular reference to the Indian offshore region. To arrive at a suitable reference dataset, the performance of wind outputs from three different reanalysis datasets is evaluated. The comparison across the RCMs and their corresponding parent GCMs is done on the basis of annual/seasonal wind statistics, intermodel bias, wind climatology, and classes of wind potential. It was observed that while the RCMs could simulate spatial variability of winds, well for certain subregions, they generally failed to replicate the overall spatial pattern, especially in monsoon and winter. Various causes of biases in RCMs were determined by assessing corresponding maps of wind vectors, surface temperature, and sea-level pressure. The results highlight the necessity to carefully assess the RCM-yielded winds before using them for sensitive applications such as coastal vulnerability and hazard assessment. A supplementary outcome of this study is in form of wind potential atlas, based on spatial distribution of wind classes. This could be beneficial in suitably identifying viable subregions for developing offshore wind farms by intercomparing both the RCM and GCM outcomes. It is encouraging that most of the RCMs and GCMs indicate that around 70% of the Indian offshore locations in monsoon would experience mean wind potential greater than 200 W/m2.

  9. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Science.gov (United States)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  10. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Zhang, Haocheng; Taylor, Greg; Li, Hui; Guo, Fan

    2017-01-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  11. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haocheng; Taylor, Greg [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Li, Hui; Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  12. Hydrogeology - HYDROGEOL_SETTINGS_IN: Hydrogeologic Terrains and Settings of Indiana (Indiana Geological Survey, 1:100,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGEOL_SETTINGS_IN is a polygon shapefile that shows hydrogeologic terrains and settings of Indiana. The methodology of the investigation and definitions of terms...

  13. Identification and climatology of Alpine pumping from a regional climate simulation

    Directory of Open Access Journals (Sweden)

    Maximilian eGraf

    2016-02-01

    Full Text Available The thermally driven circulation between the European Alps and the alpine foreland - named Alpine pumping – occurs regularly under clear and calm weather conditions. While previous studies focused on the impact of Alpine pumping on moist convection and transport of air pollutants, this study was motivated by its ventilation effect for Munich, located about 50 km north of the Alps in undulating and only slightly inclined terrain, where local thermal circulations are weak. Hourly data from a reanalysis driven regional climate simulation with COSMO-CLM model for the period 1989 to 2008 were analysed to identify days with Alpine pumping and to determine the mean diurnal characteristics of this regional thermal circulation. Four literature derived combinations of meteorological criteria were tested to identify days favorable for Alpine pumping from COSMO-CLM results. The first criterion selects days with a daily sum of solar radiation ≥20 MJ/m2 and has been used in an earlier observational study. On average 60 d/y are fulfilling the criterion in the model simulation, which compares well to the 67 d/y determined from observations. The other three criteria combinations consider a maximum wind velocity at 850 hPa, a maximum daily precipitation sum, and/or a maximum mean cloud cover. The mean annual number of selected days is lower for these criteria combinations and ranges between 20 and 52. Diurnal wind reversals occur on 77 to 81% of the selected days, depending on the criteria combinationThe daily solar radiation sum of 20 MJ/m2 is only exceeded during April to September, while days satisfying the criteria combinations without the radiation threshold occur all year round. In agreement with observations, the simulated regional thermally driven wind field extends up to ~100 km north of the Alps with average near-surface wind speeds of 0.5-1.5 m/s in the Munich area. With increasing distance from the Alps, the diurnal cycle of Alpine pumping is

  14. Capturing flood-to-drought transitions in regional climate model simulations

    Science.gov (United States)

    Anders, Ivonne; Haslinger, Klaus; Hofstätter, Michael; Salzmann, Manuela; Resch, Gernot

    2017-04-01

    In previous studies atmospheric cyclones have been investigated in terms of related precipitation extremes in Central Europe. Mediterranean (Vb-like) cyclones are of special relevance as they are frequently related to high atmospheric moisture fluxes leading to floods and landslides in the Alpine region. Another focus in this area is on droughts, affecting soil moisture and surface and sub-surface runoff as well. Such events develop differently depending on available pre-saturation of water in the soil. In a first step we investigated two time periods which encompass a flood event and a subsequent drought on very different time scales, one long lasting transition (2002/2003) and a rather short one between May and August 2013. In a second step we extended the investigation to the long time period 1950-2016. We focused on high spatial and temporal scales and assessed the currently achievable accuracy in the simulation of the Vb-events on one hand and following drought events on the other hand. The state-of-the-art regional climate model CCLM is applied in hindcast-mode simulating the single events described above, but also the time from 1948 to 2016 to evaluate the results from the short runs to be valid for the long time period. Besides the conventional forcing of the regional climate model at its lateral boundaries, a spectral nudging technique is applied. The simulations covering the European domain have been varied systematically different model parameters. The resulting precipitation amounts have been compared to E-OBS gridded European precipitation data set and a recent high spatially resolved precipitation data set for Austria (GPARD-6). For the drought events the Standardized Precipitation Evapotranspiration Index (SPEI), soil moisture and runoff has been investigated. Varying the spectral nudging setup helps us to understand the 3D-processes during these events, but also to identify model deficiencies. To improve the simulation of such events in the past

  15. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Science.gov (United States)

    Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C.

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  16. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M.; Raeisaenen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willen, U.; Hansson, U.; Jones, C. [Rossby Centre, Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2001-03-01

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results. (orig.)

  17. Analysis of inventory strategies for blood components in a regional blood center using process simulation.

    Science.gov (United States)

    Baesler, Felipe; Nemeth, Matías; Martínez, Cristina; Bastías, Alfonso

    2014-02-01

    The storage of blood components is an important concern in the blood supply chain. Because these are perishable products, the definition of good inventory policies is crucial to reduce shortages and spills. To analyze and propose inventory policies in a regional blood center, a discrete event simulation model was created using simulation software (Arena 12.0, Rockwell Software). The model replicates the activities that are performed along the supply chain including donation arrivals, testing, production, inventory management, and dispatching. Twelve different scenarios were analyzed, with each one representing different inventory policies composed of a combination of an optimal inventory, a reorder point, and a level of extra donations. The best scenario demonstrates that it is possible to decrease unsatisfied demand and wastage of red blood cell units by 2.5 and 3%, respectively, when compared to current practices. This study shows that simulation is an alternative that can be used to model inventory components in blood centers. A responsible selection of inventory variables can improve the capability of the system to respond to the final patient requirements. © 2013 American Association of Blood Banks.

  18. The simulation of naturally ventilated residential buildings in semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Ghiabaklou, Z.; Ballinger, J.A.; Prasad, D.K. [New South Wales Univ., Kensington, NSW (Australia). Solar Architecture Research Unit

    1995-12-31

    The most important consideration in hot arid and semi-arid zones is to reduce the internal day temperature and to maintain the interior spaces of buildings in a comfortable condition. An important contributor to errors in the thermal analysis of naturally ventilated buildings is inaccurate airflow predictions. These predictions are important for designers in regions where most buildings are naturally ventilated. Passive cooling by day and night natural ventilation in a single story residential building in Wagga Wagga, a semi-arid location in New South Wales has been compared and analyzed theoretically. A modified version of the computer simulation program CHEETAH, has been used to consider a building with continuous natural ventilation to simulate indoor air temperature. The aim of the study was to investigate the thermal behaviour of the building with continuous ventilation (24 hour/day) and the same building with only night time ventilation. Using night time ventilation in high mass buildings in such a climate, leads to a considerable decrease in room air temperature. Simulation results showed that increasing the effective area of windows is effective only when the wind blows. Using a steady averaged air change per hour can also cause a reduction in room air temperatures which results in different temperatures than the actual air changes per hour. (author). 3 figs., 4 refs.

  19. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Energy Technology Data Exchange (ETDEWEB)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com [Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia)

    2015-04-24

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  20. Numerical Simulation on the Partition of Gas-Rich Region in Overlying Strata

    Directory of Open Access Journals (Sweden)

    G. Wang

    2014-03-01

    Full Text Available In the background of Kongzhuang coal mine 7433 working face, theoretical analysis and numerical simulation are adopted. The partition method of gas-rich region in overlying strata based on the key stratum is proposed. Overlying stratas are divided into low concentration and easy for gas drainage area, high concentration and easy for drainage area, primary stress zone according to the control action of key stratum in overlying stratas. The numerical simulation shows that fissure development range is gradually scaling up ,and the development range of bed separated fissures and vertical fissures extend to the second inferior key stratum step-by-step with the working face moving forward The fissure development range stabilizes as the roof periodic motion and moves forward with the working face moving forward. Compared to traditional empirical formula calculation result, the top boundary of high concentration and easy for drainage area according to this method is higher than the calculated limit of water flowing fractured zone. The design of gas drainage can be more accurately guided. Better gas drainage effect is obtained by the design of gas drainage in 7433 working face which is based on this method and the numerical simulation result. The effectiveness and rationality of this method are verified.

  1. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  2. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  3. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    Armenia is a landlocked country located in the mountainous Caucasus region between Asia and Europe. It shares borders with the countries of Georgia on the north, Azerbaijan on the east, Iran on the south, and Turkey and Azerbaijan on the west. The Ararat Basin is a transboundary basin in Armenia and Turkey. The Ararat Basin (or Ararat Valley) is an intermountain depression that contains the Aras River and its tributaries, which also form the border between Armenia and Turkey and divide the basin into northern and southern regions. The Ararat Basin also contains Armenia’s largest agricultural and fish farming zone that is supplied by high-quality water from wells completed in the artesian aquifers that underlie the basin. Groundwater constitutes about 40 percent of all water use, and groundwater provides 96 percent of the water used for drinking purposes in Armenia. Since 2000, groundwater withdrawals and consumption in the Ararat Basin of Armenia have increased because of the growth of aquaculture and other uses. Increased groundwater withdrawals caused decreased springflow, reduced well discharges, falling water levels, and a reduction of the number of flowing artesian wells in the southern part of Ararat Basin in Armenia.In 2016, the U.S. Geological Survey and the U.S. Agency for International Development (USAID) began a cooperative study in Armenia to share science and field techniques to increase the country’s capabilities for groundwater study and modeling. The purpose of this report is to describe the hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia based on data collected in 2016 and previous hydrogeologic studies. The study area includes the Ararat Basin in Armenia. This report was completed through a partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships effort through the Advanced Science and Partnerships for Integrated Resource Development program and associated

  4. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  5. Hydrogeological Studies of Mendhwan Watershed, Ahmadnagar District, Maharashtra, India

    Science.gov (United States)

    Muley, R. B.; Babar, Md.; Kulkarni, P. S.

    2011-07-01

    The Mendhwan watershed area is a part of chronic drought prone region of Ahmadnagar district of Maharashtra state, India which is considered for the study with reference to hydrogeological characteristics in Deccan basaltic terrain. In order to enhance groundwater availability and to demarcate the area of high groundwater potential, Geoforum, Parbhani Chapter has carried out hydrological investigation of this watershed area. Geologically, the study area belongs to the Deccan trap basalts of late Cretaceous to early Eocene period. The entire study area consists of thin irregular vesicular-amygdaloidal basalt flows also known as compound pahoehoe flows. The area is traversed by two prominent dykes, which are almost perpendicular to each other. In most of the southern part of the area, amygdaloidal basalt is exposed at the surface. The fresh amygdaloidal basalt flow is free from joints and occurs as homogeneous watertight mass. As dykes are jointed, they provide favorable conditions for percolation and ground water potential of this area is found to be satisfactory. It was observed that in Mendhwan area a large number of water conservation structures have been constructed across the streams. Incidentally groundwater potential shows notable increase only in those localities where the structures had been constructed on the dyke rock. The result of the study is found to be very much beneficial to the rural populace of this draught prone area so as to plan the optimum utilization of this precious natural resource.

  6. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  7. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  8. Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia)

    Science.gov (United States)

    Tringali, C.; Re, V.; Siciliano, G.; Chkir, N.; Tuci, C.; Zouari, K.

    2017-08-01

    Sustainable groundwater management strategies in water-scarce countries need to guide future decision-making processes pragmatically, by simultaneously considering local needs, environmental problems and economic development. The socio-hydrogeological approach named `Bir Al-Nas' has been tested in the Grombalia region (Cap Bon Peninsula, Tunisia), to evaluate the effectiveness of complementing hydrogeochemical and hydrogeological investigations with the social dimension of the issue at stake (which, in this case, is the identification of groundwater pollution sources). Within this approach, the social appraisal, performed through social network analysis and public engagement of water end-users, allowed hydrogeologists to get acquainted with the institutional dimension of local groundwater management, identifying issues, potential gaps (such as weak knowledge transfer among concerned stakeholders), and the key actors likely to support the implementation of the new science-based management practices resulting from the ongoing hydrogeological investigation. Results, hence, go beyond the specific relevance for the Grombaila basin, showing the effectiveness of the proposed approach and the importance of including social assessment in any given hydrogeological research aimed at supporting local development through groundwater protection measures.

  9. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A.

    1994-07-01

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  10. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    Science.gov (United States)

    Alexandru, Adelina; Sushama, Laxmi

    2015-08-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium- Range Weather Forecasts (ECMWF) Re- Analysis (ERA- 40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of

  11. Impacts of deforestation and afforestation in the Mediterranean region as simulated by the MPI atmospheric GCM

    Science.gov (United States)

    Dümenil Gates, Lydia; Ließ, Stefan

    2001-10-01

    For two reasons it is important to study the sensitivity of the global climate to changes in the vegetation cover over land. First, in the real world, changes in the vegetation cover may have regional and global implications. Second, in numerical simulations, the sensitivity of the simulated climate may depend on the specific parameterization schemes employed in the model and on the model's large-scale systematic errors. The Max-Planck-Institute's global general circulation model ECHAM4 has been used to study the sensitivity of the local and global climate during a full annual cycle to deforestation and afforestation in the Mediterranean region. The deforestation represents an extreme desertification scenario for this region. The changes in the afforestation experiment are based on the pattern of the vegetation cover 2000 years before present when the climate in the Mediterranean was more humid. The comparison of the deforestation integration to the control shows a slight cooling at the surface and reduced precipitation during the summer as a result of less evapotranspiration of plants and less evaporation from the assumption of eroded soils. There is no significant signal during the winter season due to the stronger influence of the mid-latitude baroclinic disturbances. In general, the results of the afforestation experiment are opposite to those of the deforestation case. A significant response was found in the vicinity of grid points where the land surface characteristics were modified. The response in the Sahara in the afforestation experiment is in agreement with the results from other general circulation model studies.

  12. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

    International Nuclear Information System (INIS)

    Chevillard, A.; Ciais, P.; Lafont, S.

    2002-01-01

    The spatial distribution and the temporal variability of atmospheric CO 2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO 2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO 2 fluxes as driven by the modelled meteorology. The uptake of CO 2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO 2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO 2 emissions and air-sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO 2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO 2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO 2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO 2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes

  13. Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.

    Science.gov (United States)

    Heale, C. J.; Snively, J. B.

    2017-12-01

    Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.

  14. North-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  15. North-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  16. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  17. Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps

    Science.gov (United States)

    Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter

    2017-04-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.

  18. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  19. Manual on mathematical models in isotope hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.

  20. 2101-M Pond hydrogeologic characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  1. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  2. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  3. Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2015-07-01

    Full Text Available Scaled-down flume tests are largely used to support investigations for the assessment of hydrogeological risk. Achieved outcomes can be integrated to numerical analyses for the study of unstable slope collapse, debris transport, and hydrological models in general. In the set-up of such simulation platforms, a relevant role has to be given to the Spatial Sensor Network (SSN which is in charge of collecting geo-referenced, quantitative information during experiments. Photogrammetry (including 3-D imaging sensors can play an important role in SSN because of its capability of collecting information covering wide surfaces without any contact. The aim of this paper is to give an overview and some examples of the potential of photogrammetry in hydrogeological simulation experiments. After a general introduction on a few preliminary issues (sensors, calibration, ground reference, usage of imaging or ranging sensors, potential applications are classified into 2-D and 3-D categories. Examples are focused on a scaled-down landslide simulation platform, which has been developed at Tongji University (Shanghai, P.R. China.

  4. Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations

    Science.gov (United States)

    Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.

    2018-01-01

    We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.

  5. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    Science.gov (United States)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  6. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  7. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    International Nuclear Information System (INIS)

    Sig Drellack, Lance Prothro

    2007-01-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The

  8. Hydrological processes in regional climate model simulations of the central United States flood of June-July 1993

    DEFF Research Database (Denmark)

    Anderson, Christopher J.; Arritt, Raymond W.; Takle, Eugene S.

    2003-01-01

    Thirteen regional climate model (RCM) simulations of June-July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 10° X 10° subregion of the upper Mississippi River basin, containing the region of maximum...

  9. Hydrogeologic influence on changes in snowmelt runoff with climate warming: Numerical experiments on a mid-elevation catchment in the Sierra Nevada, USA

    Science.gov (United States)

    S.M. Jepsen; T.C. Harmon; M.W. Meadows; C.T. Hunsaker

    2016-01-01

    The role of hydrogeology in mediating long-term changes in mountain streamflow, resulting from reduced snowfall in a potentially warmer climate, is currently not well understood. We explore this by simulating changes in stream discharge and evapotranspiration from a mid-elevation, 1-km2 catchment in the southern Sierra Nevada of California (USA)...

  10. Burnup simulations of an inert matrix fuel using a two region, multigroup reactor physics model

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E. [Dept. of Mechanical Engineering, Univ. of Texas at Austin, 1 Univ. Place C2200, Austin, TX 78712 (United States); Deinert, M.; Bingham Cady, K. [Dept. of Theoretical and Applied Mechanics, Cornell Univ., Ithaca, NY 14853 (United States)

    2006-07-01

    Determining the time dependent concentration of isotopes in a nuclear reactor core is of fundamental importance to analysis of nuclear fuel cycles and the impact of spent fuels on long term storage facilities. We present a fast, conceptually simple tool for performing burnup calculations applicable to obtaining isotopic balances as a function of fuel burnup. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to determine the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. The model has been tested against benchmarked results for LWRs burning UOX and MOX, as well as MONTEBURNS simulations of zirconium oxide based IMF, all with strong fidelity. As an illustrative example, VBUDS burnup calculation results for an IMF fuel are presented in this paper. (authors)

  11. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  12. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    groundwater recharge to, or discharge from, the bedrock (the model includes the bedrock to a depth of 150 m, based on the Forsmark 1.1 description of the hydraulic properties of the rock). Also the results from the particle tracking simulations show that the groundwater flow is dominated by its vertical component. The dominant transport of particles in the rock occurs in the fracture zones. A relatively large amount of new data has been available for the Forsmark version 1.2 modelling of surface hydrology and near-surface hydrogeology. The available local meteorological time series are very short and longer time series are needed to get reliable correlations to nearby regional SMHI-stations. Local continuous discharge measurements were not available for the Forsmark 1.2 modelling. Future time series from such measurements will be most valuable for the derivation of a more accurate total water balance. The groundwater levels in the area are very shallow. However, there is a bias towards local topographical minima in the location of the monitoring wells. Some additional wells should be located to typical local topographical maxima (recharge areas). The evident difference in groundwater levels between the Quaternary deposits and the upper bedrock observed at some of the core-drill sites should be further investigated for a better understanding of the hydraulic contact between the Quaternary deposits and the rock. The locations of recharge and discharge areas at different scales are crucial for the understanding of the groundwater flow system. A combination of complementary field investigations, including hydrogeological and hydrogeochemical methods, and modelling exercises using models based on morphological parameters as well as hydrogeological modelling is recommended. The model results should be compared with, e.g. the vegetation map, the soil type map and the Quaternary deposits map

  13. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    International Nuclear Information System (INIS)

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water su