WorldWideScience

Sample records for regional hydrogeological investigation

  1. Hydrogeological investigations at the surface of the Wellenberg region

    International Nuclear Information System (INIS)

    Baumann, A.; Frieg, B.

    1991-01-01

    The aim of the surface investigations carried out at Wellenberg is twofold, namely to provide a record of the actual hydrogeological situation before commencing operations at a site and to suppplement data obtained using other methods. The initial phase involved drawing up an inventory of all springs, streams and groundwater observation points and determining various physical parameters. The observation points are now checked periodically. In order to supplement the network for monitoring groundwater in the valley of the Engelberger Aa, new shallow boreholes have been drilled and equipped as piezometers. Isotopic investigations are carried out on samples of precipitation and spring-water. This allows infiltration conditions, and seasonal variations therein, to be determined. Finally, hydrochemical and bacteriological investigations were carried out for selected springs. (author) 2 figs

  2. Investigation of the large scale regional hydrogeological situation at Ceberg

    International Nuclear Information System (INIS)

    Boghammar, A.; Grundfelt, B.; Hartley, L.

    1997-11-01

    The present study forms part of the large-scale groundwater flow studies within the SR 97 project. The site of interest is Ceberg. Within the present study two different regional scale groundwater models have been constructed, one large regional model with an areal extent of about 300 km 2 and one semi-regional model with an areal extent of about 50 km 2 . Different types of boundary conditions have been applied to the models. Topography driven pressures, constant infiltration rates, non-linear infiltration combined specified pressure boundary conditions, and transfer of groundwater pressures from the larger model to the semi-regional model. The present model has shown that: -Groundwater flow paths are mainly local. Large-scale groundwater flow paths are only seen below the depth of the hypothetical repository (below 500 meters) and are very slow. -Locations of recharge and discharge, to and from the site area are in the close vicinity of the site. -The low contrast between major structures and the rock mass means that the factor having the major effect on the flowpaths is the topography. -A sufficiently large model, to incorporate the recharge and discharge areas to the local site is in the order of kilometres. -A uniform infiltration rate boundary condition does not give a good representation of the groundwater movements in the model. -A local site model may be located to cover the site area and a few kilometers of the surrounding region. In order to incorporate all recharge and discharge areas within the site model, the model will be somewhat larger than site scale models at other sites. This is caused by the fact that the discharge areas are divided into three distinct areas to the east, south and west of the site. -Boundary conditions may be supplied to the site model by means of transferring groundwater pressures obtained with the semi-regional model

  3. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  4. Crosshole investigations: Hydrogeological results and interpretations

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Brightman, M.A.

    1987-12-01

    The Crosshole Programme was an integrated geophysical and hydrogeological study of a limited volume of rock (known as the Crosshole Site) within the Stripa mine. Borehole radar, borehole seismic and hydraulic methods were developed for specific application to fractured crystalline rock. The hydrogeological investigations contained both single borehole and crosshole test techniques. A novel technique, using a sinusoidal variation of pressure, formed the main method of crosshole testing and was assessed during the programme. The strategy of crosshole testing was strongly influenced by the results from the geophysical measurements. The longer term, larger scale hydrogeological response of the region was asessed by examining the variation of heads over the region. These were responding to the presence of an old drift. A method of overall assessment involving minimising the divergence from a homogeneous response yielded credible values of hydraulic conductivity for the rock as a whole. (orig./DG)

  5. Investigating correlations of local seismicty with anomalous geoelectrical, hydrogeological and geochemical signals jointly recorded in Basilicata Region (Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Mucciarelli

    2007-06-01

    Full Text Available This paper presents the preliminary results analysing the correlation between local seismicity and geoelectrical, hydrogeological and geochemical signals concomitantly recorded in Basilicata Region, one of the most seismically active areas in Southern Italy. The signals were recorded by two stations: Tito and Tramutola. Tito station measures vertically the Self-Potential field (SP by an array of five no-polarizable electrodes equally spaced with the common electrode at 20 m depth as well as water-level, water-temperature and electrical-conductivity. Tramutola station measures self-potential signals in soil surface, gas flow and water temperature in a thermal-water well, as well as atmospheric barometric pressure and ambient temperature. Correlations were found between the sharp variability of the signals recorded by both stations and the seismic sequence that occurred on September 3 to 4, 2004, allowing us to link these anomalies with the tectonic evolution of the investigated area.

  6. Regional hydrogeological study in the Tono area

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Ota, Kunio; Hama, Katsuhiro; Tsubota, Kouji

    1998-01-01

    Regional hydrogeological studies have been carried out since fiscal 1992 to determine the regional groundwater flow in the Tono area of Japan. The following items have been investigated: 1) Understanding the geological structure, groundwater flow and groundwater chemistry of the deep geological environment in the Tono area. 2) Constructing conceptual models of the geological structure, groundwater flow and groundwater chemistry. 3) Developing appropriate techniques to investigate the geological structure, groundwater flow and groundwater chemistry of the deep geological environment. This report presents the results of the last six years of the study in the Tono area. (author)

  7. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  8. Tono regional hydrogeological study project. Annual report 2004

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Ota, Kunio; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Osawa, Hideaki

    2005-09-01

    Tono Geoscience Center, Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build firm scientific and technological basis for the research and development of geological disposal. One of the geoscientific research programme is a Regional Hydrogeological Study (RHS) project in the Tono region, central Japan. This report mainly summarizes the results of research in DH-14 and DH-15 boreholes at Toki city and Mizunami city in fiscal year 2004 which were carried out to support and improve the results in fiscal year 2003. The research in the regional scale area shows the reliability of conceptual hydrogeological model and numerical simulation for the evaluation of regional hydrogeology. On the other hand, the geological and geophysical investigation, and borehole investigation during the surface-based investigations in the local scale area provide the pragmatic distribution of hydrogeological structure that may control regional groundwater hydrology. Hydrogeological simulations regarding the geological structure such as fault and hydrogeological property demonstrate the priority of investigation of geological structure for the evaluation of hydrogeology. The fault perpendicular to groundwater flow direction crucially affects on regional hydrology. Such fault is necessary to be investigated by priority. Hydrochemical investigation shows that chemical evolution process in this groundwater illustrated is mixing between groundwaters with different salinities. Principal component analysis and mass balance calculation reveal reliable chemistry of end-member waters for mixing. Regarding methodology development, the strategy and procedure of investigations are summarized based on the results of surface-based investigation. Moreover the multi interval monitoring system for water pressure and temperature has developed and started to monitor the in-situ condition of groundwater. The geology, geological structure, hydraulic

  9. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  10. SRP Baseline Hydrogeologic Investigation, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  11. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  12. Hydrogeological investigation of Melendiz basin (Aksaray)

    International Nuclear Information System (INIS)

    Dogdu, M.S.

    1995-01-01

    Within the scope of this M.Sc, study entitled Hydrogeologic Investigation of Melendiz basin, the geological, hydrological, hydrogeological and hydrochemical features of a 600 km2 area have been studied and, 1/100.000 scale geological and hydrogeological maps have been prepared. Tetriary-Guaternary aged young volkanic rocks occupy nearly 80% (480 km2 ) of the area. The major aquifers are alluvium and andesite and basalt which are extensively fractured and jointed. Aquitard units comprise of ignimbirite, some of the andesites-basalts and formations that composes of limestone-sandstone-marl intercalations. The youngest geologic unit of the area, Hasandag volcanic ash formation, and also the tuffs have been indentified as aquiclude units. Mean areal precipitation, potential and real evapotranspiration rates and mean annual streamflow have been calculated on the basis of available data and, a hydrologic budget of the basin has been established. Hydrogeologic units have been classified as aquifer, aquitard and aquiclude with respect to their geohydrologic properties, field observations and the results of the pumping tests. On the other hand, hydrodynamic mechanism of the groundwater flow reaching major cold and thermal water discharges have also been explained. A hydrogeologic budget for the area covering Ciftlik township and its vicinity where extensively joint and fractured andesite-basalt and alluvial aquifers outcrop has been established. Major water points as thermal and cold springs, wells and streams have been sampled for major ion analysis. Beyond this, some water points have also been sampled for organic, trace,metal ald environmental isotropic analyses. Environmental isotope data of thermal springs point out a long-deep groundwater flow path

  13. Hydrogeological investigations in the Harwell region: the use of environmental isotopes, inert gas contents, and the uranium decay series

    International Nuclear Information System (INIS)

    Alexander, J.; Andrews, J.N.

    1984-12-01

    A comprehensive range of environmental isotopes, radioelement and dissolved gas contents have been measured in groundwaters from the high permeability formations of the Harwell area. These analyses were undertaken as part of a hydrochemical validation of groundwater circulation patterns derived from potentiometric data. These investigations have focused upon the Corallian and Great Oolite formations since these sandwich the Oxford Clay. Geochemical, isotopic, radioelement and inert gas studies have demonstrated consistent trends which substantiate fluid migration patterns derived from hydraulic considerations. Groundwaters at downdip localities in both the Corallian and Great Oolite formations are the oldest waters sampled from the region. Variations in trends in parameters can be attributed to cross-formational flow and subsequent mixing of groundwaters. Individually these techniques can only provide limited information, but the combination of methods used have provided corroborative evidence concerning the direction of fluid circulation in the Harwell region. (author)

  14. Bedrock Hydrogeology-Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Bockgaard, Niclas; Follin, Sven

    2012-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  15. Using a Three-Dimensional Hydrogeologic Framework to Investigate Potential Sources of Water Springs in the Death Valley Regional Groundwater Flow System

    Science.gov (United States)

    Hill, M. C.; Belcher, W. R.; Sweetkind, D. S.; Faunt, C.

    2014-12-01

    The Death Valley regional groundwater flow system encompasses a proposed site for a high-level nuclear waste repository of the United States of America, the Nevada National Security Site (NNSS), where nuclear weapons were tested, and National Park and BLM properties, and provides water for local communities. The model was constructed using a three-dimensional hydrogeologic framework and has been used as a resource planning mechanism by the many stakeholders involved, including four United States (U.S) federal agencies (U.S. Department of Energy, National Park Service, Bureau of Land Management, and U.S. Fish and Wildlife Service) and local counties, towns, and residents. One of the issues in recent model development is simulation of insufficient water to regional discharge areas which form springs in valleys near the center of the system. Given what seems to be likely rock characteristics and geometries at depth, insufficient water is simulated to reach the discharge areas. This "surprise" thus challenges preconceived notions about the system. Here we use the hydrogeologic model to hypothesize alternatives able to produce the observed flow and use the groundwater simulation to test the hypotheses with other available data. Results suggest that the transmissivity measurements need to be used carefully because wells in this system are never fully penetrating, that multiple alternatives are able to produce the springflow, and that one most likely alternative cannot be identified given available data. Consequences of the alternatives are discussed.

  16. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  17. Analysis on regional hydrogeological condition of Beishan preselected area for high level radioactive waste disposal repository in Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Liu Shufen; Lu Chuanhe

    2004-01-01

    Based on the field investigation which has been carried out in the Beishan preselected area for high level radioactive waste repository in Gansu province during the last few years and the previous hydrogeological investigation results, the different groundwater types are divided initially and the hydrogeological features of different water-bearing media are described in this paper. Meanwhile, the preliminary evaluation of the regional hydrogeological condition of the study area is carried out. (author)

  18. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    areas" to similar regional hydrogeologic areas.For the purpose of this study, the term "type area" applies to a 10- to 100-square mile area within a hydrogeologic terrane where information is sufficient to develop and test a concept of ground-water flow by using analytical or numerical methods that can be validated by field measurements. Ideally, these type areas are selected to be representative of the flow system that is present wherever a particular hydrogeologic terrane is present.This report consists of two basic parts. The first part describes the results of a comprehensive review and synthesis of information and literature that provides the basic background for the study. This includes current (2002) knowledge regarding general geology and the hydrogeologic framework of the fractured-rock aquifer system that underlies the Blue Ridge and Piedmont Provinces. In spite of the quantity of information identified during the literature review and the amount of past work that has been documented, there are still research needs to be met.The second part of the report describes State ground-water issues and problems, available data, and data deficiencies. It also describes the design and implementation of efforts to characterize ground-water quality and to quantify factors that influence the movement and availability of ground water in the hydrogeologic terranes characterized by (1) massive or foliated crystalline rocks overlain by thick regolith and (2) massive or foliated crystalline rocks overlain by thin regolith.As of September 2001, seven sites had been identified as potential study sites to be used to characterize the hydrogeology and water quality of ype areas considered representative of the larger terranes. Detailed geologic mapping, core drilling, well installation, and surface and borehole geophysical surveys are in progress at four of the sites.

  19. Small Scale Multisource Site – Hydrogeology Investigation

    Science.gov (United States)

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  20. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the genesis and continual expansion of gullies in the area. The results indicate that gullies are located in the upper aquifer of the Benin Formation (Coastal Plain Sands). The estimated hydraulic ...

  1. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  2. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  3. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  4. Hydrogeological investigation programmes: best practice. Proof of evidence

    International Nuclear Information System (INIS)

    Reeves, G.M.

    1996-01-01

    Proof of Evidence by an expert witness is presented in support of the case by Friends of the Earth (FOE) against the proposed construction by UK Nirex Ltd of an underground Rock Characterisation Facility (RCF) at a site in the Sellafield area. The RCF is part of an investigation by Nirex into a suitable site for an underground repository for the disposal of radioactive waste. The objections were raised at a Planning Inquiry in 1995. Drawing on best practice in hydrogeological investigation from case studies of groundwater assessment in the UK and the Canadian nuclear waste disposal programme, the hydrogeological monitoring work undertaken to date at Sellafield is found to be inadequate in both scope and duration. The lack of adequate equilibrium hydrogeological data is significant in its implications for the RCF both in terms of the effects on local water resources and the proposed repository. It is concluded, therefore, that the construction of the RCF should be postponed pending the establishment of the equilibrium hydrogeological regime. (10 figures; 33 references). (UK)

  5. Hydrogeologic investigations sampling plan: Revision 0

    International Nuclear Information System (INIS)

    1988-11-01

    The goal of this sampling plan is to identify and develop specific plans for those investigative actions necessary to: (1) characterize the hydrologic regime; (2) define the extent and impact of contamination; and (3) predict future contaminant migration for the Weldon Spring Site (WSS) and vicinity. The plan is part of the Weldon Spring Site Remedial Action Project (WSSRAP) sponsored by the US Department of Energy (DOE) and has been developed in accordance with US EPA Remedial Investigation (RI) and Data Quality Objective (DQO) guidelines. The plan consists of a sequence of activities including the evaluation of data, development of a conceptual model, identification of data uses and needs, and the design and implementation of a data collection program. Data will be obtained to: (1) confirm the presence or absence of contaminants; (2) define contaminant sources and modes of transport; (3) delineate extent of contaminant migration and predict future migration; and (4) provide information to support the evaluation and selection of remedial actions. 81 refs., 62 figs., 26 tabs

  6. Hydrogeology of rocks of low permeability: region studies

    International Nuclear Information System (INIS)

    Llamas, M.R.

    1985-01-01

    Hydrogeological regional studies on low permeability rocks are rather scarce in comparison to similar studies on normal permeability rocks. Economic and technological difficulties to develop ground water from these terrains may be the main cause of this scarcity. Several facts may indicate that these studies will increase in the near future. First, the need to supply water to the people living in underdeveloped arid zones over extensive areas of low permeability rocks. Second, the relevant role that some low permeability large groundwater basins may play in conjunctive ground and surface-water use. And last but not least the feasibility of some low permeability rock areas as sites for nuclear waste repositories. Some specific difficulties in these regional studies may be: a) intrinsic difficulties in obtaining representative water samples and measuring hydraulic heads; b) scarcity of observation and/or pumping wells; c) important hydraulic head and chemical properties variations in a vertical direction; d) old groundwater ages; this may require paleohydrological considerations to understand certain apparent anomalies. In most of these regional studies hydrogeochemical methods and modelling (flow and mass transport) may be very valuable tools. 77 references, 7 figures

  7. On the combination of isotope hydrogeology with regional flow and transport modelling

    International Nuclear Information System (INIS)

    Barmen, G.A.

    1992-01-01

    Many different methods and tools can be used when trying to improve the information basis on which decisions are made for maintaining a quantitatively and qualitatively safe, long-term use of groundwater resources. In this thesis, classical hydrogeological examinations, hydrochemical investigations, environmental isotope studies, computerized groundwater flow modelling and radioisotope transport modelling have been applied to the large system of reservoirs in the sedimentary deposits of southwestern Scania, Sweden. The stable isotopes 2 H, 18 O and 13 C and the radioactive 3 H and 14 C have been measured and the results obtained can improve the estimations of the periods of recharge and the average circulation times of the groundwater reservoirs studied. A groundwater flow model based on finite difference techniques and a continuum approach has been modified by data from traditional hydrogeological studies. The computer code, NEWSAM, has been used to simulate steady-state and transient isotope transport in the area studied, taking into account advective transport with radioactive decay. The interacting groundwater resevoirs studied have been represented by a three-dimensional system of grids in the numerical model. A major merit of this combination of isotope hydrogeology and regional flow and transport modelling is that the isotope transport simulations help to demonstrate where zones particularly vulnerable to pollution are situated. These locations are chiefly the results of the hydrogeological characteristics traditionally examined, but they are revealed by means of the transport model. Subsequent, more detailed investigations can then be focussed primarily on these vulnerable zones. High contents of radioisotopes in the main aquifer of southwestern Scania may indicate that groundwater withdrawals have stimulated recharge from shallow aquifers and surface waters and that the risk of pollution has increased. (196 refs.) (au)

  8. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  9. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  10. Hydrogeological investigation for sitting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Lv Chuanhe

    2005-01-01

    Based on the research experiences of our country and some developed countries in the world, the purpose, process and methods, as well as the function of hydrogeological investigation for sitting disposal repository for high radioactive waste are discussed. Meanwhile, the topic related to the acquisition of hydrogeological parameters is described as well, aiming at providing reference for the future study. (authors)

  11. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  12. Interdisciplinary investigation on the recent deformation in the high fertile lowland of the Segura river (Murcia): Hydrogeologic criteria applicable to the study of the neotectonic in the spanish south eastern region

    International Nuclear Information System (INIS)

    Rodriguez Estrella, T.; Lopez Bermudes, F.

    1984-01-01

    This neotectonic investigation concentrates on the southern area in the high fertile lowland of the Segura river (23 Km 2 ). Our methodology is various, pointing towards a better understanding of the recent tectonic activity which have taken place in this area. Our methods and techniques have been indirect and direct. Indirect techniques: aerial photography (at different scales and different periods of time), hydrochemistry (over 70 analyses) seismicity (from the end of last century) and vertical electric fathoming probings (64 S.E.V. of AB=1000). Direct techniques: geomorphology (alluvial terraces and loose meanders), mechanic fathoming probings (over 50) and structural cuttings in the ground. Archaeology has contributed to a great extent to clarify the existence of neotectonics in this alluvial terraces and its dating. Lastly, certain hydrogeologic criteria have been analysed concerning the recent deformations of the Spanish Southeast, as well as, some general considerations on the neotectonic of this area on the Iberian Peninsula. (author)

  13. a significant site for hydrogeological investigation in crystalline ...

    Indian Academy of Sciences (India)

    Estimating the hydrogeologic control of fractured aquifers in hard crystalline and metamorphosed rocks is challenging due to complexity in the development of secondary porosity. The present study in the Precambrian metamorphic terrain in and around the Balarampur of Purulia district, West Bengal, India, aims to estimate ...

  14. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    International Nuclear Information System (INIS)

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters

  15. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-01-01

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  16. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-04-15

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes.

  17. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel; Gylling, Bjoern; Marsic, Niko

    2006-04-01

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes

  18. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  19. In-EDTA as activable tracer in hydrogeological investigations

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Gaspar, E.; Spiridon, S.; Farcasiu, O.M.; Catilina, R.

    1982-12-01

    Two experiments are presented, on the possibilities of the use of indium in the form of the In-EDTA complex, as an activable tracer for hydrogeological studies. The determination of indium concentrations in the sampled water has been carried out by using the coprecipitation of indium with bismuth hydroxide, the neutron activation at the VVR-S reactor of the Institute for Nuclear Physics and Engineering - Bucharest and the measurement on the 417.0 keV line of sup(116m)In with the Ge(Li) spectrometric device. The advantages of the utilization of In-EDTA as a tracer for marking large volumes of water and of some long transit waters (of the order of months) have resulted. (authors)

  20. A computer hydrogeologic model of the Nevada Test Site and surrounding region

    International Nuclear Information System (INIS)

    Gillson, R.; Hand, J.; Adams, P.; Lawrence, S.

    1996-01-01

    A three-dimensional, hydrogeologic model of the Nevada Test Site and surrounding region was developed as an element for regional groundwater flow and radionuclide transport models. The hydrogeologic model shows the distribution, thickness, and structural relationships of major aquifers and confining units, as conceived by a team of experts organized by the U.S. Department of Energy Nevada Operations Office. The model was created using Intergraph Corporation's Geographical Information System based Environmental Resource Management Application software. The study area encompasses more than 28,000 square kilometers in southern Nevada and Inyo County, California. Fifty-three geologic cross sections were constructed throughout the study area to provide a framework for the model. The lithology was simplified to 16 hydrostratigraphic units, and the geologic structures with minimal effect on groundwater flow were removed. Digitized cross sections, surface geology, and surface elevation data were the primary sources for the hydrogeologic model and database. Elevation data for the hydrostratigraphic units were posted, contoured, and gridded. Intergraph Corporation's three-dimensional visualization software, VOXEL trademark, was used to view the results interactively. The hydrogeologic database will be used in future flow modeling activities

  1. Hydrogeological and geochemical investigations of elevated arsenic (As) abundances in groundwater in Ireland

    International Nuclear Information System (INIS)

    Gilligan, M.; Feely, M.; Morrison, L.; Henry, T.; Higgins, T.M.; Zhang, C.

    2009-01-01

    Full text: This study will use hydrogeology, geochemistry and chemical speciation studies to investigate the presence of elevated arsenic (As) abundances in groundwater in Ireland. Comparative studies of groundwater, bedrock and mineral chemistry will be linked to hydrogeology, GIS and statistical studies. This approach will facilitate characterization of the temporal and spatial distribution of As as a function of groundwater and bedrock geology using the pressures, pathways and receptors approach. Arsenic speciation studies will determine As toxicity, bioavailability and potential for migration in this environment thus addressing human health issues. (author)

  2. Waterborne toxoplasmosis investigated and analyzed under hydrogeological assessment: new data and perspectives for further research

    Science.gov (United States)

    We present a set of data on human and chicken Toxoplasma gondii seroprevalence that was investigated and analyzed in light of groundwater vulnerability information in an area of endemic waterborne toxoplasmosis in Brazil. Hydrogeological assessment was undertaken to conduct water collection from wel...

  3. INVESTIGATION OF HYDROGEOLOGIC MAPPING TO DELINEATE PROTECTION ZONES AROUND SPRINGS: REPORT OF TWO CASE STUDIES

    Science.gov (United States)

    Methods commonly used to delineate protection zones for water-supply wells are often not directly applicable for springs. This investigation focuses on the use of hydrogeologic mapping methods to identify physical and hydrologic features that control ground-water flow to springs...

  4. Regional assessment of groundwater resources (hydrogeological map of Younggwang area, Korea vol.8)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S H; Kim, Y K; Hong, Y K; Cho, M J; Lee, D W; Bae, D J; Lee, C W; Kim, H C; Kim, S J; Park, S W; Lee, P K; Yum, B W; Moon, S H; Lee, S K; Lee, S R; Park, Y S; Lim, M T; Sung, K S; Park, I H; Ham, S Y; Kim, Y J; Woo, N C [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This study is objected to characterize groundwater resources, to assess groundwater contamination, and to produce hydrogeological and related thematic maps of the study area. The study area, Younggwang County, Chonnam Province, covers the area of 460 km{sup 2}. To accomplish the objectives various studies have been carried out including general and structural geology, GIS, hydrogeology, geophysics and hydrogeochemical analysis. Geophysical explorations, dipole-dipole resistivity, Schulumberger sounding and magnetic method, were executed for investigating geologic structure and determining test borehole sites. Some test boreholes such as, Honggok, Donggan, Weolsan and Seolmae hit aquifer structures. Geophysical logging, such as gamma ray, temperature, water conductivity, electrical resistivity, self-potential were also executed for petrological differentiation and in out flow of groundwater. The recharge rate of granitic region is more than the others, which derived by the analysis of 7 low-flow measurements in 10 small watersheds in the area. The recharge rate has been estimated at 7.2%(99.3 mm/year) in the vicinity. Well inventory of the area included 197 deep wells and 43 shallow wells. In addition, 10 stream samples and one spring were surveyed for water level, water temperature, pH, EC, TDS and the concentration of dissolved oxygen(DO). Regional groundwater pollution susceptibility was analyzed using GIS technique. A standard method, `DRASTIC` developed by US EPA, was applied to evaluate groundwater pollution potential and aquifer susceptibility. Resulting DRASTIC indices ranged from 52 to 141, and the Pesticide indices from 61 to 187. Seawater intrusion phenomena in Sangsari-Hasari are considered and evaluated by well inventory and the selected borehole`s electric conductivity(EC) logging. Seawater intrusion to the vulnerable coastal alluvium aquifers is generally depleted with time. The amount of potential groundwater resources in the study area is estimated

  5. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers approximately 44,000 square miles of northeastern Oregon, southeastern Washington, and western Idaho. The area supports a $6 billion per year agricultural industry, leading the Nation in production of apples and nine other commodities (State of Washington Office of Financial Management, 2007; U.S. Department of Agriculture, 2007). Groundwater availability in the aquifers of the area is a critical water-resource management issue because the water demand for agriculture, economic development, and ecological needs is high. The primary aquifers of the CPRAS are basalts of the Columbia River Basalt Group (CRBG) and overlying basin-fill sediments. Water-resources issues that have implications for future groundwater availability in the region include (1) widespread water-level declines associated with development of groundwater resources for irrigation and other uses, (2) reduction in base flow to rivers and associated effects on temperature and water quality, and (3) current and anticipated effects of global climate change on recharge, base flow, and ultimately, groundwater availability. As part of a National Groundwater Resources Program, the U.S. Geological Survey began a study of the CPRAS in 2007 with the broad goals of (1) characterizing the hydrologic status of the system, (2) identifying trends in groundwater storage and use, and (3) quantifying groundwater availability. The study approach includes documenting changes in the status of the system, quantifying the hydrologic budget for the system, updating the regional hydrogeologic framework, and developing a groundwater-flow simulation model for the system. The simulation model will be used to evaluate and test the conceptual model of the system and later to evaluate groundwater availability under alternative development and climate scenarios. The objectives of this study were to update the hydrogeologic framework for the CPRAS using the available

  6. Hydrogeological analysis applied to regional evaluation of sandstone-type uranium ore-formation in sedimentary basins

    International Nuclear Information System (INIS)

    Xu Laisheng

    2005-01-01

    The main purpose of regional evaluation of uranium ore-formation is to preliminarily divide environmental zones and to delineate favourable areas for uranium ore-formation in order to provide basis for further detailed prospecting work. Of the various kinds of prospecting work, the hydrogeologic work should be mainly carried out in following aspects: division of hydrogeological units, the determination of artesian water-bearing system and the identification of prospecting target horizon; the analysis on hydrodynamic regime, the analysis on hydrogeochemical environments, the paleo-hydrogeologic analysis and the delineation of redox front and favourable area for uranium ore-formation. (author)

  7. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  8. The Taavinunnanen gabbro massif. A compilation of results from geological, geophysical and hydrogeological investigations

    International Nuclear Information System (INIS)

    Gentzschein, B.; Tullborg, E.L.

    1985-01-01

    The gabbro massif at Taavinunnanen, northern Sweden, is one of the study sites which has been investigated by the Swedish Nuclear Fuel and Waste Management Co (SKB) in order to study different geological environments within the scope of the long-range program for final disposal of spent nuclear fuel. A 700 metres long borehole was drilled within the gabbro. Regional geophysics, geological mapping, petrographical studies, mineralogical studies of rock-forming materials and of fracture fillings as well as hydrogeological tests were carried out. The gabbro shows primary differentiation. Thus, the composition varies from gabbroic to ultrabasic. The gabbro body is intersected by severeal granite dikes. These dikes exhibit a higher hydraulic conductivity and a higher fracture frequency than the gabbro. Comparison of hydraulic conductivity and fracture frequency in the gabbro itself indicates a high degree of sealing of the fractures mainly caused by smectites. Calcite is almost lacking down to a depth of 75 metres, indicating a relatively rapid transport of surface waters down to this depth. With 27 refs. (author)

  9. Contribution to hydrogeological investigations related to the disposal of radioactive wastes in a deep argillaceous formation

    International Nuclear Information System (INIS)

    Patijn, J.

    1987-01-01

    The study deals with the development of a methodology in order to evaluate the capability of an aquifer system to be used for the disposal of radioactive wastes in deep argillaceous formations. The first part is concerned with hydrogeological investigations of a sedimentary basin. The second part is concerned with flow simulation using NEWMAN model. The limited influence of some possible geological events on radionuclide transfer is emphasized [fr

  10. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Directory of Open Access Journals (Sweden)

    L. Aceto

    2017-07-01

    Full Text Available Damaging Hydrogeological Events (DHE are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy in the period 2000–2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt were stored in the database named PEOPLE, made of three sections: (1 event identification, (2 victim-event interaction, (3 effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 % than females (25 %, and fatalities were older (average age 49 years than injured (40.1 years and involved people (40.5 years. The average ages of females killed (67.5 years, injured (43.4 years and involved (44.6 years were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %, injured (55 % and involved people (55.3 % than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %. These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  11. Effects of damaging hydrogeological events on people throughout 15 years in a Mediterranean region

    Science.gov (United States)

    Aceto, Luigi; Aurora Pasqua, A.; Petrucci, Olga

    2017-07-01

    Damaging Hydrogeological Events (DHE) are defined as rainy periods during which landslides and floods can damage people. The paper investigated the effects of DHE on people living in Calabria (southern Italy) in the period 2000-2014, using data coming from the systematic survey of regional newspapers. Data about fatalities, people injured and people involved (not killed neither hurt) were stored in the database named PEOPLE, made of three sections: (1) event identification, (2) victim-event interaction, (3) effects on people. The outcomes highlighted vulnerability factors related to gender and age: males were killed more frequently (75 %) than females (25 %), and fatalities were older (average age 49 years) than injured (40.1 years) and involved people (40.5 years). The average ages of females killed (67.5 years), injured (43.4 years) and involved (44.6 years) were higher than the same values assessed for males, maybe indicating that younger females tended to be more cautious than same-age males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, perhaps because younger people show greater promptness to react in dangerous situations. In the study region, floods caused more fatalities (67.9 %), injured (55 %) and involved people (55.3 %) than landslides. Fatalities and injuries mainly occurred outdoor, especially along roads, and the most dangerous dynamic was to be dragged by flood, causing the majority of fatalities (71.4 %). These outcomes can be used to strengthen the strategies aimed at saving people, and to customise warning campaigns according to the local risk features and people's behaviour. The results can improve the understanding of the potential impacts of geo-hydrological hazards on the population and can increase risk awareness among both administrators and citizens.

  12. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  13. Hydrogeological investigations in two boreholes in the Stripa test station

    International Nuclear Information System (INIS)

    Hansson, K.; Almen, K.-E.; Ekman, L.

    1978-01-01

    The investigations included the following: water injection tests in a horizontal core-borehole, Dbh 2; hydrostatic pressure tests in Dbh2; determination of permeability in a vertical core-borehole, Dbh VI. The results of the water injection tests gave very little information due to the fact, that an air cushion was trapped in the borehole. The hydrostatic pressure tests in Dbh 2 were made in that part of the borehole, which is situated beyond the drift (45 - 97 m). Most of the pressure curves were difficult to interpret. The hydrostatic pressure in the section 89 - 97 m (end of the hole) was calculated to 1,67 Mpa. Near the end of the drift (46.00 - 49.71 m) the pressure was 0.22 Mpa. The permeability tests in Dbh VI were performed by measuring the water-flow and hydrostatic pressure in different levels. The calculated average permeability was 6.5x10 -10 m/s

  14. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  15. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina

    International Nuclear Information System (INIS)

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs

  16. Preliminary results of ERTS-investigations by W-German investigations. [multidisciplinary geoscientific experiments in central Germany and hydrogeology of Argentina Pampas

    Science.gov (United States)

    Muehlfeld, R.

    1974-01-01

    Results are presented of West German investigations into multidisciplinary geoscientific experiments in central Germany and the Alps, and hydrogeological investigations in the Pampa of Argentina based on ERTS-1 data. The main goals of the investigation were achieved. The studies have given a good idea of the possibilities and limitations of ERTS imagery depending on the objectives in question and on the geographical conditions of the areas under investigation. Even in the well known region of central Europe, ERTS has proven its ability of improving present knowledge. In fields such as pollution monitoring and regional planning the satellite techniques should have distinct practical value. For any regional study of less known areas, the value of ERTS imagery can hardly be overestimated.

  17. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  18. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  19. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    Science.gov (United States)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes

  20. The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy

    Directory of Open Access Journals (Sweden)

    Olga Petrucci

    2017-12-01

    Full Text Available Background: Damaging Hydrogeological Events (DHEs are severe weather periods during which floods, landslides, lightning, windstorms, hail or storm surges can harm people. Climate change is expected to increase the frequency/intensity of DHEs and, consequently, the potential harm to people. Method: We investigated the impacts of DHEs on people in Calabria (Italy over 37 years (1980–2016. Data on 7288 people physically affected by DHEs were gathered from the systematic analysis of regional newspapers and collected in the database named PEOPLE. The damage was codified in three severity levels as follows: fatalities (people who were killed, injured (people who suffered physical harm and involved (people who were present at the place where an accident occurred but survived and were not harmed. During the study period, we recorded 68 fatalities, 566 injured and 6654 people involved in the events. Results: Males were more frequently killed, injured and involved than females, and females who suffered fatalities were older than males who suffered fatalities, perhaps indicating that younger females tended to be more cautious than same-aged males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, suggesting that younger people show greater promptness in reacting to dangerous situations. Floods caused the majority of the fatalities, injured and involved people, followed by landslides. Lightning was the most dangerous phenomenon, and it affected a relatively low number of people, killing 11.63% of them and causing injuries to 37.2%. Fatalities and injuries mainly occurred outdoors, largely along roads. In contrast, people indoors, essentially in public or private buildings, were more frequently involved without suffering harm. Being “dragged by water/mud” and “surrounded by water/mud”, respectively, represented the two extremes of dynamic dangerousness. The dragging

  1. Hydrogeologic and hydrologic investigations in connection with the underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Stempel, C. v.; Batsche, H.

    1982-01-01

    In order to permit an assessment of the sometimes very long storage periods occurring in connection with final disposals and of the consequences resulting in the case of an eventual failure, the migration behaviour of selected radionuclides was investigated in the strata of the surface rock masses sourrounding the respective salt stocks. Our Institute performed the corresponding activities in three districts: In the area of the former salt mine Asse II a hydrogeologic research programme is realized in close cooperation with the GSF Institut fuer Tieflagerung, Braunschweig. Within the scope of the ''Projekt Sicherheitsstudien Entsorgung (PSE)'' the required investigations are carried out in the district of the salt stock Gorleben. Within the scope of a NAGRA project, isotope-hydrological measurements were taken up in connection with investigations on the storage of radioactive waste materials in crystalline rocks of Switzerland. (orig./RW) [de

  2. Waterborne toxoplasmosis investigated and analysed under hydrogeological assessment: new data and perspectives for further research.

    Science.gov (United States)

    Vieira, Flávia Pereira; Alves, Maria da Glória; Martins, Livia Mattos; Rangel, Alba Lucínia Peixoto; Dubey, Jitender Prakash; Hill, Dolores; Bahia-Oliveira, Lilian Maria Garcia

    2015-11-01

    We present a set of data on human and chicken Toxoplasma gondii seroprevalence that was investigated and analysed in light of groundwater vulnerability information in an area endemic for waterborne toxoplasmosis in Brazil. Hydrogeological assessment was undertaken to select sites for water collection from wells for T. gondii oocyst testing and for collecting blood from free-range chickens and humans for anti-T. gondii serologic testing. Serologic testing of human specimens was done using conventional commercial tests and a sporozoite-specific embryogenesis-related protein (TgERP), which is able to differentiate whether infection resulted from tissue cysts or oocysts. Water specimens were negative for the presence of viable T. gondii oocysts. However, seroprevalence in free-range chickens was significantly associated with vulnerability of groundwater to surface contamination (p toxoplasmosis in light of groundwater vulnerability information associated with prevalence in humans estimated by oocyst antigens recognition have implications for the potential role of hydrogeological assessment in researching waterborne toxoplasmosis at a global scale.

  3. Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, southeastern Bangladesh

    Science.gov (United States)

    von Brömssen, Mattias; Markussen, Lars; Bhattacharya, Prosun; Ahmed, Kazi Matin; Hossain, Mohammed; Jacks, Gunnar; Sracek, Ondra; Thunvik, Roger; Hasan, M. Aziz; Islam, M. Mainul; Rahman, M. Mokhlesur

    2014-10-01

    Exploitation of groundwater from shallow, high prolific Holocene sedimentary aquifers has been a main element for achieving safe drinking water and food security in Bangladesh. However, the presence of elevated levels of geogenic arsenic (As) in these aquifers has undermined this success. Except for targeting safe aquifers through installations of tubewells to greater depth, no mitigation option has been successfully implemented on a larger scale. The objective of this study has been to characterise the hydrostratigraphy, groundwater flow patterns, the hydraulic properties to assess the vulnerability of low-arsenic aquifers at Matlab, in south-eastern Bangladesh, one of the worst arsenic-affected areas of the country. Groundwater modelling, conventional pumping test using multilevel piezometers, hydraulic head monitoring in piezometer nests, 14C dating of groundwater and assessment of groundwater abstraction were used. A model comprising of three aquifers covering the top 250 m of the model domain showed the best fit for the calibration evaluation criteria. Irrigation wells in the Matlab area are mostly installed in clusters and account for most of the groundwater abstraction. Even though the hydraulic heads are affected locally by seasonal pumping, the aquifer system is fully recharged from the monsoonal replenishment. Groundwater simulations demonstrated the presence of deep regional flow systems with recharge areas in the eastern, hilly part of Bangladesh and shallow small local flow systems driven by local topography. Based on modelling results and 14C groundwater data, it can be concluded that the natural local flow systems reach a depth of 30 m b.g.l. in the study area. A downward vertical gradient of roughly 0.01 down to 200 m b.g.l. was observed and reproduced by calibrated models. The vertical gradient is mainly the result of the aquifer system and properties rather than abstraction rate, which is too limited at depth to make an imprint. Although

  4. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  5. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  6. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden)

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model.

  7. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    International Nuclear Information System (INIS)

    Rhen, Ingvar; Follin, Sven; Hermanson, Jan

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model

  8. Hydrogeological study of the aquifer system of the northern Sahara in the Algero-Tunisian border: A case study of Oued Souf region

    Science.gov (United States)

    Halassa, Younes; Zeddouri, Aziez; Mouhamadou, Ould Babasy; Kechiched, Rabah; Benhamida, Abdeldjebbar Slimane

    2018-05-01

    The aquifer system in The Algero-Tunisian border and Chotts region is mainly composed of two aquifers: The first is the Complex Terminal (CT) and the second is the Intercalary aquifer (CI). This study aims the identification and spatial evolution of factors that controlling the water quality in the Complex Terminal aquifer (CT) in the Chotts region (Oued Souf region - Southeastern of Algeria). The concentration of major elements, temperature, pH and salinity were monitored during 2015 in 34 wells from the CT aquifer. The geological, geophysical, hydrogeological and hydrochemical methods were applied in order to carried out a model for the investigated aquifer system and to characterize the hydrogeological and the geochemical behavior, as well as the geometrical and the lithological configuration. Multivariate statistical analyses such as Principal Component Analysis (PCA) were also used for the treatment of several data. Results show that the salinity follows the same regional distribution of Chloride, Sodium, Magnesium, Sulfate and Calcium. Note that the salinity shows low contents in the upstream part of investigated region suggesting restricted dissolution of salts. Hydro-chemical study and saturation indexes highlight the dominance of the dissolution and the precipitation of calcite, dolomite, anhydrite, gypsum and halite. The PCA analysis indicates that Na+, Cl-, Ca2+, Mg2+, SO42- and K+ variables that influence the water mineralization.

  9. Geological investigations and hydrogeologic model development in support of DoD and DOE environmental programs on Kirtland Air Force Base, New Mexico, U.S.A

    International Nuclear Information System (INIS)

    Gibson, J.D.; Pratt, G.; Davidson, H.; DeWitt, C.; Hitchcock, C.; Kelson, K.; Noller, J.; Sawyer, T.; Thomas, E.

    1994-01-01

    This paper presents results of preliminary geologic site characterization and hydrogeologic conceptual model development for the 250-km 2 Kirtland Air Force Base (KAFB) and associated lands in central New Mexico. The research, development, and other operational activities of the Department of Defense (DoD) and Department of Energy (DOE) on KAFB over the last 50 years have resulted in diverse hazardous, radioactive, and mixed-waste environmental concerns. Because multiple federal, state, and local agencies are responsible for administrating the involved lands and because of the nature of many U.S. environmental regulations, individual contaminated and potentially contaminated DoD and DOE environmental restoration (ER) sites on KAFB are commonly handled as distinct entities with little consideration for the cumulative environmental and health risk from all sites. A site-wide characterization program has been undertaken at Sandia National Laboratories/New Mexico (SNL/NM), under the auspices of the DOE, to construct a conceptual hydrogeologic model for the base. This conceptual model serves as the basis for placing each ER site into a broader context for evaluating background (i.e., non-contaminated) conditions and for modeling of possible contaminant pathways and travel-times. Regional and local hydrogeologic investigations from KAFB can be used as models for characterizing and evaluating other sites around the world where combined civilian and military environmental programs must work together to resolve environmental problems that may present health risks to workers and the general public

  10. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  11. A near real time scenario at regional scale for the hydrogeological risk

    Science.gov (United States)

    Ponziani, F.; Stelluti, M.; Zauri, R.; Berni, N.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C.

    2012-04-01

    The early warning systems dedicated to landslides and floods represent the Umbria Region Civil Protection Service new generation tools for hydraulic and hydrogeological risk reduction. Following past analyses performed by the Functional Centre (part of the civil protection service dedicated to the monitoring and the evaluation of natural hazards) on the relationship between saturated soil conditions and rainfall thresholds, we have developed an automated early warning system for the landslide risk, called LANDWARN, which generates daily and 72h forecast risk matrix with a dense mesh of 100 x 100m, throughout the region. The system is based on: (a) the 20 days -observed and 72h -predicted rainfall, provided by the local meteorological network and the Local scale Meteorological Model COSMO ME, (b) the assessment of the saturation of soils by: daily extraction of ASCAT satellite data, data from a network of 16 TDR sensors, and a water balance model (developed by the Research Institute for Geo-Hydrological Protection, CNR, Perugia, Italy) that allows for the prediction of a saturation index for each point of the analysis grid up to a window of 72 h, (c) a Web-GIS platform that combines the data grids of calculated hazard indicators with layers of landslide susceptibility and vulnerability of the territory, in order to produce dynamic risk scenarios. The system is still under development and it's implemented at different scales: the entire region, and a set of known high-risk landslides in Umbria. The system is monitored and regularly reviewed through the back analysis of landslide reports for which the activation date is available. Up to now, the development of the system involves: a) the improvement of the reliability assessment of the condition of soil saturation, a key parameter which is used to dynamically adjust the values of rainfall thresholds used for the declaration of levels of landslide hazard. For this purpose, a procedure was created for the ASCAT

  12. Site investigation methods used in Canada's nuclear fuel waste management program to determine the hydrogeological conditions of plutonic rock

    International Nuclear Information System (INIS)

    Davison, C.C.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is investigating the concept of disposing of Canada's nuclear fuel wastes in a mined vault at a depth of 500 m to 1000 m within a plutonic rock body. Much effort has been directed at developing site investigation methods that can be used to determine the hydrogeological conditions of plutonic rock bodies. The primary objective of this research is to define the physical and chemical characteristics of groundwater flow systems at the various scales that are relevant to the prediction of potential radionuclide migration from a disposal vault. Groundwater movement through plutonic rock is largely controlled by fractures within the rock, and the hydrogeological parameters of fractured geological media are extremely scale dependent

  13. Hydrogeochemical and hydrogeological studies of Ellebelle and Jumoro Districts of the Western Region of Ghana

    International Nuclear Information System (INIS)

    Adwoba-Kua, E.

    2012-07-01

    Groundwater is an important resource for domestic, agriculture and industrial purposes throughout the Ellembelle and Jomoro districts of the Western region of Ghana. However, the hydrogeology and hydrogeochemistry of groundwater systems in the districts are not well known, even though some data on the geology, borehole yield, static water levels and water quality analysis are available. Moreover, surface and groundwater systems in the districts are threatened by anthropogenic activities, including mining, poor waste management and oil spillage. An integrated approach based on hydrogeology, hydrogeochemistry and isotopic composition was, therefore, adopted in order to establish the availability, quality and sustainable utilization of surface and groundwater in the two districts. The research involved measurement of physical parameters (pH, temperature, Eh, salinity, TDS, total hardness, turbidity, colour, and conductivity), major ions (Ca 2+, Mg 2+, Na +, K +, HCO 3 -, Cl -, PO 4 3-, SO 4 2- and NO 3 -) trace elememts (Al, As, Hg, Fe, Mn, Cu, Co, Zn, Pb, Ni, Cd and Cr) and stable isotopes (δ 2 H and (δ 18 O) in nine (9) rivers, one (1) lagoon, twenty (20) hand dug wells and twenty-five (25) boreholes. Arsenic (As) and Hg were determined by hydride generation atomic absorption spectrometry (HG-AAS). Levels of Fe, Mn, Cu, Zn, Pb, Ni, Co, Cd and Cr were measured by flame atomic absorption spectrometry (FAAS). Instrumental Neutron Activation Analysis (INAA) was used for the determination of Ca 2+ , Mg 2+ and AI whereas the contents of Na + and K + were measured by flame photometry. Measurement of the levels of PO 4 3- , SO 4 2- and NO 3 - was performed by UV -visible spectrophotometry. Titrimetry was used for the determination of total hardness, alkalinity, HCO 3 - and CI - . The stable isotopes (δ 2 H and δ 18 O) compositions of the waters were measured using the liquid- water stable isotope analyzer [based on off-axis integrated cavity output spectroscopy (OA

  14. Hydrogeological, hydrochemical and isotope-hydrological investigations of surface and crevice waters in the Grimsel area (Switzerland)

    International Nuclear Information System (INIS)

    Keppler, A.

    1995-12-01

    The Grimsel rock laboratory (Hasli valley, Berner Oberland, Switzerland) has been used since 1984 by NAGRA (Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaelle, Wettingen, Switzerland). It is about 450 metres deep under the Juchli ridge in the crystalline rock basement of the Aar massif. Within the framework of an international cooperation, a great many research topics in connection with the underground storage of radioactive waste are being studied at this location. Their focus is, inter alia, on the following: hydrogeological investigations of crevice water movement, investigations of geophysical structures and rock tension measurements, migration of radionuclides in an individual crevice. So far, hydrogeological and hydrogeochemical conditions have only been studied as far as they related to the needs of individual investigations, and systematic information on global waterways in the Juchli basement was scarce. By contrast, this work aimed at the chemical characterization of surface and spring waters in the catchment area of the rock laboratory as well as the crevice waters in the day-drift system, the description of the chemical development of the waters during their passage through the crevice system, and the assessment of the mean underground retention time of crevice waters by means of different stable and radioactive isotopes. In addition, hydrogeological mapping of the system of waters above ground and crevice water accesses underground was carried out. (orig./SR) [de

  15. Hydrogeology of Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George; Bruce, T. Scott; Bailey, Christopher M.; Sherwood, W. Cullen; Eaton, L. Scott; Powars, David S.

    2016-01-01

    The hydrogeology of Virginia documented herein is in two parts. Part 1 consists of an overview and description of the hydrogeology within each regional aquifer system in the Commonwealth. Part 2 includes discussions of hydrogeologic research topics of current relevance including: 1. the Chesapeake Bay impact structure, 2. subsidence/compaction in the Coastal Plain, 3. groundwater age and aquifer susceptibility, 4. the occurrence of groundwater at depth in fractured-rock and karst terrains, and 5. hydrologic response of wells to earthquakes around the world.

  16. Occurrence of methane in groundwater of south-central New York State, 2012-systematic evaluation of a glaciated region by hydrogeologic setting

    Science.gov (United States)

    Heisig, Paul M.; Scott, Tia-Marie

    2013-01-01

    equaled or exceeded that concentration. Isotopic signatures differed between these groups as well. Methane in valley wells was predominantly thermogenic in origin, likely as a result of close vertical proximity to underlying methane-bearing saline groundwater and brine and possibly as a result of enhanced bedrock fracture permeability beneath valleys that provides an avenue for upward gas migration. Isotopic signatures of methane from four upland well samples indicated a microbial origin (carbon-dioxide reduction) with one sample possibly altered by microbial methane oxidation. Water samples from wells in a valley setting that indicate a mix of thermogenic and microbial methane reflect the close proximity of regional groundwater flow and underlying saline water and brine in valley areas. The microbial methane is likely produced by bacteria that utilize carbon dioxide or formational organic matter in highly reducing environments within the subregional groundwater flow system. This characterization of groundwater methane shows the importance of subsurface information (hydrogeology, well construction) in understanding methane occurrence and provides an initial conceptual framework that can be utilized in investigation of stray gas in south-central New York.

  17. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  18. Geological investigations contributing to the hydrogeological conceptual model in the Meuse/Haute-Marne area, Eastern France

    International Nuclear Information System (INIS)

    Rocher, M.; De Hoyos, A.; Hibsch, C.; Viennot, P.

    2010-01-01

    relatively predictable along large correlation profiles, the Oxfordian and Dogger carbonate platform facies show significant lateral variations (respectively, at the km and the 10 km scales). Further new investigations combined fieldwork mapping and seismic reflection analysis. Specific litho-stratigraphic limits were identified in the field using both geo-morphological and/or petrological evidences. Thanks to the low-angle dips, simple 3D surfaces were constructed for each of these limits relying on loose stone mapping and geo-location of the transitions. Where the petrographic changes were quite sharp, and outcropping conditions favourable, this technique locally revealed faults with less than 4 m-vertical offset, below the resolution limit of available seismic profiles. The analysis of selected seismic profiles provided the vertical geometry of the mapped faults. These complementary methods gave consistent results. They improved the knowledge of the structural framework along the southern NNW-SSE striking Gondrecourt fault zone as they pointed out new transverse faults and their right-lateral transform role during the Gondrecourt Graben setting. The WNW-ESE 'en echelon' Poisson fault system, already recognised on the western side of the Gondrecourt Graben, was extended to its eastern side, towards the aquifers recharge area. As a consequence, higher transmissivity values might be considered in the hydrogeological model along these faults. At the metre scale, the porosity values were derived from the stratigraphic facies and fracturing distribution. Statistical analysis on measured minor fractures has been achieved in the Mesozoic limestones outcropping in MHM area. The main trends are the same as for major faults: N040-050 deg. and N130-140 deg.. Minor fracturing is more intense near the regional faults, and locally, the preferential trend is similar to the nearest fault. These results plead for increasing once more the transmissivity values around major faults

  19. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Heinzen, W.; Santana, J.

    1987-01-01

    This work shows the hydrogeological study and well drilling carried out in the Teaching Formation Institute San Jose de Mayo Province Uruguay. It was developed a geological review in the National Directorate of Geology and Mining data base as well as field working, geology and hydrogeology recognition and area well drilling inventory.

  20. Hydrogeological modelling of the eastern region of Areco river locally detailed on Atucha I and II nuclear power plants area

    International Nuclear Information System (INIS)

    Grattone, Natalia I.; Fuentes, Nestor O.

    2009-01-01

    Water flow behaviour of Pampeano aquifer was modeled using Visual Mod-flow software Package 2.8.1 with the assumption of a free aquifer, within the region of the Areco river and extending to the rivers of 'Canada Honda' and 'de la Cruz'. Steady state regime was simulated and grid refinement allows obtaining locally detailed calculation in the area of Atucha I and II Nuclear power plants, in order to compute unsteady situations as the consequence of water flow variations from and to the aquifer, enabling the model to study the movement of possible contaminant particles in the hydrogeologic system. In this work the effects of rivers action, the recharge conditions and the flow lines are analyzed, taking always into account the range of reliability of obtained results, considering the incidence of uncertainties introduced by data input system, the estimates and interpolation of parameters used. (author)

  1. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Carrion, R.

    1987-01-01

    This work refers to the hydrogeological study about underground water to domestic uses. It was required by Artigas intendence of Uruguay, in the rural school 10, located belongs to the Chiflero zone around the capital of the Artigas Province.

  2. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  3. Discussion on hydrogeological conditions of metallogenesis of the sandstone type uranium deposit in Burqin basin, Xinjiang autonomous region

    International Nuclear Information System (INIS)

    Li Qirong

    2000-01-01

    Based on a brief introduction to the occurrence and distribution of groundwater, the characteristics of the tectonic-hydrogeological layers of the basin are discussed. Then, the author expounds the groundwater hydrodynamic conditions including recharge, runoff and drainage, and hydrogeochemical characteristics. In the end, the hydrogeological conditions favorable for uranium metallogenesis are summarized

  4. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  5. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  6. Evaluation of the hydrogeological interconnection between the Salar de Maricunga and the Piedra Pomez basins, Atacama Region, Chile; An isotope and geochemical approach

    International Nuclear Information System (INIS)

    Iriarte, S.; Santibanez, I; Aravena, R

    2001-01-01

    Groundwater is the main water source for the mining industry in the Altiplano of northern Chile. Groundwater also plays a significant role as a water source for lagoons, wetlands and salares, which are important ecosystems for animal life and vegetation communities that exist in this arid region. The rational use and protection of the groundwater resource requires a good understanding of the aquifer systems. One of the key components in the assessment of water resources in Northern Chile, is the hydrogeological interconnection between basins. During the last three years, as part of a major hydrogeological project, Sernageomin has been working in the Altiplano of the Atacama region (Iriarte et al., 1998; Iriarte, 1999; Venegas et al., 2000; Santibanez, in prep.). This study included the evaluation of the geometry and groundwater potential of the aquifers and the chemical characterization of the surface and groundwater. Part of this study has focused on the Salar de Maricunga and the Campo de Piedra Pomez basins, due to an increasing demand for groundwater resources in this area by the mining industry. This paper discusses the use of isotope and geochemical tools that were used to evaluate the hydrogeological interconnection between the Salar de Maricunga and the Piedra Pomez basins. The geological and hydrogeological framework of this work is discussed in detail by Iriarte (1999) (au)

  7. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    Science.gov (United States)

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  8. HYDROGEOLOGICAL AND HYDROGEOCHEMICAL CHARACTERISTICS OF A WIDER AREA OF THE REGIONAL WELL FIELD EASTERN SLAVONIA – SIKIREVCI

    Directory of Open Access Journals (Sweden)

    Jasna Kopić

    2016-10-01

    Full Text Available This paper establishes hydrogeological and hydrogeochemical characteristics of a wider area of the regional well field Eastern Slavonia - Sikirevci. The research was conducted based on data gathered from the area of the Federation of Bosnia and Herzegovina and the Republic of Croatia. The aquifer Velika Kopanica is situated at the territory of the Republic of Croatia in the triangular region formed between Kopanica, Gundinci and Kruševica. The River Sava partially flows through it and the aquifer extends beneath the river to the territory of the Federation of Bosnia and Herzegovina from Donji Svilaj in the West to Domaljevac in the East where its yield is the highest. The thickness of the aquifer decreases towards the water body Odžak. It was determined that the groundwater which is extracted from wells of the wider area of the regional well field contains iron, manganese, natural ammonia and arsenic in values exceeding the maximum allowable concentration for drinking water. The increased values of these parameters are a result of mineral composition and reductive conditions in the aquifer environment. By means of a multivariate statistic cluster analysis, an overview of groups of elements is provided based on geochemical affinity and/or origin.

  9. Anthropogenic wetlands due to over-irrigation of desert areas: a challenging hydrogeological investigation with extensive geophysical input from TEM and MRS measurements

    Science.gov (United States)

    Behroozmand, Ahmad Ali; Teatini, Pietro; Bjergsted Pedersen, Jesper; Auken, Esben; Tosatto, Omar; Vest Christiansen, Anders

    2017-03-01

    During the last century, many large irrigation projects were carried out in arid lands worldwide. Despite a tremendous increase in food production, a common problem when characterizing these zones is land degradation in the form of waterlogging. A clear example of this phenomenon is in the Nubariya depression in the Western Desert of Egypt. Following the reclamation of desert lands for agricultural production, an artificial brackish and contaminated pond started to develop in the late 1990s, which at present extends for about 2.5 km2. The available data provide evidence of a simultaneous general deterioration of the groundwater system. An extensive hydrogeophysical investigation was carried out in this challenging environment using magnetic resonance sounding (MRS) and ground-based time-domain electromagnetic (TEM) techniques with the following main objectives: (1) understanding the hydrological evolution of the area; (2) characterizing the hydrogeological setting; and (3) developing scenarios for artificial aquifer remediation and recharge. The integrated interpretation of the geophysical surveys provided a hydrogeological picture of the upper 100 m sedimentary setting in terms of both lithological distribution and groundwater quality. The information is then used to set up (1) a regional groundwater flow and (2) a local density-dependent flow and transport numerical model to reproduce the evolution of the aquifer system and develop a few scenarios for artificial aquifer recharge using the treated water provided by a nearby wastewater treatment plant. The research outcomes point to the hydrological challenges that emerge for the effective management of water resources in reclaimed desert areas, and they highlight the effectiveness of using advanced geophysical and modeling methodologies.

  10. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J.; Bluemling, P.; Vomvoris, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs

  11. Hydrogeology of Mors

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The covering layers protect the salt in the dome. Ground water velocities are small and the chalk exhibits good retention properties for the radionuclides. As ground water velocities below 500 m are small, knowledge of hydrogeology over only a small area over the dome is necessary (1 km horizontal transport takes about 15 mill. years). Additionally if the retention properties of the chalk together with radioactive decay are taken into account, it becomes obvious that the nuclides can travel only a few metres into the chalk, before they have decayed to safe radioactive levels. Therefore it does not appear to be necessary to investigate the hydrogeology beyond a few metres from the disposal area. The hydrogeological investigations that have been carried out, although they cover only a limited area, thus give an excellent and sufficient basis for a safety evaluation for determining the suitability of the Mors salt dome for waste disposal. (EG)

  12. Hydrogeology of the cave Vetrovna jama in karst aquifer north from Planinsko polje (Notranjska region, central Slovenia

    Directory of Open Access Journals (Sweden)

    Franci Gabrovšek

    2009-06-01

    Full Text Available For one year we have been measuring level and temperature of underground water in Vetrovna jama, to find outthe origin of underground water and hydraulic characteristics of the cave and karst aquifer north east of Planinsko polje (karst of Notranjska region, central Slovenia. Similar parameters as in Vetrovna jama were measured also at the Unica River and at the Cerknica Lake. Cave is located only 2.7 km north from the polje and is fed by the Unica River, according to measurements. But in contrast with our expectations, we did not directly detect undergroundwater flow, which drains from the Cerknica Lake. Hydrographs measured in Vetrovna jama were compared with those measured in some other caves within the aquifer. Hydrographs from Vetrovna jama are only partly comparablewith hydrographs obtained in other monitored caves, as comparison shows no statistical significant correlation.Final conclusion would be that drainage of water between “eastern” and “western” part of karst aquifer islimited. More over, out flow from Vetrovna jama strongly depends on local hydrogeological restriction, such as supposedrockfall under Laška kukava collapse doline.

  13. Horonobe Underground Research Laboratory project overview of the pilot borehole investigation of the ventilation shaft (PB-V01). Hydrogeological investigation

    International Nuclear Information System (INIS)

    Yabuuchi, Satoshi; Kunimaru, Takanori; Ishii, Eiichi; Hatsuyama, Yoshihiro; Ijiri, Yuji; Matsuoka, Kiyoyuki; Ibara, Tetsuo; Matsunami, Shinjiro; Makino, Akiya

    2009-02-01

    The Pilot Borehole Investigation of the Ventilation Shaft was conducted in Horonobe, Hokkaido, Japan from October 2007 to March 2008. Main purpose of the investigation is to understand geological, hydrogeological and hydrochemical properties of the formation where the Ventilation Shaft has been excavated. Hydraulic packer tests show that hydraulic conductivity lies in the range from 1.1E-11 to 1.4E-7 m/sec down to 500m in depth. This heterogeneity mainly depends on the distribution and permeability of groundwater inflow points, which were detected by Fluid Electric Conductivity logging. High conductive zones were found between 263m and 290m, 355m and 370m of the depth in the pilot borehole. An effective method for reducing groundwater inflow should be considered for the deeper Ventilation Shaft excavation. (author)

  14. Stable isotopes use in hydrogeology studies of mineral and thermal waters (Lindoia region, Sao Paulo, Brazil)

    International Nuclear Information System (INIS)

    Yoshinaga, S.; Silva, A.A.K. de; Matsui, E.

    1991-01-01

    Deuterium and oxygen-18 studies were used to investigate the origin and the mineralizing processes of the mineral water and thermal water in Aguas de Lindoia and Lindoia, Brazilian municipal districts. (M.V.M.)

  15. Hydrogeological approach to the regional analysis of low flow in medium and small streams of the hilly and mountainous areas of Serbia

    Directory of Open Access Journals (Sweden)

    Nikić Zoran

    2006-01-01

    Full Text Available During the long rainless spells of the dry season, flows in medium and small streams get reduced to what is generally known as "low flow". For ungauged streams, the controlling "low flows" are determined using the regional analysis method. In the presently described exploration, the method applied was based on the assumption that dry weather discharges in medium and small rivers depended on the hydrogeological conditions. The controlling effect of hydrogeology on the natural low flow in medium and small streams of the hilly and mountainous part of Serbia was analyzed applying the theory of multiple linear regression. The thirty-day minimum mean 80 and 95 per cent exceedance flows were taken for dependent variables, and quantified hydrogeological elements as independent variables. The analysis covered streams that had small or medium size catchment areas. The treated example encompassed sixty-one gauged catchments. The resulting regional relations for the thirty day minimum mean 80 and 95 per cent exceedance flows are presented in this paper. The quality of the established relation was controlled by relevant statistic tests.

  16. Simulation of hydrodynamic effects of salt rejection due to permafrost. Hydrogeological numerical model of density-driven mixing, at a regional scale, due to a high salinity pulse

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Svensson, Urban; Follin, Sven

    2006-10-01

    The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process

  17. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  18. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    International Nuclear Information System (INIS)

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  19. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  20. Hydrogeologic investigations of the southern Española Basin, NM

    Science.gov (United States)

    Earney, T.; Christensen, D.; Horton, A.; Folsom, M.; Kelley, S.

    2017-12-01

    For the past 5 years, students participating in the Summer of Applied Geophysical Experience (SAGE) have been studying groundwater conditions in the southern Española Basin, in northern New Mexico, with a goal of developing a better understanding of both regional and local scale geothermal anomalies. A regional geothermal gradient map constructed over the study area indicates that there are two regions with anomalously high geothermal gradients, one associated with the Buckman municipal wellfield (BMWF) and the other in the vicinity of the Cerros del Rio volcanic field. Overproduction at the BMWF was responsible for a 100 meter drop in groundwater levels between 1989 and 2003, leading to a significant amount of land subsidence. Repeat measurements of thermal profiles for several monitoring wells at Buckman reveal incremental warming over a 5 year period from 2013 to 2017. Additionally, land elevation recovery was documented between 2007 and 2010 using InSAR (Interferometric Synthetic Aperture Radar). These observations are inferred to be a response to decreased production rates in nearby wells Buckman 1 and 8. This suggests that the groundwater flow system at Buckman is still in a state of recovery from the years of overproduction. The proximity of the well field to a small mapped fault near Buckman 8 potentially explains why geothermal gradients are anomalously high at the BMWF. Monitoring well SF-2b received special attention in an attempt to explain a localized thermal anomaly between 200 and 230 meters down hole. Explanations including geology (faults and stratigraphy) and interference from nearby production wells do not seem to account for the anomaly. The anomaly is therefore interpreted as the result of a damaged casing. Elevated geothermal anomalies at the Cerros del Rio volcanic field could be explained by structural and textural changes to groundwater flow units that occurred when aligned plug and dikes feeding volcanic vents intruded along faults. A

  1. Hydrogeological Investigations of the Quaternary Aquifeer in the Northern Part of El-Sharkia Governorate, Egypt

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Ezz El Din, M.R.; Deyab, M.E.

    2011-01-01

    The hydraulic characteristics of surficial soils and materials of the Quaternary aquifer in the northern part of El-Sharkia Governorate were investigated. The surficial soil zone represents an aquitard for the aquifer and mainly composed of fine textured materials having vertical hydraulic conductivity ranged from 1.4 x10 -6 cm/sec to 2.15x10 -2 cm/sec. The semi-confined Quaternary aquifer is formed of sand and gravel with occasional clay lenses. The groundwater levels ranged from 9 m (MSL) to 5 m (MSL). The major trend of groundwater flow was from south to north and northwest directions. Another minor flow trend was observed to be from southwest to northeast direction. The aquifer is essentially recharged from Ismaillia Canal. The hydraulic gradient through the flow path was 1.9 x10 -4 , averagely. The hydraulic conductivity values differ vertically and laterally indicating the heterogeneity and anisotropy of the aquifer materials. They ranged from 40.1 to 222 m/day with an average value of about 95.8 m/day. The chemical compositions of groundwater and surface water bodies (canals and drains) were investigated. The chemistry of all water bodies was characterized by a basic nature (ph =7.2-7.9) and showed different salinities values and various hydrochemical facies. The average salinities values were 318.1 mg/l for canal water, 1013.4 mg/l for groundwater and 1260 mg/l for drain water. Canal water was fresh while groundwater and drain were fresh to brackish. The reasons causing the changes in salinity and hydrochemical facies were investigated using the relationships among water dissolved constituents and trends of ionic ratios. Subsurface flow, infiltration, evaporation, ion exchange, leaching, and dissolution were the hydrochemical processes leading to the groundwater modification. The suitability of groundwater and surface water for different uses are discussed and evaluated according to the international standards.

  2. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    Science.gov (United States)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  3. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  4. Hydrogeology and hydrochemistry of the midnite mine, northeastern Washington. Report of investigations/1994

    International Nuclear Information System (INIS)

    Marcy, A.D.; Scheibner, B.J.; Toews, K.L.; Boldt, C.M.K.

    1994-01-01

    The Midnite Mine is an inactive, hardrock uranium mine on the Spokane Indian Reservation, Stevens County, WA. Oxidation of sulfide-containing minerals, primarily pyrite, in the ore body produces large quantities of acidic water. An interception system installed by the mining company limits the discharge of contaminated water from the mine. The Bureau of Indian Affairs and the Bureau of Land Management have been actively involved in planning remediation of the disturbed areas. To assist in remediation, the U.S. Bureau of Mines initiated research to determine water quality and define groundwater flow characteristics. Bureau personnel designed a monitoring network, supervised installation of sampling wells, and collected and analyzed water samples. This Report of Investigations describes interpretation of data collected between December 1989 to April 1992

  5. Integrated Hydrogeological Investigation on the Vulnerability of a Pumping Station at a Losing Stream

    Science.gov (United States)

    Ngueleu Kamangou, Stephane; Vogt, Tobias; Cirpka, Olaf

    2010-05-01

    River restoration usually includes alteration of the river channel morphology. Thereby the interaction between river and groundwater can be modified. For the design of a river restoration project - especially in the vicinity of a groundwater pumping well for drinking water production - this impact must be predicted. But a good prediction requires a proper understanding of the existing situation. Numerical models help to improve the strategy of a successful river restoration project. The main objective of this study was to investigate the vulnerability of a pumping station located at losing river in northeast Switzerland. Besides the effect that river restoration could create, a particular attention was placed on the effect of a beaver dam in a side channel close to the pumping station. Analysis of field measurements coupled with numerical modeling of the pumping station area improved the understanding of the interactions in the river corridor between the river, side channels and the alluvial aquifer.

  6. The Hydrogeological investigation of Plajköy spring (Elazığ

    Directory of Open Access Journals (Sweden)

    Özlem ÖZTEKİN OKAN

    2018-01-01

    Full Text Available Plajköy spring discharges at the close locations to the SE shore of Lake Hazar. Lake Hazar is a tectonic Lake in Elazığ city. Plajköy spring is a fault spring that is mainly recharging from the volcanites, dikes and blocky volcanosedimentary units of Middle Eocene Maden Complex. These units have gained secondary permeability and porosity related with the active tectonics that is effective in the studied area. The present catchment system of the spring could not collect the springs and leaks discharging from different points around the system. The discharge of the catchment is measured by specifi c volume method while the other springs’ and leaks’ is measured by using triangular weir. Before the discharge measurement of the leaks and the springs, they have been directed to a channel. The discharge of the present catchment system and the leaks have measured twice in a month during one year period beginning from October of 2012 to November of 2013. The discharge coeffi cient of the spring is calculated 1.33*10-3 day-1. Discharge coeffi cient of the spring depends on the geometry and intensity of the active fracture systems in the region. Calculated discharge coeffi cient indicates that the spring discharge is related with the narrow fi ssures, fractures and pores. The total volume of discharged groundwater in the real regime of the Plajköy spring is calculated as 52* 103 m3 during the period from 31st of March, 2013 to the 13rd of October, 2013 by Maillet formula. The spring water is Ca- Mg- HCO3 type water related with the chemical analyses. The chemical and microbiological analyses of the spring water are correlated with the drinking water standarts of Turkey TS 266 (TSE, 2005 and World Health Organization (2004, and it is seen that the spring water is suitable for drinking. The Plajköy spring will be used more effi ciently without exposed to pollution by the new catchment plan and protection zone map that are consequently proposed in

  7. Evaluation and development of hydrogeological and geochemical investigation methods for aquifers of low permeability

    International Nuclear Information System (INIS)

    Wijland, G.C.; Langemeijer, H.D.; Stapper, R.A.M.; Glasbergen, P.; Michelot, J.L.

    1991-01-01

    Studies are currently being carried out in the Netherlands to assess the environmental consequences of geological disposal of radioactive waste. In these studies transport models are used to evaluate the geohydrological system in formations overlying the potential host-rock, and to establish the potential pathways for radionuclides to the biosphere. Knowledge of parameter values, and of their variability for the investigated formations, is necessary to construct these models. From preceding work it became obvious that only a poor set of data is available, in particular for Paleogene and Upper Cretaceous deposits, that are present in the overburden of salt structures in the Netherlands. Within the current phase of the Netherlands programme on geological disposal it was considered essential to obtain an overview of methods and their accuracy which would be applicable for a geohydrological research programme first. From this work guidelines for the construction of new boreholes might also be derived. The main purposes of this study were defined as follows: to evaluate and to test techniques to obtain geohydrological data of the aquifers and aquitards of the Upper Cretaceous and Lower Tertiary formations. Also, geohydrochemical methods were evaluated and tested in order to find out whether they could contribute to the understanding of the groundwater flow system in aquifers of low permeability

  8. An overview of experimental techniques developed during hydrogeological investigations at Reskajeage Quarry, Cornwall

    International Nuclear Information System (INIS)

    Bolt, J.E.; Pascoe, D.M.; Watkins, V.M.B.

    1991-09-01

    In fractured rocks, the transport of dissolved radionuclides which may be released from the near-field of a radioactive waste repository will take place dominantly through the three dimensional network of fractures. Assessments of groundwater flow and radionuclide transport from an underground repository use continuum models, such as NAMMU, to predict radionuclide transport. To complement this approach, water flow and transport in fractured rock is being investigated at a more detailed level, using fracture network modelling. A test site, at Reskajeage Quarry in Cornwall, is currently being used to provide experimental data on flow and transport in fractured rock, to improve confidence in this modelling approach. This report describes the range of experimental techniques that have been used to obtain data on the positions, orientations and hydraulic properties of individual fractures in the slate. Also, brief descriptions of the design of a series of transport tests are given. The results of this work are described in a series of Nirex Safety Series Reports. (Author)

  9. An overview of experimental techniques developed during hydrogeological investigations at Reskajeage Quarry, Cornwall

    International Nuclear Information System (INIS)

    Bolt, J.E.; Pascoe, D.M.; Watkins, V.M.B.

    1991-09-01

    In fractured rocks, the transport of dissolved radionuclides which may be released from the near-field of a radioactive waste repository will take place dominantly through the three-dimensional network of fractures. Assessments of groundwater flow and radionuclide transport from an underground repository use continuum models, such as NAMMU, to predict radionuclide transport. To complement this approach, water flow and transport in fractured rock is being investigated at a more detailed level, using fracture network modelling. A test side, at Reskajeage Quarry in Cornwall, is currently being used to provide experimental data on flow and transport in fractured rock, to improve confidence in this modelling approach. This report describes the range of experimental techniques that have been used to obtain data on the positions, orientations and hydraulic properties of individual fractures in the slate. Also, brief descriptions of the design of a series of transport tests are given. The results of this work are described in a series of Nirex Safety Series Reports. (author)

  10. Environmental isotope application to investigate the hydrogeological aquifers of Yarmouk basin SW of Syria

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2002-01-01

    Environmental isotopic variations have been used to investigate the source of recharge and age in the basaltic and deep limestone aquifers system in the Yarmouk basin, SW of Syria. Isotopic results show that recharge of basaltic aquifer is directly related to infiltration of rainwater from high and transitional zones. However, the homogeneity noted of stable and radioactive isotopes values (δ 18 O= -5.58± 0.25%, 14 C=46.2± 4.45 % pmc) in Laja plateau and central zone, confirm the mechanism of common recharge and critical role of this plateau in absorbing great amount of precipitation. In addition these values indicate, to a high rate mixing taking place in this plateau and the central zone. In the Kahiel area, the groundwater is of recent age as shown from the high values of 14 C activity ( 14 C= 66.3 ± 5.3 % pcm) accompanied by enriched 18 O (δ 18 O=-4.7±0.22 %). The recharge of groundwater is related to the leakage of water from dams and drainage network. The tectonic setting in this area constitutes an additional factor in increasing this recharge. Netpath model was used to determine the age of groundwater. the age of groundwater in the basaltic aquifer is generally modern and reaches 2000 y BP in discharge area. Preliminary conclusion of deep limestone aquifer, indicate that its groundwater occur under high piezometric pressure. The salinity is less than 1g/L and the temperature water varied between 35 to 45 degreed centigrade. The low 14 C activities in deep groundwater suggest pleistocene and holocene recharge, although their stable isotopes values indicate recharge by modern meteoric precipitation. The corrected age of this groundwater determined by Netpath model indicate that this age fall between recent water in recharge area and 20 Ky BP. (author)

  11. Hydrogeologic investigation of the Malvern TCE Superfund Site, Chester County, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.

    1997-01-01

    The Malvern TCE Superfund Site, a former solvent recycling facility that now stores and sells solvents, consists of a plant and disposal area, which are approximately 1,900 ft (feet) apart. The site is underlain by an unconfined carbonate bedrock aquifer in which permeability has been enhanced in places by solution. Water levels respond quickly to precipitation and show a similar seasonal variation, response to precipitation, and range of fluctuation. The altitude of water levels in wells at the disposal area is nearly identical because of the small hydraulic gradient. A comparison of water-table maps for 1983, 1993, and 1994 shows that the general shape of the water table and hydraulic gradients in the area have remained the same through time and for different climatic conditions.The plant area is underlain by dolomite of the Elbrook Formation. The dolomite at the plant area does not yield as much water as the dolomite at the disposal area because it is less fractured, and wells penetrate few water-bearing fractures. Yields of nine wells at the plant area range from 1 to 200 gal/min (gallons per minute); the median yield is 6 gal/min. Specific capacities range from 0.08 to 2 (gal/min)/ft (gallons per minute per foot). Aquifer tests were conducted in two wells; median transmissivities estimated from the aquifer-test data ranged from 528 to 839 feet squared per day. Maximum concentrations of volatile organic compounds (VOC's) in ground water at the plant area in 1996 were 53,900 ug/L (micrograms per liter) for trichloroethylene (TCE), 7,110 ug/L for tetrachloroethylene (PCE), and 17,700 ug/L for 1,1,1-trichloroethane (TCA).A ground-water divide is located between the plant area and the disposal area. Ground-water withdrawal for dewatering the Catanach quarry has caused a cone of depression in the water-table surface that reaches to the plant area. From the plant area, ground water flows 1.2 miles to the northeast and discharges to the Catanach quarry. The regional

  12. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-10-19

    The extent, hydrogeologic framework, and potential well yields of valley-fill aquifers within a 151-square-mile area of eastern Chemung County, New York, were investigated, and the upland distribution of till thickness over bedrock was characterized. The hydrogeologic framework of these valleyfill aquifers was interpreted from multiple sources of surficial and subsurface data and an interpretation of the origin of the glacial deposits, particularly during retreat of glacial ice from the region. Potential yields of screened wells are based on the hydrogeologic framework interpretation and existing well-yield data, most of which are from wells finished with open-ended well casing.

  13. Hydrodynamics in Evaporate-Bearing Fine-Grained Successions Investigated through an Interdisciplinary Approach: A Test Study in Southern Italy—Hydrogeological Behaviour of Heterogeneous Low-Permeability Media

    Directory of Open Access Journals (Sweden)

    E. Petrella

    2018-01-01

    Full Text Available Messinian evaporates are widely distributed in the Mediterranean Sea as outcropping sediments in small marginal basins and in marine cores. Progressive filling of subbasins led to the formation of complex aquifer systems in different regions where hypersaline and fresh water coexist and interact in different manner. It also generates a significant diversification of groundwater hydrochemical signature and different microbial communities. In the case study, the hydrogeology and hydrochemistry of the whole system are influenced by good hydraulic connection between the shallower pyroclastic horizon and the underlying evaporate-bearing fine-grained Messinian succession. This is demonstrated by the merge of hydrogeological, chemical, isotopic, and microbiological data. No mixing with deep ascending waters has been observed. As shown by geophysical, hydraulic, and microbiological investigations, the hydraulic heterogeneity of the Messinian bedrock, mainly due to karstified evaporitic interstrata/lenses, causes the hydraulic head to significantly vary with depth. Somewhere, the head increases with the depth’s increase and artesian flow conditions are locally observed. Moreover, the metagenomic investigations demonstrated the existence of a poor hydraulic connection within the evaporate-bearing fine-grained succession at metric and decametric scales, therefore leading to a patchwork of geochemical (and microbiological subenvironments.

  14. Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta, Poland

    Directory of Open Access Journals (Sweden)

    Przybyłek Jan

    2017-12-01

    Full Text Available River bank filtration (RBF is a system that enriches groundwater resources by induced infiltration of river water to an aquifer. Problematic during operation of RBF systems is the deterioration of infiltration effectiveness caused by river bed clogging. This situation was observed in the Krajkowo well field which supplies fresh water to the city of Poznań (Poland during and after the long hydrological drought between the years 1989 and 1992. The present note discusses results of specific hydrogeological research which included drilling of a net of boreholes to a depth of 10 m below river bottom (for sediment sampling as well as for hydrogeological measurements, analyses of grain size distribution and relative density studies. The results obtained have allowed the recognition of the origin of the clogging processes, as well as the documentation of the clogged parts of the river bottom designated for unclogging activities.

  15. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I; Gustafson, Gunnar [VBB Viak AB, Goeteborg (Sweden); Wikberg, P [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated. 157 refs, 190 figs, 37 tabs.

  16. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    International Nuclear Information System (INIS)

    Rhen, I.; Gustafson, Gunnar; Wikberg, P.

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated

  17. Hydrogeological and hydrogeochemical investigations in boreholes - Final report of the phase I geochemical investigations of the Stripa groundwaters

    International Nuclear Information System (INIS)

    Nordstroem, D.K.; Carlsson, L.; Fontes, J.C.; Frits, P.; Moser, H.; Olsson, T.

    1985-07-01

    The hydrogeochemical investigations of Phase I of the Stripa Project (1980-1984) have been completed, and the results are presented in this final report. All chemical and isotopic data on the groundwaters from the beginning to the Stripa Project to the present (1977-84) are tabulated an used in the final interpretations. The background geology and hydrology is summarized and updated along with new analyses of the Stripa grantie. Water-rock interactions form a basic framework for the changes in major-element chemistry with depth, including carbonate geochemistry, the fluid-inclusion hypothesis, redox processes, and mineral precipitation. The irregular distribution of chloride suggests channelling is occurring and the effect of thermomechanical perturbations on the groundwater chemistry is documented. Stable and radioactive isotpes provide information of the origin and evolution of the groundwater itself and of several elments within the groundwater. Subsurface production of radionuclides is documented in these investigations, and a general picture of uranium transformations during weathering is presented. One of the primary conclusions reached in these studies is that different dissolved constituents will provide different residence times because they have different origins and different evolutionary histories that may or may not be related to the overall evolution of the groundwater itself. (author)

  18. Preliminary hydrogeologic evaluation of the Cincinnati Arch region for underground high-level radioactive waste disposal, Indiana, Kentucky , and Ohio

    Science.gov (United States)

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)

  19. Preliminary hydrogeologic evaluation of the Cincinnati arch region for underground high-level radioactive waste disposal, Indiana, Kentucky, and Ohio

    International Nuclear Information System (INIS)

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. 39 refs., 9 figs., 3 tabs

  20. Seawater intrusion in the gravelly confined aquifer of the coastal Pisan Plain (Tuscany): hydrogeological and geochemical investigation to assess causes and consequences

    Science.gov (United States)

    Doveri, M.; Giannecchini, R.; Butteri, M.

    2012-12-01

    The gravelly horizon of the Pisa plain multilayered system is a confined aquifer tapped by a large number of wells. It hosts a very important water resource for drinking, industrial and irrigable uses, but may be affected by seawater intrusion coming from the coastal area; most wells is distributed inland, anyway a significant exploitation along the coastal area is also present to supply farms and tourist services. Previous hydrogeological and geochemical investigations carried out in coastal area stated maximum percentage of seawater in gravelly aquifer of about 7-9% and suggested the presence of two different mechanisms (Doveri et alii, 2010): i) a direct seawater intrusion from the zone where the gravelly aquifer is in contact with the sea floor; ii) a mixing process between freshwater and seawater, the latter deriving from the Arno river-shallow sandy aquifer system. Basing on these results, since January 2012 a new two-year project was financed by the MSRM Regional Park. Major aims are a better definition of such phenomena and their distribution on the territory, and an assessing of the seawater intrusion trend in relation to groundwater exploitation. Eleven piezometers were realised during first semester of 2012, thus improving the measurement network, which is now made up by 40 wells/piezometers distributed on about 60 km^2. Comparing new and previous borehole data a general confinement of the gravelly aquifer is confirmed, excepting in the northern part where the aquifer is in contact with the superficial sandy one. Preliminary field measurement was performed in June 2012, during which water level (WL) and electrical conductivity (EC) data were collected. WLs below the sea-level were observed on most of the studied area, with a minimum value of about -5 m a.s.l. in the inner part of the northern zone, where major exploitation is present. Moreover, a relative minimum of WL (about -2 m a.s.l.) is present near the shoreline in the southern zone. In the latter

  1. Undergraduate Education in Hydrogeology.

    Science.gov (United States)

    Tinker, John Richard, Jr.

    1989-01-01

    Discusses a course at the University of Wisconsin-Eau Claire which improved instruction in physical hydrogeology, chemical hydrogeology, and water resources. Describes 14 laboratory activities including objectives, methods, and a list of equipment needed. (Author/MVL)

  2. The role of regional groundwater flow in the hydrogeology of the Culebra member of the Rustler formation at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Corbet, T.F. [Sandia National Lab., Albuquerque, NM (United States); Knupp, P.M. [Ecodynamics Research Associates, Albuquerque, NM (United States)

    1996-12-01

    Numerical simulation has been used to enhance conceptual understanding, of the hydrogeology of the Culebra Dolomite in the context of regional groundwater flow. The hydrogeology is of interest because this unit is a possible pathway for offsite migration of radionuclides from a proposed repository for defense-generated transuranic wastes (the Waste Isolation Pilot Plant). The numerical model used is three-dimensional, extends laterally to topographic features that form the actual boundaries of a regional groundwater system, and uses a free-surface upper boundary condition to simulate the effect of change in the rate of recharge on groundwater flow. Steady-state simulations were performed to examine the sensitivity of simulation results to assumed values for hydraulic conductivity and recharge rate. Transient simulations, covering the time period from 14,000 years in the past to 10,000 years in the future, provided insight into how patterns of groundwater flow respond to changes in climate. Simulation results suggest that rates and directions of Groundwater flow in the Culebra change with time due to interaction between recharge, movement of the water table, and the topography of the land surface. The gentle east-to-west slope of the land surface in the vicinity of the WIPP caused groundwater in the Culebra to flow toward and discharge into Nash Draw, a topographic depression. Modern-day flow directions in the Culebra reflect regional rather than local features of the topography. Changes in Groundwater flow, however, lagged behind changes in the rate of recharge. The present-day position of the water table is still adjusting to the decrease in recharge that ended 8,000 years ago. Contaminants introduced into the Culebra will travel toward the accessible environment along the Culebra rather than by leaking upward or downward into other units. Natural changes in flow over the next 10,000 years will be small and will mainly reflect future short-term wet periods.

  3. Hydrogeological boundary settings in SR 97. Uncertainties in regional boundary settings and transfer of boundary conditions to site-scale models

    International Nuclear Information System (INIS)

    Follin, S.

    1999-06-01

    The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project

  4. The role of regional groundwater flow in the hydrogeology of the Culebra member of the Rustler formation at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Corbet, T.F.; Knupp, P.M.

    1996-12-01

    Numerical simulation has been used to enhance conceptual understanding, of the hydrogeology of the Culebra Dolomite in the context of regional groundwater flow. The hydrogeology is of interest because this unit is a possible pathway for offsite migration of radionuclides from a proposed repository for defense-generated transuranic wastes (the Waste Isolation Pilot Plant). The numerical model used is three-dimensional, extends laterally to topographic features that form the actual boundaries of a regional groundwater system, and uses a free-surface upper boundary condition to simulate the effect of change in the rate of recharge on groundwater flow. Steady-state simulations were performed to examine the sensitivity of simulation results to assumed values for hydraulic conductivity and recharge rate. Transient simulations, covering the time period from 14,000 years in the past to 10,000 years in the future, provided insight into how patterns of groundwater flow respond to changes in climate. Simulation results suggest that rates and directions of Groundwater flow in the Culebra change with time due to interaction between recharge, movement of the water table, and the topography of the land surface. The gentle east-to-west slope of the land surface in the vicinity of the WIPP caused groundwater in the Culebra to flow toward and discharge into Nash Draw, a topographic depression. Modern-day flow directions in the Culebra reflect regional rather than local features of the topography. Changes in Groundwater flow, however, lagged behind changes in the rate of recharge. The present-day position of the water table is still adjusting to the decrease in recharge that ended 8,000 years ago. Contaminants introduced into the Culebra will travel toward the accessible environment along the Culebra rather than by leaking upward or downward into other units. Natural changes in flow over the next 10,000 years will be small and will mainly reflect future short-term wet periods

  5. HydroCube: an entity-relationship hydrogeological data model

    Science.gov (United States)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  6. Regional groundwater chemical characteristics of Aqishan pre-selected site for high level radioactive waste repository and its hydrogeological significance

    International Nuclear Information System (INIS)

    Guo Yonghai; Dong Jiannan; Liu Shufen; Zhou Zhichao

    2014-01-01

    Aqishan area located in Xinjiang Uygur Automonous Region is one of the main preselected site of disposal repository for high-level radioactive waste (HLW) in our country. Groundwater chemical feature is one of the most important consideration factors in the siting and site evaluation for high-level radioactive waste repository, From 2012 to 2013, the regional field hydrogeochemical investigation was carried out in study area and more than 30 groundwater samples were collected. According to the measurement data, the groundwater chemical features for different subareas are discussed in the paper. Furthermore, the location of discharge area of groundwater in Aqishan area was estimated according to the chemical features of different subareas. (authors)

  7. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  8. Study on the methodology of hydrogeological character in preselected site for high-level waste repository in Beishan area, Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Su Rui; Yang Tianxiao

    2003-01-01

    The results of regional hydrogeological investigations conducted during 1996-2000 were summarized. The study was started with the surface hydrogeological, hydrogeochemical, and groundwater isotopic and humic acid investigations. The key-points are focused on the characteristics of water-bearing formation, hydrogeochemistry, groundwater isotopes as well as humic acid. On the bases of a large quantity of hydrogeological data, the hydrogeological conditions of each groundwater unit, groundwater circulation characteristics, groundwater hydrodynamics and hydrgeochemistry are described. In addition, the modeling about groundwater flow state, groundwater chemical balance, interaction among water-rock-nuclear waste is carried out, then the suitability of the Beishan site for the high-level radioactive waste disposal is evaluated. The report comprehensively and deeply shows the hydrogeological characteristics of weak water bearing, low permeability and slow moving as well as the hydrogeochemical features of mild alkalinity and high mineralization in Beishan area. The results will provide an important basis for the evaluation of the site. (authors)

  9. Impacts of heavy groundwater pumping on hydrogeological conditions in Libya: Past and present development and future prognosis on a regional scale

    Science.gov (United States)

    Elgzeli, Yousef M.; Ondovčin, Tomáš; Hrkal, Zbyněk; Krásný, Jiří; Mls, Jiří

    2013-06-01

    Elgzeli, Y.M., Ondovčin, T., Hrkal, Z., Krasny, J. and Mls, J. 2011. Impacts of heavy groundwater pumping on hydrogeological conditions in Libya: Past and present development and future prognosis on a regional scale. Acta Geologica Polonica, 63 (2), 283-296. Warszawa. Libya, like many other regions with arid climates, suffers from inadequate water resources to cover all the needs of this rapidly developing country. Increasing amounts of water are needed to supply the population, as well as for agricultural irrigation and industrial use. As groundwater is the main water source in the country, it represents a natural resource of the highest economic and social importance. Conceptual and numerical models were implemented on a regional scale to show how the natural situation has changed following heavy groundwater abstraction during the last decades in the northwestern part of the country. The results of the numerical model indicated that the current zones of depression of the piezometric surface could have been caused by smaller withdrawn amounts than previously estimated. The differences in the assessed withdrawn groundwater volumes seem to be quite high and might have a considerable influence on the future possibilities of groundwater use in the study region.

  10. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  11. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  12. Hydrogeological study of the Triassic series in the JeffaraDahar region (Southern part of Tunisia): Contribution of well logs data and seismic reflection

    Energy Technology Data Exchange (ETDEWEB)

    Ben Lasmar, R.; Guellala, R.; Zouhri, L.; Sarsar Naouali, B.; Garrach, M.; Inoubli, M.H.

    2016-07-01

    The present study concentrates on the interpretation of well logs and seismic reflection data in the JeffaraDahar region (Southeast part of Tunisia) for a better characterization of the Triassic aquifer, a potential target of water supply. Lithological columns and their corresponding well logs reveal that Sidi Stout, Kirchaou and Touareg. sandstones as well as Mekraneb and Rehach dolomites are the main reservoirs of the Triassic aquifer. Well log analysis highlights many permeable and fractured layers that could play an important role in the groundwater circulation. The interpreted seismic sections and the resulting isochrone maps show a tectonic influence on the Triassic aquifer geometry in the Jeffara-Dahar region. The normal faulting of E-W and NW-SE accidents created an aquifer compartmentalized by raised and tilted blocks. Seismic cross-sections reveal that this structure controls the depth of permeable formations and the circulation of groundwater. These results will be useful for rationalising the future hydrogeological research that will be undertaken in the Jeffara-Dahar area. (Author)

  13. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  14. Hydrogeological testing in the Sellafield area

    International Nuclear Information System (INIS)

    Sutton, J.S.

    1996-01-01

    A summary of the hydrogeological test methodologies employed in the Sellafield geological investigations is provided in order that an objective appraisal of the quality of the data can be formed. A brief presentation of some of these data illustrates the corroborative nature of different test and measurement methodologies and provides a preliminary view of the results obtained. The programme of hydrogeological testing is an evolving one and methodologies are developing as work proceeds and targets become more clearly defined. As the testing is focused on relatively low permeability rocks at depth, the approach to testing differs slightly from conventional hydrogeological well testing and makes extensive use of oilfield technology. (author)

  15. On regional flow in Baltic shield rock. An application of an analytical solution using hydrogeologic conditions at Aberg, Beberg, and Ceberg of SR97

    International Nuclear Information System (INIS)

    Rehbinder, G.; Isaksson, Alf

    1997-11-01

    This report is one of many in support of SR 97, and is an analysis of the residence and transport times of a fluid particle at the three hypothetical domains of SR 97. The three domains are arbitrary named Aberg, Beberg and Ceberg. The report is intended to provide a quantitative assessment of the lateral length scales governing groundwater flow. The largest of these scales is believed to govern regional flow, i.e., flow at great depth. The calculated reference times presented in this report are fairly constant with the shortest reference time for Ceberg and the longest for Beberg. The difference in the calculated reference times are mainly due to the obtained differences in the lateral length scales at the three domains. However, the calculated residence times are extremely long. The corresponding transport times are very different from those obtained by means of numerical modeling of regional flow at Aberg, Beberg and Ceberg. The value is also contradicted by recent hydrochemical composition analyses of deep groundwater at Laxemar and Aespoe. A speculative interpretation of this result is that large scale regional flow, in the sense of meaning flow paths with long lateral extent, should be questioned for the kind of depth (500 m) and hydrogeologic system (hard rock) dealt with in this report. In other words, large scale regional flow may play a role for a repository at great depth (>>500 m), whereas non-periodic local variations in the topography may govern the flow pattern at moderate depths, e.g., depths less than 1000 m. There are several observations which support this interpretation

  16. Hydrogeology of Gypsum formations

    Directory of Open Access Journals (Sweden)

    Klimchouk A.

    1996-01-01

    Full Text Available Detailed explanation of hydrogeological characteristics of gypsum aquifers is given in various situations: deep-seated karst-confined conditions, subjacent, entrenched and denuded karst types-semi-confined, phreatic and vadose conditions. The hydrogeological evolution of barren exposed gypsum karst and flow velocities in gypsum karst aquifers is also discussed.

  17. Extraterrestrial hydrogeology

    Science.gov (United States)

    Baker, Victor R.; Dohm, James M.; Fairén, Alberto G.; Ferré, Ty P. A.; Ferris, Justin C.; Miyamoto, Hideaki; Schulze-Makuch, Dirk

    2005-03-01

    Subsurface water processes are common for planetary bodies in the solar system and are highly probable for exoplanets (planets outside the solar system). For many solar system objects, the subsurface water exists as ice. For Earth and Mars, subsurface saturated zones have occurred throughout their planetary histories. Earth is mostly clement with the recharge of most groundwater reservoirs from ample precipitation during transient ice- and hot-house conditions, as recorded through the geologic and fossilized records. On the other hand, Mars is mostly in an ice-house stage, which is interrupted by endogenic-driven activity. This activity catastrophically drives short-lived hydrological cycling and associated climatic perturbations. Regional aquifers in the Martian highlands that developed during past, more Earth-like conditions delivered water to the northern plains. Water was also cycled to the South Polar Region during changes in climate induced by endogenic activity and/or by changes in Mars' orbital parameters. Venus very likely had a warm hydrosphere for hundreds of millions of years, before the development of its current extremely hot atmosphere and surface. Subsequently, Venus lost its hydrosphere as solar luminosity increased and a run-away moist greenhouse took effect. Subsurface oceans of water or ammonia-water composition, induced by tidal forces and radiogenic heating, probably occur on the larger satellites Europa, Ganymede, Callisto, Titan, and Triton. Tidal forces operating between some of the small bodies of the outer solar system could also promote the fusion of ice and the stability of inner liquid-water oceans. Les processus de subsurface impliquant l'eau sont communs pour les corps planétaires du système solaire et sont très probables sur les exoplanètes (planètes en dehors du système solaire). Pour plusieurs objets du systèmes solaire, l'eau de subsurface est présente sous forme de glace. Pour la Terre et Mars, les zones saturées de

  18. Materials of conference: Hydrogeological Problems of South-West Poland

    International Nuclear Information System (INIS)

    1996-01-01

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features

  19. An Integrated Hydrogeologic and Geophysical Investigation to Characterize the Hydrostratigraphy of the Edwards Aquifer in an Area of Northeastern Bexar County, Texas

    Science.gov (United States)

    Shah, Sachin D.; Smith, Bruce D.; Clark, Allan K.; Payne, Jason

    2008-01-01

    In August 2007, the U.S. Geological Survey, in cooperation with the San Antonio Water System, did a hydrogeologic and geophysical investigation to characterize the hydrostratigraphy (hydrostratigraphic zones) and also the hydrogeologic features (karst features such as sinkholes and caves) of the Edwards aquifer in a 16-square-kilometer area of northeastern Bexar County, Texas, undergoing urban development. Existing hydrostratigraphic information, enhanced by local-scale geologic mapping in the area, and surface geophysics were used to associate ranges of electrical resistivities obtained from capacitively coupled (CC) resistivity surveys, frequency-domain electromagnetic (FDEM) surveys, time-domain electromagnetic (TDEM) soundings, and two-dimensional direct-current (2D-DC) resistivity surveys with each of seven hydrostratigraphic zones (equivalent to members of the Kainer and Person Formations) of the Edwards aquifer. The principal finding of this investigation is the relation between electrical resistivity and the contacts between the hydrostratigraphic zones of the Edwards aquifer and the underlying Trinity aquifer in the area. In general, the TDEM data indicate a two-layer model in which an electrical conductor underlies an electrical resistor, which is consistent with the Trinity aquifer (conductor) underlying the Edwards aquifer (resistor). TDEM data also show the plane of Bat Cave fault, a well-known fault in the area, to be associated with a local, nearly vertical zone of low resistivity that provides evidence, although not definitive, for Bat Cave fault functioning as a flow barrier, at least locally. In general, the CC resistivity, FDEM survey, and 2D-DC resistivity survey data show a sharp electrical contrast from north to south, changing from high resistivity to low resistivity across Bat Cave fault as well as possible karst features in the study area. Interpreted karst features that show relatively low resistivity within a relatively high

  20. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  1. Editors' message--Hydrogeology Journal in 2003

    Science.gov (United States)

    Voss, Clifford; Olcott, Perry; Schneider, Robert

    2004-01-01

    Hydrogeology Journal appeared in six issues containing a total of 710 pages and 48 major articles, including 31 Papers and 14 Reports, as well as some Technical Notes and Book Reviews. The number of submitted manuscripts continues to increase. The final issue of 2003 also contained the annual volume index. Hydrogeology Journal (HJ) is an international forum for hydrogeology and related disciplines and authors in 2003 were from about 28 countries. Articles advanced hydrogeologic science and described hydrogeologic systems in many regions worldwide. These articles focused on a variety of general topics and on studies of hydrogeology in 24 countries: Afghanistan, Algeria, Argentina, Australia, Bangladesh, Belgium, Canada, Chile, China, Denmark, France, India, Italy, Mexico, Netherlands, New Zealand, Nigeria, Norway, Portugal, Russia, South Africa, Switzerland, Turkey, and U.S.A. The Guest Editor of the 2003 HJ theme issue on “Hydromechanics in Geology and Geotechnics”, Ove Stephansson, assembled a valuable collection of technical reviews and research papers from eminent authors on important aspects of the subject area.

  2. Hydrogeological studies in the water-saturated and unsaturated zone of the calcareous strata in the Wackersdorf region

    International Nuclear Information System (INIS)

    Heinemann, J.M.

    1987-01-01

    The investigation cerves an area of 58.5 km 2 . It is a locally important groundwater reservoir with numerous fountains and waterworks. The investigations were conducted in the unsaturated zone and in the topmost ground-water horizon in the chalky layers. Emphasis is laid on questions of infiltration and groundwater dynamics. The hydrological situation is covered in its entirety, and basic data are collected from field and laboratory tests. (DG) [de

  3. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    Science.gov (United States)

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The Cambrian-Ordovician aquifer system contains the most extensive and continuous aquifers in the northern Midwest of the United States. It is the source of water for many municipalities, industries, and rural water users. Since the beginning of ground-water development from the aquifer system in the late 1800's, hydraulic heads have declined hundreds of feet in the heavily pumped Chicago-Milwaukee area and somewhat less in other metropolitan areas. The U.S. Geological Survey has completed a regional assessment of this aquifer system within a 161,000-square-mile area encompassing northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin.

  4. HYDROGEOLOGIC CASE STUDIES

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. Geoelectrical characterization with 1D VES/TDEM joint inversion in Urupês-SP region, Paraná Basin: Applications to hydrogeology

    Science.gov (United States)

    Leite, David Nakamura; Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Couto, Marco Antonio; Campaña, Julian David Realpe; dos Santos, Fernando Acácio Monteiro; Rangel, Rodrigo Corrêa; Hamada, Luiz Rodrigo; Sifontes, Rimary Valera; Serejo de Oliveira, Gabriela; Stangari, Marcelo César

    2018-04-01

    Although Brazil is well known by the large rivers and the Amazon Rain Forest most cities do not have access to sufficient quantities of surface water to supply the population. Because of this 61% of Brazilian population (IBGE, 2003) depends on groundwater resources. In order to help the conscious exploration of this resource in Urupês city (São Paulo State) which is characterized by problems of lack of water, this research applied the transient electromagnetic method (TDEM) and Vertical Electrical Sounding (VES) for the geoelectrical characterization of the interest region. So, the objective of this work was increase the hydrogeological basis for groundwater exploitation of Bauru sedimentary aquifer and Serra Geral fractured aquifer (Paraná Basin). A total of 23 TDEM and 15 VES soundings were conducted during the years of 2009, 2011 and 2012. In addition, 10 pairs of VES/TDEM soundings were acquired with coincident centers to be able to perform the joint inversion. The joint inversion technique is a promising tool, which enables to get the best of both methods, where the VES add the shallow information and TDEM the deeper one. In this work, the individual and joint inversions were performed using the "Curupira" software. After data process and inversion, the results were interpreted based on geological well information provided by the Department of Water and Electrical Power (DAEE) and the Brazilian Geological Survey (CPRM) which enabled to estimate favorable places to exploitation of water in Bauru and Serra Geral aquifers. For the Bauru aquifer, the results suggest areas where thickness exceeds 100 m. In these areas, the resistivity calculated was about 20 Ω·m. Therefore, the sediments have been interpreted as saturated sandy clay. In the basalt layer of Serra Geral Formation, the suggested locations present resistivity values sources for groundwater exploitation and water supply for Urupês city.

  6. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  7. A hydrogeological investigation of the Yeşilyurt (Isparta-Sütçüler plain

    Directory of Open Access Journals (Sweden)

    Suat Taşdelen

    2002-03-01

    Full Text Available Investigation area is almost 10 km in the north-west of Sütçüler country of Isparta and covers 60 km2 area. Firstly, detailed geological and hydrological investigation of Yeşilyurt Plain surface drainage area has been performed. Long term monitoring and analyses have been done for direction of hydrological investigation. An isohiyetal map was prepared for the investigation area. Water table maps were drawn by means of deep and shallow boreholes in the plain and flow direction was determined (October 2000. Water which was collected at boreholes was chemically analyzed to determine the characteristic of water for domestic use, irrigation and industrial purposes. In order to achieve this, the anion and cation concentrations, ionization abilities ionic activity, calcite dolomite sulphate saturation indexes and the partial pressures of dissolved CO2 were calculated and the results were interpreted. In addition, water has been classified according to chemical contend and use purpose by means of Wilcox, USA Salinity Laboratory, Piper and Schoeller diagrams and similarities in the origins of waters were investigated. During the study, a groundwater budget of Yeşilyurt Plain was prepared in the light of obtained data and optimum output of groundwater has been calculated.

  8. Aquifers in the Sokoto basin, northwestern Nigeria, with a description of the general hydrogeology of the region

    Science.gov (United States)

    Anderson, H.R.; Ogilbee, William

    1973-01-01

    The Sokoto Basin of northwestern Nigeria lies in the sub-Saharan Sudan belt of west Africa in a zone of savannah-type vegetation. Rainfall, averaging about 30 inches annually in much of the basin, occurs chiefly in a wet season which lasts from May to October. A prolonged dry season extending from October to April is dominated by dusty harmattan winds from the northeast. April and May are the hottest months, when temperatures occasionally reach 105?F. Flow in streams of the Sokoto Basin is mostly overland runoff. Only in a few reaches, fed by ground-water discharge from the sedimentary rocks, are streams perennial. In the River Zamfara basin, ground-water discharge contributes almost 1 inch of the average 3.33 inches of total annual runoff. In the vicinity of Sokoto, the River Rima flows throughout the year sustained by spring discharge from perched ground water in limestone of the Kalambaina Formation. On the crystalline terrane where most of the streams rise, total annual runoff may exceed 5 inches, very little of which is ground-water discharge. The sedimentary rocks of the basin range in age from Cretaceous to Tertiary and are composed mostly of interbedded sand, clay, and some limestone; the beds dip gently toward the northwest. Alluvium of Quaternary age underlies the lowlands of the River Sokoto (now Sokoto) and its principal tributaries. These rocks contain three important artesian aquifers, in addition to regional unconfined ground-water bodies in all the principal outcron areas, and a perched water body in the outcrop of the Kalambaina Formation. Artesian aquifers occur at depth in the Gundumi Formation, the Rima Group, and the Gwandu Formation and are separated from one another by clay beds in the lower part of the Rima Group and the Dange Formation. In outcrop, clay in the Dange Formation also supports the perched water of the Kalambaina Formation. The Gundumi Formation, resting on the basement complex, is composed of varicolored clay, sand, and gravel

  9. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    Full Text Available Study region: The tropical, active volcanic arc island of Montserrat, Lesser Antilles, Caribbean. Study focus: New insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat are combined with a review of the current understanding of volcanic island hydrology. The aim is to begin to develop a conceptual model for the hydrology of Montserrat, and to inform and stimulate further investigation into the hydrology of volcanic arc islands, by combining a review of the current understanding of essential components of the hydrological system with fresh analysis of existing data, and new observations, data collection and analysis. This study provides new insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat. New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites. Keywords: Volcanic island

  10. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  11. Hydrogeologic factors to be addressed in disposal guidelines

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report identifies the physical hydrogeologic factors that should be addressed for performance assessment of a radioactive waste disposal facility in plutonic rock. The hydrogeologic factors include theoretical methods, groundwater flow factors and solute transport parameters. Theoretical methods, including different deterministic and stochastic approaches for evaluating physical hydrogeolgic conditions, are evaluated with respect to data requirements, applications and limitations. Preferred methods for measurement and determination of the identified groundwater flow factors and solute transport parameters are discussed. A recommended set of procedures for reliable hydrogeologic characterization of a plutonic rock mass at both regional and site scales is also presented

  12. Hydrogeology of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Mazza

    2015-12-01

    Full Text Available In this paper the hydrogeological setting of Rome is figured out. This setting has been strongly influenced by different factors as tectonic activity, volcanism and seal level variations. The conceptual model of the groundwater flow in the roman area is represented by four aquifers, three of which being overlappingones. These aquifers flow from peripheral sectors of the study area toward Tiber and Aniene Rivers and the Sea.

  13. Hydrogeologic study of Cafam area. Melgar (Tolima)

    International Nuclear Information System (INIS)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km 2 with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3

  14. Preliminary hydrogeologic assessment of boreholes UE-25c No. 1, UE-25c No. 2, and UE-25c No. 3, Yucca Mountain, Nye County, Nevada; Water-resources investigations report 92-4016

    Energy Technology Data Exchange (ETDEWEB)

    Geldon, A.L.

    1993-12-31

    The purpose of this report is to characterize the hydrogeology of saturated tuffaceous rocks penetrated by boreholes UE-25c No. 1, UE-25c No.2, and UE-25c No. 3. These boreholes are referred to collectively in this report as the C-holes. The C-holes were drilled to perform multiwell aquifer tests and tracer tests; they comprise the only complex of closely spaced boreholes completed in the saturated zone at Yucca Mountain. Results of lithologic and geophysical logging, fracture analyses, water-level monitoring, temperature and tracejector surveys, aquifer tests, and hydrochemical sampling completed at the C-hole complex as of 1986 are assessed with respect to the regional geologic and hydrologic setting. A conceptual hydrogeological model of the Yucca Mountain area is presented to provide a context for quantitatively evaluating hydrologic tests performed at the C-hole complex as of 1985, for planning and interpreting additional hydrologic tests at the C-hole complex, and for possibly re-evaluating hydrologic tests in boreholes other than the C-holes.

  15. Geotechical Investigation of Landslides in Gurpinar Region

    Science.gov (United States)

    Karabulut, S.; Imre, N.; Dalgic, S.; Ozcep, F.

    2012-04-01

    Gürpinar in Beylikdüzü district in Istanbul, Rapid and uncontrolled construction have been exposed due to the current visual. Although to the previous zoning plan to covered a large part of the study area was recommended to use as green space, today's regulations have begun to define these areas as the areas mostly precautionary. With the development of engineering technology and knowledge, these areas were allowed to open of new structures to take necessary precautions. With increase in the effective construction in these regions, the existing slopes has led to start due to imbalance of mass movements. By using topographic map (1 / 5000 scale) and satellite images were examined in the region, the boundaries of existing landslides have been identified within the scope of this study. These areas are Çukurlar, Pınarkent, Pekmez and Onbeşevler. In addition to geophysical studies previously performed in the region; Seismic Reflection, Surface Wave Analysis (Active and Passive Source) and ground penetrating radar measurements were done. The geometry of surface planes and its depth, sand-gravel lenses, border of saturated clay units and the dynamic elastic parameters have been determined by using geophysical studies. The target depth of each method related to the properties of used sources or antenna and features of equipment. In Onbeşevler selected as pilot regions for georadar measurements, different water saturation at different depths s have been identified by using information taken from a depth of 30 meters. As a result of the geophysical studies, each in a landslide area, many slip plane have been identified and are given in sections. Geological cross-sections created for the workspace by using the drilling data and the pits belong to private companies and government agencies in the region. Inside the border of each landslides, the slope stability analysis done by using geological cross-sections and its physical parameters. Slope stability analysis made by

  16. Investigation on uranium resources of Qinling region

    International Nuclear Information System (INIS)

    Peng Daming

    1999-01-01

    The Qinling Mountains straddle China from the west to the east with the length of more than 1300 km covering Anhui, Hubai, Hunan, Shanxi, Guansu, Qinghai and Sichuan provinces. Up to now, 20 uranium deposits have been discovered in the region and all discovered deposits can be classified into 3 type (granite type, sedimentation-reworking type and hydrothermal alteration type) and 9 subtypes including 15 uranium deposits discovered in Qinling geosyncline area. Main uranium deposits are concentrated in Danfeng and Shangnan counties, southern Shanxi, lantian county, central Shanxi and Lixian County, Southern Gansu. Of the above listed uranium deposits, the granite-hosted deposits are most important, and characterized by large resources, high grade of ore and easiness in hydrometallurgy. Sedimentation-reworking type deposits are less important. The main U-metallogenic epoch is the Caledonian and the Yanshanian is the second. A prognosis for uranium deposits in Qinling region is made in the paper which proposes that the belt from Dangchuan in the west, via Jiamusi, Gepai and Fenshuling to Longquanping in the east is a most favorable area for location granite type uranium deposits

  17. Hydrogeology - HYDROGEOL_SETTINGS_IN: Hydrogeologic Terrains and Settings of Indiana (Indiana Geological Survey, 1:100,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGEOL_SETTINGS_IN is a polygon shapefile that shows hydrogeologic terrains and settings of Indiana. The methodology of the investigation and definitions of terms...

  18. Vulsino volcanic aquifer in Umbria Region : Hydrogeological survey for the characterization of the presence of arsenic and aluminium and the correct use of groundwater

    Directory of Open Access Journals (Sweden)

    Stefano Fratini

    2013-12-01

    Full Text Available In December 2009 and the first months of 2010, a large water crisis took place in the Orvieto area, because of sudden high concentration of aluminum (Al in the groundwater of the vulsino aquifer. This represents a supply for Orvieto’s population and other near municipalities (about 20,000 people. The contamination had reached values of about 3000 μg/l. Water crisis was made worse because of the expiring, in the same period, as expected, of the derogation of European Commission that allowed Arsenic concentrations above 10 μg/l (up to 50 μg/l. The contamination by Al occurred after intense and persistent rains, that mobilized a large amount of aluminum hydroxides in perched water table, in the form of colloidal particles. The field analysis showed that the potable water catchments are not interested in the same way by the contamination, i.e. the vulsino aquifer was not wholly conditioned by the presence of Al; in addition, in the same period in which the Al contamination occurred, there were no changes in the levels of As in groundwater. This paper shows the study of the complex hydrogeological Vulsino system; the aim is to identify technical solutions for realizing new catchments in order to manage the resource, in qualitative and quantitative terms, replacing/integrating the current equipments, which represent a risk because of the presence of Al and, secondly, As. A numerical flow and transport model was implemented to support the hydrogeological study, that has allowed us to formulate reliable predictions regarding the risk of Al contamination of future new wells.

  19. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  20. Education and Employment in Hydrogeology.

    Science.gov (United States)

    Pederson, Darryll T.

    1987-01-01

    Reports on a study of position descriptions in the field of hydrogeology appearing in want ads, published studies describing the working professional, and published descriptions of hydrogeology programs. Results indicate an increase in positions of ten times that of five years ago. Suggests basic training requirements for beginning…

  1. Urban hydrogeology in Indonesia: A highlight from Jakarta

    Science.gov (United States)

    Lubis, R. F.

    2018-02-01

    In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

  2. An evaluation of hydrogeologic data of crystalline rock systems

    International Nuclear Information System (INIS)

    Raven, K.G.; Lafleur, D.W.

    1986-12-01

    This report presents a detailed review of hydrogeologic data collected as part of various research programs investigating fractured crystalline rock around the world. Based on the available information describing the test equipment, test methods and analytical techniques, the data have been assessed in terms of their reliability and representativeness, and likely error ranges have been assigned. The data reviewed include both hydrogeologic parameters, such as permeability, storage coefficient components (principally porosity), and fracture characteristic data

  3. Chemical and physical hydrogeology of coal, mixed coal-sandstone and sandstone aquifers from coal-bearing formations in the Alberta Plains region, Alberta

    International Nuclear Information System (INIS)

    Lemay, T.G.

    2003-09-01

    With the decline of conventional oil and gas reserves, natural gas from coal (NGC) is an unconventional gas resource that is receiving much attention from petroleum exploration and development companies in Alberta. Although the volume of the NGC resource is large, there are many challenges facing NGC development in Alberta, including technical and economic issues, land access, water disposal, water diversion and access to information. Exploration and development of NGC in Alberta is relatively new, therefore there is little baseline data on which to base regulatory strategies. Some important information gaps have been filled through water well sampling in coal, mixed coal-sandstone and sandstone aquifers throughout Alberta. Analyses focused on the chemical and physical characteristics aquifers in use for domestic or agricultural purposes. Aquifer depths were generally less than 100 metres. Samples collected from Paskapoo-Scollard Formation, Horseshoe Canyon Formation and Belly River Group aquifers exceed Canadian water quality guideline values with respect to pH, sodium, manganese, chloride, chromium, sulphate, phenols and total dissolved solids. Pump tests conducted within the aquifers indicate that the groundwater flow is complicated. Water quality will have to be carefully managed to ensure responsible disposal practices are followed. Future studies will focus on understanding the chemical and biological process that occur within the aquifers and the possible link between these processes and gas generation. Mitigation and disposal strategies for produced water will also be developed along with exploration strategies using information obtained from hydrogeologic studies. 254 refs., 182 tabs., 100 figs., 3 appendices

  4. Hydrogeological modelling for migration of radioactivity

    International Nuclear Information System (INIS)

    Sunny, Faby; Chopra, Manish; Oza, R.B.

    2016-01-01

    The hydrogeological modelling for migration of radionuclides basically involves modelling of groundwater flow and contaminant transport through the groundwater. The water that occurs below the land surface or within the lithosphere is called groundwater. The groundwater constitutes about 4 % of the total water on the earth and about 30 % of freshwater on the earth. Groundwater models describe groundwater flow and contaminant transport processes using mathematical equations that are based on certain simplifying assumptions. These assumptions typically involve the direction of flow, geometry of the aquifer, the heterogeneity or anisotropy of sediments or bedrock within the aquifer, the contaminant transport mechanisms and chemical reactions. Because of the simplifying assumptions and the many uncertainties in the values of data, a model must be viewed as an approximation and not an exact duplication of field conditions. However, these models are useful investigation tool for a number of applications such as prediction of the possible fate and migration of contaminants for risk evaluation; tracking the possible pathway of groundwater contamination; evaluation of design of hydraulic containment and pump-and-treat systems; design of groundwater monitoring networks; evaluation of regional groundwater resources and prediction of the effect of future groundwater withdrawals on groundwater levels

  5. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  6. HYDROGEOLOGICAL AND HYDROCHEMICAL FEATURES OF KALNIK MASSIF

    Directory of Open Access Journals (Sweden)

    Vinko Mraz

    2008-12-01

    Full Text Available Kalničko gorje consists of Cretaceous – Holocene sediments, which can be in hydrogeological sense classified in three hydrogeological units: (1 northern area from central massive of Kalnik, consists of Cretaceous and low Miocene impermeable and low permeable sediments which are hydrogeological barrier and low permeable Cretaceous eruptive sediments ; (2 Kalnik massive consists of Paleogen and Baden permeable carbonate – clastic sediments, which are aquifer; (3 southern Kalnik area consists of Neogene low permeable sediments and Quaternary medium permeable unconsolidated deposits. In the hydrogelogical units are several aquifers types: (i Paleogen carbonate aquifer consists of limestone – dolomite breccia and this is the most important aquifer in the Kalnik area; (ii Baden carbonate aquifer consists of lithothamnium, lithothamnium limestone, sandstone and breccia-conglomerate and it has high permeability, especially through the karst morphological features; (iii Quaternary alluvial aquifers – the most important is in the valley of the Kamešnica river and it’s permeability varies from poor to good depending on granulometric properties; (iv Cretaceous eruptive aquifer from which in the Apatovac area is abstraction of mineral water. The aquifers of the Kalnik area are very vulnerable considering the hydrogeological properties of the area. Nevertheless, physical, physicalchemical, and chemical properties of groundwater in the Kalnik area are showing that waters are of very good quality. The reasons of good quality of waters are that the area is poorly populated and there is no potential pollutant. The area is very valuable and important natural resource for water supply of whole region. In the future it is necessary to provide good protection and sustainable water management to obtain today’s good quality and quantity of groundwater (the paper is published in Croatian.

  7. Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia)

    Science.gov (United States)

    Tringali, C.; Re, V.; Siciliano, G.; Chkir, N.; Tuci, C.; Zouari, K.

    2017-08-01

    Sustainable groundwater management strategies in water-scarce countries need to guide future decision-making processes pragmatically, by simultaneously considering local needs, environmental problems and economic development. The socio-hydrogeological approach named `Bir Al-Nas' has been tested in the Grombalia region (Cap Bon Peninsula, Tunisia), to evaluate the effectiveness of complementing hydrogeochemical and hydrogeological investigations with the social dimension of the issue at stake (which, in this case, is the identification of groundwater pollution sources). Within this approach, the social appraisal, performed through social network analysis and public engagement of water end-users, allowed hydrogeologists to get acquainted with the institutional dimension of local groundwater management, identifying issues, potential gaps (such as weak knowledge transfer among concerned stakeholders), and the key actors likely to support the implementation of the new science-based management practices resulting from the ongoing hydrogeological investigation. Results, hence, go beyond the specific relevance for the Grombaila basin, showing the effectiveness of the proposed approach and the importance of including social assessment in any given hydrogeological research aimed at supporting local development through groundwater protection measures.

  8. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  9. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  10. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  11. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  12. The Geophysical Investigation of Drinkable Water at Shkodra Region

    Science.gov (United States)

    Jata, I. B.; Kavaja, V. S.; Kotori, A. N.

    2002-12-01

    The drinkable water has been and is a great problem for the population of Shkodra region, NW of Albania. Many studies have been widely used in this domain by Geophysical Center of Tirana.Two case histories are presented in this paper.One, the Drini river terraces and other example near coast line.Actually, the need from fresh water are increasing due to the high demand for water supply. In compliance with geographical and geological classification the survey is in a narrow sense belongs to marginal part of the Nenshkodra plain. Geological situation of survey area consists on diverse geological make up.The stratigrafic section begins with carbonate formations (Cr2) have a monoclyne structure, nearly NW-SE trending. Paleogene formations is composed mainly: by carbonatic flysch (Pg2), alevrolitic-sanstone formation(Pg31 - Pg32) and Oligocene deposits with alevrolitic-clay-sandston formation (Pg13). Quaternary formation interbeded by silt, clay, sand and gravel layers. In survey area the thickness of concerned younger deposits does not surpass 50-70m, therefor we were able to draw up a picture of the thickness and depositional conditions of the Quaternary accumulations as corresponding in precision to given scale. The aim of the study is been delineation of aquifers and aquicludes soils extension within terrace profile based in the resistivity parameter as well as zone of aeration and water table. In the paper are described all the phases from field measurements, data processing and interpretation, as well as the soil thickness and resistivity maps, the thickness and resistivity maps of gravel terraces was build up. The high resistivity values show best aquifers gravel deposits. But when the gravel terrace companies with large thickness of the layers it is practical to multiply these two parameters, Hi x *i = S. In the other hand, one and more important maps are the correlation of rocks permeability T (sq.m/day) with transversal resistivity (S) parameters. In preparing

  13. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  14. Recent hydrogeologic study of the Vis island

    Directory of Open Access Journals (Sweden)

    Janislav Kapelj

    2002-12-01

    Full Text Available The Vis Island belongs to the group of the Middle Dalmatian islands. It comprises an area of about 90.2 km2. Morphologically, three belts of highlands and two depressions with karst poljes are significant. The highest point on the island is Hum with 587 m a.s.l. theisland’s water supply is organized from the water-supply station “Korita”, situated in the central part of island, in tectonically formed depression. There are two additional capturedobjects: the well K-1 above the Komiža town and the spring “Pizdica”. The most important hydrogeological role on the island have two hydrogeological barriers, one in the KomižaBay, completely made of impermeable igneous and clastic rocks, and another one, the recently recognized relative barrier in the area of Dra~evo, Plisko and Velo polje. Since the island karst aquifer is in permanent dynamic relation with seawater, classical geologic,structural and hydrogeologic investigations have been performed with application of hydrogeochemical methods taking into account the natural chemical tracer content of groundwater and its variations in different hydrologic and vegetation conditions. Precipitationregime is very unfavorable with regard to the recharging of island’s aquifer, because dry periods are usually very long. During the summer tourist season, when the number of inhabitants and fresh water consumption considerably increase, amounts of island’sgroundwater suitable for water supply and irrigation rapidly decrease. Sometimes, insufficient quantity of fresh water on the Vis Island causes restrictions. Concerning the development of tourist potential and the present agricultural activities, summer lack ofwater is a serious restrictive factor. Some results of the performed hydrogeological study, important as a basis for island’s fresh water potential assessment, will be presented.

  15. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  16. THEORETICAL AND METHODOLOGICAL APPROACHES TO REGIONAL COMPETITION INVESTIGATION

    Directory of Open Access Journals (Sweden)

    A.I. Tatarkin

    2006-03-01

    Full Text Available The article is dedicated to theoretical-methodological issues of regional economy competitiveness investigation. Economic essence of regional competitiveness is analyzed, its definition is given. The factors that determine relations of competition on medium and macrolevels are proved. The basic differences between world-economical and inter-regional communications are formulated. The specific features of globalization processes as form of competitive struggle are considered.

  17. Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington

    International Nuclear Information System (INIS)

    Liikala, T.L.

    1994-09-01

    US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management

  18. Applied isotope hydrogeology

    International Nuclear Information System (INIS)

    Pearson, F.J. jr; Balderer, W.; Gautschi, A.

    1991-01-01

    This volume is a report on the isotopic investigations of ground-water in northern Switzerland and adjacent regions carried out since 1981 by Nagra, the Swiss National Cooperation for the Storage of Radio-active Waste. This study was undertaken to support a programme assessing potential sites for nuclear waste repositories. It includes measurements on a large number of stable- and radioisotopes and noble gases, supported by complete water chemical analyses and many rock and mineral analyses. A synthesis and interpretation of the data, along with the data themselves, are given here. (author). refs.; figs.; tabs

  19. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    International Nuclear Information System (INIS)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius

    2010-09-01

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  20. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius (Bergab Consulting Geologists, Goeteborg (Sweden))

    2010-09-15

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  1. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  2. Role of Hydrogeology in Professional Environmental Projects

    Science.gov (United States)

    The purpose of this presentation is to acquaint hydrogeology students how hydrogeological principles are applied in environmental engineering projects. This presentation outlines EPA's Superfund processes of site characterization, feasibility studies, and remediation processes.

  3. HYDROGEOLOGICAL RELATIONS ON KARSTIFIED ISLANDS - VIS ISLAND CASE STUDY

    Directory of Open Access Journals (Sweden)

    Josip Terzić

    2004-12-01

    Full Text Available An approach to the hydrogeological investigations on Adriatic islands is presented on the Island of Vis case study. Infiltration, accumulation and discharge of the groundwater occur in karstified rock mass. Hydrogeological relations are mostly a consequence of the geological setting, because of the complete hydrogeologic barrier in Komiža bay, and relative barrier in the area of karst poljes. Significant research was performed in the 1999 – 2000 period aimed of better understanding of hydrogeological relations. These investigations, as well as reinterpretation of some previously known data, included structural geology, hydrogeology, hydrology and hydrochemistry. Approximate rock mass hydraulic conductivity calculation is also shown, as well as level of its usability in such terrain. Based on all these methods, it is possible to conclude that on the Island of Vis there is no saline water present underneath the entire island. There is only a saline water wedge which is formed on the top of relatively impermeable base rock, some few tens of meters under recent sea level. With such a model, and taking in account the hydrological balance, it is possible to conclude that there is possibility of higher amount of groundwater exploitation then it is today (the paper is published in Croatian.

  4. The geology and hydrogeology of Sellafield: an overview

    International Nuclear Information System (INIS)

    Chaplow, Robert

    1996-01-01

    Nirex is responsible for providing and managing a national facility for solid intermediate-level and low-level radioactive waste. Geological and hydrogeological investigations have been in progress at Sellafield in west Cumbria since 1989 aimed at determining whether or not the site is suitable for such a deep repository. Geological investigations have included the drilling of 20 deep boreholes with over 20 000 metres of drilling, together with almost 2000 line kilometres of seismic surveys and over 8000 line kilometres of airborne geophysical surveys. Hydrogeological testing and groundwater sampling and testing have provided additional information on the ground conditions at the site. (author)

  5. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  6. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  7. Materials of conference: Hydrogeological Problems of South-West Poland; Materialy konferencji: Problemy Hydrogeologiczne Poludniowo-Zachodniej Polski

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features.

  8. Hydrogeological characterization of deep subsurface structures at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Saegusa, Hiromitsu; Amano, Kenji; Takeuchi, Ryuji

    2013-01-01

    Several hydrogeological investigation techniques have been used at the Mizunami Underground Research Laboratory site to assess hydrogeological structures and their control on groundwater flow. For example, the properties of water-conducting features (WCFs) can be determined using high-resolution electrical conductivity measurements of fluids, and compared to measurements using conventional logging techniques. Connectivity of WCFs can be estimated from transmissivity changes over time, calculated from the pressure derivative of hydraulic pressure data obtained from hydraulic testing results. Hydraulic diffusivity, obtained from hydraulic interference testing by considering the flow dimension, could be a key indicator of the connectivity of WCFs between boreholes. A conceptual hydrogeological model of several hundred square meters to several square kilometers, bounded by flow barrier structures, has been developed from pressure response plots, based on interference hydraulic testing. The applicability of several methods for developing conceptual hydrogeological models has been confirmed on the basis of the hydrogeological investigation techniques mentioned above. (author)

  9. Regional Sign Language Varieties in Contact: Investigating Patterns of Accommodation

    Science.gov (United States)

    Stamp, Rose; Schembri, Adam; Evans, Bronwen G.; Cormier, Kearsy

    2016-01-01

    Short-term linguistic accommodation has been observed in a number of spoken language studies. The first of its kind in sign language research, this study aims to investigate the effects of regional varieties in contact and lexical accommodation in British Sign Language (BSL). Twenty-five participants were recruited from Belfast, Glasgow,…

  10. Hydrogeological structure model of the Olkiluoto Site. Update in 2010

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Nummela, J.; Paulamaeki, S.

    2011-09-01

    As part of the programme for the final disposal of spent nuclear fuel, a hydrogeological structure model containing the hydraulically significant zones on Olkiluoto Island has been compiled. The structure model describes the deterministic site scale zones that dominate the groundwater flow. The main objective of the study is to provide the geometry and the hydrogeological properties related to the groundwater flow for the zones and the sparsely fractured bedrock to be used in the numerical modelling of groundwater flow and geochemical transport and thereby in the safety assessment. Also, these zones should be taken into account in the repository layout and in the construction of the disposal facility and they have a long-term impact on the evolution of the site and the safety of the disposal repository. The previous hydrogeological model was compiled in 2008 and this updated version is based on data available at the end of May 2010. The updating was based on new hydrogeological observations and a systematic approach covering all drillholes to assess measured fracture transmissivities typical of the site-scale hydrogeological zones. New data consisted of head observations and interpreted pressure and flow responses caused by field activities. Essential background data for the modelling included the ductile deformation model and the site scale brittle deformation zones modelled in the geological model version 2.0. The GSM combine both geological and geophysical investigation data on the site. As a result of the modelling campaign, hydrogeological zones HZ001, HZ008, HZ19A, HZ19B, HZ19C, HZ20A, HZ20B, HZ21, HZ21B, HZ039, HZ099, OL-BFZ100, and HZ146 were included in the structure model. Compared with the previous model, zone HZ004 was replaced with zone HZ146 and zone HZ039 was introduced for the first time. Alternative zone HZ21B was included in the basic model. For the modelled zones, both the zone intersections, describing the fractures with dominating groundwater

  11. Groundwater availability as constrained by hydrogeology and environmental flows.

    Science.gov (United States)

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.

  12. An Investigation of Seismicity for the West Sumatra Region Indonesia

    Science.gov (United States)

    Syafriani, S.

    2018-04-01

    The purpose of this research was to investigate the seismicity of the West Sumatra region in the coordinates area of 94° E – 104° E and 2° N - 4° S. Guttenberg-Richer magnitude-frequency relation and seismic risk have been computed. Historical data of earthquakes used from year of 1970 to 2017 with magnitude higher than 4. The study area was divided into 8 sub-regions based on seismotectonic characteristics, plate tectonic and geological models. The determination of seismotectonic characteristics was based on the level of seismic activity in a region (a value) and rock stress condition (b value). High a value was associated with high seismic activity, whereas high b values were associated with low stress rock conditions, and vice versa. Based on the calculation results, a and b values were obtained in the interval of 5.5-11.3 and 0.7-2. The highest b value was obtained in the sub region 5 (Nias islands), while the lowest b value was obtained in sub region 7 (the Mentawai islands). The sub region 7, Mentawai Islands was indicated as the seismic risk potential areas.

  13. Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Ji Ruili; Wang Hailong; Liu Shufen; Zong Zihua; Dong Jiannan; Zhang Ming

    2014-01-01

    On the basis of large scale field hydrogeological investigation, synthetic hydrogeological studies related to groundwater system characteristics, permeability of rock bodies, groundwater dynamic, hydrogeochemistry, isotopic hydrology, CFC's of groundwater and groundwater flow field simulation were carried out for Beishan area, Gansu province. According to analysis on a large amount of hydrogeological data, the characteristics of groundwater circulation, groundwater hydrodynamics and hydrgeochemistry were described and the suitability of Beishan area as the potential area of high-level radioactive waste disposal was evaluated in the paper. Through this study, the hydrogeological study and evaluation methods in the siting of China's high level radioactive waste repository were set up. Furthermore, the important hydrogeological scientific evidence was provided for optimal site filtration of China's high-level radioactive waste repository in Beishan area. (authors)

  14. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  15. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2006-04-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  16. Subsoil Characteristics and Hydrogeology of the Export Processing ...

    African Journals Online (AJOL)

    The subsoil characterization and hydrogeological investigation of the Export Processing Zone (EPZ), Calabar Southeastern Nigeria was undertaken using geotechnical analysis of soils and water level monitoring. Geotechnical analysis of soils in the EPZ show that the grain size range from poorly graded (well sorted) to well ...

  17. Influence of regional hydrogeological systems at a local scale: Analyzing the coupled effects of hydrochemistry and biological activity in a Fe and CO{sub 2} rich spring

    Energy Technology Data Exchange (ETDEWEB)

    Menció, A., E-mail: anna.mencio@udg.edu [Grup de Geologia Aplicada i Ambiental (GAiA), Department of Environmental Sciences, University of Girona, Faculty of Sciences, Campus de Montilivi, 17071 Girona (Spain); Guasch, H., E-mail: helena.guasch@udg.edu [Grup de Recerca en Ecosistemes Continentals (GRECO), Institute of Aquatic Ecology, University of Girona, Faculty of Sciences, Campus de Montilivi, 17071 Girona (Spain); Soler, D.; Canelles, A.; Zamorano, M.; Brusi, D. [Grup de Geologia Aplicada i Ambiental (GAiA), Department of Environmental Sciences, University of Girona, Faculty of Sciences, Campus de Montilivi, 17071 Girona (Spain)

    2016-11-01

    } precipitation. • Tufa precipitation doesn't coincide with the highest growth of algae. • Physicochemical and biological processes may improve groundwater quality from regional systems.

  18. Influence of regional hydrogeological systems at a local scale: Analyzing the coupled effects of hydrochemistry and biological activity in a Fe and CO_2 rich spring

    International Nuclear Information System (INIS)

    Menció, A.; Guasch, H.; Soler, D.; Canelles, A.; Zamorano, M.; Brusi, D.

    2016-01-01

    highest growth of algae. • Physicochemical and biological processes may improve groundwater quality from regional systems.

  19. Hydrogeological research at the site of the Asse salt mine

    International Nuclear Information System (INIS)

    Batsche, H.; Rauert, W.; Klarr, K.

    1980-01-01

    In connection with the storage of radioactive wastes in the abandoned Asse salt mine near Brunswick (Federal Republic of Germany), the hydrogeology of the ridge of hills of Asse has been investigated. In order to obtain as detailed information as possible on the hydrogeological conditions, a long-term investigation programme has been set up and many methods of investigation have been used. Hydrogeological boring operations resulted in important scientific findings regarding, for example, the course of the salt table and the main anhydrite which towers up above the salt table into the overlying collapsed rocks. Hydrochemical data showed the hydraulic effect of transverse faults. Isotopic hydrological measurements permitted distinction between the flow behaviour of the groundwater in different aquifers. The origin of the salt springs at the northwest end of the structure can be explained. Some additional pumping and labelling tests are expected to yield quantitative results concerning hydraulic interrelationships recognized to date. The very complex hydrogeological structure of the ridge of hills of Asse is the result of the multiple succession of permeable and impermeable layers on the flanks of the structure, and, furthermore, is possibly due to the fact that in some individual faults groundwater may seep through normally impermeable layers as well as via waterways at the salt table. (author)

  20. Environmental radioactivity investigations in the Georgian subtropical region

    International Nuclear Information System (INIS)

    Pagava, S.; Kakashvili, P.; Avtandilashvili, M.; Kharashvili, G.; Robakidze, Z.; Rusetski, V.; Togonidze, G.; Baratashvili, D.

    2002-01-01

    Environmental changes in the contamination of the Georgian subtropical region have been investigated by analysing anthropogenic and natural radionuclides in samples of soil and tea leaves for possible chromosome mutations. As the tea industry in Georgia is an important economic activity, such investigations are of great importance. The changes in the morphology of tea leaves, their colour, blossoming, growth inhibition or stimulation, prolongation of the germination period and levels of tanin-katechin complexes have been investigated. The results of radionuclide measurements in soil and tea leaves ( 40 K, 210 Pb and 137 Cs) are presented. Elevated concentrations of 137 Cs were observed in soil samples due to fallout from Chernobyl, however, no direct relationship between the concentration of 137 Cs in soil and tea leaves has been observed. Cyto-genetic analyses of tea primary roots will be presented and compared for different time periods. Further, ichtyofauna samples taken from the Georgian subtropical areas were analysed for anthropogenic ( 137 Cs) and natural ( 40 K) radionuclides. The observed concentrations of 137 Cs were low, close to the detection limit of the order of 0.4 Bq/kg dry weight. Some of the investigations were carried out in the framework of the IAEA Technical Co-operation project 'Marine Environmental Assessment of the Black Sea Region'

  1. Contaminant Hydrogeology, 2nd Edition

    Science.gov (United States)

    Smith, James E.

    Groundwater is a valuable resource that has received much attention over the last couple of decades. Extremely large sums of money have been and will be spent on groundwater contamination problems and the public has become increasingly sensitive to groundwater issues. Groundwater contamination has even become the subject of a major Hollywood movie with the recent release of A Civil Action starring John Travolta. The high profile of groundwater contaminant problems, the associated relatively strong job market over the last 20 years, and the general shift toward an environmental emphasis in science and engineering have resulted in a sustained high demand for senior undergraduate courses and graduate programs in hydrogeology Many voice the opinion that we have seen the peak demand for hydrogeologists pass, but the placement of graduates from hydrogeology programs into career-oriented positions has remained very high.

  2. Investigation of switching region in superlattice phase change memories

    Science.gov (United States)

    Ohyanagi, T.; Takaura, N.

    2016-10-01

    We investigated superlattice phase change memories (PCMs) to clarify which regions were responsible for switching. We observed atomic structures in a superlattice PCM film with a stack of GeTe / Sb2Te3 layers using atomically resolved EDX maps, and we found an intermixed region with three atom species of the Ge, Sb and Te around the top GeTe layer under the top electrode. We also found that a device with a GeTe layer on an Sb2Te3 layer without superlattice structure had the same switching characteristics as a device with a superlattice PCM, that had the same top GeTe layer. We developed and fabricated a modified superlattice PCM that attained ultra low Reset / Set currents under 60 μ A .

  3. Results of the application of seismic-reflection and electromagnetic techniques for near-surface hydrogeologic and environmental investigations at Fort Bragg, North Carolina

    Science.gov (United States)

    Meyer, M.T.; Fine, J.M.

    1997-01-01

    As part of the U.S. Geological Survey's Resource Conservation and Recovery Act, Facilities Investigations at Fort Bragg, North Carolina, selected geophysical techniques were evaluated for their usefulness as assessment tools for determining subsurface geology, delineating the areal extent of potentially contaminated landfill sites, and locating buried objects and debris of potential environmental concern. Two shallow seismic-reflection techniques (compression and shear wave) and two electromagnetic techniques (ground-penetrating radar and terrain conductivity) were evaluated at several sites at the U.S. Army Base. The electromagnetic techniques also were tested for tolerance to cultural noise, such as nearby fences, vehicles, and power lines. For the terrain conductivity tests, two instruments were used--the EM31 and EM34, which have variable depths of exploration. The shallowest reflection event was 70 feet below land surface observed in common-depth point, stacked compression-wave data from 24- and 12-fold shallow-seismic-reflection surveys. Several reflection events consistent with clay-sand interfaces between 70 and 120 feet below land surface, along with basement-saprolite surfaces, were imaged in the 24-fold, common- depth-point stacked data. 12-fold, common-depth-point stacked data set contained considerably more noise than the 24-fold, common-depth-point data, due to reduced shot-to-receiver redundancy. Coherent stacked reflection events were not observed in the 24-fold, common-depth-point stacked shear-wave data because of the partial decoupling of the shear- wave generator from the ground. At one site, ground-penetrating radar effectively delineated a shallow, 2- to 5-foot thick sand unit bounded by thin (less than 1 foot) clay layers. The radar signal was completely attenuated where the overlying and underlying clay units thickened and the sand unit thinned. The pene- tration depth of the radar signal was less than 10 feet below land surface. A slight

  4. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  5. Near Regional and Site Investigations of the Temelin NPP Site

    International Nuclear Information System (INIS)

    Prachar, Ivan; Vacek, Jiri; Heralecky, Pavel

    2011-01-01

    The Temelin NPP is worldwide through heated discussion with nuclear energetic opposition. In addition this discussion goes beyond a border of the Czech Republic. On the other side, results of several international supervisions shown that Temelin NPP is fully comparable with the safest nuclear power plants in the world regarding its technical design and safety functions. This presentation deals with the near regional and site investigations of the Temelin NPP Site. It must be noted that although the Temelin site is situated in the area with low seismicity, item of seismicity is a basic argument against Temelin NPP and therefore a detail seismic hazard assessment was performed

  6. Hydrogeology and Analysis of Aquifer Characteristics in West-Central Pinellas County, Florida

    National Research Council Canada - National Science Library

    Broska, James C; Barnette, Holly L

    1999-01-01

    The U.S. Geological Survey, in cooperation with Pinellas County, Florida, conducted an investigation to describe the hydrogeology and analyze the aquifer characteristics in west-central Pinellas County...

  7. The efficiency of the use of penetration nuclear logging in hydrogeology and engineering geology

    International Nuclear Information System (INIS)

    Ferronsky, V.I.

    1992-01-01

    The latest developments in equipment and techniques for nuclear and combined non-nuclear logging in friable unconsolidated deposits, including marine bottom sediments are described. The effectiveness of these techniques in hydrogeological and engineering geological investigations is discussed. (Author)

  8. Use of GIS techniques for hydro-geological water balance assessment at regional scale; Impiego di tecniche GIS per la valutazione e rappresentazione del bilancio idrogeologico a scala regionale

    Energy Technology Data Exchange (ETDEWEB)

    De Girolamo, A. M.; Limoni, P. P.; Portoghese, I.; Vurro, M. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Reparto Sperimentale di Bari, Bari (Italy)

    2001-04-01

    The aim of the present work is to assess the hydro-geological water balance of the soil and subsoil system. At the beginning, the natural groundwater recharge evaluated as the subtraction between the soil inflows (rainfall) and outflows (evapotranspiration, surface runoff) enable to determine the soil water balance. Then, in order to calculate the subsoil water balance, the withdrawals for different purposes have been estimated together with the inflows coming from other water bodies and the coastal outflows. This method has been applied through a GIS technique; in particular, after the data layers acquisition (climatic, topographic, geologic, land use, satellite images, etc.), the numerical calculation has been done and several thematic output maps have been obtained. The method has been applied to the whole Apulian region; in this work, only the results about Salento Peninsula have been reported. The results highlight a significant water resources deficit; this deficit is also confirmed by the deepening of groundwater piezometric heads and the increase of chlorine ions, measured, for more than 10 years, in some characteristic points located in the study area. [Italian] Scopo del presente lavoro e' valutare il bilancio idrogeologico mediante il bilancio di massa per il sistema rappresentato dal complesso suolo e sottosuolo. Inizialmente e' stato valutato il bilancio idrico del suolo che ha consentito di determinare la ricarica naturale della falda per differenza tra gli ingressi al sistema suolo (apporti meteorici) e le uscite dal suolo agrario e dalle colture (evapotraspirazione), ed il deflusso superficiale. Successivamente, per calcolare il bilancio di massa del sistema sottosuolo sono stati stimati gli emungimenti per i diversi usi, gli afflussi provenienti da altri corpi idrici sotterranei e gli efflussi a mare. La metodologia e' stata implementata utilizzando una tecnologia GIS; in particolare, dopo l'acquisizione dei diversi strati

  9. Analysis on paleo-hydrogeological conditions of uranium formation in Sawafuqi uranium deposit

    International Nuclear Information System (INIS)

    Lin Xiaobin; Hao Weilin; Wang Zhiming

    2013-01-01

    Sawafuqi uranium deposit is located in Kuergan intermontane basin of the South Tianshan (STS) fold belt. On the basis of regional tectonics, paleogeography, paleoclimate and related data, the evolution of intermontane basin could be divided into three hydrogeological cycles. The relationship of uranium mineralization to each cycle was analyzed from the perspective of the evolution of palaeo-hydrogeological conditions, and the uranium metallogenic model in palaeohydrogeology under strongly constructive background was established. (authors)

  10. Geological and hydrogeological investigation in West Malaysia

    Science.gov (United States)

    Ahmad, J. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The broad synoptic view of the images allowed easy identification of circular features and major fault traces in low lying areas. Sedimentary units were delineated in accordance with the prevailing rock types and where applicable the folding characteristics. Igneous units could easily be differentiated by tone, degree of fracturing, texture, and drainage pattern. The larger fold structures, anticlinoriums and synclinoriums, of the younger sediments on the eastern edge of the central belt could also be easily delineated.

  11. Hydrogeological investigations at the Asse salt mine

    International Nuclear Information System (INIS)

    Batsche, H.; Rauert, W.

    1989-01-01

    On the basis of recordings of water gauge indicators for the hydrological years 1982-1987, annual hydrograph curves for the water table in borings, groundwater table hydrograph curves, natural vertical flow, as well as the times and proportionate height of ground water recharge at the Asse salt mine are established. On the basis of the hydrograph curves for tritium content in ground water, the age of the tritium model was determined. (DG) [de

  12. Perspectives of natural isotopes application for solving hydrogeological problems of mineral deposits

    International Nuclear Information System (INIS)

    Rozkowski, A.

    1978-01-01

    Results of hydrogeological studies made with use of natural isotopes and carried out within the Lublin Coal Field are presented in the paper. The studies have proved advantageous possibilities of isotope technique application for solving the hydrogeological problems of mineral deposits. Examination of isotope relations in ground waters complements traditional hydrogeological methods. This trend of complex investigations enables solving some peculiar hydrodynamic and hydrochemical problems. Exact recognition of these conditions is required to elaborate out proper prognosis on water content degree in given deposit and on value of ground water inflow into areas of designed mines. (author)

  13. Hydrogeological map of Italy: the preliminary Sheet N. 348 Antrodoco (Central Italy

    Directory of Open Access Journals (Sweden)

    Marco Amanti

    2016-07-01

    Full Text Available The Geological Survey of Italy, Italian National Institute for Environmental Protection and Research is realizing the Sheet N.348 Antrodoco (Central Italy of the Hydrogeological map of Italy as a cartographical test of the Italian hydrogeological survey and mapping guidelines, in the frame of the Italian Geological Cartography Project. The study area is characterized by structural units deeply involved in the Apennine Orogeny (Latium and Abruzzi region territory, Rieti and L’Aquila provinces and including deposits of marine carbonate shelf, slope, basin and foredeep environments hosting relatively large amounts of groundwater resources. The map was realized to obtain the best possible representation of all hydrogeological elements deriving from field surveys, in order to characterize the hydrogeological asset. A control network for monthly measurement of surface and groundwater flow rates and hydrogeochemical parameters was performed. Data were uploaded in a geographic information system to perform the present preliminary hydrogeological cartography consisting in a main map showing the following hydrogeological complexes based on relative permeability degree (from bottom to top: i calcareous (Jurassic-Cretaceous; high permeability; ii calcareous-marly (Upper Cretaceous-Middle Eocene; intermediate permeability; iii marly-calcareous and marly (Upper Eocene- Upper Miocene; low permeability; iv flysch (Upper Miocene; low permeability; v conglomeratic-sandy and detritic (Upper Pliocene- Pleistocene; intermediate permeability; vi alluvial (Quaternary; low permeability. Among other elements shown in the main map there are hydrographical basin and sub-basin boundaries, stream gauging stations, meteo-climatic stations, streamwater-groundwater exchange processes, hydrostructure boundaries, point and linear spring flow rates, groundwater flow directions. Furthermore, complementary smaller-scale sketches at the margin of the main map were realized (e

  14. Stepwise hydrogeological characterisation utilising a geo-synthesis methodology - A case study from the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Saegusa, H.; Osawa, H.; Onoe, H.; Ohyama, T.; Takeuchi, R.; Takeuchi, S.

    2009-01-01

    The Mizunami Underground Research Laboratory (MIU) is now under construction by Japan Atomic Energy Agency (JAEA) in the Cretaceous Toki granite in the Tono area of central Japan. One of the main goals of the MIU project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, is to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. For this purpose, a geo-synthesis methodology has been developed and will be tested in a dry run to determine if it produces the data required for repository design and associated integrated safety assessment modelling. Surface-based hydrogeological characterisation, intended to develop conceptual models of the deep geological environment based on an understanding of the undisturbed conditions before excavation of this URL, was carried out in a stepwise manner. This allows field investigations, construction of geological and hydrogeological models and interpretation of resultant groundwater flow simulations to develop in an iterative manner. Investigations have the goal of obtaining information on factors relevant to repository design, associated construction, operational and postclosure safety assessment, evaluation of the practicality of implementation and environmental impact assessment. Such factors include bulk hydraulic conductivity, the locations and properties of water conducting features, direct and indirect indicators of regional and local flow (e.g. based on chemistry or isotopes), etc. Following evaluation of pre-existing site information, field investigations began with fault mapping. This was followed by reflection seismic and vertical seismic profile surveys. In addition, a large programme of investigations was carried out in boreholes, including cross-hole tomography and hydraulic tests. Such input is utilised for the construction

  15. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    Science.gov (United States)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  16. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  17. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  18. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  19. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  20. Measles outbreak investigation in Guji zone of Oromia Region, Ethiopia.

    Science.gov (United States)

    Belda, Ketema; Tegegne, Ayesheshem Ademe; Mersha, Amare Mengistu; Bayenessagne, Mekonnen Getahun; Hussein, Ibrahim; Bezabeh, Belay

    2017-01-01

    Despite the increase of immunization coverage (administrative) of measles in the country, there are widespread outbreaks of measles. In this respect, we investigated one of the outbreaks that occurred in hard to reach kebeles of Guji Zone, Oromia region, to identify the contributing factors that lead to the protracted outbreak of measles. We used a cross-sectional study design to investigate a measles outbreak in Guji zone, Oromia region. Data entry and analysis was performed using EPI-Info version 7.1.0.6 and MS-Microsoft Excel. In three months' time a total of 1059 suspected cases and two deaths were reported from 9 woredas affected by a measles outbreak in Guji zone. The cumulative attack rate of 81/100,000 population and case fatality ratio of 0.2% was recorded. Of these, 821 (77.5%) cases were measles vaccine. Although, all age groups were affected under five years old were more affected 495 (48%) than any other age groups. In response to the outbreak, an outbreak response immunization was organized at the 11th week of the epidemic, when the epidemic curve started to decline. 6 months to14 years old were targeted for outbreak response immunization and the overall coverage was 97 % (range: 90-103%). Case management with vitamin A supplementation, active case search, and health education was some of the activities carried out to curb the outbreak. We conclude that low routine immunization coverage in conjunction with low access to routine immunization in hard to reach areas, low community awareness in utilization of immunization service, inadequate cold chain management and delivery of a potent vaccine in hard to reach woredas/kebeles were likely contributed to the outbreak that's triggered a broad spread epidemic affecting mostly children without any vaccination. We also figured that the case-based surveillance lacks sensitivity and timely confirmation of the outbreak, which as a result outbreak response immunization were delayed. We recommend establishing

  1. Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419

    Energy Technology Data Exchange (ETDEWEB)

    Ewy, Ann [U.S. Army Corps of Engineers, Kansas City District (United States); Heim, Kenneth J. [U.S. Army Corps of Engineers, New England District (United States); McGonigal, Sean T.; Talimcioglu, Nazmi M. [The Louis Berger Group, Inc. (United States)

    2013-07-01

    A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional

  2. Applications of environmental tritium and carbon-14 in water resources investigation in Taiyuan region China

    International Nuclear Information System (INIS)

    Cai Zuhuang; Shi Huixin

    1988-01-01

    To evaluate the influence of exploiting karst groundwater by 0.5-1 cubic metre per second by Gujiao Coal Mine on the discharge rate of the major Lancun spring, Jinci spring and Xizhang waterworks in the Taiyuan region, Shanxi Province, and to seek new sources of water to make up for this influence, we carried out systematic hydrogeological studies in this region from 1983 to 1986, including measurement of 180 data of tritium, 49 data of carbon-13, 20 data of carbon-14, as well as more than 2,000 chemical data. Isotopic and chemical data were interpreted and used to distinguish the groundwater system, to determine the mixing ratios of various groundwaters, to trace the movement of groundwater both inside each subsystem and from one subsystem to another. Groundwater ages at 13 sites in the studied region were obtained after correction for mixing with young water, correction for dilution by dead carbon, and correction for variation of initial carbon-14 concentration. The velocity of groundwater flow was determined on the basis of groundwater ages. (author). 3 figs, 5 tabs

  3. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  4. HYDROGEOLOGIC CHARACTERIZATION OF THE U-3bl COLLAPSE ZONE

    International Nuclear Information System (INIS)

    Bechtel Nevada and National Security Technologies, LLC

    2006-01-01

    The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing

  5. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  6. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  7. Hydrogeological Studies of Mendhwan Watershed, Ahmadnagar District, Maharashtra, India

    Science.gov (United States)

    Muley, R. B.; Babar, Md.; Kulkarni, P. S.

    2011-07-01

    The Mendhwan watershed area is a part of chronic drought prone region of Ahmadnagar district of Maharashtra state, India which is considered for the study with reference to hydrogeological characteristics in Deccan basaltic terrain. In order to enhance groundwater availability and to demarcate the area of high groundwater potential, Geoforum, Parbhani Chapter has carried out hydrological investigation of this watershed area. Geologically, the study area belongs to the Deccan trap basalts of late Cretaceous to early Eocene period. The entire study area consists of thin irregular vesicular-amygdaloidal basalt flows also known as compound pahoehoe flows. The area is traversed by two prominent dykes, which are almost perpendicular to each other. In most of the southern part of the area, amygdaloidal basalt is exposed at the surface. The fresh amygdaloidal basalt flow is free from joints and occurs as homogeneous watertight mass. As dykes are jointed, they provide favorable conditions for percolation and ground water potential of this area is found to be satisfactory. It was observed that in Mendhwan area a large number of water conservation structures have been constructed across the streams. Incidentally groundwater potential shows notable increase only in those localities where the structures had been constructed on the dyke rock. The result of the study is found to be very much beneficial to the rural populace of this draught prone area so as to plan the optimum utilization of this precious natural resource.

  8. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    of water resources,unbalanee disrriburion ofwater resourees,serious waste of water re-souree3,badly environmental eondition of wa-ter.At last gives out the eour一termeasures ofrational utilization of water resourees:En-haneing management,strerlgthening seieneeand teehnology in utilization of water re

  9. Contribution to optimisation of Environmental Isotopes tracing in Hydrogeology. Case study of Madagascar

    International Nuclear Information System (INIS)

    RAJAOBELISON, J.

    2003-01-01

    The aim of this work is to suggest some improvements on the theory of interpretation and on the methodological approach for the optimum use of environmental isotopes tracing applied to hydrogeological investigation. A review of the theory of environmental isotopes used in hydrogeology has been made. The main constraints have been highlighted and led to some comments and proposals of improvement, in particular with regard to the continental effect on stable isotopes, to the seasonal variation of groundwater 1 4C content, and to the appropriate model for fractured crystalline aquifers. A literature survey on ten specific scientific papers, dealing with isotopic hydrology in miscellaneous types of aquifers and catchments, allowed to draw a synthesis of the hydrogeological, geochemical and isotopic constraints. A proposal of optimum methodological approach, taking into account the above mentioned constraints, have been inferred. The results of an on-going hydrogeological investigation carried out in the Southern crystalline basement and coastal sedimentary aquifers of Madagascar highlights an unusual methodological approach based on the lack of initial basic hydrogeological data. Besides, it shows to what extent the experience of the above mentioned research works can apply in the specific case of the complex aquifers of Madagascar. The lessons gained from this study contribute to enrich the synthesis of environmental isotopes constraints in hydrogeology and lead to a more realistic methodological approach proposal wich is likely to better make profitable the isotope hydrology technology

  10. Calibration of regional palaeohydrogeology and sensitivity analysis using hydrochemistry data in site investigations

    International Nuclear Information System (INIS)

    Hunter, F.M.I.; Hartley, L.J.; Hoch, A.; Jackson, C.P.; McCarthy, R.; Marsic, N.; Gylling, B.

    2008-01-01

    A transient coupled regional model of groundwater flow and solute transport has been developed, which allows the use of hydrochemical data to calibrate the model input parameters. The methodology has been illustrated using examples from the Simpevarp area in south-eastern Sweden which is being considered for geological disposal of spent nuclear fuel. The 3-dimensional model includes descriptions of spatial heterogeneity, density driven flow, rock matrix diffusion and transport and mixing of different water types, and has been simulated between 8000 BC and 2000 AD. Present-day analyses of major elemental ions and stable isotopes have been used to calibrate the model, which has then been cross checked against measured hydraulic conductivities, and against the hydrochemical interpretation of reference water mixing fractions. The key hydrogeological model sensitivities have been identified using the calibrated model and are found to include high sensitivity to the top surface flow boundary condition, the influence of variations in fracture transmissivity in different orientations (anisotropy), spatial heterogeneity in the deterministic regional deformation zones and the spacing between water bearing fractures (in terms of its effect on matrix diffusion)

  11. Use of stratigraphic, petrographic, hydrogeologic and geochemical information for hydrogeologic modelling based on geostatistical simulation

    International Nuclear Information System (INIS)

    Rohlig, K.J.; Fischer, H.; Poltl, B.

    2004-01-01

    This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)

  12. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (Step 0 and Step 1)

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations, analysis, and evaluations have been conducted using an iterative approach. In this study, hydrogeological modeling and ground water flow analyses have been carried out using the data from surface-based investigations at Step 0 and Step 1, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) As the investigation progresses Step 0 to Step 1, the understanding of groundwater flow was enhanced from Step 0 to Step 1, and the hydrogeological model could be revised, 2) The importance of faults as major groundwater flow pathways was demonstrated, 3) Geological and hydrogeological characteristics of faults with orientation of NNW and NE were shown to be especially significant. The main item specified for further investigations is summarized as follows: geological and hydrogeological characteristics of NNW and NE trending faults are important. (author)

  13. Investigating Near Space Interaction Regions: Developing a Remote Observatory

    Science.gov (United States)

    Gallant, M.; Mierkiewicz, E. J.; Oliversen, R. J.; Jaehnig, K.; Percival, J.; Harlander, J.; Englert, C. R.; Kallio, R.; Roesler, F. L.; Nossal, S. M.; Gardner, D.; Rosborough, S.

    2016-12-01

    The Investigating Near Space Interaction Regions (INSpIRe) effort will (1) establish an adaptable research station capable of contributing to terrestrial and planetary aeronomy; (2) integrate two state-of-the-art second generation Fabry-Perot (FP) and Spatial Heteorodyne Spectrometers (SHS) into a remotely operable configuration; (3) deploy this instrumentation to a clear-air site, establishing a stable, well-calibrated observatory; (4) embark on a series of observations designed to contribute to three major areas of geocoronal research: geocoronal physics, structure/coupling, and variability. This poster describes the development of the INSpIRe remote observatory. Based at Embry-Riddle Aeronautical University (ERAU), initiative INSpIRe provides a platform to encourage the next generation of researchers to apply knowledge gained in the classroom to real-world science and engineering. Students at ERAU contribute to the INSpIRe effort's hardware and software needs. Mechanical/optical systems are in design to bring light to any of four instruments. Control software is in development to allow remote users to control everything from dome and optical system operations to calibration and data collection. In April 2016, we also installed and tested our first science instrument in the INSpIRe trailer, the Redline DASH Demonstration Instrument (REDDI). REDDI uses Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, and its deployment as part of INSpIRe is a collaborative research effort between the Naval Research Lab, St Cloud State University, and ERAU. Similar to a stepped Michelson device, REDDI measures oxygen (630.0 nm) winds from the thermosphere. REDDI is currently mounted in a temporary location under INSpIRe's main siderostat until its entrance optical system can be modified. First light tests produced good signal-to-noise fringes in ten minute integrations, indicating that we will soon be able to measure thermospheric winds from our Daytona Beach testing site

  14. Geophysical investigations of the Western Ohio-Indiana region

    International Nuclear Information System (INIS)

    Ruff, L.; LaForge, R.; Thorson, R.; Wagner, T.; Goudaen, F.

    1994-01-01

    Earthquake activity in the Western Ohio-Indiana region has been monitored with a seismograph network consisting of nine stations located in west-central Ohio and four stations located in Indiana. Six local and regional earthquakes have been recorded from October 1990 to September 1992 with magnitudes ranging from 0.6 to 5.0. A total of 36 local and regional earthquakes have been recorded in the past 6-year period (October 1986 to September 1992). Overall a total of 78 local and regional earthquakes have been recorded since the network went into operation in 1977. There was a peak in seismicity in 1986, including the July 12, 1986 St. Marys' event (mb=4.5), followed by an anomalously low level of seismicity for about 2 years. The most unusual feature of the seismicity in the past.year is the occurrence of three earthquakes in Indiana. The locations of the felt earthquakes are scattered across central Indiana; an area that had been aseismic. Analysis of arrival time data accumulated over the past 14 years shows that the Anna region crustal structure is ''slower'' than the average mid-continent crustal structure. This implies that the proposed Keewenawan rift in the Anna region has a different structure than that of other Keewenawan rifts in the mid-continent

  15. Hydrogeological Characteristics of Groundwater Yield in Shallow ...

    African Journals Online (AJOL)

    Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the ... of Water Resources and Lower Niger River Basin Development Authority in Ilorin. ... moment correlation, multiple and stepwise multiple regression analysis.

  16. Hydrogeological and geophysical study for deeper groundwater ...

    Indian Academy of Sciences (India)

    lected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological ... a rainwater harvesting structure to recharge the subsurface in ... southwest trend. The drainage pattern is dendritic.

  17. Investigation of land subsidence in the Houston-Galveston region of Texas by using the Global Positioning System and interferometric synthetic aperture radar, 1993-2000

    Science.gov (United States)

    Bawden, Gerald W.; Johnson, Michaela R.; Kasmarek, Mark C.; Brandt, Justin; Middleton, Clifton S.

    2012-01-01

    Since the early 1900s, groundwater has been the primary source of municipal, industrial, and agricultural water supplies for the Houston-Galveston region, Texas. The region's combination of hydrogeology and nearly century-long use of groundwater has resulted in one of the largest areas of subsidence in the United States; by 1979, as much as 3 meters (m) of subsidence had occurred, and approximately 8,300 square kilometers of land had subsided more than 0.3 m. The U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, used interferometric synthetic aperture radar (InSAR) data obtained for four overlapping scenes from European remote sensing satellites ERS-1 and ERS-2 to analyze land subsidence in the Houston-Galveston region of Texas. The InSAR data were processed into 27 interferograms that delineate and quantify land-subsidence patterns and magnitudes. Contemporaneous data from the Global Positioning System (GPS) were reprocessed by the National Geodetic Survey and analyzed to support, verify, and provide temporal resolution to the InSAR investigation.

  18. Hydrogeological characterization and surveillance of the Asse site

    International Nuclear Information System (INIS)

    Stempel, C. Von; Brewitz, W.

    1995-01-01

    The Asse salt mine is located about 20 km southeast of Braunschweig in Northern Germany and the testing of radioactive waste disposal took place in the mine during 1967 to 1978. Observations of the hydrogeological conditions have been carried out for 25 years in the covering rock strata above the caprock and at the flanks of the Asse salt anticline. For geological and hydrogeological investigations 27 large diameter boreholes, 19 piezometers and 5 deep boreholes were sunk into the rock formations above the Asse salt anticline and 29 hydrological observation points (mostly measuring weirs) were constructed. Hydraulic conductivities between 10 -4 and 10 -9 m/s, mostly between 10 -5 and 10 -8 m/s were determined in the Triassic formations by pumping tests, the oscillation method and packer-tests. The groundwater recharge rate is between 10 and 20% of the yearly precipitation. Isotopic analyses showed that in the rocks above the Asse salt anticline there are three kinds of groundwater: near-surface precipitation; an intermediate-depth ground water corresponding to near-surface 2H/18O but without tritium from young precipitations; and deep groundwater below 740 m, without any tritium. In the vicinity of the Asse mine, the surface rocks above the Asse salt anticline, shows good conditions as a hydrogeological barrier

  19. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    International Nuclear Information System (INIS)

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  20. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  1. Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia).

    Science.gov (United States)

    Re, V; Sacchi, E; Kammoun, S; Tringali, C; Trabelsi, R; Zouari, K; Daniele, S

    2017-09-01

    Nitrate contamination still remains one of the main groundwater quality issues in several aquifers worldwide, despite the perduring efforts of the international scientific community to effectively tackle this problem. The classical hydrogeological and isotopic investigations are obviously of paramount importance for the characterization of contaminant sources, but are clearly not sufficient for the correct and long-term protection of groundwater resources. This paper aims at demonstrating the effectiveness of the socio-hydrogeological approach as the best tool to tackle groundwater quality issues, while contributing bridging the gap between science and society. An integrated survey, including land use, hydrochemical (physicochemical parameters and major ions) and isotopic (δ 15 N NO3 and δ 18 O NO3 ) analyses, coupled to capacity building and participatory activities was carried out to correctly attribute the nitrate origin in groundwater from the Grombalia Basin (North Tunisia), a region where only synthetic fertilizers have been generally identified as the main source of such pollution. Results demonstrates that the basin is characterized by high nitrate concentrations, often exceeding the statutory limits for drinking water, in both the shallow and deep aquifers, whereas sources are associated to both agricultural and urban activities. The public participation of local actors proved to be a fundamental element for the development of the hydrogeological investigation, as it permitted to obtain relevant information to support data interpretation, and eventually guaranteed the correct assessment of contaminant sources in the studied area. In addition, such activity, if adequately transferred to regulators, will ensure the effective adoption of management practices based on the research outcomes and tailored on the real needs of the local population, proving the added value to include it in any integrated investigation. Copyright © 2017 Elsevier B.V. All rights

  2. Mining and geologic site investigation of Minas de Corrales region

    International Nuclear Information System (INIS)

    Arrighetti, R.; Pena, S.; Rossi, P.; Vaz Chavez, N.

    1981-01-01

    The present geologic article integrates the Mining inventory Program that was carried out in our country, with the participation of the 8.R.G.M. (France) and the Institute Geologic of the Uruguay. The main area which the work was developed it was object of gold exploration and exploitation from ends of the passed century. It was located in the region of Cunapiru-Vichadero (Rivera province), which it was still called from a geologic point of view, The Crystalline Island .

  3. Hydrogeology, Pesticide DRASTIC for the Intermediate Aquifer. Pesticide DRASTIC coverage for the Intermediate Aquifer System. Drastic maps are most useful as a generalized tool to assess regional potential aquifer vulnerability., Published in 1998, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection (FDEP).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Hydrogeology dataset current as of 1998. Pesticide DRASTIC for the Intermediate Aquifer. Pesticide DRASTIC coverage for the Intermediate Aquifer System. Drastic maps...

  4. Hydrogeological bedrock inferred from electrical resistivity model in Taichung Basin, Taiwan

    Science.gov (United States)

    Chiang, C. W.; Chang, P. Y.; Chang, L. C.

    2015-12-01

    The four-year project of the study of groundwater hydrogeology and recharge model was indicated by Central Geological Survey, MOEA, Taiwan (R.O.C.) to evaluate recharge groundwater areas in Taiwan where included Taipei, Taichung Basins, Lanyang and Chianan Plains. The groundwater recharge models of Lanyang Plain and Taipei Basin have successfully been estimated in two years ago (2013-2014). The third year of the project integrates with geophysical, geochemistry, and hydrogeology models to estimate the groundwater recharge model in Taichung Basin region. Taichung Basin is mainly covered by Pre-Pleistocene of thick gravel, sandy and muddy sediment rocks within a joint alluvial fan, whereas the depth of the hydrological bedrock remains uncertain. Two electrical resistivity geophysical tools were carried out utilizing direct current resistivity and audio-magnetotelluric (AMT) explorations, which could ideally provide the depth resolutions from shallow to depth for evaluating the groundwater resources. The study has carried out 21 AMT stations in the southern Taichung Basin in order to delineate hydrological bedrock in the region. All the AMT stations were deployed about 24 hours and processed with remote reference technique to reduce culture noises. The quality of most stations shows acceptable in the area which two stations were excluded due to near-field source effect in the southwestern basin. The best depth resolution is identified in 500 meters for the model. The preliminary result shows that the depths of the bedrock gradually changes from southern ~20 m toward to ~400 m in central, and eastern ~20 m to 180 m in the western basin inferred from the AMT model. The investigation shows that AMT method could be a useful geophysical tool to enhance the groundwater recharge model estimation without dense loggings in the region.

  5. Manual on mathematical models in isotope hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.

  6. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  7. Description of hydrogeological data in SKB's database GEOTAB

    International Nuclear Information System (INIS)

    Gentzschein, B.

    1986-12-01

    Since 1977 Swedish Nuclear Fuel and Waste Management Co., SKB has been performing a research and development programme for final disposal and spent nuclear fuel. The purpose of the programme is to acquire knowledge and data of radioactive waste. Measurement for the characterisation of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects. A database, called GEOTAB, was investigated. It is based on a concept from Mimer Information System, and have been further developed by Ergo-Data. The hardware is a VAX 750 computer located at KRAB (Kraftverksbolagens Redovisningsavdelning AB) in Stockholm. (orig./DG)

  8. Teaching hydrogeology: a review of current practice

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-07-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  9. Hydrogeological challenges through gender approaches

    Science.gov (United States)

    Di Lorenzo, Maria Rosaria; Saltari, Davide; Di Giacomo, Tullia Valeria

    2017-04-01

    Women and Men play a different role in the society, tied from the differences (physical, biological, somatic, etc…) typical of each one. In the last decades, more gender approach has been introduced in a number of fields including the hydrogeological risk. Experiences, needs and potential of each one, women and men, covers both the risk reduction before the occurrence of extreme events (vulnerability assessment and prediction of the expected risk), then in the next emergency and intervention in follow-up actions to the overcoming of the event for the return to everyday life. The response of the extreme hydrological events are also subordinated from gender participation and it is closely related from other aspects, as natural disasters (flood events), gender inequalities and urban floodings. These aspects are also scheduled by the different approaches: a woman focuses different primary and social aspects than a man. How women can help organizations offering new 'policies' and government is the main aspect to be considered and how a gender approach can mitigate disasters to hydrological risk. It depends on some factors: gender inequalities (gender perception and sensibility), importance of natural disasters and urban floodings. Gender inequalities can match both in the natural disasters and urban floodings in a relevant way. ICT solutions can also give a helpful framework to accelerate and focus the quicker condition to get the better approach and solution. Gender has a particular significant, explanatory variable in disaster research. Many studies, show how women have higher mortality and morbidity rates than men during natural disasters, especially in lower income countries. In the aftermath disasters, at the same time, specific responsibilities on women are imposed from the gendered division of labour. Furthermore gender differences are sometimes attributed to traditional women's roles, discrimination, lower physical strength, nutritional deficiencies, etc. as

  10. Magnetotelluric Investigations in Tuwa-Godhra Region, Gujarat (India)

    Science.gov (United States)

    Mohan, Kapil; Chaudhary, Peush; Kumar, G. Pavan; Kothyari, Girish Ch.; Choudhary, Virender; Nagar, Mehul; Patel, Pruthul; Gandhi, Drasti; Kushwaha, Dilip; Rastogi, B. K.

    2018-05-01

    Magnetotelluric (MT) data have been acquired at 40 locations in Tuwa and its surrounding region (200 km east of Ahmedabad and 15 km north-northwest of Godhra) in the Mainland Gujarat with an average station spacing of 1.5 km. MT impedance tensors have been estimated in the period range of 0.001-100 s. The data have been modeled using non-linear conjugate gradient scheme taking both apparent resistivity and phase into account. From the 2D models of the MT data, the weathered granite with Quaternary sediments (with resistivity of area (having resistivity value ranging from 103 to 104 Ω m) separated from the Godhra granite by a contact zone. The comparatively very low-resistivity rocks (contact zone of Lunavada and Champaner groups has been suggested. The presence of hot water springs in 10 km SW from the center of the study area (at the contact zone of Godhra granite and basalt) might be due to the western trending lithostratigraphic slope, hydrostatic pressure generated due to heat produced from interaction of water with the carbonate rocks at deeper depth and high subsurface temperature due to high geothermal gradient. The segmented nature of Himmatnagar Fault (HnF) is identified in the central portion of the study area.

  11. Strategic agency and institutional change: investigating the role of universities in regional innovation systems (RISs)

    NARCIS (Netherlands)

    Benneworth, Paul; Pinheiro, Rómulo; Karlsen, James

    2017-01-01

    Strategic agency and institutional change: investigating the role of universities in regional innovation systems (RISs). Regional Studies. Past analyses rooted in the thick description of regions successful in constructing regional innovation systems have given way to analyses more focused on the

  12. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  13. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  14. Effectiveness evaluation of remote data application in hydrogeologic explorations

    Energy Technology Data Exchange (ETDEWEB)

    Burleshin, M I; Koloskova, V N

    1981-01-01

    Use of the information approach to evaluate the effectiveness of remote data in hydrogeologic cartography of Ustyurt is discussed. Space image, interval and final diagrams of hydrogeologic interpretation are represented like a communication channel. Using the information approach, quantitative evaluation is carried out, and hydrogeologic maps are compared (that, have been compiled by earth surface methods and via interpretation of remote data.

  15. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology

    Science.gov (United States)

    Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S.

    2018-01-01

    Due to their complex structure and the difficulty of collecting data, the hydrogeology of basaltic islands remains misunderstood, and the Galapagos islands are not an exception. Geophysics allows the possibility to describe the subsurface of these islands and to quantify the hydrodynamical properties of its ground layers, which can be useful to build robust hydrogeological models. In this paper, we present seismic refraction data acquired on Santa Cruz and San Cristobal, the two main inhabited islands of Galapagos. We investigated sites with several hydrogeological contexts, located at different altitudes and at different distances to the coast. At each site, a 2D P-wave velocity profile is built, highlighting unsaturated and saturated volcanic layers. At the coastal sites, seawater intrusion is identified and basal aquifer is characterized in terms of variations in compressional sound wave velocities, according to saturation state. At highlands sites, the limits between soils and lava flows are identified. On San Cristobal Island, the 2D velocity profile obtained on a mid-slope site (altitude 150 m), indicates the presence of a near surface freshwater aquifer, which is in agreement with previous geophysical studies and the hydrogeological conceptual model developed for this island. The originality of our paper is the use of velocity data to compute field porosity based on poroelasticity theory and the Biot-Gassmann equations. Given that porosity is a key parameter in quantitative hydrogeological models, it is a step forward to a better understanding of shallow fluid flows within a complex structure, such as Galapagos volcanoes.

  16. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Yang Tianxiao; Liu Shufen

    2001-01-01

    Groundwater is the major carrier for radionuclide migration in the high-level radioactive waste disposal. For this reason the hydrogeological study is one of the main contents in repository siting. According to the field investigation which has been carried out during the last few years and some data from the previous study, the author describes the general hydrogeological situation and groundwater circulation, as well as chemical characteristics of groundwater in Beishan preselected area, Gansu province. The research shows that main hydrogeological characteristics of the Beishan area is water-bearing character, low permeability and slow water movement while the major chemical feature of groundwater is high mineralization. This recognition will provide an important basis for repository siting in the site area

  17. 77 FR 16850 - Notice of Reclassification of One Investigative Field Office to Regional Office: Denver, CO

    Science.gov (United States)

    2012-03-22

    ...This notice advises the public that the HUD/OIG Office of Investigation plans to reclassify its Denver, Colorado field office as a regional office. The planned reorganization is intended to: 1. Improve the alignment of limited investigative resources, to promote more efficient responses to HUD or Congressional requests involving critical program issues; 2. Redeploy resources to prevent and detect fraud in new program delivery of CPD, FHA and other HUD programs; and 3. Improve management control and effectiveness, and reduce travel costs of management by reducing region size. 4. Return to the traditional Regional alignment of HUD OIG Regional offices and HUD Regional offices.

  18. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  19. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  20. Hydrogeologic characterization of wells HTH-1, UE18r, UE6e, and HTH-3, Nevada Test Site

    International Nuclear Information System (INIS)

    Lyles, B.F.; McKay, W.A.; Chapman, J.B.; Tyler, S.W.

    1991-06-01

    Monitoring for the migration of contaminants in groundwater or for the proper design of nuclear test emplacement holes at the Nevada Test Site (NTS) requires proper placement and completion of monitoring wells. This is only possible if the hydrogeologic system is understood in a regional and local context, necessitating data from existing wells and boreholes. Though the NTS Groundwater Characterization Project will be drilling wells, their great expense limits the number of new wells. However, there are many existing boreholes and wells on the NTS which have not been completely evaluated hydrologically. Some of these are incorporated in the Long Term Hydrologic Monitoring Program (LTHMP) of the US Environmental Protection Agency (EPA), others are related to the testing programs. In all cases, additional site investigation in necessary to properly interpret the hydrogeologic data from these wells. Monitoring wells on the NTS are poorly characterized with regard to aquifers penetrated, vertical hydraulic gradients, and vertical variations in water quality. One of the goals of the well validation program was to gain a thorough understanding of the parameters needed to interpret the source and fate potential hazardous and radioactive substances that may be detected in these wells in the future. One of the most critical parameters for monitoring is the knowledge of what aquifer or geologic unit is being sampled when a water sample is collected. Pumped water samples are weighted most heavily to the water quality of the most productive (highest transmissivity) aquifer penetrated by the well

  1. Hydrogeology of the Mogollon Highlands, central Arizona

    Science.gov (United States)

    Parker, John T.C.; Steinkampf, William C.; Flynn, Marilyn E.

    2005-01-01

    The Mogollon Highlands, 4,855 square miles of rugged, mountainous terrain at the southern edge of the Colorado Plateau in central Arizona, is characterized by a bedrock-dominated hydrologic system that results in an incompletely integrated regional ground-water system, flashy streamflow, and various local water-bearing zones that are sensitive to drought. Increased demand on the water resources of the area as a result of recreational activities and population growth have made necessary an increased understanding of the hydrogeology of the region. The U.S. Geological Survey conducted a study of the geology and hydrology of the region in cooperation with the Arizona Department of Water Resources under the auspices of the Arizona Rural Watershed Initiative, a program launched in 1998 to assist rural areas in dealing with water-resources issues. The study involved the analysis of geologic maps, surface-water and ground-water flow, and water and rock chemical data and spatial relationships to characterize the hydrogeologic framework. The study area includes the southwestern corner of the Colorado Plateau and the Mogollon Rim, which is the eroded edge of the plateau. A 3,000- to 4,000-foot sequence of early to late Paleozoic sedimentary rocks forms the generally south-facing scarp of the Mogollon Rim. The area adjacent to the edge of the Mogollon Rim is an erosional landscape of rolling, step-like terrain exposing Proterozoic metamorphic and granitic rocks. Farther south, the Sierra Ancha and Mazatzal Mountain ranges, which are composed of various Proterozoic rocks, flank an alluvial basin filled with late Cenozoic sediments and volcanic flows. Eight streams with perennial to intermittent to ephemeral flow drain upland regions of the Mogollon Rim and flow into the Salt River on the southern boundary or the Verde River on the western boundary. Ground-water flow paths generally are controlled by large-scale fracture systems or by karst features in carbonate rocks. Stream

  2. Applicability of geostatistical procedures for the evaluation of hydrogeological parameters of a fractured aquifer in the Ronneburg mine district

    International Nuclear Information System (INIS)

    Grasshoff, C.; Schetelig, K.; Tomschi, H.

    1998-01-01

    The following paper demonstrates, how a geostatistical approach can help interpolating hydrogeological parameters over a certain area. The basic elements developed by G. Matheron in the sixties are represented as the preconditions and assumptions, which provide the best results of the estimation. The variogram as the most important tool in geostatistics offers the opportunity to describe the correlating behaviour of a regionalized variable. Some kriging procedures are briefly introduced, which provide under varying circumstances estimating of non-measured values with the theoretical variogram-model. In the Ronneburg mine district 108 screened drill-holes could provide coefficients of hydraulic conductivity. These were interpolated with ordinary kriging over the whole investigation area. An error calculation was performed, which could prove the accuracy of the estimation. Short prospects point out some difficulties handling with geostatistic procedures and make suggestions for further investigations. (orig.) [de

  3. Hydrogeology of the Judith River Formation in southwestern Saskatchewan, Canada

    Science.gov (United States)

    Ferris, David; Lypka, Morgan; Ferguson, Grant

    2017-11-01

    The Judith River Formation forms an important regional aquifer in southwestern Saskatchewan, Canada. This aquifer is used for domestic and agricultural purposes in some areas and supports oil and gas production in other areas. As a result, the available data come from a range of sources and integration is required to provide an overview of aquifer characteristics. Here, data from oil and gas databases are combined with data from groundwater resource assessments. Analysis of cores, drill-stem tests and pumping tests provide a good overview of the physical hydrogeology of the Judith River Aquifer. Water chemistry data from oil and gas databases were less helpful in understanding the chemical hydrogeology due contamination of samples and unreliable laboratory analyses. Analytical modeling of past pumping in the aquifer indicates that decreases in hydraulic head exceeding 2 m are possible over distances of 10s of kilometers. Similar decreases in head should be expected for additional large withdrawals of groundwater from the Judith River Aquifer. Long-term groundwater abstraction should be limited by low pumping rates. Higher pumping rates appear to be possible for short-term uses, such as those required by the oil and gas industry.

  4. Evaluation of Uncertainties in hydrogeological modeling and groundwater flow analyses. Model calibration

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Ono, Makoto; Sugihara, Yutaka; Shimo, Michito; Yamamoto, Hajime; Fumimura, Kenichi

    2003-03-01

    This study involves evaluation of uncertainty in hydrogeological modeling and groundwater flow analysis. Three-dimensional groundwater flow in Shobasama site in Tono was analyzed using two continuum models and one discontinuous model. The domain of this study covered area of four kilometers in east-west direction and six kilometers in north-south direction. Moreover, for the purpose of evaluating how uncertainties included in modeling of hydrogeological structure and results of groundwater simulation decreased with progress of investigation research, updating and calibration of the models about several modeling techniques of hydrogeological structure and groundwater flow analysis techniques were carried out, based on the information and knowledge which were newly acquired. The acquired knowledge is as follows. As a result of setting parameters and structures in renewal of the models following to the circumstances by last year, there is no big difference to handling between modeling methods. The model calibration is performed by the method of matching numerical simulation with observation, about the pressure response caused by opening and closing of a packer in MIU-2 borehole. Each analysis technique attains reducing of residual sum of squares of observations and results of numerical simulation by adjusting hydrogeological parameters. However, each model adjusts different parameters as water conductivity, effective porosity, specific storage, and anisotropy. When calibrating models, sometimes it is impossible to explain the phenomena only by adjusting parameters. In such case, another investigation may be required to clarify details of hydrogeological structure more. As a result of comparing research from beginning to this year, the following conclusions are obtained about investigation. (1) The transient hydraulic data are effective means in reducing the uncertainty of hydrogeological structure. (2) Effective porosity for calculating pore water velocity of

  5. Hydrogeology of the Besparmak (Pentadactilos) Mountains (TRNC) Karstic Aquifer

    International Nuclear Information System (INIS)

    Erduran, B.; Goekmenoglu, O.; Keskin, E.

    2002-01-01

    The Besparmak Mountains are located on the Nothern part of North Cyprus and lay paralel to the sea, 160 km 2 in length 10 km in width. Karstification, potential constituent and the hydro-dynamic structure of the Mesosoic aged carbonate rocks, located at high altitudes of the Besparmak Mountains have been investigated in this study. The Mesosoic aged carbonate rocks; dolomite, dolomitic limestones and recrytallized limestones are yhe units suitable for karstification in the exploration area. Surface area of the carbonate rocks is 84 km 2 . Chemical and isotopic samples have been collected, groundwater fluctuations have been observed and investigation wells have been openned for the definition of the karst aquifer. As the result of the geological, hydrogeological, drilling and geophysical investigations it was found that the Besparmak Mountains Karst Aquifer was formed of independent karstic systems and a total dynamic groundwater potential of aproximately 9 x 10 6 m 3 /year for these systems has been determined

  6. Hydrogeology, waste disposal, science and politics: Proceedings

    International Nuclear Information System (INIS)

    Link, P.K.

    1994-01-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  7. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This report presents a compilation of both fracture properties and hydrogeological parameters relevant to the flow of groundwater in fractured rock systems. Methods of data acquisition as well as the scale of and conditions during the measurement are recorded. Measurements and analytical techniques for each of the parameters under consideration have been reviewed with respect to their methodology, assumptions and accuracy. Both the rock type and geologic setting associated with these measurements have also been recorded. 373 refs

  8. Hydrogeology, waste disposal, science and politics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Link, P.K. [ed.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Several issues related to regional environmental investigation to inland nuclear power plant

    International Nuclear Information System (INIS)

    Tian Xinshan; Zhang Xiaofeng

    2010-01-01

    Based on the goal of carrying out regional environmental investigation and review of recent environmental investigations toward inland nuclear power plant(NPP) site, and combined with the characteristics between inland and coastal sites, this paper is to make deeply analysis on population distribution, environmental characteristics, feasibility of performing emergency plan, characteristics of received water and external human-induced incident of NPP vicinity, then advance several significant issues related regional environmental investigation to inland sites, and make comparison with the investigation to coastal sites. Meantime, on guarantee of the integrity of collected materials during investigation, this paper also makes several proposals to provide reference for carrying out regional environmental investigation to inland NPP site. (authors)

  10. On uncertainty quantification in hydrogeology and hydrogeophysics

    Science.gov (United States)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  11. Stochastic hydrogeology: what professionals really need?

    Science.gov (United States)

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  12. Hydrogeologic study of Cafam area. Melgar (Tolima); Estudio hidrogeologico del area Cafam - Melgar (Tolima)

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km{sup 2} with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3.

  13. Investigation of natural radioactivity level of the waters in the tibet autonomous region

    International Nuclear Information System (INIS)

    Zhang Tianhua; Li Yankun; Yao Ke; Pan Chengchang

    1995-01-01

    The investigation results of natural radioactivity level in river, lake, spring, well and tap water in the Tibet Autonomous Region is reported. There were totally 46 samples collected from 53 measuring points. The results show that the radioactivity level of water bodies of the Tibet Autonomous region was within normal natural background

  14. Investigation of natural radioactivity level of the waters in Guangxi Zhuangzu Autonomous Region

    International Nuclear Information System (INIS)

    Yang Mingshen; Ming Chuanbao; Dai Guozhi; Liang Runping; Chen Xiuyu; Yang Gang; Jin Mei

    1993-01-01

    This paper reports the investigation results of natural radioactivity level in river, lake reservoir, spring, well and tap water in Guangxi Zhuangzu Autonomous Region. There were totally 194 samples collected from 143 measuring points. The results show that the radioactivity level of varied water bodies of the region was within normal natural background

  15. Investigation of natural radioactivity level of the waters in the Ningxia Hui Autonomous Region

    International Nuclear Information System (INIS)

    Jing Yupei; Wang Li; Tian Yi; Ai Xianyuan; Liang Ningbu

    1995-01-01

    This paper reports the investigation results of natural radioactivity level in river, lake, reservoir, spring, well and tap water in the Ningxia Hui Autonomous Region. There were totally 117 samples collected from 84 measuring points. The results show that the radioactivity level of varied water bodies of the region was within normal natural background

  16. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    Science.gov (United States)

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of

  17. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.; Gurban, I. [INTERA KB, Sollentuna (Sweden); Rhen, I. [VBB Viak AB (Sweden)

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers` sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports. 148 refs, 25 tabs, 60 figs.

  18. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    International Nuclear Information System (INIS)

    Walker, D.; Gurban, I.; Rhen, I.

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers' sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports

  19. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  20. Hydrogeological controls of variable microbial water quality in a complex subtropical karst system in Northern Vietnam

    Science.gov (United States)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-05-01

    Karst aquifers are particularly vulnerable to bacterial contamination. Especially in developing countries, poor microbial water quality poses a threat to human health. In order to develop effective groundwater protection strategies, a profound understanding of the hydrogeological setting is crucial. The goal of this study was to elucidate the relationships between high spatio-temporal variability in microbial contamination and the hydrogeological conditions. Based on extensive field studies, including mapping, tracer tests and hydrochemical analyses, a conceptual hydrogeological model was developed for a remote and geologically complex karst area in Northern Vietnam called Dong Van. Four different physicochemical water types were identified; the most important ones correspond to the karstified Bac Son and the fractured Na Quan aquifer. Alongside comprehensive investigation of the local hydrogeology, water quality was evaluated by analysis for three types of fecal indicator bacteria (FIB): Escherichia coli, enterococci and thermotolerant coliforms. The major findings are: (1) Springs from the Bac Son formation displayed the highest microbial contamination, while (2) springs that are involved in a polje series with connections to sinking streams were distinctly more contaminated than springs with a catchment area characterized by a more diffuse infiltration. (3) FIB concentrations are dependent on the season, with higher values under wet season conditions. Furthermore, (4) the type of spring capture also affects the water quality. Nevertheless, all studied springs were faecally impacted, along with several shallow wells within the confined karst aquifer. Based on these findings, effective protection strategies can be developed to improve groundwater quality.

  1. Investigations of some regional river systems by INAA and X-ray fluorescence

    International Nuclear Information System (INIS)

    Drazhkovich, R.J.; Kukoch, A.

    1985-01-01

    Distribution of Zn, Hg, Sb, Cr, Fe, Sc and Co has been investigated in materials dissolved and suspended in the rivers Ibar, Zapadna Morava and Kamenica by means of INAA and X-ray fluorescence. Irradiation was made in VKG-channels of RA-nuclear reactor Vincha. Distribution coefficients were calculated, as well as contamination factors for investigated river regional systems in comparison to the uncontaminated water system. Data obtained indicate the possibility of utilization of these two analytical methods for investigation and control of biogeochemical and contamination processes in small regional water systems, especially important for modern studies in life sciences

  2. The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment

    Directory of Open Access Journals (Sweden)

    Tullia Bonomi

    2014-06-01

    Full Text Available At the Department of Earth and Environmental Sciences of the University of Milano-Bicocca (DISAT-UNIMIB, a hydrogeological well database, called TANGRAM©, has been developed and published on line at www.TANGRAM.samit.unimib.it, developing an earlier 1989 DOS version. This package can be used to store, display, and process all data related to water wells, including administrative information, well characteristics, stratigraphic logs, water levels, pumping rates, and other hydrogeological information. Currently, the database contains more than 39.200 wells located in the Italian region of Lombardy (90%, Piedmont (9% and Valle d’Aosta (1%. TANGRAM© has been created both as a tool for researches and for public administration’s administrators who have projects in common with DISAT-UNIMIB. Indeed, transferring wells data from paper into TANGRAM© offers both an easier and more robust way to correlate hydrogeological data and a more organized management of the administrative information. Some Administrations use TANGRAM© regularly as a tool for wells data management (Brescia Province, ARPA Valle Aosta. An innovative aspect of the database is the quantitative extraction of stratigraphic data. In the part of the software intended for research purposes, all well logs are translated into 8-digit alphanumeric codes and the user composes the code interpreting the description at each stratigraphic level. So the stratigraphic well data can be coded, then quantified and processed. This is made possible by attributing a weight to the digits of the code for textures. The program calculates the weighted percentage of the chosen lithology, as related to each individual layer. These extractions are the starting point for subsequent hydrogeological studies: well head protection area, reconstruction of the dynamics of flow, realization of the quarry plans and flux and transport hydrogeological models. The results of a two-dimensional distribution of coarse

  3. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  4. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  5. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  6. Hydrogeological characteristics and hydraulic discharge forecast of Uranium Deposit No.320

    International Nuclear Information System (INIS)

    Hao Fulin.

    1987-01-01

    The water and heat sources of Uranium Deposit No.320 have been discussed according to the water-controlling specific features of the regional strata and geological structures(including water transmitting and bearing structures), which provide evidence for the forecasting of hydraulic discharge. On the basis of the hydrogeological study of the deposit, the author draws up a plan for combining the mine drainage with the urban water supply and making comprehensively use of the thermal water resource

  7. Modernization of hydrogeological and mine dewatering researches in the Transdanubian Mid-Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, G.; Vizy, B.

    1990-01-01

    The present state of the karst water system of the Transdanubian Mid-Mountains is outlined and the measures to be done in order to protect the main karst system of the region are listed. The items of modernization are presented including the closing of mines (both the coal and the bauxite mines) and the modernization of hydrogeological exploration methods (to develop a uniform information system on the karst system of the Transdanubian Mid-Mountains).

  8. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (step 2)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-02-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at Step 2, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The understanding of groundwater flow is enhanced, and the hydrogeological model has renewed; 2) The importance of faults as major groundwater flow pathways has been demonstrated; 3) The importance of iterative approach as progress of investigations has been demonstrated; 4) Geological and hydraulic characteristics of faults with orientation of NNW, NW and NE were shown to be especially significant; 5) the hydraulic properties of the Lower Sparsely Fractured Domain (LSFD) significantly influence the groundwater flow. The main items specified for further investigations are summarized as follows: 1) Geological and hydraulic characteristics of NNW, NW and NE trending faults; 2) Hydraulic properties of the LSFD; 3) More accuracy upper and lateral boundary conditions of the site scale model. (author)

  9. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  10. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system

    Science.gov (United States)

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.

    2016-11-23

    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge

  11. Hydrogeological Characterization of Low-permeability Clayey Tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian

    The topic of this PhD thesis is an integrated investigation of sand lenses in glacial diamictons. Sand lenses indicate various deposition regimes and glaciotectonic deformation styles and are as such important features in studies of glacial sediments. In a hydrogeological framework, sand lenses......-dimensional realizations indicate clear channel networks, whereas only limited connectivity was found for the two-dimensional case. This is an important aspect because it emphasizes the need to collect data and to represent this type of heterogeneity in 3D. The physical response of sand lens heterogeneity was evaluated...... enhance the horizontal spreading of contaminants without a significant increase of the equivalent permeability in the till. Overall, sand lenses occur in all types of glacial sediments and with a broad range of shapes and hydraulic properties. Geometric characterization enabled classification of the most...

  12. The fault pattern in the northern Negev and southern Coastal Plain of Israel and its hydrogeological implications for groundwater flow in the Judea Group aquifer

    Science.gov (United States)

    Weinberger, G.; Rosenthal, E.

    1994-03-01

    On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.

  13. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the permeability data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  14. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains a continuation of the fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. The sites discussed in this volume are the following: Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  15. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (The former part of the step 3)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-07-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at the former part of Step 3 (deep borehole investigations without vertical seismic profiling investigations), in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The uncertainty of hydrogeological model of the site scale is decreased as stepwise research; 2) Borehole investigations combined with hydraulic monitoring are useful for decreasing the uncertainty of hydrogeological model; The main items specified for further investigations are summarized as follows: 1) Trend, length, and hydraulic parameters of faults confirmed in the MIU construction site; 2) Shape of boundary of geological layer, and hydraulic parameters of rock; 3) Hydraulic head distribution of deep underground. (author)

  16. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  17. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    The hydrogeological properties of an aquifer coupled with climatic conditions and geomorphology determines how much groundwater exists in that location. A hydrogeological study of the rocks in the Adansi area was carried out to obtain the aquifer hydraulic properties. Drilling and pumping test analysis information were ...

  18. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  19. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  20. Investigation of candidate regions influencing litter size in Danish Landrace sows

    DEFF Research Database (Denmark)

    Bjerre, Ditte; Mark, Thomas; Sørensen, P.

    2010-01-01

    allele effect of microsatellite alleles in the region. In spite of the apparent increased historical selection pressure on chromosome 13, fairly large variation in allele effects was observed, indicating that the markers within the region may be used for marker-assisted selection. However, substantial...... and low EBV for litter size were genotyped. An assignment test showed that 91 and 90% of the sows could be assigned correctly to the group of sows representing high and low EBV, respectively, based on genotype information. Allele effects were estimated separately for each marker by using deregressed EBV...... and a linear model that include both a polygenic and an allele effect. The investigated region on chromosome 13 was found to have a greater average identity by state relationship compared with the other regions, indicating that selection has taken place in this region. This is supported by an increased average...

  1. Investigation of edge plasmas in the anchor cell region of GAMMA 10

    International Nuclear Information System (INIS)

    Islam, Khairul; Nakashima, Yousuke; Yatsu, Kiyoshi

    2000-01-01

    The first results of Langmuir probe measurements at the outer transition region of the anchor cell of GAMMA 10 are given. A probe current asymmetry in vertical direction is found in this region. It is also found that the asymmetry of probe current increases in outward direction and the direction of the asymmetry is independent on movable limiter position. A relation of the plasma asymmetry with the main magnetic field configuration is investigated. Plasma flow through the non-asymmetric magnetic field configuration region is thought to be the source of plasma asymmetry in this region, i.e., ∇B and curvature drifts are responsible for the asymmetry. Possibility of cold plasma formation in the anchor cell region is obtained during plug electron cyclotron resonance heating (ECRH) and can be explained with the desorption of particles due to the collision of the drifted out particles with the wall. (author)

  2. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  3. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    Science.gov (United States)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  4. Investigations of the regional pulmonary function by means of 133Xe and a multichannel set

    International Nuclear Information System (INIS)

    Tarkowska, A.; Woytowicz, A.; Zaorska-Rajca, J.

    1978-01-01

    The technique of radiospirometric investigation based on a modification of the method described by Ball et al. is reported. The measurements were carried out in sitting position of the patients after intravenous and inhalatory administration of 133 Xe with a four-channel radiological unit for functional investigations. The results of the measurements were recorded in linear scale with a four-channel writer. Frequency of beats was read from these curves and following indices were calculated for each of four tested regions of the lungs: ventilation index, perfusion index, ventilation-perfusion quotient, total pulmonary capacity in a given region in percent of the total capacity of both lungs, residual volume in a given region in percent of the total residual volume of both lungs, vital capacity in a given region in percent of the total vital capacity of both lungs, residual volume in a given region in percent of the total pulmonary capacity in this region, percent one-minute expiration. Variability coefficients of different indices calculated from two determinations in a group of 10 patients with pulmonary diseases were from 2.05 to 5.9%. For illustration of the effectiveness of the method the results of determinations of regional pulmonary function in 10 healthy subjects, a patient with chronic bronchitis and a patient with upper right lobe cirrhosis are presented. (author)

  5. Seismicity Induced by Groundwater Recharge at Mt. Hood, Oregon, and its Implications for Hydrogeologic Properties.

    Science.gov (United States)

    Saar, M. O.; Manga, M.

    2002-12-01

    Earthquakes induced by human-caused changes in fluid pressure have been documented for many years. Examples include seismicity induced by filling reservoirs and by fluid injection or extraction. Less well-documented are seismic events that potentially are triggered by natural variations in groundwater recharge rates (e.g., Wolf et al., BSSA, 1997; Jimenez and Garcia-Fernandez, JVGR, 2000; Audin et al., GRL, 2002). Large groundwater recharge rates can occur in Volcanic Arcs such as the Oregon Cascades where annual precipitation is > 2 m of which > 50 % infiltrates the ground mostly during snowmelt in spring. As a result, infiltration rates of > 1 m per year concentrated during a few months can occur. Near-surface porosities are about 5-10 %. Thus, groundwater levels may fluctuate annually by about 10-20 m resulting in seasonal pore fluid pressure variations of about 1-2 x 105 Pa. Such large-amplitude, narrow-duration fluid pressure signals may allow investigation of seismicity induced by pore fluid pressure diffusion without the influence of engineered systems such as reservoirs. This kind of in-situ study of natural systems over large representative elementary volumes may allow determination of hydrologic parameters at spatial and temporal scales that are relevant for regional hydrogeology. Furthermore, natural hydrologic triggering of earthquakes that persist for decades provides insight into the state of stress in the crust and suggest long-term near-critical failure conditions. Here, we approximate the temporal variations in groundwater recharge with discharge in runoff-dominated streams at high elevations that show a peak in discharge during snow melt. Seismicity is evaluated as time series of daily number of earthquakes and seismic moments. Both stream discharge and seismicity are compared at equivalent frequency bands by applying segmented least-squares polynomial fits to the data. We find statistically significant correlation between groundwater recharge and

  6. Investigation of the suspended particulate matter in the Asian region for seven years

    International Nuclear Information System (INIS)

    Harasawa, Susumu

    1999-01-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  7. Investigation of the suspended particulate matter in the Asian region for seven years

    Energy Technology Data Exchange (ETDEWEB)

    Harasawa, Susumu [Institute for Atomic Energy, Rikkyo Univ., Yokosuka, Kanagawa (Japan)

    1999-10-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  8. Overview of Nagra's geological investigation programme in Northern Switzerland

    International Nuclear Information System (INIS)

    Thury, M.; Diebold, P.

    1987-01-01

    For the assessment of the feasibility and safety of a repository for high level radioactive waste, Nagra (National Cooperative for the Storage of Radioactive Waste) has started in 1980 in central Northern Switzerland an extensive geological investigation program. This overall program contains four field investigation programs and several programs for synthesis work. By the end of 1985, six deep drillings have been completed. The deepest borehole reached 2482 m. All in all, more than 8000 m of cores have been taken and analyzed in detail. In the boreholes, extensive hydrogeological tests have been carried out. Within the regional geophysical investigation program gravimetric, aeromagnetic and magnetotelluric, refraction seismic and reflection seismic surveys have been carried out. Vibroseis lines of 400 km length have been measured. Within the regional hydrogeological program, water samples of more than 100 springs and wells with hydrochemically or thermally abnormal waters have been analyzed in detail for their chemical and isotopic composition. Within the neotectonic program, geomorphologic, tectonic, geodetic and seismic studies and measurements have been carried out. In 1983, a microearthquake survey network was installed. All these data were analyzed in several synthetic programs: Structural geology, hydrochemistry, hydrodynamic modelling and long term stability scenarios. The Nagra program continues. As next, a deep borehole in the Canton of Schaffhausen is planned. Meanwhile all data are analyzed in detail and the understanding of the regional and local geology, geochemistry and hydrogeology of northern Switzerland is improved and refined. (author) 32 refs., 8 figs

  9. On the significance of contaminant plume-scale and dose-response models in defining hydrogeological characterization needs

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R.; Bai, H.

    2007-12-01

    Defining rational and effective hydrogeological data acquisition strategies is of crucial importance since financial resources available for such efforts are always limited. Usually such strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of the impacts of uncertainty. This paper presents an approach for determining site characterization needs based on human health risk factors. The main challenge is in striking a balance between improved definition of hydrogeological, behavioral and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical testing. We will report on a wide range of factors that affect the site characterization needs including contaminant plume's dimensions, travel distances and other length scales that characterize the transport problem, as well as health risk models. We introduce a new graphical tool that allows one to investigate the relative impact of hydrogeological and physiological parameters in risk. Results show that the impact of uncertainty reduction in the risk-related parameters decreases with increasing distances from the contaminant source. Also, results indicate that human health risk becomes less sensitive to hydrogeological measurements when dealing with ergodic plumes. This indicates that under ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a detailed hydrogeological characterization

  10. Investigating 100% renewable energy supply at regional level using scenario analysis

    Directory of Open Access Journals (Sweden)

    Annicka Waenn

    2016-06-01

    Full Text Available Energy modelling work in Ireland to date has mainly taken place at a national level. A regional modelling approach is necessary however, for Ireland to reach the ambitious targets for renewable energy and emissions reduction. This paper explores the usefulness of the energy modelling tool EnergyPLAN in investigating the energy system of the South West Region of Ireland. This paper estimates a 10.5% current renewable energy share of energy use, with 40% renewable electricity. We build and assess a reference scenario and three renewable energy scenarios from a technological and resources perspective. The results show that sufficient resources are available for the South West Region energy system to become 100% renewable and quantifies the land-use implications. Moreover, EnergyPLAN can be a useful tool in exploring different technical solutions. However, thorough investigations of as many alternatives as possible, is necessary before major investments are made in a future energy system.

  11. 77 FR 16852 - Notice of Reclassification of Five Regional Offices to Investigative Field Offices: Seattle, WA...

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5627-N-01] Notice of Reclassification of Five Regional Offices to Investigative Field Offices: Seattle, WA; New Orleans, LA; Baltimore, MD... legislative history of section 7(p) strongly suggests that the legislation is inapplicable to a...

  12. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations

  13. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    fault zones that control the hydrogeology of the catchment. The spatial discontinuities of the saprolite layer were well defined by RS techniques while subsurface geometry and aquifer parameters by hydrogeophysics. The GPR method was able to detect shallow water table at depth between 1 and 3 m b.g.s. The hydrostratigraphy and parameterization of the fissured layer remained uncertain because ERT and FDEM geophysical methods were quantitatively not conclusive while MRS detectability was restricted by low volumetric water content. The proposed multi-technique methodology integrating cost efficient RS, hydrogeophysics and hydrogeological field investigations allowed us to characterize geometrically and parametrically the Sardón hard rock aquifer system, facilitating the design of hydrogeological conceptual model of the area.

  14. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  15. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  16. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia

    Science.gov (United States)

    Ayadi, Rahma; Trabelsi, Rim; Zouari, Kamel; Saibi, Hakim; Itoi, Ryuichi; Khanfir, Hafedh

    2017-12-01

    Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water-rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  17. Measurement of hydrogeologic parameters of Indian volcanic rocks by sub-surface hydronuclear techniques

    International Nuclear Information System (INIS)

    Bardhan, M.

    1977-01-01

    Sub-surface hydronuclear techniques namely neutron-neutron, gamma-gamma and tracer dilution logging and single and double well tracer methods were adopted to investigate the hitherto inadequately studied hydrophysical properties of the Deccan lava flows which constitute the principal Indian volcanic suit of rocks. The hydrogeologic parameters measured in the field pertain to hydrostratigraphy, hydrostorage properties and geohydraulic characteristics of these layered hard formations. Results of the studies are presented and discussed briefly. (author)

  18. Tracer techniques in karst hydrogeology. Application to the location of karst aquifers

    International Nuclear Information System (INIS)

    Mangin, A.; Molinari, J.

    1976-01-01

    From the recent progress in karst aquifer simulation techniques and the improved knowledge of tracers, the old-established tracer technique has become an invaluable instrument for hydrogeological survey work. Typical information obtainable includes karst system boundaries features and location of hydrodynamic discontinuities, flow variation in both space and time. Tracer methods are a basic requirement for investigation of karst groundwater supplies and determining protection zones for water supply points [fr

  19. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  20. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A - Waste sites, source terms, and waste inventory report; Appendix B - Description of the field activities and report database; Appendix C - Characterization of hydrogeologic setting report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV

  1. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  2. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    Science.gov (United States)

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  3. Morphometric analysis with open source software to explore shallow hydrogeological features in Senegal and Guinea

    Science.gov (United States)

    Fussi, Fabio; Di Leo, Margherita; Bonomi, Tullia; Di Mauro, Biagio; Fava, Francesco; Fumagalli, Letizia; Hamidou Kane, Cheikh; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    Water represents a vital resource for everyone on this Planet, but, for some populations, the access to potable water is not given for granted. Recently, the interest in low cost technical solutions to improve access to ground water in developing countries, especially for people located in remote areas, has increased. Manual drilling (techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries and represents a valid alternative to increase water access. Lately, this practice has raised the attention of national governments and international organizations. This technique is applicable only where hydrogeological conditions are suitable, namely in presence of thick layers of unconsolidated sediments and a shallow water table Aim of this study is exploring the potential of morphometric analysis to improve the methodology to identify areas with suitable hydrogeological conditions for manual drilling, supporting the implementation of water supply programs that can have great impact on living condition of the population. The characteristics of shallow geological layers are strongly dependent from geomorphological processes and are usually reflected in the morphological characteristics of landforms. Under these hypotheses, we have been investigating the geo-statistical correlation between several morphometric variables and a set of hydrogeological variables used in the estimation of suitability for manual drilling: thickness of unconsolidated sediments, texture, hydraulic conductivity of shallow aquifer, depth of water table. The morphology of two study areas with different landscape characteristics in Guinea and Senegal has been investigated coupling the Free and Open Source Software GRASS GIS and R. Several morphometric parameters have been extracted from ASTER GDEM digital elevation model, and have been compared with a set of hydrogeological characteristics obtained from semi-automatic analysis of

  4. Investigating the spatial anisotropy of soil radioactivity in the region of Vinaninkarena, Antsirabe-Madagascar

    International Nuclear Information System (INIS)

    Rabesiranana, N.; Rasolonirina, M.; Solonjara, A.F.; Raoelina Andriambololona

    2009-01-01

    A study was conducted in the region of Vinaninkarena-Antsirabe, to investigate the spatial distrubition of the environmental radioactivity. Forty-two (42) top soil samples were collected from two different sampling points. They were analyzed for uranium and thorium series by gamma spectrometry. In order to determine radioactivity spatial structure, semi-variance analysis was used. From 82 samples and 840 paired data, semi-variances were computed, variograms charted and modelled. Results showed that spatial dependance ranges vary from 100 m to 300m. Moreover, spatial anisotropy is also detected. Such result allows optimizing sampling design for future mapping of the environmental radioactivity of the region.

  5. A framework for quantification of groundwater dynamics - concepts and hydro(geo-)logical metrics

    Science.gov (United States)

    Haaf, Ezra; Heudorfer, Benedikt; Stahl, Kerstin; Barthel, Roland

    2017-04-01

    Fluctuation patterns in groundwater hydrographs are generally assumed to contain information on aquifer characteristics, climate and environmental controls. However, attempts to disentangle this information and map the dominant controls have been few. This is due to the substantial heterogeneity and complexity of groundwater systems, which is reflected in the abundance of morphologies of groundwater time series. To describe the structure and shape of hydrographs, descriptive terms like "slow"/ "fast" or "flashy"/ "inert" are frequently used, which are subjective, irreproducible and limited. This lack of objective and refined concepts limit approaches for regionalization of hydrogeological characteristics as well as our understanding of dominant processes controlling groundwater dynamics. Therefore, we propose a novel framework for groundwater hydrograph characterization in an attempt to categorize morphologies explicitly and quantitatively based on perceptual concepts of aspects of the dynamics. This quantitative framework is inspired by the existing and operational eco-hydrological classification frameworks for streamflow. The need for a new framework for groundwater systems is justified by the fundamental differences between the state variable groundwater head and the flow variable streamflow. Conceptually, we extracted exemplars of specific dynamic patterns, attributing descriptive terms for means of systematisation. Metrics, primarily taken from streamflow literature, were subsequently adapted to groundwater and assigned to the described patterns for means of quantification. In this study, we focused on the particularities of groundwater as a state variable. Furthermore, we investigated the descriptive skill of individual metrics as well as their usefulness for groundwater hydrographs. The ensemble of categorized metrics result in a framework, which can be used to describe and quantify groundwater dynamics. It is a promising tool for the setup of a successful

  6. Hydrogeological characterization of the Stripa site

    International Nuclear Information System (INIS)

    Gale, J.; Macleod, R.; Welhan, J.; Cole, C.; Vail, L.

    1987-06-01

    This study was initiated in January, 1986, to determine a) if the permeability of the rock mass in the immediate mine area was anisotropic, b) the effective and total fracture porosity distributions based on field and laboratory data and c) the three-dimensional configuration of the groundwater flow system at Stripa in order to properly interpret the hydrogeological, geochemical and isotopic data. The total and flow porosities of single fractures from Stripa were determined in the laboratory using a resin impregnation technique. The three-dimensional numerical model gave mine inflows that were consistent with the measured mine inflows with perturbations extending to at least 3,000 m of depth. (orig./DG)

  7. Hydrogeological reconnaissance study: Dyfi Valley, Wales

    International Nuclear Information System (INIS)

    Glendining, S.J.

    1981-10-01

    This report describes work carried out for the Department of the Environment as part of its research programme into radioactive waste management. It presents an account of a hydrogeological reconnaissance study in the Dyfi Valley area of Central Wales. Initially the purposes of such a study are given and the assumptions used in deriving parameters such as flow volume, path length and transit time in areas of massive fractured rocks are described. Using these assumptions with geological, topographic and hydrometeorological data the potential ranges in properties such as bulk hydraulic conductivity, path lengths, hydraulic gradients and volumes of groundwater flow have been determined. These ranges have been used to estimate solute transport model parameters. The limitations and usefulness of the reconnaissance study in planning research and siting exploratory boreholes in the Dyfi area are discussed. (author)

  8. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the storage coefficient, porosity, compressibility and fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided. The fracture data for the first three of the sites listed above are contained in this volume. The fracture data for the remaining research research sites are discussed in Volume 4

  9. Hydrogeological characterization of peculiar Apenninic springs

    Science.gov (United States)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  10. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  11. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  12. Investigation of the interface region between a porous silicon layer and a silicon substrate

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Park, Dae-Kyu; Kim, Young-You; Shin, Hyun-Joon

    2005-01-01

    Atomic force microscopy (AFM) measurement and X-ray diffraction (XRD) analysis were performed to investigate the physical and structural characteristics of the interface region between a porous silicon layer and a silicon substrate. We discovered that, when anodization time was increased under a constant current density, the Si crystallites in the interface region became larger and formed different lattice parameters than observed in the porous silicon layer. Secondary ion mass spectrometry (SIMS) analysis also revealed that the Si was more concentrated in the interface region than in the porous silicon layer. These results were interpreted by the deficiency of the HF solution in reaching to the interface through the pores during the porous silicon formation

  13. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  14. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    International Nuclear Information System (INIS)

    Townley, L.R.; Trefry, M.G.; Barr, A.D.; Braumiller, S.

    1992-01-01

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  15. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L R; Trefry, M G; Barr, A D [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan); and others

    1993-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  16. Investigating a solar influence on cloud cover using the North American Regional Reanalysis data

    Directory of Open Access Journals (Sweden)

    Krahenbuhl Daniel Scott

    2015-01-01

    Full Text Available The controversial connection between cosmic rays, solar activity, and cloud cover is investigated using a climatological reconstructed reanalysis product: the North American Regional Reanalysis which provides high-resolution, low, mid-level, high, and total cloud cover data over a Lambert conformal conic projection permitting land/ocean discrimination. Pearson’s product-moment regional correlations were obtained between monthly cloud cover data and solar variability indicators, cosmic ray neutron monitors, several climatological indices, including the Atlantic Multidecadal Oscillation (AMO, and between cloud layers. Regions of the mid-latitude oceans exhibited a positive correlation with cosmic ray flux. Additionally, this maritime low cloud cover exhibits the only failed correlation significance with other altitudes. The cross correlation reveals that cloud cover is positively correlated everywhere but for ocean low cloud cover, supporting the unique response of the marine layer. The results of this investigation suggest that with the assumption that solar forcing does impact cloud cover, measurements of solar activity exhibits a slightly higher correlation than GCRs. The only instance where GCRs exhibit a positive regional correlation with cloud cover is for maritime low clouds. The AMO exerts the greatest control of cloud cover in the NARR domain.

  17. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    International Nuclear Information System (INIS)

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information

  18. Hydrogeological characterization of Back Forty area, Albany Research Center, Albany, Oregon

    International Nuclear Information System (INIS)

    Tsai, S.Y.; Smith, W.H.

    1983-12-01

    Radiological surveys were conducted to determine the potential migration of radionuclides from the waste area to the area commonly referred to as the Back Forty, located in the southern portion of the ARC site. The survey results indicated that parts of the Back Forty contain soils contaminated with uranium, thorium, and their associated decay products. A hydrogeologic characterization study was conducted at the Back Forty as part of an effort to more thoroughly assess radionuclide migration in the area. The objectives of the study were: (1) to define the soil characteristics and stratigraphy at the site, (2) to describe the general conditions of each geologic unit, and (3) to determine the direction and hydraulic gradient of areal groundwater flow. The site investigation activities included literature review of existing hydrogeological data for the Albany area, onsite borehold drilling, and measurement of groundwater levels. 7 references, 9 figures, 2 tables

  19. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    Science.gov (United States)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  20. Operation performance investigation of ground-coupled heat-pump system for temperate region

    OpenAIRE

    Yi Man; Hongxing Yang; Jinggang Wang; Zhaohong Fang

    2010-01-01

    In order to investigate the operation performance of ground-coupled heat-pump (GCHP) system, an analytical simulation model of GCHP system on short time-step basis and a computer program based on this model to predict system operating parameters are developed in this study. Besides, detailed on-site experiments on GCHP test rig installed in a temperate region of China are carried out. The temperature distributions of borehole as well as ground around borehole at different depths are evaluated...

  1. Investigation of the Radium Activity Concentration in Drinking Water of central Region Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Zovko, E.; Sirbubalo, M.; Catovic, S.

    1998-01-01

    Preliminary investigation of the 226 Ra activity concentration in drinking water in central region of Bosnia and Herzegovina have been performed. The results show that the activity concentrations of the samples vary between 33.3 - 48.8 Bq m -3 . According to the legal stipulation as given by the Official Bulletin of Bosnia and Herzegovina (2/.92), it can be concluded that the results are within given regulations. (author)

  2. Retail Productivity: Investigating the Influence of Market Size and Regional Hierarchy

    OpenAIRE

    Öner, Özge

    2014-01-01

    This paper investigates the determinants of the productivity of independent retail stores in Sweden by focusing on the impact of market size and regional hierarchy while controlling for several store and employee characteristics over time. The analysis utilizes Swedish store-level data for the years 2002–2008. To capture the urban-periphery interaction in retail markets, the analysis (i) uses an accessible market potential measure, which captures the impact of the potential demand both in clo...

  3. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  4. Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1990-01-01

    Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat

  5. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  7. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2015-10-30

    ://www.ajol.info/index.php/jasem http://www.bioline.org.br/ja. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater System in Parts of. Benin Metropolis, Benin City Nigeria: The Key to Groundwater Sustainability.

  8. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  9. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  10. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  11. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  12. Preparatory hydrogeologic investigations for in situ migration experiments in Studsvik

    International Nuclear Information System (INIS)

    Klockars, C.-E.; Persson, O.; Carlsson, L.; Duran, O.; Lindstroem, D.; Magnusson, K.-Aa.; Scherman, S.

    1980-11-01

    The test area is located at Studsvik and covers an area of 8000 m 2 . Within the area, the Geological Survey of Sweden has carried out studies including:Geological and tectonic mapping of the bedrock. Geophysical studies from the ground surface, including refraction seismic measurements, resistivity measurements and electromagnetic measurements. Core drilling. Hammer drilling. Geophysical and geochemical borehole measurements. Hydraulic tests in and between different boreholes. The geological mapping shows that the test area is located within a bedrock consisting of metamorphic sedimentary gneisses, known as migmatite within which decimeter-to-meter-thick layers of amphibolite are present. Mapped fractures from the drill core have chiefly chlorite and calcite as fracture-filling materials. The fracture frequency is relatively high with a maximum in the strike direction of the fractures in a northwesterly direction. The resistivity loggings that have been carried out show that the bedrock has a low average resistivity of 24 000 ohm m. The seismic measurements also show a low-velocity zone within the central portion of the area, which indicates that the portion of the bedrock close to the ground surface has a relatively high fracture content. In the measurements of spontaneous potential (SP), pyrite-filled fractures in the core borehole gave electronegative deviations. The borehole liquid has low salinity (high resistivity), a low pH and a positive redox potential. The hydraulic measurements that have been carried out show that the bedrock possesses low conductivity, in the order of 10 -6 m/s. Hydraulic double packer measurements indicate a number of major transmissive sections along the length of the boreholes. Inter-hole measurements show that only a few of these transmissive sections have hydraulic connection with nearby boreholes. Measurements of radon content and the resistivity of the borehole liquid provide information on a borehole's dominant zones with inflow or outflow of groundwater. (author)

  13. Geolgical, hydrogeological and geomechanical investigation of Slano blato lanslide

    Directory of Open Access Journals (Sweden)

    Marko Kočevar

    2002-12-01

    Full Text Available Landslide Slano blato (Salty mud is located under the Čaven Mountain on the slope cut by many steep mountains streams and gorges. Creeping at the area of Slano blato started on 18th of November 2000. Creep area is an old landslide. Landslide is 1290 m long and 60 to 200 m wide and is located on the altitudes of 270 m to 640 m. Landslide areais approximately 15 ha. As regarding geological structure, the complex of the Čaven Mountains is typical overthrust: the carbonatic series of Trnovski Gozd are laying over intensively folded and tectonically damaged Vipava flysch rocks. The landslide was mostprobably induced by heavy raining in autumn 2000.

  14. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    Science.gov (United States)

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area. The resulting increase of the stage of the river causes the river to lose large amounts of water by infiltration to the ground-water reservoir in the study area. In addition, there is much recharge to the ground-water reservoir in the spring and early summer as a result of seepage losses from irrigation ditches and the downward percolation of some of the excess water applied for irrigation. The average net increase of ground water in storage in the deposits beneath and adjacent to the flood plain of the Humboldt River during the spring and early summer is about 10,000 acre-feet.

  15. Drilling methods to keep the hydrogeological parameters of natural aquifer

    International Nuclear Information System (INIS)

    Chen Xiaoqin

    2004-01-01

    In hydrogeological drilling, how to keep the hydrogeological parameters of natural aquifer unchanged is a deeply concerned problem for the technicians, this paper introduces the methods taken by the state-owned 'Red Hill' geological company of Uzbekistan. By the research and contrast of different kinds of flush liquid, the company has found the methods to reduce the negative effects of drilling on the permeability of the vicinal aquifer. (author)

  16. Hydrogeology in North America: past and future

    Science.gov (United States)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  17. Analyzing Turkey's data from TIMSS 2007 to investigate regional disparities in eighth grade science achievement

    Science.gov (United States)

    Erberber, Ebru

    Turkey is expected to be a full member of the European Union (EU) by 2013. In the course of its integration into the EU, Turkey has been simultaneously facing access, quality, and equity issues in education. Over the past decade, substantial progress has been made on increasing the access. However, improving the country's low level of education quality and achieving equity in quality education across the regions continue to be a monumental challenge in Turkey. Most recently, results from the Trends in International Mathematics and Science Study (TIMSS) 2007 indicated that Turkey's educational achievement at the eighth grade, the end of compulsory primary education in Turkey, was far below that of other countries in the EU. Considering Turkey's long standing socioeconomic disparities between the western and eastern parts of the country, the challenges of improving overall education quality are coupled with the challenges of achieving equity in learning outcomes for students across the regions. This dissertation used data from TIMSS 2007 to document the extent of Turkey's regional differences in science achievement at the eighth grade and to investigate factors associated with these differences. Findings from a series of analyses using hierarchical linear models suggested that attempts to increase Turkish students' achievement and close the achievement gaps between regions should target the students in the undeveloped regions, particularly in Southeastern Anatolia and Eastern Anatolia. Designing interventions to improve competency in Turkish and to compensate for the shortcomings of insufficient parental education, limited home educational resources, poor school climate for academic achievement, and inadequate instructional equipment and facilities might be expected to close the regional achievement gaps as well as raise the overall achievement level in Turkey.

  18. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  19. Investigation of collisional effects within the bending magnet region of a DIII-D neutral beamline

    International Nuclear Information System (INIS)

    Kessler, D.N.; Hong, R.; Kellman, D.H.

    1993-10-01

    The region between the pole faces of the DIII-D neutral beamline residual ion bending magnets is an area of transient high gas pressure which may cause beam defocusing and increased heating of beamline internal components due to collisional effects. An investigation of these effects helps in understanding residual ion trajectories and in providing information for studying in the beamline capability for operation with increased pulse duration. Examination of collisional effects, and of the possible existence of space charge blow-up, was carried out by injecting deuterium gas into the region between the magnet pole faces with rates varying from 0 to 18 torr-ell/sec. Thermocouple and waterflow calorimetry data were taken to measure the beamline component heating and beam powder deposition on the magnet pole shields, magnet louvers, ion dump, beam collimators, and calorimeter. Data was also taken at gas flow rates varying from 0 to 25 torr-ell/sec into the neutralizer cell and is compared with the magnet region gas injection data obtained. Results show that both collisional effects and space charge blow-up play a role in magnet region component heating and that neutralizer gas flow sufficiently reduces component heating without incurring unacceptable power losses through collisional effects

  20. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    Armenia is a landlocked country located in the mountainous Caucasus region between Asia and Europe. It shares borders with the countries of Georgia on the north, Azerbaijan on the east, Iran on the south, and Turkey and Azerbaijan on the west. The Ararat Basin is a transboundary basin in Armenia and Turkey. The Ararat Basin (or Ararat Valley) is an intermountain depression that contains the Aras River and its tributaries, which also form the border between Armenia and Turkey and divide the basin into northern and southern regions. The Ararat Basin also contains Armenia’s largest agricultural and fish farming zone that is supplied by high-quality water from wells completed in the artesian aquifers that underlie the basin. Groundwater constitutes about 40 percent of all water use, and groundwater provides 96 percent of the water used for drinking purposes in Armenia. Since 2000, groundwater withdrawals and consumption in the Ararat Basin of Armenia have increased because of the growth of aquaculture and other uses. Increased groundwater withdrawals caused decreased springflow, reduced well discharges, falling water levels, and a reduction of the number of flowing artesian wells in the southern part of Ararat Basin in Armenia.In 2016, the U.S. Geological Survey and the U.S. Agency for International Development (USAID) began a cooperative study in Armenia to share science and field techniques to increase the country’s capabilities for groundwater study and modeling. The purpose of this report is to describe the hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia based on data collected in 2016 and previous hydrogeologic studies. The study area includes the Ararat Basin in Armenia. This report was completed through a partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships effort through the Advanced Science and Partnerships for Integrated Resource Development program and associated

  1. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  2. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  3. [Medical hydrogeology is an independent interdisciplinary branch of the science about groundwater].

    Science.gov (United States)

    Elpiner, L I

    The use of groundwater in population water supply systems gains more and more importance because of increasing degradation of the quality of surface water sources. At the same time there are changed concepts on ubiquitous high quality of groundwater. The executed analysis offoreign and domestic literature allowed authors to determine the character and causes of negative changes in the composition of groundwater. In the large body of investigations there were established cause-and-effect relationships between a number of noninfectious (including cardiovascular and cancer) and infectious diseases and anthropogenic pollution and the natural composition of groundwater. In the article there is substantiated the formation of a new interdisciplinary scientific direction - medical hydrogeology. On the basis of current data on the medical and ecological significance of the quality, quantity and regime of the groundwater, geological conditions of the shaping of their composition, there was shown the need of the consideration of the hydrological situation in making water supply management solutions safe for the health of the population. In this regard, there were considered the interrelationship and interdependence of allied disciplines - hygiene, ecological toxicology and epidemiology, hydrogeochemistry, hydrogeology. There was pointed the importance of the acquisition of based on hydrogeology medical specialists of the water supply profile for sharing with hygienists of the effective solution of tasks of the management of groundwater sources.

  4. Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area

    Science.gov (United States)

    Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike

    2017-04-01

    Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.

  5. [An investigation on rare and endangered Tibetan medicinal plants in Lhasa region].

    Science.gov (United States)

    Lu, Jie; Lan, Xiao-Zhong

    2013-01-01

    To investigate and study the endangered Tibetan medicinal plant species, their moisture content, biomass and resources reserves in Lhasa region. The rare and endangered Tibetan medicinal plant resources were investigated by plot-quadrat method, walking and inquiry ways, sampling and drying method. There were 37 species of rare and endangered plants, belonging to 22 families and 34 genera in Lhasa region. The moisture content of aerial part was higher than that of underground part in many plants. The moisture content of Przewalskia tangutica was the highest (91.97%), and the lowest one was Fritillaria delavayi (only 25.99%). The mean biomass of Rubus biflorus was the highest (1 830.480 g), that of Cordyceps sinensis was the lowest (0.291 g). The root-shoot ratio of Asparagus filicinus was the maximum (5.313), the minimum was Aconitum gymnandrum (0.286). The largest output was 18.000 kg x hm(-2) for Berberis agricola, the output of Saxifraga pasumensis was the lowest (0.007 kg x hm(-2)). The resources reserves of the rare and endangered plants were 15683.697 t in Lhasa region, the maximum was 7690.230 t for B. agricola, 49.03% of the total reserves, the minimum was 2.393 t for S. pasumensis, only 0.015%. The characteristics of rare and endangered plants were as follows: abundant species and complex habitats, widely distribution but uneven, rich reserves and high economic value. We suggested to update the endangered level of medicinal plants, strengthen the scientific research on these plants, maintain sustainable utilization of the rare and endangered plants in Lhasa region.

  6. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  7. North-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  8. North-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  9. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  10. 2101-M Pond hydrogeologic characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  11. Development of hydrogeological modelling tools based on NAMMU

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, N. [Kemakta Konsult AB, Stockholm (Sweden); Hartley, L.; Jackson, P.; Poole, M. [AEA Technology, Harwell (United Kingdom); Morvik, A. [Bergen Software Services International AS, Bergen (Norway)

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  12. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  13. Hydrogeology of the Potsdam Sandstone in northern New York

    Science.gov (United States)

    Williams, John H.; Reynolds, Richard J.; Franzi, David A.; Romanowicz, Edwin A.; Paillet, Frederick L.

    2010-01-01

    The Potsdam Sandstone of Cambrian age forms a transboundary aquifer that extends across northern New York and into southern Quebec. The Potsdam Sandstone is a gently dipping sequence of arkose, subarkose, and orthoquartzite that unconformably overlies Precambrian metamorphic bedrock. The Potsdam irregularly grades upward over a thickness of 450 m from a heterogeneous feldspathic and argillaceous rock to a homogeneous, quartz-rich and matrix-poor rock. The hydrogeological framework of the Potsdam Sandstone was investigated through an analysis of records from 1,500 wells and geophysical logs from 40 wells, and through compilation of GIS coverages of bedrock and surficial geology, examination of bedrock cores, and construction of hydrogeological sections. The upper several metres of the sandstone typically is weathered and fractured and, where saturated, readily transmits groundwater. Bedding-related fractures in the sandstone commonly form sub-horizontal flow zones of relatively high transmissivity. The vertical distribution of sub-horizontal flow zones is variable; spacings of less than 10 m are common. Transmissivity of individual flow zones may be more than 100 m2/d but typically is less than 10 m2/d. High angle fractures, including joints and faults, locally provide vertical hydraulic connection between flow zones. Hydraulic head gradients in the aquifer commonly are downward; a laterally extensive series of sub-horizontal flow zones serve as drains for the groundwater flow system. Vertical hydraulic head differences between shallow and deep flow zones range from 1 m to more than 20 m. The maximum head differences are in recharge areas upgradient from the area where the Chateauguay and Chazy Rivers, and their tributaries, have cut into till and bedrock. Till overlies the sandstone in much of the study area; its thickness is generally greatest in the western part, where it may exceed 50 m. A discontinuous belt of bedrock pavements stripped of glacial drift extends

  14. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  15. An approach to hydrogeological modeling of a large system of groundwater-fed lakes and wetlands in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.; Rowe, Clinton M.

    2018-05-01

    The feasibility of a hydrogeological modeling approach to simulate several thousand shallow groundwater-fed lakes and wetlands without explicitly considering their connection with groundwater is investigated at the regional scale ( 40,000 km2) through an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are compared to local land-surface elevations from a digital elevation model (DEM) within a geographic information system to assess locations of lakes and wetlands. The water bodies are inferred where hydraulic heads exceed, or are above a certain depth below, the land surface. Numbers of lakes and/or wetlands are determined via image cluster analysis applied to the same 30-m grid as the DEM after interpolating both simulated and estimated heads. The regional water-table map was used for groundwater model calibration, considering MODIS-based net groundwater recharge data. Resulting values of simulated total baseflow to interior streams are within 1% of observed values. Locations, areas, and numbers of simulated lakes and wetlands are compared with Landsat 2005 survey data and with areas of lakes from a 1979-1980 Landsat survey and the National Hydrography Dataset. This simplified process-based modeling approach avoids the need for field-based morphology or water-budget data from individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it reproduces observed lake-wetland characteristics at regional groundwater management scales. A better understanding of the NSH hydrogeology is attained, and the approach shows promise for use in simulations of groundwater-fed lake and wetland characteristics in other large groundwater systems.

  16. Investigation and Control of VIVs with Multi-Lock-in Regions on Wide Flat Box Girders

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2017-01-01

    Full Text Available On the preliminary designing of a wide flat box girder with the slenderness ratio 12, vertical and torsional vortex-induced vibrations (VIV are observed in wind tunnel tests. More than one lock-in region, which are defined as “multi-lock-in regions,” are recorded. Therefore, suspicions should be aroused regarding the viewpoint that wide box girders are aerodynamic friendly. As the three nascent vortexes originating at the pedestrian guardrails and inspection rails shed to near-wake through different pathways with different frequencies, the mechanisms of VIVs and multi-lock-in regions are analyzed to be determined by the inappropriate subsidiary structures. A hybrid method combining Large Eddy Simulation (LES with experimental results is introduced to study the flow-structure interactions (FSI when undergoing VIVs; the vortex mode of torsional VIV on wide flat box girders is defined as “4/2S,” which is different from any other known ones. Based on the mechanism of VIV, a new approach by increasing ventilation rate of the pedestrian guardrails is proved to be effective in suppressing vertical and torsional VIVs, and it is more feasible than other control schemes. Then, the control mechanisms are deeper investigated by analyzing the evolution of vortex mode and FSI using Hybrid-LES method.

  17. Multipoint investigation of the source region of storm-time chorus

    Directory of Open Access Journals (Sweden)

    O. Santolík

    2004-07-01

    Full Text Available In this case study we investigate the source region of whistler-mode chorus located close to the geomagnetic equator at a radial distance of 4.4 Earth radii. We use measurements from the four Cluster spacecraft at separations of less than a few hundreds of km, recorded during the geomagnetic storm of 18 April 2002. The waveforms of the electric field fluctuations were obtained by the WBD instruments in the frequency range 50Hz-9.5kHz. Using these data, we calculate linear and rank correlation coefficients of the frequency averaged power-spectral density measured by the different spacecraft. Those coefficients have been recently shown to decrease with spacecraft separation distance perpendicular to the static magnetic field cchor03 with a characteristic scale length of 100km. We find this characteristic scale varying between 60 and 200km for different data intervals inside the source region. We examine possible explanations for the observed large scatter of the correlation coefficients, and we suggest a simultaneously acting effect of random positions of locations at which the individual chorus wave packets are generated. The statistical properties of the observations are approximately reproduced by a simple 2-D model of the source region, assuming a perpendicular half-width of 35km (approximately one wavelength of the whistler-mode waves for the distribution of power radiated from individual active areas.

  18. Initial investigation into lower-cost CT for resource limited regions of the world

    Science.gov (United States)

    Dobbins, James T., III; Wells, Jered R.; Segars, W. Paul; Li, Christina M.; Kigongo, Christopher J. N.

    2010-04-01

    This paper describes an initial investigation into means for producing lower-cost CT scanners for resource limited regions of the world. In regions such as sub-Saharan Africa, intermediate level medical facilities serving millions have no CT machines, and lack the imaging resources necessary to determine whether certain patients would benefit from being transferred to a hospital in a larger city for further diagnostic workup or treatment. Low-cost CT scanners would potentially be of immense help to the healthcare system in such regions. Such scanners would not produce state-of-theart image quality, but rather would be intended primarily for triaging purposes to determine the patients who would benefit from transfer to larger hospitals. The lower-cost scanner investigated here consists of a fixed digital radiography system and a rotating patient stage. This paper describes initial experiments to determine if such a configuration is feasible. Experiments were conducted using (1) x-ray image acquisition, a physical anthropomorphic chest phantom, and a flat-panel detector system, and (2) a computer-simulated XCAT chest phantom. Both the physical phantom and simulated phantom produced excellent image quality reconstructions when the phantom was perfectly aligned during acquisition, but artifacts were noted when the phantom was displaced to simulate patient motion. An algorithm was developed to correct for motion of the phantom and demonstrated success in correcting for 5-mm motion during 360-degree acquisition of images. These experiments demonstrated feasibility for this approach, but additional work is required to determine the exact limitations produced by patient motion.

  19. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2013-04-01

    Full Text Available Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100 m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 ± 0.06 at an altitude of 2.5 ± 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 ± 3.3 W m−2 and 0.6 ± 0.26 K day−1, respectively, with a forcing efficiency of 43 W m−2 and an effective heating rate of 4 K day−1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to non-dusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region.

  20. Experimental investigation of auroral generator regions with conjugate Cluster and FAST data

    Directory of Open Access Journals (Sweden)

    O. Marghitu

    2006-03-01

    Full Text Available Here and in the companion paper, Hamrin et al. (2006, we present experimental evidence for the crossing of auroral generator regions, based on conjugate Cluster and FAST data. To our knowledge, this is the first investigation that concentrates on the evaluation of the power density, E·J, in auroral generator regions, by using in-situ measurements. The Cluster data we discuss were collected within the Plasma Sheet Boundary Layer (PSBL, during a quiet magnetospheric interval, as judged from the geophysical indices, and several minutes before the onset of a small substorm, as indicated by the FAST data. Even at quiet times, the PSBL is an active location: electric fields are associated with plasma motion, caused by the dynamics of the plasma-sheet/lobe interface, while electrical currents are induced by pressure gradients. In the example we show, these ingredients do indeed sustain the conversion of mechanical energy into electromagnetic energy, as proved by the negative power density, E·J<0. The plasma characteristics in the vicinity of the generator regions indicate a complicated 3-D wavy structure of the plasma sheet boundary. Consistent with this structure, we suggest that at least part of the generated electromagnetic energy is carried away by Alfvén waves, to be dissipated in the ionosphere, near the polar cap boundary. Such a scenario is supported by the FAST data, which show energetic electron precipitation conjugated with the generator regions crossed by Cluster. A careful examination of the conjunction timing contributes to the validation of the generator signatures.

  1. Experimental investigation of auroral generator regions with conjugate Cluster and FAST data

    Directory of Open Access Journals (Sweden)

    O. Marghitu

    2006-03-01

    Full Text Available Here and in the companion paper, Hamrin et al. (2006, we present experimental evidence for the crossing of auroral generator regions, based on conjugate Cluster and FAST data. To our knowledge, this is the first investigation that concentrates on the evaluation of the power density, E·J, in auroral generator regions, by using in-situ measurements. The Cluster data we discuss were collected within the Plasma Sheet Boundary Layer (PSBL, during a quiet magnetospheric interval, as judged from the geophysical indices, and several minutes before the onset of a small substorm, as indicated by the FAST data. Even at quiet times, the PSBL is an active location: electric fields are associated with plasma motion, caused by the dynamics of the plasma-sheet/lobe interface, while electrical currents are induced by pressure gradients. In the example we show, these ingredients do indeed sustain the conversion of mechanical energy into electromagnetic energy, as proved by the negative power density, E·J<0. The plasma characteristics in the vicinity of the generator regions indicate a complicated 3-D wavy structure of the plasma sheet boundary. Consistent with this structure, we suggest that at least part of the generated electromagnetic energy is carried away by Alfvén waves, to be dissipated in the ionosphere, near the polar cap boundary. Such a scenario is supported by the FAST data, which show energetic electron precipitation conjugated with the generator regions crossed by Cluster. A careful examination of the conjunction timing contributes to the validation of the generator signatures.

  2. An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patricola, Christina M.; Saravanan, R.; Hsieh, Jen-Shan [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States); Li, Mingkui; Xu, Zhao [Texas A and M University, Department of Oceanography, College Station, TX (United States); Ocean University of China, Key Laboratory of Physical Oceanography of Ministry of Education, Qingdao (China); Chang, Ping [Texas A and M University, Department of Oceanography, College Station, TX (United States); Ocean University of China, Key Laboratory of Physical Oceanography of Ministry of Education, Qingdao (China); Second Institute of Oceanography, State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang (China)

    2012-11-15

    Coupled atmosphere-ocean general circulation models (AOGCMs) commonly fail to simulate the eastern equatorial Atlantic boreal summer cold tongue and produce a westerly equatorial trade wind bias. This tropical Atlantic bias problem is investigated with a high-resolution (27-km atmosphere represented by the Weather Research and Forecasting Model, 9-km ocean represented by the Regional Ocean Modeling System) coupled regional climate model. Uncoupled atmospheric simulations test climate sensitivity to cumulus, land-surface, planetary boundary layer, microphysics, and radiation parameterizations and reveal that the radiation scheme has a pronounced impact in the tropical Atlantic. The CAM radiation simulates a dry precipitation (up to -90%) and cold land-surface temperature (up to -8 K) bias over the Amazon related to an over-representation of low-level clouds and almost basin-wide westerly trade wind bias. The Rapid Radiative Transfer Model and Goddard radiation simulates doubled Amazon and Congo Basin precipitation rates and a weak eastern Atlantic trade wind bias. Season-long high-resolution coupled regional model experiments indicate that the initiation of the warm eastern equatorial Atlantic sea surface temperature (SST) bias is more sensitive to the local rather than basin-wide trade wind bias and to a wet Congo Basin instead of dry Amazon - which differs from AOGCM simulations. Comparisons between coupled and uncoupled simulations suggest a regional Bjerknes feedback confined to the eastern equatorial Atlantic amplifies the initial SST, wind, and deepened thermocline bias, while barrier layer feedbacks are relatively unimportant. The SST bias in some CRCM simulations resembles the typical AOGCM bias indicating that increasing resolution is unlikely a simple solution to this problem. (orig.)

  3. Application of stable isotopes to hydrogeology in coal mine

    International Nuclear Information System (INIS)

    Duan Qi; Duan Yucheng

    1988-01-01

    Stable isotopes including Oxygen-18 and Deuterium have been applied to investigation of hydrogeology in main coal mines. By determination of stable isotopic composition of hydrogen and oxygen together with water analysis, the following studies have been developed: Identification of the hydrogeochemical characteristics of the groundwater from varied aquifers; Analysis of the hydraulic relationship between varied aquifers; Interpretation of the probable recharge source of mine water. The research results mentioned above reveal that: 1. The groundwater from main aquifers at coal mines in north China is of meteoric origin, which is recharged from hilly area surrounding the coal mine. Its isotopic composition differs slightly from that of the local precipitation. 2. There is a mutual hydraulic relationship between the Ordovician and Quarternary aquifers, so the difference of isotopic composition is very small. 3. By way of the variation of isotopic composition of groundwater from coal-bearing strata, we can infer the hydraulic relationship extent between overlaid alluvial layer and underlaid Ordovician limestone. (author). 9 refs, 6 figs, 8 tabs

  4. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  5. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  6. Nagra technical report 14-02, geological basics - Dossier V - Hydro-geological conditions

    International Nuclear Information System (INIS)

    Traber, D.; Gautschi, A.; Marschall, P.; Becker, J.; Waber, N.

    2014-01-01

    This dossier is the fifth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier V looks at hydro-geological considerations in North-Western Switzerland. Rock layers in the region and their hydrological properties are examined. Ground-water and deeper lying aquifers in the various rock formations are discussed. The specific hydrology in the proposed areas for nuclear waste depositories is looked at, including infiltration and exfiltration zones and gradients

  7. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    International Nuclear Information System (INIS)

    Zhang Wei-Ya; Li Yong-Li; Chang Xiao-Yong; Wang Nan

    2013-01-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments. (interdisciplinary physics and related areas of science and technology)

  8. Flowing with the changing needs of hydrogeology instruction

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-01-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the diverse background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey of 68 hydrogeology instructors. The literature and survey results suggest there are ~15 topics that are considered crucial by most hydrogeologists and >100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  9. PGDP Trichloroethene Biodegradation Investigation Summary Report: Regional Gravel Aquifer & Northwest Plume

    Energy Technology Data Exchange (ETDEWEB)

    Hampson, Steve [Univ. of Kentucky, Lexington, KY (United States). Kentucky Research Consortium for Energy and Environment

    2008-09-01

    The evaluation of biological degradation processes addressed by this report are part of a broad trichloroethene (TCE) Fate and Transport Investigation that includes four (4) topics of phased investigation (Table ES1) relative to degradation and/or attenuation of TCE in the Regional Gravel Aquifer (RGA) underlying the United States Department of Energy Paducah Gaseous Diffusion Plant (PGDP). In order of implementation the project phases are: (1) derivation of a TCE first-order rate constant by normalization of TCE values against technetium-99 (99Tc) and chloride. 2) identification of the presence of microbes capable of aerobic co-metabolic TCE biodegradation using enzyme activity probes (this report); 3) Compound-specific isotope analysis (CSIA) to support prevalence of biotic and/or abiotic degradation processes; and 4) evaluation of potential abiotic RGA-TCE attenuation mechanisms including sorption. This report summarizes the Phase II activities related to the identification and evaluation of biological degradation processes that may be actively influencing TCE fate and transport in the RGA contaminant plumes at the United States Department of Energy (DOE) PGDP and its environs (Figure ES1). The goals of these activities were to identify active biological degradation mechanisms in the RGA through multiple lines of evidence and to provide DOE with recommendations for future TCE biological degradation investigations.

  10. Modern and Unconventional Approaches to Karst Hydrogeology

    Science.gov (United States)

    Sukop, M. C.

    2017-12-01

    Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave

  11. Information-computational platform for collaborative multidisciplinary investigations of regional climatic changes and their impacts

    Science.gov (United States)

    Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through

  12. Investigation of surface resistance of copper in classical and anomalous skin-effect region

    International Nuclear Information System (INIS)

    Kutovoj, V.A.; Egorov, A.M.

    2008-01-01

    The surface resistance of copper in classical and anomalous skin-effect region has been investigated, and the surface resistance improvement factor equal to the ratio of the surface resistance of copper at room temperature to that of helium temperature, depending on the electromagnetic field frequency, has been determined. The improvement factor has been shown to have inverse power law dependence on frequency. The frequencies at which the improvement factor of copper equals 10 have been determined. It has been found that the quality factor of a resonance high-frequency system made of copper, operating at temperature T ≥ 4.2 K can be increased 10 times or more as against a quality factor of a resonance high-frequency system operating at room temperature

  13. Isotope techniques in water resource investigations in arid and semi-arid regions

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Project (CRP) on the Use of Isotope Techniques in Water Resources Investigations in Arid and Semi-arid Regions was initiated with the aim od contributing to the assessment of groundwater resources in arid areas through the use of environmental isotope techniques, and thereby to help in better management of these valuable fresh groundwater resources. The main emphases identified were in three key areas: (i) the evaluation of water balance components such as recharge rate estimation and recharge and discharge cycles at different spatial scales, (ii) paleohydrology and hydroclimatic change and, (iii) anthropogenic impacts and the assessment of the vulnerability of arid zone ground waters to salinisation and pollution impacts. This publication presents individual projects carried out within the frameworks of the CRP. Each paper has been indexed separately

  14. Hydrogeologic field study of the Koongarra uranium deposit in the Northern Territory of Australia

    International Nuclear Information System (INIS)

    Marley, R.D.

    1990-01-01

    This study is focused on the hydrogeologic characterization of the more southwesterly of the two Koongarra orebodies. The general objective is to augment the current hydrogeologic understanding of groundwater flow so that realistic transport models can be developed. Water level, aquifer tests, and slug-test data indicate that the Koongarra uranium deposit is within a low permeability, semi-confined, fractured-schist aquifer. Water levels demonstrate semi-diurnal and diurnal fluctuations related to earth tides and evapotranspiration stresses. Hydraulic test data were analyzed with homogenous isotropic and homogenous anisotropic models which allowed parameter estimation for sub-regions of the study area. Dominant anisotropy is subparallel to lithologic layering and the reverse fault. Slug tests reveal regions controlled by low storage but highly conductive fractures and isolated regions of low conductivity. Hydraulic connection of the weathered zone with the underlying schist is dependent on clay content and fractures. Environmental isotopes indicate ground water has been isolated from the atmosphere for a least 40 years and possibly several thousand years in some locations. Water budget calculations indicate the majority of recharge must be from direct infiltration through the weathered profile to account for the calculated ground-water fluxes. 36 refs., 12 tabs., 52 figs

  15. Masteŕ s Programme at Stockholm University: Hydrology, Hydrogeology and Water Resources

    Science.gov (United States)

    Jarsjö, J.; Destouni, G.; Lyon, S. W.; Seibert, J.

    2009-04-01

    Many environmental risks and societal concerns are directly related to the way we manage our land and water environments. The two-year master's programme "Hydrology, Hydrogeology and Water Resources" at Stockholm University, Sweden, is based on a system perspective and provides extended knowledge about water and soil-rock-sediment systems and how these interact with each other and with land use, socio-economic and water resource policy and management systems. This water system perspective includes the spreading of dissolved substances and pollutants in various water systems and associated risks for society. Questions related to water resources are also covered: the management of water resources and conflicts as well as collaborations caused by shared water resources on local, regional and global scales. A common learning objective for the courses in the programme is to be able to identify, extract and combine relevant information from databases and scientific publications, and use the resulting dataset in hydrological, hydrogeological and water resources analyses, on local, regional or global levels. Traditional classroom teaching is to large extent complemented by case study analyses, performed as project assignments. The importance of water resources for both the society and the environment is emphasized through applications to practical water resources management challenges in society. The courses in this program include the following topics: · Hydrological and hydrogeological processes, main components of the water cycle (e.g., precipitation, evapotranspiration, discharge) and the spreading of dissolved substances and pollutants in various water systems. · Water resources and water quality, pollution spreading through surface, ground and coastal water systems, as well as vulnerability and resilience of water resources. · Regional analyses related to global water resource vulnerability and resilience. · Models and information systems as important tools for

  16. Strategic agency and institutional change: investigating the role of universities in regional innovation systems (RISs)

    NARCIS (Netherlands)

    Benneworth, Paul Stephen; Pinheiro, Romulo; Karlsen, James

    2014-01-01

    Past analyses rooted in thick description of regions successful in constructing regional innovation systems have given way to analyses more focused on the intentionality in these processes, and how actors in regions with their own wider networks can shape these high-level changes in regional

  17. Field and laboratory investigations on pavement backfilling material for micro-trenching in cold regions

    Directory of Open Access Journals (Sweden)

    Leila Hashemian

    2017-07-01

    Full Text Available Micro-trenching is an innovative utility installation method that involves creating a narrow trench to place cable or conduit in the road pavement. Compared to other installation methods, micro-trenching provides minimal disturbance to the community and surrounding environment. Despite the advantages of micro-trenching, it is not widely accepted by municipalities because of its potential to damage the existing pavement. Quality of backfilling is an important factor in long-term sustainability of the micro-trench, particularly in cold regions. This paper investigates the performance of two typical micro-trench backfilling methods in cold climates by studying a pilot project in a parking lot in Edmonton, Alberta, followed by a laboratory evaluation of the material used. For this purpose, the installations were monitored through ground-penetrating radar, optical time-domain reflectometer, and visual observations for three years. The monitoring results revealed that conduit had significant vertical movement inside the trench; several premature failures were also observed in the backfilling material. Laboratory investigation showed that the backfilling material did not meet the criteria for use in cold climates, and micro-trench performance could be enhanced using alternative materials. Keywords: Micro-trench, Pavement backfilling material, Fiber optic installation, Ground-penetrating radar

  18. Hydrogeological and isotopic studies for selected springs in Sinai Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M S; Awad, M A; El-gamal, S A [Atomic Energy Authority, Cairo Egypt and Middle Eastern Regional Radioisotope Center for The Arab Countries, Dokki, 12311, Cairo (Egypt); Hammad, F A [Desert Research Centre, Materia, Cairo, (Egypt)

    1995-10-01

    This paper deals with the hydrogeology and isotopic composition of water samples collected from selected spring in sinai (e.g. Algudierate, Alqusiema, qidis and Isram) in order to identify their genesis, their interaction with the host rocks and mixing trend. Results of isotopic composition have indicated the similarity in the hydrogeologic situation of Ain qidis and Ain-al-gudierate, while Ain Isram has shown a marked difference in its stable isotope and this could be due to evaporation effect. The isotopic and hydrochemical constituents of the studied springs reflect eater of a meteoric origin with a possible contamination from surficial materials (evaporates) and deeper aquifers. 6 figs., 2 tabs.

  19. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  20. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting

    Science.gov (United States)

    Filippini, Maria; Amorosi, Alessandro; Campo, Bruno; Herrero-Martìn, Sara; Nijenhuis, Ivonne; Parker, Beth L.; Gargini, Alessandro

    2016-09-01

    The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a ;reactor; for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.

  1. Hydrogeology of Cibola County, New Mexico

    Science.gov (United States)

    Baldwin, J.A.; Rankin, D.R.

    1995-01-01

    The hydrogeology of Cibola County, New Mexico, was evaluated to determine the occurrence, availability, and quality of ground-water resources. Rocks of Precambrian through Quaternary age are present in Cibola County. Most rocks are sedimentary in origin except for Precambrian igneous and metamorphic rocks exposed in the Zuni Uplift and Tertiary and Quaternary basalts in northern and central parts of the county. The most productive aquifers in the county include (youngest to oldest) Quaternary deposits, sandstones in the Mesaverde Group, the Dakota-Zuni-Bluff aquifer, the Westwater Canyon aquifer, the Todilto- Entrada aquifer, sandstone beds in the Chinle Formation, and the San Andres-Glorieta aquifer. Unconsolidated sand, silt, and gravel form a mantle ranging from a few inches to 150 to 200 feet over much of the bedrock in Cibola County. Well yields range from 5 to 1,110 gallons per minute. Dissolved-solids concentrations of ground water range from 200 to more than 5,200 milligrams per liter. Calcium, magnesium, bicarbonate, and sulfate are the predominant ions in ground water in alluvial material. The Mesaverde Group mainly occurs in three areas of the county. Well yields range from less than 1 to 12 gallons per minute. The predominant ions in water from wells in the Mesaverde Group are calcium, sodium, and bicarbonate. The transition from calcium-predominant to sodium-predominant water in the southwestern part of the county likely is a result of ion exchange. Wells completed in the Dakota-Zuni-Bluff aquifer yield from 1 to 30 gallons per minute. Dissolved-solids concentrations range from 220 to 2,000 milligrams per liter in water from 34 wells in the western part of the county. Predominant ions in the ground water include calcium, sodium, sulfate, and bicarbonate. Calcium predominates in areas where the aquifer is exposed at the surface or is overlain with alluvium. Sandstones in the Chinle Formation yield from 10 to 300 gallons per minute to wells in the Grants

  2. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    Science.gov (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  3. Investigation on the Regional Loss Factor and Its Anisotropy for Aortic Aneurysms

    Directory of Open Access Journals (Sweden)

    Nastaran Shahmansouri

    2016-10-01

    Full Text Available An aortic aneurysm is a lethal arterial disease that mainly occurs in the thoracic and abdominal regions of the aorta. Thoracic aortic aneurysms are prevalent in the root/ascending parts of the aorta and can lead to aortic rupture resulting in the sudden death of patients. Understanding the biomechanical and histopathological changes associated with ascending thoracic aortic aneurysms (ATAAs, this study investigates the mechanical properties of the aorta during strip-biaxial tensile cycles. The loss factor—defined as the ratio of dissipated energy to the energy absorbed during a tensile cycle—the incremental modulus, and their anisotropy indexes were compared with the media fiber compositions for aneurysmal (n = 26 and control (n = 4 human ascending aortas. The aneurysmal aortas were categorized into the aortas with bicuspid aortic valves (BAV and tricuspid aortic valves (TAV. The strip-biaxial loss factor correlates well with the diameter of the aortas with BAV and TAV (for the axial direction, respectively, R2 = 0.71, p = 0.0022 and R2 = 0.54, p = 0.0096. The loss factor increases significantly with patients’ age in the BAV group (for the axial direction: R2 = 0.45, p = 0.0164. The loss factor is isotropic for all TAV quadrants, whereas it is on average only isotropic in the anterior and outer curvature regions of the BAV group. The results suggest that loss factor may be a useful surrogate measure to describe the histopathology of aneurysmal tissue and to demonstrate the differences between ATAAs with the BAV and TAV.

  4. Investigation of Electron Density Profile in the ionospheric D and E region by Kagoshima rocket experiment

    Science.gov (United States)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.; Okada, T.; Nagano, I.; Abe, T.; Ono, T.

    2007-12-01

    The radio wave propagation characteristic in the lower ionosphere is important because of its effect on commercial radio communication, navigation, and broadcast services. The electron density is of primary interest in this region because the high ion-neutral collision frequencies result in radio wave absorption. In order to investigate the ionization structure in the ionospheric D and E region by using the propagation characteristics of MF-band and LF-band radio waves, S-310-37 and S-520-23 sounding rocket experiments have been carried out at Uchinoura Space Center (USC). S-310-37 sounding rocket was launched at 11:20 LT on January 16, 2007. The apex of rocket trajectory was about 138 km. Then S-520-23 sounding rocket was launched at 19:20 LT on September 2, 2007. The apex was about 279 km. As a common measurement, these sounding rockets measure the fields intensities and the waveform of radio waves from NHK Kumamoto broadcasting station (873kHz, 500kW) and JJY signals from Haganeyama LF radio station (60kHz, 50kW). The approximate electron density profile can be determined from the comparison between these experimental results and propagation characteristics calculated by the full wave method. We will get the most probable electron density profile in the ionosphere. In presentation, we will show the propagation characteristic of LF/MF radio waves measured by two sounding rocket experiments. Then we will discuss the analysis method and the estimated electron density profile in the ionosphere.

  5. Hydro-Geological Hazard Temporal Evolution during the last seven decades in the Solofrana River Basin—Southern Italy

    Science.gov (United States)

    Longobardi, Antonia; Diodato, Nazzareno; Mobilia, Mirka

    2017-04-01

    Extremes precipitation events are frequently associated to natural disasters falling within the broad spectrum of multiple damaging hydrological events (MDHEs), defined as the simultaneously triggering of different types of phenomena, such as landslides and floods. The power of the rainfall (duration, magnitude, intensity), named storm erosivity, is an important environmental indicator of multiple damaging hydrological phenomena. At the global scale, research interest is actually devoted to the investigation of non-stationary features of extreme events, and consequently of MDHEs, which appear to be increasing in frequency and severity. The Mediterranean basin appears among the most vulnerable regions with an expected increase in occurring damages of about 100% by the end of the century. A high concentration of high magnitude and short duration rainfall events are, in fact, responsible for the largest rainfall erosivity and erosivity density values within Europe. The aim of the reported work is to investigate the relationship between the temporal evolution of severe geomorphological events and combined precipitation indices as a tool to improve understanding the hydro-geological hazard at the catchment scale. The case study is the Solofrana river basin, Southern Italy, which has been seriously and consistently in time affected by natural disasters. Data for about 45 MDH events, spanning on a decadal scale 1951-2014, have been collected and analyzed for this purpose. A preliminary monthly scale analysis of event occurrences highlights a pronounced seasonal characterization of the phenomenon, as about 60% of the total number of reported events take place during the period from September to November. Following, a statistical analysis clearly indicates a significant increase in the frequency of occurrences of MDHEs during the last decades. Such an increase appears to be related to non-stationary features of an average catchment scale rainfall-runoff erosivity index

  6. Numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area, South Dakota

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2009-01-01

    -flow model, was used to simulate flow in the Minnelusa and Madison hydrogeologic units with five layers. Layer 1 represented the fractured sandstone layers in the upper 250 ft of the Minnelusa hydrogeologic unit, and layer 2 represented the lower part of the Minnelusa hydrogeologic unit. Layer 3 represented the upper 150 ft of the Madison hydrogeologic unit, and layer 4 represented the less permeable lower part. Layer 5 represented an approximation of the underlying Deadwood aquifer to simulate upward flow to the Madison hydrogeologic unit. The finite-difference grid, oriented 23 degrees counterclockwise, included 221 rows and 169 columns with a square cell size of 492.1 ft in the detailed study area that surrounded Rapid City. The northern and southern boundaries for layers 1-4 were represented as no-flow boundaries, and the boundary on the east was represented with head-dependent flow cells. Streamflow recharge was represented with specified-flow cells, and areal recharge to layers 1-4 was represented with a specified-flux boundary. Calibration of the model was accomplished by two simulations: (1) steady-state simulation of average conditions for water years 1988-97 and (2) transient simulations of water years 1988-97 divided into twenty 6-month stress periods. Flow-system components represented in the model include recharge, discharge, and hydraulic properties. The steady-state streamflow recharge rate was 42.2 cubic feet per second (ft3/s), and transient streamflow recharge rates ranged from 14.1 to 102.2 ft3/s. The steady-state areal recharge rate was 20.9 ft3/s, and transient areal recharge rates ranged from 1.1 to 98.4 ft3/s. The upward flow rate from the Deadwood aquifer to the Madison hydrogeologic unit was 6.3 ft3/s. Discharge included springflow, water use, flow to overlying units, and regional outflow. The estimated steady-state springflow of 32.8 ft3/s from seven springs was similar to the simulated springflow of 31.6 ft3/s, which included 20.5 ft3

  7. Modelling of the site scale hydrogeological situation at Beberg using NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Gylling, B.; Grundfelt, B.; Hartley, L.

    2000-02-01

    The purpose of the present study is to perform modelling of the site scale hydrogeological situation at Beberg using the finite element code NAMMU and compare the results with those from HYDRASTAR reported in SR 97. NAMMU was used in the large scale regional hydrogeological modelling at Beberg. The hypothetical repository layout at Beberg is based on geological data from the Finnsjoen site. Four model variants were created in this study. Two variants were compared with the deterministic freshwater case in the HYDRASTAR modelling. The other two variants were created to study the effect of a regionally distributed permeability anisotropy and variable density groundwater on the groundwater flow pattern. These processes are not considered in HYDRASTAR. The NAMMU results, including the pathline patterns, agree with those from the HYDRASTAR modelling. The effect of anisotropy and saline groundwater is found significant for the pathlines. The difference in canister flux between the NAMMU and the HYDRASTAR models is small, while the difference in travel time is more significant. The discrepancies between the results from the NAMMU and the HYDRASTAR simulations can be ascribed to the different numerical discretisation, i.e. different representation of the permeability, and the different pathline algorithms used in the two models

  8. Experimental investigations of strong interaction in the non-perturbative QCD region

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Samuel, S.

    1993-09-01

    A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for π - + p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p → φφ(ΛΣ) (OZI allowed), and bar pp → φφ → φφπ 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c π - p → φφn or φK + K - n data a further critical test of the so far unsuccessfully challenged hypothesis that our g T (2010), g T '(2300) and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1-3 2 ++ glueballs will be made. In the QGP search with a large-solid-angle TPC a good Ξ signal was observed. The ratio of Ξ to single strange quark particles such as λ is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor ∼ 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double λ topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C 60 and neutrino oscillations in a dense neutrino gas

  9. Essential application of depositional analysis and interpretation in hydrogeologic assessments of contaminated sites

    International Nuclear Information System (INIS)

    Sciacca, J.

    1991-01-01

    In most hydrogeologic studies of contaminated sites, little attention is given to analysis of depositional environments and associated depositional patterns. This analysis is essential for sedimentary deposits present at a majority of these sites. The depositional processes associated with alluvial, fluvial and deltaic environments yield heterogeneity ranging from large to small scale. These processes also yield preferential grain orientations in coarse grained units which result in preferential directions of increased permeability. Studies conducted in fluvial and deltaic petroleum reservoirs have shown varying permeabilities resulting from deposition that strongly control the flow of fluids. The marked heterogeneity evident in the sandy portion of a single 3 to 30-foot thick fluvial point bar deposit can exert significant differences in porous flow. Preferential permeability has been shown parallel to the long axis of fluvial channel sand units while barrier beach sands exhibit preferential permeability perpendicular to the long axis of the sand body. Such controls influence natural flow and transport of contaminants in groundwater. Hydrogeologic studies should: determine the depositional environment and facies present at the site; determine the propensity for heterogeneity within the entire vertical sequence investigated and within the different facies present; assess the potential for preferential permeability within sand bodies; and provide a predictive depositional model to assess potential connections between major high permeability units. Sand unit connections are commonly forced during cross section generation and subsequent aquifer analysis. Failure to incorporate the above objectives in hydrogeologic investigations ignores the basic precept that process controls the distribution of permeability and will result in poor prediction of natural and remedial transport of contaminants in groundwater

  10. Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada

    Science.gov (United States)

    Nastev, M.; Savard, M. M.; Lapcevic, P.; Lefebvre, R.; Martel, R.

    This paper reports on the characterization of hydraulic properties of regional rock aquifers carried out within a groundwater resources assessment project in the St. Lawrence Lowlands of south-western Quebec. To understand the aquifer behavior at both the fracture level and at field scale, hydraulic investigations were carried out using various aquifer tests. The groundwater flow at the local scale is controlled mostly by the fracture system. Results of the constant-head injection tests show a weak decreasing trend of hydraulic conductivity with depth indicating that a major part of the groundwater flow occurs in the first meters of the rock sequence. At the regional scale, the equivalent porous media approach is applicable. The hydraulic conductivity measurements were correlated to the scale of the aquifer tests expressed with the investigated aquifer volume. A simple interpolation procedure for the hydraulic conductivity field was developed based on the distance between field measurements and the tested aquifer volumes. The regional distribution of the hydraulic conductivity for the major fractured aquifer units indicates that dolostone is the most permeable whereas sandstone and crystalline rocks are the least permeable units. Este artículo trata de la caracterización de las propiedades hidráulicas en acuíferos regionales rocosos, la cual se llevó a cabo dentro del proyecto de evaluación de los recursos de agua subterránea en St. Lawrence Lowlands al suroeste de Quebec. Para entender el comportamiento del acuífero tanto a nivel de fractura como a escala del campo, se ejecutaron investigaciones hidráulicas usando varias pruebas de acuífero. El flujo del agua subterránea a escala local está controlado principalmente por el sistema de fracturas. Los resultados de las pruebas de inyección con cabeza constante muestran una tendencia decreciente débil de la conductividad hidráulica con la profundidad, indicando que la mayor parte del flujo de agua

  11. Environmental isotope investigation of groundwaters in the region of Taiyuan, Shanxi Province of China

    International Nuclear Information System (INIS)

    Wei Keqin; Lin Ruifen; Wang Zhixiang

    1988-01-01

    A comprehensive environmental isotope investigation of several complex groundwater systems and the mixing of groundwater with surface water in the region of Taiyuan, Shanxi Province of China, is presented. Environmental isotopes, including stable isotopes, tritium and uranium series in water and its activity ratio 234 U/ 238 U are applied to divide karstic groundwaters into separate Xishan and Dongshan systems. The Xishan karstic water system shows a great scattering of isotope data. This results from the mixing of karstic groundwater and surface water from the Fenhe River. The Dongshan system is homogeneous and karstic water is tritium free and its age should be more than 50-100 a. The increase in uranium activity ratio, which is correlated with the length of the flow paths, shows the run-off direction of the Dongshan karstic water system towards the major natural outlet, the Lancun Spring. The altitudes of recharge of Xishan and Dongshan karstic waters are evaluated as 1400 m and 1300 m, respectively. The ages of fissure groundwaters in metamorphic rocks are determined in terms of their tritium content. Some practical considerations upon groundwater management are also drawn from isotope results. (author). 9 refs, 10 figs, 9 tabs

  12. Nudging and predictability in regional climate modelling: investigation in a nested quasi-geostrophic model

    Science.gov (United States)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2010-05-01

    In this work, we consider the effect of indiscriminate and spectral nudging on the large and small scales of an idealized model simulation. The model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by the « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. The effect of large-scale nudging is studied by using the "perfect model" approach. Two sets of experiments are performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic Limited Area Model (LAM) where the size of the LAM domain comes into play in addition to the first set of simulations. The study shows that the indiscriminate nudging time that minimizes the error at both the large and small scales is reached for a nudging time close to the predictability time, for spectral nudging, the optimum nudging time should tend to zero since the best large scale dynamics is supposed to be given by the driving large-scale fields are generally given at much lower frequency than the model time step(e,g, 6-hourly analysis) with a basic interpolation between the fields, the optimum nudging time differs from zero, however remaining smaller than the predictability time.

  13. Investigation of rare earth natural radionuclide in Gannan region, Jiangxi province

    International Nuclear Information System (INIS)

    Liu Huiping; Zhong Minglong; Hu Yongmei

    2014-01-01

    In order to identify the types, level and migration law of natural radionuclide in ionic rare earth during its development and utilization process, the natural radionuclide in raw ore, waste residues and wastewater of south ionic rare of Gannan region, Jiangxi province were investigated. The results showed that: the natural radionuclide in rare earth raw ore in An'yuan and Longnan is with high content, in which the specific activities of natural U, 226 Ra and 232 Th are 3.69 × l0 4 , 8.33 × l0 3 and 3,40 × l0 3 Bq/ kg respectively; And the specific activities of the acid-soluble slag are 2.58 × l0 4 , 2.81 × l0 4 and 2.75 × l0 4 Bq/kg respectively; The radioactive level of natural U and 232 Th in some rare earth tailings, and the specific activity of natural U in the neutralizing slag of some individual enterprises is higher than national standards' exemption level (1000 Bq/kg). Also, the total content of Th and U in the efflux wastewater of some rare earth enterprises efflux wastewater are higher than the national emission standards limit (0.1 mg/L). (authors)

  14. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.

    Science.gov (United States)

    Lim, Joongbin; Lee, Kyoo-Seock

    2017-03-01

    Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.

  15. Investigation and analysis of hazardous waste in the Three Gorges Area of Chongqing region

    Institute of Scientific and Technical Information of China (English)

    LIU Li; LIU Xi-rong; WANG Li-ao; ZHOU Zai-jiang

    2004-01-01

    This article describes the investigation of hazardous waste (HW) in the Three Gorges Area of Chongqing region, which indicates that by May 2002, the dumped HW therein amounted to 14 600 t and was mainly distributed in five districts and counties with 11 000 t in Fuling, 1 650 t in Fengdu, 950 t in Wanzhou; 630 t in Wushan and 430 t in Yunyang. The total amount was composed of 9 670 t chromic residue, 2 310 t waste oil and residue, 410 t waste (false) fertilizer, 28 t waste chemical medicine, 26 t waste materials and 2 200 t other things including acid residue, waste asbestos, fluorine silicate,pigment, additive, waste acid, alkali, nitric acid, vitriol, lead mud, storage battery, calcium carbide, potassium cyanide, polluted soil, discard dynamite, waste packing barrel of cyanides, etc. In all of the HW, 578 t can be treated by chemical neutralization and stabilization technology such as redox, chemical precipitation, acid and alkali neutralization, etc., and the rest is temporarily untreatble and should be removed and piled at a temporary storage site above the 177 m water level of the dam with an aim to be transported to a future disposal site for innocuous treatment.

  16. Qualitative investigation of the reasons behind opposition to water fluoridation in regional NSW, Australia

    Directory of Open Access Journals (Sweden)

    Matthew C Knox

    2017-02-01

    Full Text Available Objectives: To investigate reasons behind strong opposition to water fluoridation in regional New South Wales, Australia, and to make recommendations to improve community engagement. Importance: Few studies have used qualitative methodologies to understand the reasons for strong antifluoridation views. An understanding of these reasons could be useful when designing public campaigns to combat the strong antifluoridation message. Methods: The qualitative study used semistructured interviewing and thematic analysis. Ten participants were recruited using purposive and snowball sampling methods until data saturation was reached. Thematic analysis and graphical representation of themes assisted in analysing the data for logical connections and relationships. Results: Six dominant themes and numerous subthemes were identified. Five of the major themes were reasons for opposition: scepticism, health effects, ethics, environmental impacts and economics. Each of these was inextricably linked to a sixth major theme: alternatives to fluoridation. Conclusions: All participants had strongly held antifluoridation views, and provided a unique insight into their perceptions and reasons for opposing water fluoridation. Concerns about ‘fraudulent research’ and the influence of industry on government bodies were novel themes. The concerns raised could be used to inform future population health campaigns, research, public education and resource-allocation decisions. Open community consultation may be able to address the issues raised in a nonjudgemental and collaborative manner.

  17. The investigation of strangeness photoproduction in the threshold region at ELPH-Tohoku

    Energy Technology Data Exchange (ETDEWEB)

    Kaneta, M., E-mail: kaneta@lambda.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Beckford, B. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Bydžovský, P. [Nuclear Institute, 25068 Řež (Czech Republic); Fujibayashi, T.; Fujii, T.; Fujii, Y.; Futatsukawa, K.; Gogami, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Han, Y.C. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Hashimoto, O. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Hirose, K. [Research Center of Electron Photon Science, Tohoku University, Sendai 982-0826 (Japan); Hosomi, K.; Honda, R.; Iguchi, A. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Ishikawa, T. [Research Center of Electron Photon Science, Tohoku University, Sendai 982-0826 (Japan); Kanda, H.; Kaneko, Y.; Kasai, Y.; Kawasaki, T.; Kimura, C. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); and others

    2013-09-20

    The strangeness photoproduction processes near the threshold have been intensively studied by measuring K{sup +} in reactions such as γ+p→K{sup +}+Λ(Σ{sup 0}). There has been no reliable data on the neutron and as a consequence theoretical investigation suffered seriously from the lack of the data. We have an effort to measure the γ+d→K{sup 0}(Λ)+X reaction in the π{sup +}π{sup −} (pπ{sup −}) decay channel of K{sub S}{sup 0} (Λ) using a liquid D{sub 2} target and internally-tagged photon beams (E{sub γ}=0.80–1.08 GeV) at Research Center for Electron Photon Science (ELPH), Tohoku University. We have renewed the spectrometer (NKS2) and took data with a liquid D{sub 2} target in 2005–2007. More recently, we took data in 2010 after a detector upgrade in the vertex region to substantially increase the acceptance. The results of Λ single measurements on a deuterium target were obtained for differential cross-section as a function of momentum, as a function of angle, and integrated cross-section as a function of beam energy. The results are compared with recent theoretical studies: Isobar models (Kaon-MAID and Saclay-Lyon A) and a Regge-plus-Resonance model.

  18. The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands

    Science.gov (United States)

    Ayenew, Tenalem

    2008-05-01

    Occurrence of fluoride (F) in groundwater has drawn worldwide attention, since it has considerable impact on human health. In Ethiopia high concentrations of F in groundwaters used for community water supply have resulted in extensive dental and skeletal fluorosis. As a part of a broader study, the distribution of F in groundwater has been investigated, and compared with bedrock geology and pertinent hydrochemical variables. The result indicates extreme spatial variations. High F concentration is often associated with active and sub-active regional thermal fields and acidic volcanics within high temperature rift floor. Variations in F can also be related to changes in calcium concentration resulting from dissolution of calcium minerals and mixing with waters of different chemical composition originated from variable hydrogeological environment across the rift valley. The concentration of F dramatically declines from the rift towards the highlands with the exception of scattered points associated with thermal springs confined in local volcanic centers. There are also interactions of F-rich alkaline lakes and the surrounding groundwater. Meteoric waters recharging volcanic aquifers become enriched with respect to F along the groundwater flow path from highland recharge areas to rift discharge areas. Locally wells drilled along large rift faults acting as conduits of fresh highland waters show relatively lower F. These areas are likely to be possible sources of better quality waters within the rift. The result of this study has important implications on site selection for water well drilling.

  19. Characterizing aquifer hydrogeology and anthropogenic chemical influences on groundwater near the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Fromm, J.M.

    1995-01-01

    A conceptual model of the Eastern Snake River Plain aquifer in the vicinity of monitoring well USGS-44, downgradient of the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL), was developed by synthesis and comparison of previous work (40 years) and new investigations into local natural hydrogeological conditions and anthropogenic influences. Quantitative tests of the model, and other recommendations are suggested. The ICPP recovered fissionable uranium from spent nuclear fuel rods and disposed of waste fluids by release to the regional aquifer and lithosphere. Environmental impacts were assessed by a monitoring well network. The conceptual model identifies multiple, highly variable, interacting, and transient components, including INEL facilities multiple operations and liquid waste handling, systems; the anisotropic, in homogeneous aquifer; the network of monitoring and production wells, and the intermittent flow of the Big Lost River. Pre anthropogenic natural conditions and early records of anthropogenic activities were sparsely or unreliably documented making reconstruction of natural conditions or early hydrologic impacts impossible or very broad characterizations

  20. The mechanisms of regional branching: An investigation of the emerging fuel cell industry

    DEFF Research Database (Denmark)

    Tanner, Anne Nygaard

    The growth of evolutionary thinking in economic geography has brought about the proposition that new industries are place dependent and tend to develop in regions where the pre-existing industry is technologically related to the knowledge base of the new industry, a phenomena that is termed...... ?regional branching?. What is still lacking, however, is a more thorough understanding of the mechanisms through which regional branching operates: firm diversification, spinoffs, labor mobility, and social networking. This paper analyzes which mechanisms dominate the current regional branching process...... such as universities and network organizations play a role in the creation of new knowledge-intensive industrial paths in regions....

  1. Hydrogeologic Characterization of the U-3bl Collapse Zone

    International Nuclear Information System (INIS)

    NSTec Geotechnical Services

    2006-01-01

    The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing. Borehole U-3bl-D2 is a 45-degree-angle hole drilled from the edge of the crater under the waste cell to intercept the U-3bl collapse zone, the disturbed alluvium between the crater (surface collapse sink) and the nuclear test cavity. A casing-advance system with an air percussion hammer was used to drill the borehole, and air was used as the drilling fluid. Properties of the U-3bl crater collapse zone were determined from cores collected within the interval, 42.1 to 96.6 meters (138 to 317 feet) below the ground surface. Selected core samples were analyzed for particle density, particle size, bulk density, water retention, hydraulic conductivity, water content, water potential, chloride, carbonate, stable isotopes, and tritium. Physical and hydraulic properties were typical of alluvial valley sediments at the NTS. No visual evidence of preferential pathways for water transport was observed in the core samples. Soil parameters showed no trends with depth. Volumetric water content values ranged from 0.08 to 0.20 cubic meters per cubic meter, and tended to increase with depth. Water-retention relations were typical for soils of similar texture. Water potentials ranged from -1.9 MegaPascals at a depth of 42

  2. Expert panel on hydrogeology; report to AECL Research (1992)

    International Nuclear Information System (INIS)

    Domenico, P.A.; Grisak, G.E.; Schwartz, F.W.

    1995-02-01

    In 1992 AECL Research convened a panel of external hydrogeological experts consisting of P.A. Domenico, G.E. Grisak, and F.W. Schwartz, to review AECL's proposed approach to siting a geological repository in the rocks of the Canadian Shield for the safe disposal of Canada's nuclear fuel wastes. In particular the panel was asked to provide its opinion on 1) the soundness of the technical approach developed to characterize the groundwater flow systems for the purpose of selecting a location for a disposal vault, 2) the validity and effectiveness of the geological case study used to demonstrate the performance assessment methodology based on the hydrogeological conditions observed at the Whiteshell Research Area, and 3) the adequacy of the hydrogeological information that AECL proposes to use in its Environmental Impact Statement (EIS) of the disposal concept. This report presents the findings, conclusions and recommendations of the hydrogeology review panel. The report was submitted to AECL Research in 1992 December. (author). 24 refs., 2 tabs., 4 figs

  3. hydrogeological caracterization and modeling of the aquifer of oued ...

    African Journals Online (AJOL)

    K. Baba-Hamed

    1 janv. 2018 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. HYDROGEOLOGICAL CARACTERIZATION AND MODELING OF THE AQUIFER.

  4. International excursion hydrogeology, Slovakia, [September 8 - 15, 1996

    NARCIS (Netherlands)

    Dijksma, R.

    1996-01-01

    This is a report of the hydrogeological excursion to Slovakia, held in the period from September 8 up to September 15, 1996. This report is a compilation of the work of the participating students, parts of the excursion guide and also information, provided by the Slovak excursion guides.

  5. Uruguay Hydrogeological map scale 1/1.000.000

    International Nuclear Information System (INIS)

    Heinzen, W.; Carrion, R.; Massa, E.; Pena, S.; Stapff, M.

    2003-06-01

    Between the main items the Uruguayan Hydrogeological map show us: aquifers productivity, geographical references, well information, depth, level, caudal, dry waste, from Hydrologic unit cuaternario differenced, Villa Soriano, Chuy, Raigon, Salto, Cretacico Superior, Tacuarembo, Las Arenas, Del Terciario, Cretacico Superior, Tres Islas, Cerrezuelo, Arapey, Neoproterozoico, Paleoproterozoico. It shows a brief map about Guarani Aquifer

  6. Evaluation of Van Lake (Turkey) about radiological and hydrogeological risk

    International Nuclear Information System (INIS)

    Akyil, S.; Aytas, S.; Yusan, S.; Aslani, M. A. A.; Aycan, H. A.; Eral, M.; Tuerkoezue, D. A.; Isik, M. A.; Oelgen, M. K.

    2009-01-01

    Basins which are grow in the continent and not discharge to open sea are named as a close basin. Lead, uranium and thorium are high levels in respect to open basins. Lake of Van is a close basin. In the lake basins, rivers which are discharge basin are the most important source of the heavy metal concentration. In this study, surface water, coast and deep sediments of Van Lake and Inci Kefal (fish) were analyzed as a radiological and evaluated in terms of hydrogeological. Data was obtained for natural radioactivity concentration of this lake and evaluated using geostatistical methods in a geographical information system environment and fitted for isoradioactivity contour maps. The concentration and distribution of natural radionuclides in Van Lake were investigated with the aim of evaluating the environmental radioactivity. Sixty three coastal and deep sediments, 228 lake surface waters and 12 fish samples were taken in Van Lake over the time period 2005-2008 and the distribution pattern of the measured radionuclides was presented. The mean concentrations of gross alpha and beta, eU, eTh and K-40 activities in sediments were 207±96, 1046±60, 207±96, 70±29 and 399±231 Bq/kg, respectively. On the other hand, water samples from Van Lake had mean concentrations of 0.74±0.46 Bq/L for gross alpha activity concentration, 0.02±0.01 Bq/L for gross beta activity concentration, 0.06±0.04 Bq/L for gross radium isotopes, respectively. The mean gross alpha and beta, eU, eTh and K-40 activities in fish samples were 47±18, 470±12, 0.57±0.22, 0.022±0.006, 319±11 Bq/kg, respectively. An average annual effective dose equivalent (mSv/y) was calculated.

  7. An integrated theoretical and practical approach for teaching hydrogeology

    Science.gov (United States)

    Bonomi, Tullia; Fumagalli, Letizia; Cavallin, Angelo

    2013-04-01

    Hydrogeology as an earth science intersects the broader disciplines of geology, engineering, and environmental studies but it does not overlap fully with any of them. It is focused on its own range of problems and over time has developed a rich variety of methods and approaches. The resolution of many hydrogeological problems requires knowledge of elements of geology, hydraulics, physics and chemistry; moreover in recent years the knowledge of modelling techniques has become a necessary ability. Successful transfer of all this knowledge to the students depends on the breadth of material taught in courses, the natural skills of the students and any practical experience the students can obtain. In the Department of Earth and Environmental Sciences of the University of Milano-Bicocca, the teaching of hydrogeology is developed in three inter-related courses: 1) general hydrogeology, 2) applied hydrogeology, 3) groundwater pollution and remediation. The sequence focuses on both groundwater flux and contaminant transport, supplemented by workshops involving case studies and computer labs, which provide the students with practical translation of the theoretical aspects of the science into the world of work. A second key aspect of the program utilizes the students' skill at learning through online approaches, and this is done through three approaches: A) by developing the courses on a University e-learning platform that allows the students to download lectures, articles, and teacher comments, and to participate in online forums; B) by carring out exercises through computer labs where the student analyze and process hydrogeological data by means of different numerical codes, that in turn enable them to manage databases and to perform aquifer test analysis, geostatistical analysis, and flux and transport modelling both in the unsaturated and saturated zone. These exercises are of course preceded by theoretical lectures on codes and software, highlighting their features and

  8. Applications of hydrogeological modelling methodology using NAMMU and CONNECTFLOW. Task 1, 2, 3 and 4

    International Nuclear Information System (INIS)

    Gylling, Bjoern; Marsic, Niko; Hartley, Lee; Holton, David

    2004-11-01

    It is planned to store spent nuclear fuel at depth in crystalline rock in Sweden. Site investigations are carried out to confirm if the suggested sites are appropriate. Modelling of groundwater flow and transport may be used to aid the site investigation and is also an important part of the safety assessment of a site. A good design of the repository will enhance the safety. To support the site investigation phase and the design of underground repositories four tasks have been performed. These tasks are all related to the CONNECTFLOW groundwater flow modelling concept. CONNECTFLOW is a suite of software that includes: the continuum porous medium (CPM) concept as implemented in NAMMU, the discrete fracture network (DFN) concept as implemented in NAPSAC, the ability to nest these two representations into a single combined model. As an integrated suite of hydrogeological modelling tools CONNECTFLOW offers several benefits: the ability to nest different scales of the model from the canister-scale to the regional scale to resolve detailed flow behaviour around the waste packages in the context of the overall hydrogeological situation at a site, nesting is flexible as embedded fine-scale CPM regions can be nested within coarser CPM models, multiple DFN regions can be nested inside CPM models, and CPM models can be nested within DFN models, nesting of regions is precise in that the system is solved in a single step with equations at the interface between nested regions that ensure both continuity of pressure and conservation of mass flux between the regions. This ensures a flux-balance between the two-scales, and hence offers greater consistency than two-step nesting or only implementing pressure continuity, the ability to upscale DFN models to obtain the equivalent CPM properties on a variety of scales ensures that the modeler can move between DFN and SC concepts easily in a self-consistent way. The aim of the current tasks is to demonstrate and test the CONNECTFLOW

  9. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    groundwater recharge to, or discharge from, the bedrock (the model includes the bedrock to a depth of 150 m, based on the Forsmark 1.1 description of the hydraulic properties of the rock). Also the results from the particle tracking simulations show that the groundwater flow is dominated by its vertical component. The dominant transport of particles in the rock occurs in the fracture zones. A relatively large amount of new data has been available for the Forsmark version 1.2 modelling of surface hydrology and near-surface hydrogeology. The available local meteorological time series are very short and longer time series are needed to get reliable correlations to nearby regional SMHI-stations. Local continuous discharge measurements were not available for the Forsmark 1.2 modelling. Future time series from such measurements will be most valuable for the derivation of a more accurate total water balance. The groundwater levels in the area are very shallow. However, there is a bias towards local topographical minima in the location of the monitoring wells. Some additional wells should be located to typical local topographical maxima (recharge areas). The evident difference in groundwater levels between the Quaternary deposits and the upper bedrock observed at some of the core-drill sites should be further investigated for a better understanding of the hydraulic contact between the Quaternary deposits and the rock. The locations of recharge and discharge areas at different scales are crucial for the understanding of the groundwater flow system. A combination of complementary field investigations, including hydrogeological and hydrogeochemical methods, and modelling exercises using models based on morphological parameters as well as hydrogeological modelling is recommended. The model results should be compared with, e.g. the vegetation map, the soil type map and the Quaternary deposits map

  10. The altarpieces of Della Robbia atelier in Marche region: investigations on technology and provenance

    Science.gov (United States)

    Amadori, M. L.; Barcelli, S.; Barcaioni, S.; Bouquillon, A.; Padeletti, G.; Pallante, P.

    2013-12-01

    Dissemination of Della Robbia glazed terracotta in the Marche (Italy) region started from the third decade of the 16th century. Numerous altarpieces, some of which no longer exist, document this artistic production. The protagonists of this diffusion phase were two of Andrea Della Robbia's sons, Marco (Fra Mattia) and Francesco (Fra Ambrogio). This paper shows the results of the scientific investigations carried out on constitutive materials of different altarpieces located in South Marche belonging to the Fra Mattia's production: the Coronation of Virgin between Saints Rocco, Sebastian, Peter martyr and Antonio abbot, dated back to 1527-1530, located in the collegiate church of S. Maria Assunta in Montecassiano; the Annunciation, dated back to 1520, placed in the church of S. Maria del Soccorso in Arcevia; the fragmentary Crowned Madonna and saints altarpiece, probably realized after 1531, today preserved in Civic Museum of Ripatransone. The first altarpiece was made in Montecassiano using two different assembling or production techniques: the external part of the lunette and the pillar strips are made of glazed polychrome terracotta, while the altar step and the internal part are an interesting and uncommon example of polychrome painted terracotta. The provenance of the glazed Arcevia altarpiece is not clear yet: some historians hypothesize a local manufacture of Fra Mattia and some others a Roman or Florentine production. The remaining parts of Ripatransone altarpiece are partially glazed and partially not coated perhaps because they were unfinished and not yet painted. Clay body samples collected from the above mentioned altarpieces were investigated using different analytical techniques (OM, XRD, XRF, PIXE) to point out differences in chemical and mineralogical composition and to determine if the altarpieces were made by using local raw clay materials or other clays from Tuscany or Campania as in the Della Robbia previous production. A comparison has also been

  11. Regional differences in plant levels and investigations on the phytotoxicity of lithium.

    Science.gov (United States)

    Franzaring, Jürgen; Schlosser, Sonja; Damsohn, Walter; Fangmeier, Andreas

    2016-09-01

    The growing use of lithium (Li) in industrial and energetic applications and the inability to completely recycle the alkali metal will most likely increase anthropogenic emissions and environmental concentrations in the future. Although non-essential to plants, Li(+) is an important ultra-trace element in the animal and human diet and is also used in the treatment of e.g. mental disorders. Most of the lithium is consumed with the drinking water and vegetables, but concentrations in foodstuffs vary with the geochemistry of the element. In order to identify potential risks and to avoid an overmedication due to consumption of Li rich or Li contaminated foods it is advisable to identify background levels and to derive recommended Daily Allowances (RDAs) for the element. Although Germany does not possess large amounts of primary or secondary resources of lithium, geochemical investigations (mineral and ground waters and soils) in this country confirm a wide variation of environmental concentrations with generally higher levels in the southwest. Despite the large number of soil and water data, only very few data exist on lithium concentrations in plants and its phytotoxicity. Within the scope of present study common grassland plant species were sampled in regions of SW-Germany with reportedly high geogenic levels of Li. The data are discussed with regard to literature surveys and existing reference values. Since lithium has phytotoxic effects a greenhouse experiment was performed with different Li salts (LiCl and Li2CO3) and plant species (maize, bean and buckwheat) to derive dose-response relationships for the endpoint shoot growth. While corn growth was not reduced significantly by soil concentrations of 118 ppm, EC50 values in buckwheat were 47 and 16 ppm for lithium derived from LiCl and Li2CO3, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigation of variations and trends in solar radiation in Klang Valley Region, Malaysia

    International Nuclear Information System (INIS)

    Mohamed Elnour Yassen, Jamaluddin Mohd Jahi

    2006-01-01

    The objective of this study is to investigate variations and trends in the global solar radiation in Klang Valley region. The least square method was used for the trend analysis. Since the available time series covers 27 years, linear regression was preferred for the trend analysis. The linear trend is used mainly to test the change in solar radiation and to set limits on the rate of change. Trend line and values and significance levels of the slopes have been found. The seasonal and the annual average values were computed from the monthly average radiation data. The seasonal and annual average solar radiation values were designated as dependent variables, and thus, were fitted linearly for season and annual means for each station. The results showed that the mean of maximum incoming global radiation in Sepember with a value of 21.1 MJ m-2 at Petaling Jaya, while the mean minimum in November and December with values of 10.7 and 10.9 MJ m-2 at Petaling Jaya. The low amounts of solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation is received. The distribution of the seasonal mean values of solar radiation exhibits a high symmetry. Inter-monsoon seasons (April-May) and (October-November) show a similar behavior, just like the northeast monsoon season. The overall average rate of change in global solar radiation during 1975-2002 and 1977-2000 is represented by the slope of the linear regression was small (-0.126 and -0.314 MJ m-2 per year for Subang Airport and Petaling Jaya respectively)

  13. Geophysical Characterization of Serpentinite Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite

    Science.gov (United States)

    Ortiz, Estefania; Tominaga, Masako; Cardace, Dawn; Schrenk, Matthew O.; Hoehler, Tori M.; Kubo, Michael D.; Rucker, Dale F.

    2018-01-01

    Geophysical remote sensing both on land and at sea has emerged as a powerful approach to characterize in situ water-rock interaction processes in time and space. We conducted 2-D Electrical Resistivity Tomography (ERT) surveys to investigate in situ hydrogeological architecture within the Jurassic age tectonic mélange portion of the Coast Range Ophiolite Microbial Observatory (CROMO) during wet and dry seasons, where water-rock interactive processes are thought to facilitate a subsurface biosphere. Integrating survey tracks traversing two previously drilled wells, QV1,1 and CSW1,1 at the CROMO site with wireline and core data, and the Serpentine Valley site, we successfully documented changes in hydrogeologic properties in the CROMO formation, i.e., lateral and vertical distribution of conductive zones and their temporal behavior that are dependent upon seasonal hydrology. Based on the core-log-ERT integration, we propose a hydrogeological architectural model, in which the formation is composed of three distinct aquifer systems: perched serpentinite aquifer without seasonal dependency (shallow system), well-cemented serpentine confining beds with seasonal dependency (intermediate system), serpentinite aquifer (deep system), and the ultramafic basement that acts as a quasi-aquiclude (below the deep system). The stunning contrast between the seasonality in the surface water availability and groundwater storativity in the formation allowed us to locate zones where serpentinite weathering and possibly deeper serpentinization processes might have taken place. We based our findings primarily on lithological composition and the distribution of the conductive formation, our work highlights the link between serpentinite weathering processes and possible sources of water in time and space.

  14. Hydrogeologic modelling in support of a proposed Deep Geologic Repository in Canada for low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, J.F.; Normani, S.D.; Yin, Y. [Waterloo Univ., ON (Canada). Dept. of Civil and Environmental Engineering; Sykes, E.A.; Jensen, M.R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has proposed the construction of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste at the Bruce site on the shore of Lake Huron near Tiverton, Ontario. The DGR is to be excavated at a depth of about 680 m within argillaceous limestones of Ordovician age. A saturated regional-scale and site-scale numerical modelling study has been completed in order to evaluate the safety of storing radioactive waste at the site and to better understand the geochemistry and hydrogeology of the formations surrounding the proposed DGR. This paper reported on the regional-scale base-case modelling and analysis of the measured pressure profile in deep boreholes at the DGR site. The numerical modelling study provided a framework to investigate the groundwater flow system as it relates to, and potentially affects, the safety and long-term performance of the DGR. A saturated groundwater flow model was also developed using FRAC3DVS-OPG. The objective of regional-scale groundwater modelling of the Paleozoic sedimentary sequence underlying southwestern Ontario was to provide a basis for the assembly and integration of site-specific geoscientific data and to explain the influence of parameter and scenario uncertainty on predicted long-term geosphere barrier performance. The base-case analysis showed that solute transport in the Ordovician and lower Silurian is diffusion dominant. For the base-case parameters, the estimated mean life expectancy for the proposed DGR is more than 8 million years. The possible presence of a gas phase in the rock between the Cambrian and the Niagaran was not considered in the analyses of this paper. 9 refs., 2 tabs., 10 figs.

  15. Evaluate the accuracy of the numerical solution of hydrogeological problems of mass transfer

    Directory of Open Access Journals (Sweden)

    Yevhrashkina G.P.

    2014-12-01

    Full Text Available In the hydrogeological task on quantifying pollution of aquifers the error are starting add up with moment organization of regime observation network as a source of information on the pollution of groundwater in order to evaluate migration options for future prognosis calculations. Optimum element regime observation network should consist of three drill holes on the groundwater flow at equal distances from one another and transversely to the flow of the three drill holes, and at equal distances. If the target of observation drill holes coincides with the stream line on which will then be decided by direct migration task, the error will be minimal. The theoretical basis and results of numerical experiments to assess the accuracy of direct predictive tasks planned migration of groundwater in the area of full water saturation. For the vadose zone, we consider problems of vertical salt transport moisture. All studies were performed by comparing the results of fundamental and approximate solutions in a wide range of characteristics of the processes, which are discussed in relation to ecological and hydrogeological conditions of mining regions on the example of the Western Donbass.

  16. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  17. Hydrophysical logging: A new wellbore technology for hydrogeologic and contaminant characterization of aquifers

    International Nuclear Information System (INIS)

    Pedler, W.H.; Williams, L.L.; Head, C.L.

    1992-01-01

    In the continuing search for improved groundwater characterization technologies, a new wellbore fluid logging method has recently been developed to provide accurate and cost effective hydrogeologic and contaminant characterization of bedrock aquifers. This new technique, termed hydrophysical logging, provides critical information for contaminated site characterization and water supply studies and, in addition, offers advantages compared to existing industry standards for aquifer characterization. Hydrophysical logging is based on measuring induced electrical conductivity changes in the fluid column of a wellbore by employing advanced downhole water quality instrumentation specifically developed for the dynamic borehole environment. Hydrophysical logging contemporaneously identifies the locations of water bearing intervals, the interval-specific inflow rate during pumping, and in-situ hydrochemistry of the formation waters associated with each producing interval. In addition, by employing a discrete point downhole fluid sampler during hydrophysical logging, this technique provides evaluation of contaminant concentrations and migration of contaminants vertically within the borehole. Recently, hydrophysical logging was applied in a deep bedrock wellbore at an industrial site in New Hampshire contaminated with dense nonaqueous phase liquids (DNAPLs). The results of the hydrophysical logging, conducted as part of a hydrogeologic site investigation and feasibility study, facilitated investigation of the site by providing information which indicated that the contamination had not penetrated into deeper bedrock fractures at concentrations of concern. This information was used to focus the pending Remedial Action Plan and to provide a more cost-effective remedial design

  18. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    Science.gov (United States)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion

  19. Large scale hydrogeological modelling of a low-lying complex coastal aquifer system

    DEFF Research Database (Denmark)

    Meyer, Rena

    2018-01-01

    intrusion. In this thesis a new methodological approach was developed to combine 3D numerical groundwater modelling with a detailed geological description and hydrological, geochemical and geophysical data. It was applied to a regional scale saltwater intrusion in order to analyse and quantify...... the groundwater flow dynamics, identify the driving mechanisms that formed the saltwater intrusion to its present extent and to predict its progression in the future. The study area is located in the transboundary region between Southern Denmark and Northern Germany, adjacent to the Wadden Sea. Here, a large-scale...... parametrization schemes that accommodate hydrogeological heterogeneities. Subsequently, density-dependent flow and transport modelling of multiple salt sources was successfully applied to simulate the formation of the saltwater intrusion during the last 4200 years, accounting for historic changes in the hydraulic...

  20. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Pentti, E. [Poeyry Finland Oy, Vantaa (Finland)

    2013-11-15

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  1. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    International Nuclear Information System (INIS)

    Vaittinen, T.; Pentti, E.

    2013-11-01

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  2. Investigation of the dispersion of airborne pollutants in the Upper Rhine and Lake Constance region

    International Nuclear Information System (INIS)

    Fiedler, F.; Adrian, G.; Kohler, M.

    1991-01-01

    The aim of the project is to calculate the regional flow and propagation conditions using the expensive three-dimensional meteorological model, the ''Karlsruher Atmosphaerisches Mesoskaliges Modell'' (KAMM) in order to derive the immission and the deposition of the conducting substance of pollutant matter, i.e., sulphur dioxide. In this report, calculations of the flowing field are described for the region Upper Rhine - Lake of Constance''. In the last part, the concentration fields for SO 2 are calculated for the region for typical large-area atmospheric conditions with disclosure of sources. An appraising discussion of the results concludes this work. (orig.) [de

  3. Hydrogeologic subdivision of the Wolfcamp series and Pennsylvanian system of the Swisher Study Area, Texas: Revision 1: Topical report

    International Nuclear Information System (INIS)

    Siminitz, P.C.; Warman, E.A.

    1987-08-01

    The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground- water flow paths in the deep-basin system. This report provides summary documentation of studies that subdivide the section into hydrogeologic units based on their judged relative capacities for transmitting water. This particular study area comprises eight counties in Texas, including Swisher County. Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. Hydrogeologic units are defined and characterized so that appropriate porosity and permeability values can be assigned to each during construction of the numerical models and so that modelers can combine units where necessary. Hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). 15 refs., 52 figs., 1 tab

  4. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    The spatial variability of layer-scale hydrogeologic properties of the unsaturated zone (UZ) at Yucca Mountain, Nevada, is investigated using inverse modeling. The thick UZ is grouped into five hydrostratigraphic units and further into 35 hydrogeologic layers. For each layer, lateral variability is represented by the variations in calibrated values of layer-scale properties at different individual deep boreholes. In the calibration model, matrix and fracture properties are calibrated for the one-dimensional vertical column at each individual borehole using the ITOUGH2 code. The objective function is the summation of the weighted misfits between the ambient unsaturated flow (represented by measured state variables: water saturation, water potential, and pneumatic pressure) and the simulated one in the one-dimensional flow system. The objective function also includes the weighted misfits between the calibrated properties and their prior information. Layer-scale state variables and prior rock properties are obtained from their core-scale measurements. Because of limited data, the lateral variability of three most sensitive properties (matrix permeability, matrix of the van Genuchten characterization, and fracture permeability) is calibrated, while all other properties are fixed at their calibrated layer-averaged values. Considerable lateral variability of hydrogeologic properties is obtained. For example, the lateral variability of is two to three orders of magnitude and that of and is one order of magnitude. The effect of lateral variability on site-scale flow and transport will be investigated in a future study

  5. Geologic framework and hydrogeologic characteristics of the Glen Rose limestone, Camp Stanley Storage Activity, Bexar County, Texas

    Science.gov (United States)

    Clark, Allan K.

    2004-01-01

    The Trinity aquifer is a regional water source in the Hill Country of south-central Texas that supplies water for agriculture, commercial, domestic, and stock purposes. Rocks of the Glen Rose Limestone, which compose the upper zone and upper part of the middle zone of the Trinity aquifer, crop out at the Camp Stanley Storage Activity (CSSA), a U.S. Army weapons and munitions supply, maintenance, and storage facility in northern Bexar County (San Antonio area) (fig. 1). On its northeastern, eastern, and southern boundaries, the CSSA abuts the Camp Bullis Training Site, a U.S. Army field training site for military and Federal government agencies. During 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, studied the outcropping Glen Rose Limestone at the CSSA and immediately adjacent area (Camp Stanley study area, fig. 1) to identify and map the hydrogeologic subdivisions and faults of the Glen Rose Limestone at the facility. The results of the study are intended to help resource managers improve their understanding of the distribution of porosity and permeability of the outcropping rocks, and thus the conditions for recharge and the potential for contaminants to enter the Glen Rose Limestone. This study followed a similar study done by the USGS at Camp Bullis (Clark, 2003). The purpose of this report is to present the geologic framework and hydrogeologic characteristics of the Glen Rose Limestone in the study area. The hydrogeologic nomenclature follows that introduced by Clark (2003) for the outcropping Glen Rose Limestone at Camp Bullis in which the upper member of the Glen Rose Limestone (hereinafter, upper Glen Rose Limestone), which is coincident with the upper zone of the Trinity aquifer, is divided into five intervals on the basis of observed lithologic and hydrogeologic properties. An outcrop map, two generalized sections, related illustrations, and a table summarize the description of the framework and distribution of characteristics.

  6. The Role of Culture in Entrepreneurial Ecosystems: An Investigation for European Regions

    OpenAIRE

    Bosma, N.S.; Holvoet, Tine

    2015-01-01

    Promotion of new entrepreneurial activity has been increasingly visible in many economies across the globe and is currently being shaped by an emerging literature on entrepreneurial ecosystems (see e.g. Stam 2015). In this paper we argue that within the regional entrepreneurship ecosystems approaches, entrepreneurship culture should be seen as one of the essential elements: we propose that regional entrepreneurship culture represents the glue that links the elements of the entrepreneurial eco...

  7. Experimental investigation on feasibility of two-region-designed pebble-bed high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yang Xingtuan; Hu Wenping; Jiang Shengyao

    2009-01-01

    Phenomenological experiments were performed on a 2-dimensional scaled model of the two-region designed pebble-bed high-temperature gas-cooled reactor core consisting of the distinct fuel pebble region and graphite pebble region. Issues with respect to the feasibility of the two-region design, including the establishment of the two-region arrangement, the mixing zone between the two regions, and the stagnant zone existence, were investigated. Three equilibrium conditions were proposed to evaluate the stable two-region arrangement formation. The general characteristics of the flow of the pebble bed were analyzed on basis of the observed phenomenon. It was found that a stable two-region arrangement was formed under the experimental conditions: the pebbles' motion was to some extent random but also confined by the neighbors of pebbles so that the mixing zone is constrained to a reasonable size. Guide plates utilized to improve mixing are proved to be effective without noticeable effect on the two-region arrangement features. Stagnant zones were observed under the experimental conditions and they were expected to be avoided by improving the design of the experimental setup. (author)

  8. Improving cluster-based methods for investigating potential for insect pest species establishment: region-specific risk factors

    Directory of Open Access Journals (Sweden)

    Michael J. Watts

    2011-09-01

    Full Text Available Existing cluster-based methods for investigating insect species assemblages or profiles of a region to indicate the risk of new insect pest invasion have a major limitation in that they assign the same species risk factors to each region in a cluster. Clearly regions assigned to the same cluster have different degrees of similarity with respect to their species profile or assemblage. This study addresses this concern by applying weighting factors to the cluster elements used to calculate regional risk factors, thereby producing region-specific risk factors. Using a database of the global distribution of crop insect pest species, we found that we were able to produce highly differentiated region-specific risk factors for insect pests. We did this by weighting cluster elements by their Euclidean distance from the target region. Using this approach meant that risk weightings were derived that were more realistic, as they were specific to the pest profile or species assemblage of each region. This weighting method provides an improved tool for estimating the potential invasion risk posed by exotic species given that they have an opportunity to establish in a target region.

  9. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    Science.gov (United States)

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    Audiomagnetotelluric (AMT) data along four profiles in western Snake Valley and the corresponding two-dimensional (2-D) inverse models reveal subsurface structures that may be significant to ground-water investigations in the area. The AMT method is a valuable tool for estimating the electrical resistivity of the earth over depth ranges from a few meters to less than one kilometer. The method has the potential to identify faults and stratigraphy within basins of eastern Nevada, thereby helping define the hydrogeologic framework of the region.

  10. Clinical investigation: Regional nodal failure patterns in breast cancer patients treated with mastectomy without radiotherapy

    International Nuclear Information System (INIS)

    Strom, Eric A.; Woodward, Wendy A.; Katz, Angela; Buchholz, Thomas A.; Perkins, George H.; Jhingran, Anuja; Theriault, Richard; Singletary, Eva; Sahin, Aysegul; McNeese, Marsha D.

    2005-01-01

    Purpose: The purpose of this study was to describe regional nodal failure patterns in patients who had undergone mastectomy with axillary dissection to define subgroups of patients who might benefit from supplemental regional nodal radiation to the axilla or supraclavicular fossa/axillary apex. Methods and Materials: The cohort consisted of 1031 patients treated with mastectomy (including a level I-II axillary dissection) and doxorubicin-based systemic therapy without radiation on five clinical trials at M.D. Anderson Cancer Center. Patient records, including pathology reports, were retrospectively reviewed. All regional recurrences (with or without distant metastasis) were recorded. Median follow-up was 116 months (range, 6-262 months). Results: Twenty-one patients recurred within the low-mid axilla (10-year actuarial rate 3%). Of these, 16 were isolated regional failures (no chest wall failure). The risk of failure in the low-mid axilla was not significantly higher for patients with increasing numbers of involved nodes, increasing percentage of involved nodes, larger nodal size or gross extranodal extension. Only 3 of 100 patients with 20% involved axillary nodes, and the presence of gross extranodal extension (10-year actuarial rates 15%, 14%, and 19%, respectively, p 20% involved axillary nodes, or gross extranodal extension are at increased risk of failure in the supraclavicular fossa/axillary apex and should receive radiation to undissected regions in addition to the chest wall

  11. Investigation of solar flares in X-ray and optical spectral region

    International Nuclear Information System (INIS)

    Kurt, V.; Kurochka, L.N.; Zenchenko, V.M.

    1989-01-01

    Measurements of hard X h radiation of 180 solar flares carried out on board of the space probes Venera-13,-14, were compared with measurements of optical and thermal X t radiation. Values of total energy release during a flare in these regions are calculated, and correlation analysis is carried out. The bond correlations found have shown that total energy of fast electrons, caused X h -flare in the flare pulse phase, and thermal energy at the end of a pulse phase are practically connected with each othesr functionally. Quantitative connection between a flare ball in H α -line and the most probable energy values, being in different radiation regions calculated in the scope of generally accepted models, is established. The total energy of an optical (cold) part of the flare, radiation energy in X-ray region and the energy introduced to the flare volume by energy particles are shown to be compared between each other

  12. Field Investigation and Modeling Development for Hydrological and Carbon Cycles in Southwest Karst Region of China

    Science.gov (United States)

    Hu, X. B.

    2017-12-01

    It is required to understanding water cycle and carbon cycle processes for water resource management and pollution prevention and global warming influence in southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models. Our study focus on the karst springshed in Mao village, the mechanisms coupling carbon cycle and water cycle are explored. This study provides basic theory and simulation method for water resource management and groundwater pollution prevention in China karst region.

  13. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Huaming; Zhang Bo; Li Yuan; Berner, Zsolt; Tang Xiaohui; Norra, Stefan; Stueben, Doris

    2011-01-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO 4 2- concentrations and δ 34 S values indicates that bacterial reduction of SO 4 2- occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L -1 ), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. - Research highlights: → Low As groundwaters occur in alluvial fans. → We find low As groundwaters near irrigation and drainage channels. → Both hydrogeologic conditions and biogeochemical processes control As distribution. - Both hydrogeologic conditions and biogeochemical processes control As distribution of shallow groundwaters, which results in the occurrence of low As groundwater in alluvial fans and near irrigation channels and drainage channels.

  14. Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2015-07-01

    Full Text Available Scaled-down flume tests are largely used to support investigations for the assessment of hydrogeological risk. Achieved outcomes can be integrated to numerical analyses for the study of unstable slope collapse, debris transport, and hydrological models in general. In the set-up of such simulation platforms, a relevant role has to be given to the Spatial Sensor Network (SSN which is in charge of collecting geo-referenced, quantitative information during experiments. Photogrammetry (including 3-D imaging sensors can play an important role in SSN because of its capability of collecting information covering wide surfaces without any contact. The aim of this paper is to give an overview and some examples of the potential of photogrammetry in hydrogeological simulation experiments. After a general introduction on a few preliminary issues (sensors, calibration, ground reference, usage of imaging or ranging sensors, potential applications are classified into 2-D and 3-D categories. Examples are focused on a scaled-down landslide simulation platform, which has been developed at Tongji University (Shanghai, P.R. China.

  15. Goal-oriented Site Characterization in Hydrogeological Applications: An Overview

    Science.gov (United States)

    Nowak, W.; de Barros, F.; Rubin, Y.

    2011-12-01

    In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

  16. Application of GIS in hydrogeology and engineering geology

    Directory of Open Access Journals (Sweden)

    Lucia Mihalová

    2007-06-01

    Full Text Available Hydrogeology as a specific science discipline has a multi spectral interest focused to officiating sources in drink water and utilization water and also in area aimed for pure mineral water sources. Although engineering geology works exercise with piece of knowledge, geosciences are focused to territorial planning, investment construction and protection environment. Application of GIS in appointed problems purvey possibility quality, quick and high special analysis appointed problems and take advantage all accessible quality and quantity related information of water focused to hydrogeology, as to occurrence varied basement soil, appropriate for building activity, possibly appointed for protection. Solution of this probleme is on first name terms definite interest area, as to adjudication sources focused economic significance state.

  17. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    Science.gov (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  18. Neutron-activation analysis of natural water applied to hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O [AB Atomenergi, Stockholm (Sweden); Wenner, C G [Stockholm Univ. (Sweden). Dept. of Quaternary Research

    1965-12-15

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers.

  19. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  20. Neutron-activation analysis of natural water applied to hydrogeology

    International Nuclear Information System (INIS)

    Landstroem, O.; Wenner, C.G.

    1965-12-01

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers

  1. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  2. Dynamics of China's regional development and pollution : an investigation into the Environmental Kuznets Curve

    NARCIS (Netherlands)

    Groot, de H.L.F.; Withagen, C.A.A.M.; Minliang, Z.

    2001-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of thirty regions, covering the period 1982–1997. The types of pollution included are wastewater, waste gas and solid waste. We consider the development of the sources of pollution in a pooled

  3. The Role of Culture in Entrepreneurial Ecosystems: An Investigation for European Regions

    NARCIS (Netherlands)

    Bosma, N.S.; Holvoet, Tine

    2015-01-01

    Promotion of new entrepreneurial activity has been increasingly visible in many economies across the globe and is currently being shaped by an emerging literature on entrepreneurial ecosystems (see e.g. Stam 2015). In this paper we argue that within the regional entrepreneurship ecosystems

  4. Investigating electronic portfolio in pre-service teacher education in the Gulf Region

    NARCIS (Netherlands)

    Alhammar, A.

    2006-01-01

    Keeping its higher education systems competitive in the 21st century, the technology era, is the vital task of higher education in the Gulf Region as well as throughout the world (Abdullah, 2001; Alaasemi, 2003; Al-Nagim, 2002; Watson, 2001). The use of the Internet and Web-based tools and support

  5. The dynamics of China's regional development and pollution: an investigation into the environmental Kuznets curve

    NARCIS (Netherlands)

    Withagen, C.A.A.M.; de Groot, H.L.F.; Minliang, Z.

    2004-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of 30 regions, covering the period 1982-1997. The types of pollution included are wastewater, waste gas, and solid waste. We consider the development of the sources of pollution in a pooled cross-section

  6. The dynamics of China's regional development and pollution: an investigation into the Environmental Kuznets Curve

    NARCIS (Netherlands)

    Groot, de H.L.F.; Withagen, C.A.A.M.; Minliang, Z.

    2004-01-01

    This paper addresses the existence of an Environmental Kuznets Curve for China, using a sample of 30 regions, covering the period 1982–1997. The types of pollution included are wastewater, waste gas, and solid waste. We consider the development of the sources of pollution in a pooled cross-section

  7. Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer in the Atacama Desert, northern Chile

    Science.gov (United States)

    Urrutia, Javier; Jódar, Jorge; Medina, Agustín; Herrera, Christian; Chong, Guillermo; Urqueta, Harry; Luque, José A.

    2018-03-01

    The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.

  8. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  9. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  10. Description of hydrogeological data in SKB's database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Gerlach, M.

    1991-12-01

    During the research and development program performed by SKB for the final disposal of spent nuclear fuel, a large quantity of geoscientific data was collected. Most of this data was stored in a database called GEOTAB. The data is organized into eight groups (subjects) as follows: - Background information. - Geological data. - Borehole geophysical measurements. - Ground surface geophysical measurements. - Hydrogeological and meteorological data. - Hydrochemical data. - Petrophysical measurements. - Tracer tests. Except for the case of borehole geophysical data, ground surface geophysical data and petrophysical data, described in the same report, the data in each group is described in a separate SKB report. The present report described data within the hydrogeological data group. The hydrogeological data groups (subject), called HYDRO, is divided into several subgroups (methods). BHEQUIPE: equipments in borehole. CONDINT: electrical conductivity in pumped water. FLOWMETE: flowmeter tests. GRWB: groundwater level registrations in boreholes. HUFZ: hydraulic unit fracture zones. HURM: hydraulic unit rock mass. HYCHEM: hydraulic test during chemical Sampling. INTER: interference tests. METEOR: meteorological and hydrological measurements. PIEZO: piezometric measurements at depths in boreholes. RECTES: recovery tests. ROCKRM: hydraulic unit rock types in the rock mass. SFHEAD: single hole falling head test. SHBUP: single hole build up test. SHSINJ: single hole steady state tests. SHTINJ: single hole transient injection tests. SHTOLD: single hole transient injections tests - old data. A method consists of one or several data tables. In each chapter a method and its data tables are described. (au)

  11. Investigating the variations in survival rates for very preterm infants in 10 European regions : the MOSAIC birth cohort

    NARCIS (Netherlands)

    Draper, E. S.; Zeitlin, J.; Fenton, A. C.; Weber, T.; Gerrits, J.; Martens, G.; Misselwitz, B.; Breart, G.

    Objective: To investigate the variation in the survival rate and the mortality rates for very preterm infants across Europe. Design: A prospective birth cohort of very preterm infants for 10 geographically defined European regions during 2003, followed to discharge home from hospital. Participants:

  12. Investigations on vegetation of Grikinishkes landscape standard in the Ignalina Nuclear Power Plant region

    International Nuclear Information System (INIS)

    Balevichiene, J.; Lazdauskaite, Z.; Matulevichiute, D.; Stankevichiute, J.

    1995-01-01

    The vegetation of Grikinishkes landscape standard was investigated in 1994 according to the methodics of the European integrated monitoring. After a common prospect of the territory the representative geobotanical profile of 2 km length and 200 m width was found out. There were described 10 associations (classified according to Zurich-Montpellier school principles) including 134 plant species. The site of an intensive monitoring was selected and background investigations carried out. The investigation data indicated, that the state of vegetation is only satisfactory. Anthropogenic changes coursed by sinantropisation, defoliation and pyrogenesis of flora were observed. (author). 7 refs., 3 tabs., 1 fig

  13. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations.

    Science.gov (United States)

    Berger, C; Berger, B; Parson, W

    2012-01-01

    In recent years, evidence from domestic dogs has increasingly been analyzed by forensic DNA testing. Especially, canine hairs have proved most suitable and practical due to the high rate of hair transfer occurring between dogs and humans. Starting with the description of a contamination-free sample handling procedure, we give a detailed workflow for sequencing hypervariable segments (HVS) of the mtDNA control region from canine evidence. After the hair material is lysed and the DNA extracted by Phenol/Chloroform, the amplification and sequencing strategy comprises the HVS I and II of the canine control region and is optimized for DNA of medium-to-low quality and quantity. The sequencing procedure is based on the Sanger Big-dye deoxy-terminator method and the separation of the sequencing reaction products is performed on a conventional multicolor fluorescence detection capillary electrophoresis platform. Finally, software-aided base calling and sequence interpretation are addressed exemplarily.

  14. Investigations on the state of lichen flora in the region of nitrogenous industry in Pulawy

    Energy Technology Data Exchange (ETDEWEB)

    Rydzak, J; Stasiak, H

    1971-01-01

    Production of nitrate fertilizers began at the factory near Pulawy in 1966. Air pollution caused by this plant has caused rapid decay of the pine forest surrounding it. Lichens have been completely eliminated for up to 11 km, distance varying with wind pattern. Destruction is largely attributed to aerosol dusts of ammonia and ammonium nitrate. Sulfur dioxide levels are elevated in the region of the plant, but are not considered excessive.

  15. Immunological and epidemiological investigations in regions contaminated by radionuclides after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Shubik, V M [Institute of Radiation Hygiene, St. Petersburg (Russian Federation)

    1997-09-01

    We have carried out in Novozybkov district of Bryansk region, Russia, immunologic inspection of residents with simultaneous evaluation of radionuclides content in the body and individual dose burden. We have not found any correlation between the dose and immune characteristics: amount of T and B lymphocytes, antibodies level. Only 3 months after the accident increased level of antibodies against thyroid antigens, thyroglobulin and microsomes was found at thyroid doses over 75 cGy. 3 tabs.

  16. Immunological and epidemiological investigations in regions contaminated by radionuclides after the Chernobyl accident

    International Nuclear Information System (INIS)

    Shubik, V.M.

    1997-01-01

    We have carried out in Novozybkov district of Bryansk region, Russia, immunologic inspection of residents with simultaneous evaluation of radionuclides content in the body and individual dose burden. We have not found any correlation between the dose and immune characteristics: amount of T and B lymphocytes, antibodies level. Only 3 months after the accident increased level of antibodies against thyroid antigens, thyroglobulin and microsomes was found at thyroid doses over 75 cGy. 3 tabs

  17. Analytical approach to the investigation of Rayleigh-Taylor structures of the equatorial F region

    International Nuclear Information System (INIS)

    Komarov, V.N.; Sazonov, S.V.

    1991-01-01

    On the basis of approximation of a strong vertical extension the nonlinear dynamics of Rayleigh-Taylor structures in the equatorial F region is analytically studied. The successive approximation method, proposed herein, is true for structures having longitudinal symmetry. Using this method it is managed to describe the mushroom-shaped bubble with a shock wave profile in its head part. The nonlinearity leads to bubble formation under conditions with aggravation, limiting the growth of positive disturbances at the same time

  18. Investigation of the transport properties of metals in the biphase region

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Rousskikh, A. G.; Chaikovsky, S. A.; Oreshkin, E. V.

    2010-01-01

    Results of experiments on electrical wire explosion are presented and processes of stratum formation and decay are analyzed in this paper. A procedure of calculating the transport coefficients from the rate of stratum damping is described. It is demonstrated that values of the transport coefficients for metals are not an unambiguous function of the material state in the biphase region for characteristic times of ∼10 -7 s but depend on the process prehistory.

  19. Financial gradualism and banking crises in North Africa region: an investigation by a panel logit model

    OpenAIRE

    KHATTAB, Ahmed; IHADIYAN, Abid

    2017-01-01

    Abstract. In order to overcome the troubles of the crisis in the seventies, North African countries have adopted financial liberalization policies to enhance their economic growth. Moreover, these policies have affected the stability of their banking systems. The purpose of this study is to test the impact of financial liberalization on the probability of appearance of banking crises which covers a sample of four countries of the North Africa region during the period 1970-2003 by using a pane...

  20. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.